JP3653427B2 - Tofu drainage treatment method and equipment - Google Patents

Tofu drainage treatment method and equipment Download PDF

Info

Publication number
JP3653427B2
JP3653427B2 JP30716599A JP30716599A JP3653427B2 JP 3653427 B2 JP3653427 B2 JP 3653427B2 JP 30716599 A JP30716599 A JP 30716599A JP 30716599 A JP30716599 A JP 30716599A JP 3653427 B2 JP3653427 B2 JP 3653427B2
Authority
JP
Japan
Prior art keywords
tofu
wastewater
tank
denitrification
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30716599A
Other languages
Japanese (ja)
Other versions
JP2001121192A (en
Inventor
文夫 小濱
憲尋 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP30716599A priority Critical patent/JP3653427B2/en
Publication of JP2001121192A publication Critical patent/JP2001121192A/en
Application granted granted Critical
Publication of JP3653427B2 publication Critical patent/JP3653427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、豆腐製造工場等で生じる豆腐排水を処理する豆腐排水処理設備及び方法に関するものである。
【0002】
【従来の技術】
豆腐排水とは、豆腐の製造に使用された排水や製造後の機器の洗浄(アルカリ洗浄等)によって出た排水のことをいう。豆腐排水には、原料である大豆の成分、すなわち、蛋白質等が含まれているため、豆腐排水を未処理のまま湖沼や内湾などに放流すると、環境を著しく汚染する。従って、豆腐排水はその放流に先立ち、有機物成分及び窒素成分の除去が行われるのが一般的である。このような有機物成分及び窒素成分の除去方法としては、従来、豆腐排水は好気性条件下曝気槽で活性汚泥処理され、有機物成分は分解除去され、窒素成分は生物に捕捉され汚泥として除去されることが知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、前述した従来の有機物成分及び窒素成分の除去方法では、豆腐排水中の窒素成分を除去するには、広大なスペースが必要となる。更に、ランニングコストが高くなる上に、余剰汚泥が多量に発生し、余剰汚泥の処分費等のコストがかかる。また、豆腐排水中の窒素成分を十分に除去できない場合があった。
【0004】
そこで、本発明は、豆腐排水中の有機物成分及び窒素成分を十分に低減でき、かつ省スペース化及び低コスト化を可能とする豆腐排水処理方法及び設備を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上述した従来の問題点を解決すべく検討した結果、以下のことを見出した。すなわち、豆腐排水中の有機物成分濃度は、豆腐の製造工程や機器洗浄の時間帯などに依存して大きく変動し、豆腐排水中の有機物成分濃度が相当に大きくなるときがあり、そのときに曝気槽で活性汚泥処理を行うと、曝気槽の容積負荷が十分でないために窒素成分を十分に除去できないことを見出した。
【0006】
そこで、本発明の豆腐排水処理方法は、豆腐排水から有機物成分及び窒素成分を除去する豆腐排水処理方法において、豆腐排水から懸濁物質を凝集分離する凝集分離工程と、豆腐排水を嫌気処理し、豆腐排水中の有機物成分を除去する嫌気処理工程と、豆腐排水を硝化脱窒処理し、豆腐排水中の窒素成分(例えば豆腐排水の嫌気処理工程で発生したNH4 +−N)を除去する硝化脱窒工程とを含むことを特徴とする。ここで、「有機物成分」とは、炭素原子を含有する成分、例えば蛋白質、界面活性剤等をいい、「窒素成分」とは、窒素原子を含有する物質、例えば蛋白質、アンモニア、硝酸、窒素分子等をいう。
【0007】
この場合、豆腐排水においては、懸濁物質中に窒素成分が多く取り込まれるため、懸濁物質を凝集分離すると、豆腐排水中の窒素成分の多くを除去することが可能となる。また、嫌気処理によって、有機物成分が十分に除去されると共に、残存の窒素成分(例えば蛋白質)はアンモニアに変換され、このアンモニアは更に生物学的硝化脱窒処理によって除去される。また、嫌気処理を行うための設備は曝気槽よりも高負荷運転が可能なため小型化が可能であり、また、曝気槽で豆腐排水を好気処理する場合に比べて余剰汚泥を少なくでき、曝気も不要となる。
【0008】
また、本発明の豆腐排水処理設備は、豆腐排水から有機物成分及び窒素成分を除去する豆腐排水処理設備において、豆腐排水から懸濁物質を凝集分離する凝集分離装置と、凝集分離装置から導入される豆腐排水を嫌気処理し、豆腐排水中の有機物成分を除去する嫌気処理装置と、嫌気処理装置から導入される豆腐排水を硝化脱窒処理し、豆腐排水中の窒素成分を除去する硝化脱窒装置とを備えることを特徴とする。この発明の装置によれば上記方法を有効に行うことができる。
【0009】
【発明の実施の形態】
以下、本発明の豆腐排水処理設備の実施形態について詳細に説明する。
【0010】
図1は、本発明の豆腐排水処理設備の実施形態を示すフローシートである。図1に示すように、豆腐排水処理設備20は、凝集沈殿槽(凝集沈殿設備)1を備えており、凝集沈殿槽1には、豆腐排水流入ラインL0を通して豆腐排水が導入される。流入ラインL0には凝集剤注入装置2が取り付けられ、凝集剤注入装置2から凝集剤が注入され、凝集剤によって豆腐排水中に懸濁物質が生成され、その懸濁物質が凝集沈殿槽1で沈降分離される。凝集剤としては、例えばPAC(ポリ塩化アルミニウム)、硫酸バンド、高分子ポリマーなどが用いられる。なお、凝集沈殿槽1で発生した余剰汚泥は、ラインL1を通して余剰汚泥貯槽3に送られ、更に脱水機4に送られて脱水され、脱水汚泥は産業廃棄物として処分される。
【0011】
凝集沈殿槽1の下流には、凝集沈殿槽1から導入される豆腐排水を嫌気処理する嫌気処理設備5が設置され、嫌気処理設備5は、酸生成槽6と嫌気反応槽7とを備えている。酸生成槽6には、ラインL2を通して凝集沈殿槽1から豆腐排水が導入され、酸生成槽6は、豆腐排水中の有機物成分を酸生成菌によって酢酸、プロピオン酸、酪酸などの有機酸に分解する。嫌気反応槽7には、ラインL3を通してポンプP1により酸生成槽6から豆腐排水が導入され、嫌気反応槽7は、豆腐排水中の有機酸をメタン生成菌によって分解してメタンガス及び二酸化炭素を生成することで豆腐排水中の有機物成分を豆腐排水から除去する。
【0012】
ここで、嫌気反応槽7としては、上向流嫌気性汚泥床(以下、「UASB(Upflow Anaerobic Sludge Blanket)」という)式、担体を使用する流動床式、固定床式等の嫌気反応槽が挙げられるが、このうち、小型化の観点からは、容積負荷がより高いUASB式の嫌気反応槽7が好ましい。UASB式の嫌気反応槽7内ではその底部にグラニュール汚泥が入っており、その中にメタン生成菌が存在する。この場合、豆腐排水は、嫌気反応槽7の下部から導入され、グラニュール汚泥床を通され、上部から排出される。
【0013】
なお、酸生成槽6及び嫌気反応槽7で生成するメタンガスは、ラインL4を通してガスホルダ8に貯留され、適宜ボイラー9の燃焼に用いられる。
【0014】
嫌気反応槽7の下流には、硝化脱窒処理設備10が設置され、硝化脱窒処理設備10は、嫌気反応槽7からラインL5を通して導入される豆腐排水を生物学的に硝化脱窒処理する。硝化脱窒処理設備10としては、上流側から順次硝化槽および脱窒槽で構成されるもの、上流側から脱窒槽および硝化槽で構成され硝化槽内の豆腐排水の一部が脱窒槽に返送されるものが挙げられる。このうち、窒素成分の除去効率を向上させる点からは、図1に示すように上流側から脱窒槽11および硝化槽12で構成され硝化槽12内の豆腐排水の一部が脱窒槽11に返送されるものが好ましい。
【0015】
ここで、脱窒槽11は、その内部が嫌気状態に保持されており、硝化槽12から返送される豆腐排水中の硝酸イオン等を窒素ガスに変換し、豆腐排水をラインL6を通して流出させる。硝化槽12は、ラインL6を通して流入される豆腐排水に空気供給ライン13を通してブロワ14によって空気を供給し、内部を好気状態に保持し、豆腐排水中のアンモニウムイオンを硝化菌によって硝酸イオン等に変換する。更に、硝化槽12からは、窒素成分の除去効率を向上させる点から、返送ライン(返送手段)15が脱窒槽11まで延びており、ポンプ(返送手段)P2によって硝化槽12内の豆腐排水の一部を脱窒槽11に返送する。
【0016】
なお、硝化槽12から流出される豆腐排水は、ラインL7を通して沈殿槽16に送られ、沈殿槽16は、硝化槽12で硝化処理された豆腐排水中の懸濁物質等を沈殿分離し、河川や湖沼などに放流する。また、沈殿槽16は、ラインL8を通して余剰汚泥を余剰汚泥貯槽3に送り、余剰汚泥の一部をラインL9を通して脱窒槽4に送る。余剰汚泥貯槽3に送られた余剰汚泥は、脱水機4で脱水された後に産業廃棄物として処分される。なお、脱水機4で生じる水は、脱窒槽11内の脱窒に必要な有機物成分源に利用するため、ラインL10を通して戻り水として脱窒槽11に戻される。
【0017】
次に、前述した構成の豆腐排水処理設備20を用いた豆腐排水処理方法について説明する。
【0018】
まず、凝集剤注入装置2から凝集剤を豆腐排水流入ラインL0に注入する。この場合、豆腐排水中に懸濁物質が生成され、この懸濁物質は凝集沈殿槽1に流入され、ここで凝集分離される(凝集分離工程)。このとき、懸濁物質中に窒素成分の多くが取り込まれているため、懸濁物質を凝集分離すると、豆腐排水中から窒素成分の多くを除去することが可能となる。更に、豆腐排水は、ラインL2を通して酸生成槽6に送られ、酸生成槽6内の酸生成菌によって豆腐排水中の有機物が有機酸に分解される。そして、豆腐排水は、ポンプP1によりラインL3を通して嫌気反応槽7に送られる。このとき、有機酸はメタン生成菌によってメタンガスと二酸化炭素とに分解されると同時に、蛋白質等由来のNH4 +−Nが生成する(嫌気処理工程)。
【0019】
そこで、嫌気反応槽7内の豆腐排水は、ラインL5を通して脱窒槽11に送られた後、ラインL6を通して硝化槽12に送られる(硝化脱窒処理工程)。すなわち、脱窒槽11では、豆腐排水中の硝酸イオン等が脱窒素菌によって窒素ガスに変換され(脱窒工程)、硝化槽12では、硝化菌によってアンモニウムイオンが硝酸イオン等に変換される(硝化工程)。従って、豆腐排水を脱窒槽11と硝化槽12との間で循環することで、豆腐排水中のより多くのアンモニウムイオンが窒素ガスとして放出される。このように、嫌気処理された豆腐排水に対して、硝化脱窒処理が行われるため、窒素成分を十分に除去することが可能である。
【0020】
また、嫌気処理設備5は、曝気槽よりも高負荷であるため小型化が可能であり、豆腐排水設備20全体として省スペース化が可能となる。更に、曝気槽で豆腐排水を好気処理する場合に比べて余剰汚泥を少なくすることができるので、余剰汚泥の処分費が節約でき、また、曝気も不要となるため、ランニングコストが低減される。
【0021】
本発明は、前述した実施形態に限定されるものではない。例えば、上記実施形態では、凝集沈殿槽1で自然沈降した汚泥を取り出す凝集沈殿分離法に代えて、凝集沈殿槽1内の豆腐排水を加圧した後に通常の気圧に減圧して汚泥を取り出す加圧浮上分離法を用いてもよい。
【0022】
【発明の効果】
以上述べたように本発明によれば、有機物成分濃度が高い場合でも豆腐排水から有機物成分を十分に除去すると共に、窒素成分についても除去することが可能となる。また、嫌気処理装置は曝気槽よりも高負荷であり小型化が可能であるため設備全体としての省スペース化が可能となる。更に、曝気槽で豆腐排水を好気処理する場合に比べて余剰汚泥を少なくでき、曝気が不要となるため、余剰汚泥の処分や曝気に要するランニングコストを低減することができる。
【図面の簡単な説明】
【図1】本発明の豆腐排水処理設備の一実施形態を示すフローシートである。
【符号の説明】
1…凝集沈殿槽(凝集分離設備)、5…嫌気処理設備、7…嫌気反応槽、10…硝化脱窒処理設備、11…脱窒槽、12…硝化槽、15…返送ライン(返送手段)、P2…ポンプ(返送手段)、20…豆腐排水処理設備。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tofu wastewater treatment facility and method for treating tofu wastewater produced in a tofu production factory or the like.
[0002]
[Prior art]
Tofu drainage refers to wastewater used for the production of tofu and wastewater generated by washing equipment after production (alkali washing, etc.). Since the tofu drainage contains the components of soybean, which is a raw material, that is, protein and the like, if the tofu drainage is discharged into a lake, an inner bay or the like without being treated, the environment is significantly polluted. Therefore, in general, the tofu drainage is subjected to removal of organic components and nitrogen components prior to its release. As a method for removing organic components and nitrogen components, conventionally, tofu wastewater is treated with activated sludge in an aeration tank under aerobic conditions, organic components are decomposed and removed, and nitrogen components are captured by organisms and removed as sludge. It is known.
[0003]
[Problems to be solved by the invention]
However, the conventional organic component and nitrogen component removal method described above requires a large space in order to remove the nitrogen component in the tofu waste water. Further, the running cost is increased, and a large amount of surplus sludge is generated, which causes costs such as disposal of surplus sludge. Moreover, the nitrogen component in tofu waste water may not be able to be removed sufficiently.
[0004]
Accordingly, an object of the present invention is to provide a tofu wastewater treatment method and equipment that can sufficiently reduce organic components and nitrogen components in tofu wastewater, and that can save space and cost.
[0005]
[Means for Solving the Problems]
As a result of studies to solve the above-described conventional problems, the present inventors have found the following. In other words, the concentration of organic components in tofu drainage varies greatly depending on the tofu production process and equipment cleaning time zone, and the concentration of organic components in tofu drainage may increase considerably. It was found that when activated sludge treatment was performed in the tank, the nitrogen component could not be removed sufficiently because the volume load of the aeration tank was not sufficient.
[0006]
Therefore, the tofu wastewater treatment method of the present invention is a tofu wastewater treatment method for removing organic components and nitrogen components from tofu wastewater, and an aggregating and separating step for aggregating and separating suspended substances from tofu wastewater, and anaerobically treating the tofu wastewater, Anaerobic treatment process to remove organic components in tofu wastewater and nitrification to remove nitrogen components in tofu wastewater (eg NH 4 + -N generated in anaerobic treatment process of tofu wastewater) And a denitrification step. Here, the “organic component” refers to a component containing a carbon atom, such as a protein or a surfactant, and the “nitrogen component” refers to a substance containing a nitrogen atom, such as a protein, ammonia, nitric acid, or nitrogen molecule. Etc.
[0007]
In this case, in the tofu drainage, a large amount of nitrogen component is taken into the suspended substance. Therefore, if the suspended substance is agglomerated and separated, most of the nitrogen component in the tofu drainage can be removed. In addition, the organic component is sufficiently removed by the anaerobic treatment, and the remaining nitrogen component (for example, protein) is converted into ammonia, which is further removed by biological nitrification denitrification treatment. In addition, the equipment for anaerobic treatment can be downsized because it can be operated at a higher load than the aeration tank, and the amount of excess sludge can be reduced compared to the aerobic treatment of tofu wastewater in the aeration tank, Aeration is also unnecessary.
[0008]
The tofu wastewater treatment facility of the present invention is introduced from a coagulation / separation device for coagulating and separating suspended substances from the tofu wastewater and a coagulation / separation device in a tofu wastewater treatment facility for removing organic components and nitrogen components from tofu wastewater. Anaerobic treatment equipment that anaerobically treats tofu wastewater and removes organic components in tofu wastewater, and nitrification denitrification equipment that removes nitrogen components in tofu wastewater by nitrifying and denitrifying the tofu wastewater introduced from the anaerobic treatment equipment It is characterized by providing. According to the apparatus of the present invention, the above method can be effectively performed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the tofu wastewater treatment facility of the present invention will be described in detail.
[0010]
FIG. 1 is a flow sheet showing an embodiment of a tofu wastewater treatment facility of the present invention. As shown in FIG. 1, the tofu drainage treatment facility 20 includes a coagulation sedimentation tank (coagulation sedimentation facility) 1, and the tofu drainage is introduced into the coagulation sedimentation tank 1 through the tofu drainage inflow line L <b> 0. A flocculant injection device 2 is attached to the inflow line L0. The flocculant is injected from the flocculant injection device 2, and a suspended substance is generated in the tofu drainage by the flocculant. Sedimentation is separated. As the flocculant, for example, PAC (polyaluminum chloride), a sulfuric acid band, a high molecular polymer, or the like is used. The surplus sludge generated in the coagulation sedimentation tank 1 is sent to the surplus sludge storage tank 3 through the line L1, further sent to the dehydrator 4, and dehydrated, and the dehydrated sludge is disposed as industrial waste.
[0011]
An anaerobic treatment facility 5 for anaerobically treating the tofu wastewater introduced from the coagulation sedimentation tank 1 is installed downstream of the coagulation sedimentation tank 1, and the anaerobic treatment facility 5 includes an acid generation tank 6 and an anaerobic reaction tank 7. Yes. Tofu drainage is introduced into the acid generation tank 6 from the coagulation sedimentation tank 1 through the line L2, and the acid generation tank 6 decomposes organic components in the tofu drainage into organic acids such as acetic acid, propionic acid and butyric acid by acid generating bacteria. To do. Tofu waste water is introduced into the anaerobic reaction tank 7 from the acid generation tank 6 by the pump P1 through the line L3, and the anaerobic reaction tank 7 decomposes the organic acid in the tofu waste water with the methanogen to produce methane gas and carbon dioxide. By doing so, organic components in the tofu drainage are removed from the tofu drainage.
[0012]
Here, as the anaerobic reaction tank 7, an anaerobic reaction tank such as an upflow anaerobic sludge bed (hereinafter referred to as "UASB (Upflow Anaerobic Sludge Blanket)") type, a fluidized bed type using a carrier, a fixed bed type, etc. Among these, from the viewpoint of downsizing, the UASB type anaerobic reaction tank 7 having a higher volumetric load is preferable. In the UASB type anaerobic reaction tank 7, granule sludge is contained at the bottom, and methanogenic bacteria are present therein. In this case, the tofu drainage is introduced from the lower part of the anaerobic reaction tank 7, passed through the granule sludge bed, and discharged from the upper part.
[0013]
Note that the methane gas generated in the acid generation tank 6 and the anaerobic reaction tank 7 is stored in the gas holder 8 through the line L4 and used for combustion of the boiler 9 as appropriate.
[0014]
A nitrification denitrification treatment facility 10 is installed downstream of the anaerobic reaction tank 7, and the nitrification denitrification treatment facility 10 biologically nitrifies and denitrifies the tofu wastewater introduced from the anaerobic reaction tank 7 through the line L5. . The nitrification / denitrification treatment equipment 10 is composed of a nitrification tank and a denitrification tank sequentially from the upstream side, and is composed of a denitrification tank and a nitrification tank from the upstream side, and a part of the tofu wastewater in the nitrification tank is returned to the denitrification tank. Can be mentioned. Among these, from the viewpoint of improving the nitrogen component removal efficiency, as shown in FIG. 1, the denitrification tank 11 and the nitrification tank 12 are configured from the upstream side, and a part of the tofu drainage in the nitrification tank 12 is returned to the denitrification tank 11. Are preferred.
[0015]
Here, the inside of the denitrification tank 11 is maintained in an anaerobic state, and nitrate ions and the like in the tofu drainage returned from the nitrification tank 12 are converted into nitrogen gas, and the tofu drainage is caused to flow out through the line L6. The nitrification tank 12 supplies air to the tofu drainage flowing in through the line L6 by the blower 14 through the air supply line 13 and keeps the inside in an aerobic state, and converts ammonium ions in the tofu drainage into nitrate ions and the like by nitrifying bacteria. Convert. Further, from the point of improving the removal efficiency of nitrogen components from the nitrification tank 12, a return line (return means) 15 extends to the denitrification tank 11, and the tofu drainage in the nitrification tank 12 is pumped by the pump (return means) P2. A part is returned to the denitrification tank 11.
[0016]
In addition, the tofu waste water which flows out from the nitrification tank 12 is sent to the sedimentation tank 16 through the line L7, and the sedimentation tank 16 precipitates and separates suspended substances and the like in the tofu waste water nitrified in the nitrification tank 12, and the river Released into lakes and lakes. Moreover, the sedimentation tank 16 sends the excess sludge to the excess sludge storage tank 3 through the line L8, and sends a part of the excess sludge to the denitrification tank 4 through the line L9. The excess sludge sent to the excess sludge storage tank 3 is dehydrated by the dehydrator 4 and then disposed as industrial waste. The water generated in the dehydrator 4 is returned to the denitrification tank 11 as return water through the line L10 in order to be used as an organic component source necessary for denitrification in the denitrification tank 11.
[0017]
Next, a tofu wastewater treatment method using the tofu wastewater treatment facility 20 having the above-described configuration will be described.
[0018]
First, the flocculant is injected from the flocculant injection device 2 into the tofu drainage inflow line L0. In this case, a suspended substance is generated in the tofu waste water, and this suspended substance flows into the agglomeration sedimentation tank 1, where it is agglomerated and separated (aggregation separation step). At this time, since most of the nitrogen component is taken into the suspended substance, when the suspended substance is agglomerated and separated, it is possible to remove most of the nitrogen component from the tofu waste water. Further, the tofu drainage is sent to the acid generation tank 6 through the line L2, and the organic matter in the tofu drainage is decomposed into organic acids by the acid generating bacteria in the acid generation tank 6. And the tofu waste water is sent to the anaerobic reaction tank 7 through the line L3 by the pump P1. At this time, the organic acid is decomposed into methane gas and carbon dioxide by the methanogen, and at the same time, NH 4 + -N derived from protein or the like is produced (anaerobic treatment step).
[0019]
Therefore, the tofu wastewater in the anaerobic reaction tank 7 is sent to the denitrification tank 11 through the line L5 and then sent to the nitrification tank 12 through the line L6 (nitrification denitrification treatment step). That is, in the denitrification tank 11, nitrate ions and the like in the tofu drainage are converted into nitrogen gas by denitrifying bacteria (denitrification process), and in the nitrification tank 12, ammonium ions are converted into nitrate ions and the like by nitrifying bacteria (nitrification). Process). Therefore, by circulating the tofu waste water between the denitrification tank 11 and the nitrification tank 12, more ammonium ions in the tofu waste water are released as nitrogen gas. Thus, since the nitrification denitrification process is performed on the anaerobic tofu waste water, it is possible to sufficiently remove the nitrogen component.
[0020]
Moreover, since the anaerobic treatment facility 5 has a higher load than the aeration tank, the anaerobic treatment facility 5 can be reduced in size, and the tofu drainage facility 20 as a whole can save space. Furthermore, surplus sludge can be reduced as compared with the case where the tofu wastewater is aerobically treated in the aeration tank, so that the disposal cost of the surplus sludge can be saved and the aeration is unnecessary, so the running cost is reduced. .
[0021]
The present invention is not limited to the embodiment described above. For example, in the above-described embodiment, instead of the coagulation sedimentation separation method in which the sludge naturally settled in the coagulation sedimentation tank 1 is added, the tofu drainage in the coagulation sedimentation tank 1 is pressurized and then decompressed to a normal pressure to extract the sludge. A pressure levitation separation method may be used.
[0022]
【The invention's effect】
As described above, according to the present invention, even when the organic component concentration is high, the organic component can be sufficiently removed from the tofu waste water, and the nitrogen component can also be removed. In addition, since the anaerobic treatment apparatus has a higher load than the aeration tank and can be miniaturized, it is possible to save space as a whole facility. Furthermore, surplus sludge can be reduced and aeration is unnecessary compared with the case where the tofu wastewater is aerobically treated in the aeration tank, so that the running cost required for disposal and aeration of the excess sludge can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an embodiment of a tofu wastewater treatment facility of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Coagulation sedimentation tank (aggregation separation equipment), 5 ... Anaerobic processing equipment, 7 ... Anaerobic reaction tank, 10 ... Nitrification denitrification processing equipment, 11 ... Denitrification tank, 12 ... Nitrification tank, 15 ... Return line (return means), P2 ... pump (return means), 20 ... tofu wastewater treatment facility.

Claims (6)

豆腐排水から有機物成分及び窒素成分を除去する豆腐排水処理方法において、
前記豆腐排水から懸濁物質を凝集分離する凝集分離工程と、
前記豆腐排水を嫌気処理し、前記豆腐排水中の有機物成分を除去する嫌気処理工程と、
前記豆腐排水を硝化脱窒処理し、前記豆腐排水中の窒素成分を除去する硝化脱窒工程と、
を含むことを特徴とする豆腐排水処理方法。
In a tofu wastewater treatment method for removing organic components and nitrogen components from tofu wastewater,
A coagulation separation step of coagulating and separating suspended substances from the tofu waste water,
Anaerobic treatment of the tofu drainage, an anaerobic treatment step of removing organic components in the tofu drainage,
Nitrification and denitrification treatment of the tofu wastewater, and a nitrification and denitrification step of removing nitrogen components in the tofu wastewater,
A tofu wastewater treatment method comprising:
前記嫌気処理工程は、前記豆腐排水中の有機物成分をメタン生成菌によって除去する嫌気反応工程を含むことを特徴とする請求項1に記載の豆腐排水処理方法。The tofu wastewater treatment method according to claim 1, wherein the anaerobic treatment step includes an anaerobic reaction step in which organic components in the tofu wastewater are removed by a methanogen. 前記硝化脱窒工程は、
前記嫌気処理工程で嫌気処理された豆腐排水中の窒素成分を脱窒菌によって脱窒処理する脱窒工程と、
前記脱窒工程で得られる豆腐排水中の窒素成分を硝化菌によって硝化処理する硝化工程と、
前記硝化工程で得られる豆腐排水の一部を前記脱窒工程に返送する返送工程と、
を含むことを特徴とする請求項1又は2に記載の豆腐排水処理方法。
The nitrification denitrification step includes
A denitrification step of denitrifying a nitrogen component in the tofu wastewater anaerobically treated in the anaerobic treatment step by denitrifying bacteria;
A nitrification step of nitrifying the nitrogen component in the tofu drainage obtained in the denitrification step with nitrifying bacteria;
A return process for returning a part of the tofu drainage obtained in the nitrification process to the denitrification process;
The tofu drainage processing method of Claim 1 or 2 characterized by the above-mentioned.
豆腐排水から有機物成分及び窒素成分を除去する豆腐排水処理設備において、
前記豆腐排水から懸濁物質を凝集分離する凝集分離設備と、
前記凝集分離設備から導入される豆腐排水を嫌気処理し、前記豆腐排水中の前記有機物成分を除去する嫌気処理設備と、
前記嫌気処理設備から導入される豆腐排水を硝化脱窒処理し、豆腐排水中の窒素成分を除去する硝化脱窒処理設備と、
を備えることを特徴とする豆腐排水処理設備。
In tofu wastewater treatment equipment that removes organic and nitrogen components from tofu wastewater,
An aggregating and separating facility for aggregating and separating suspended substances from the tofu waste water;
Anaerobic treatment of tofu wastewater introduced from the coagulation separation equipment, anaerobic treatment equipment to remove the organic components in the tofu wastewater, and
Nitrification denitrification treatment of tofu wastewater introduced from the anaerobic treatment equipment, and removal of nitrogen components in the tofu wastewater;
A tofu wastewater treatment facility characterized by comprising:
前記嫌気処理設備が、上向流嫌気性汚泥床式の嫌気反応槽を備えることを特徴とする請求項4に記載の豆腐排水処理設備。The tofu wastewater treatment facility according to claim 4, wherein the anaerobic treatment facility includes an anaerobic reaction tank of an upflow anaerobic sludge bed type. 前記硝化脱窒処理設備が、
嫌気処理された豆腐排水を脱窒菌によって脱窒処理する脱窒槽と、
脱窒処理された豆腐廃水を硝化菌によって硝化処理する硝化槽と、
前記硝化槽内の豆腐排水を前記脱窒槽に返送する返送手段とを備え、
前記硝化槽で硝化された豆腐排水中の窒素成分が前記脱窒槽で脱窒菌によって脱窒処理されることを特徴とする請求項4又は5に記載の豆腐排水処理設備。
The nitrification denitrification treatment facility is
A denitrification tank for denitrifying anaerobic tofu wastewater by denitrifying bacteria,
A nitrification tank for nitrifying denitrified tofu wastewater with nitrifying bacteria;
A return means for returning the tofu drainage in the nitrification tank to the denitrification tank,
The tofu wastewater treatment facility according to claim 4 or 5, wherein a nitrogen component in the tofu wastewater nitrified in the nitrification tank is denitrified by denitrifying bacteria in the denitrification tank.
JP30716599A 1999-10-28 1999-10-28 Tofu drainage treatment method and equipment Expired - Fee Related JP3653427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30716599A JP3653427B2 (en) 1999-10-28 1999-10-28 Tofu drainage treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30716599A JP3653427B2 (en) 1999-10-28 1999-10-28 Tofu drainage treatment method and equipment

Publications (2)

Publication Number Publication Date
JP2001121192A JP2001121192A (en) 2001-05-08
JP3653427B2 true JP3653427B2 (en) 2005-05-25

Family

ID=17965825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30716599A Expired - Fee Related JP3653427B2 (en) 1999-10-28 1999-10-28 Tofu drainage treatment method and equipment

Country Status (1)

Country Link
JP (1) JP3653427B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
JP4542764B2 (en) * 2003-10-22 2010-09-15 住友重機械エンバイロメント株式会社 Organic wastewater treatment equipment
JP2005125202A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
KR100853287B1 (en) * 2006-09-18 2008-08-21 충청북도 High rate methanc production system using anaerobic archaea
JP5238002B2 (en) * 2010-09-16 2013-07-17 水ing株式会社 Organic waste water treatment apparatus and treatment method
CN102180563B (en) * 2011-03-16 2012-11-21 宁波市川宁环保科技有限公司 Reclaimed water recycling device
CN102351321B (en) * 2011-09-06 2013-02-27 佛山市合璟节能环保科技有限公司 Composite biological enzyme preparation for deweighting treatment of domestic sludge, and production and application method thereof
JP2015073951A (en) * 2013-10-09 2015-04-20 神鋼環境メンテナンス株式会社 Method for operating organic waste water treatment plant
CN103951156B (en) * 2014-04-24 2016-01-27 中国水电顾问集团贵阳勘测设计研究院有限公司 A kind of Sludge Dewatering Flocculant utilizing bagasse to prepare and preparation method thereof
CN107162339A (en) * 2017-06-27 2017-09-15 深圳市睿维盛环保科技有限公司 Return flow technique

Also Published As

Publication number Publication date
JP2001121192A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP2001037467A (en) Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2000015288A (en) Waste water treatment method and apparatus
JP2006272177A (en) Method and system for removing biological nitrogen
JP4997724B2 (en) Organic wastewater treatment method
JP6445855B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
JP3653427B2 (en) Tofu drainage treatment method and equipment
JPH10500611A (en) In particular, a method and apparatus for treating wastewater containing organic matter by wet oxidation with internal recirculation of solid residue, and a purification facility therefor
JPH11285696A (en) Device and method for sewage treatment
KR20100128121A (en) Method and apparatus for treating anaerobic digestive fluid
CN107055963B (en) Efficient and low-consumption advanced treatment device and treatment method for landfill leachate
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
KR100755487B1 (en) Dye wastewater treatment process using aerobic bio-adsorption, pressured ozone treatment and alternating aeration
KR100217893B1 (en) Organic substance, nitrogen and phosphor removal device using immobilization biofilm method and bypass flow
JP3265456B2 (en) Treatment method and treatment equipment for methane fermentation treatment liquid
KR101828296B1 (en) Wastewater Processing Appliance using Existing Activated Sludge Appliance as Shortcut Nitrogen Removal Process
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
KR100809607B1 (en) Processing mothod and processing equipment for excretions of animals
KR100561180B1 (en) A method of treating sewage and high organic loading wastewater by microbial high rate reactor
KR20010007939A (en) Advanced Treatment Process of Domestic Wastewater by Biological and Chemical
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JP4085436B2 (en) Drainage treatment apparatus and method
JP3937625B2 (en) Biological treatment method for organic waste
JP3832888B2 (en) Purification device operation method
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees