KR101828296B1 - Wastewater Processing Appliance using Existing Activated Sludge Appliance as Shortcut Nitrogen Removal Process - Google Patents
Wastewater Processing Appliance using Existing Activated Sludge Appliance as Shortcut Nitrogen Removal Process Download PDFInfo
- Publication number
- KR101828296B1 KR101828296B1 KR1020160153593A KR20160153593A KR101828296B1 KR 101828296 B1 KR101828296 B1 KR 101828296B1 KR 1020160153593 A KR1020160153593 A KR 1020160153593A KR 20160153593 A KR20160153593 A KR 20160153593A KR 101828296 B1 KR101828296 B1 KR 101828296B1
- Authority
- KR
- South Korea
- Prior art keywords
- solid
- tank
- unit
- wastewater
- water treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 87
- 230000008569 process Effects 0.000 title claims abstract description 71
- 239000010802 sludge Substances 0.000 title claims abstract description 24
- 239000002351 wastewater Substances 0.000 title claims abstract description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title abstract description 103
- 229910052757 nitrogen Inorganic materials 0.000 title abstract description 51
- 238000012545 processing Methods 0.000 title abstract description 7
- 238000011282 treatment Methods 0.000 claims abstract description 71
- 239000007788 liquid Substances 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000000926 separation method Methods 0.000 claims abstract description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 27
- 239000007787 solid Substances 0.000 claims abstract description 21
- 230000029087 digestion Effects 0.000 claims abstract description 11
- 238000004065 wastewater treatment Methods 0.000 claims abstract description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 28
- 230000003647 oxidation Effects 0.000 claims description 27
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000005416 organic matter Substances 0.000 claims description 13
- 230000018044 dehydration Effects 0.000 claims description 7
- 238000006297 dehydration reaction Methods 0.000 claims description 7
- 239000002846 particulate organic matter Substances 0.000 claims description 7
- 239000005446 dissolved organic matter Substances 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 238000003795 desorption Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000001546 nitrifying effect Effects 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 11
- 239000001301 oxygen Substances 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 11
- 230000001590 oxidative effect Effects 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 abstract 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 244000005700 microbiome Species 0.000 description 12
- 239000010865 sewage Substances 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000005273 aeration Methods 0.000 description 4
- 238000011221 initial treatment Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- 238000010612 desalination reaction Methods 0.000 description 3
- 238000004807 desolvation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229940095054 ammoniac Drugs 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/307—Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1215—Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1268—Membrane bioreactor systems
- C02F3/1273—Submerged membrane bioreactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2866—Particular arrangements for anaerobic reactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/303—Nitrification and denitrification treatment characterised by the nitrification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Analytical Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
본 발명은 활성슬러지 공정인 기존처리장을 단축질소제거공정으로 변경하여 사용 가능한 오폐수 처리장치에 관한 것으로, 보다 상세하게는, 슬러지 처리 공정에서 발생하는 반류수 내의 질소를 주처리공정의 단축질소제거 반응이 안정적으로 이루어질 수 있는 형태로 유입시킴으로써 경제적이고 효율적으로 질소를 제거하기 위한 오폐수 처리장치에 관한 것이다.The present invention relates to a wastewater treatment apparatus that can be used by changing an existing treatment plant, which is an activated sludge process, to a shortened nitrogen removal process. More particularly, The present invention relates to a wastewater treatment apparatus for removing nitrogen efficiently and economically by introducing the wastewater into a stable form.
하수 및 폐수에 존재하는 오염물질에는 고형물, 유기물뿐만 아니라 질소 및 인과 같은 영양염류가 있다. 이러한 오염물질을 제거하는 방법에는 물리적, 생물학적, 화학적 방법이 사용된다. 이러한 방법 중 박테리아를 이용하여 오염물질을 제거하는 생물학적 활성슬러지 공법이 경제적/효율적인 측면에서 우수하기 때문에 현장에서 가장 많이 사용된다.Contaminants present in sewage and wastewater include solids, organic matter as well as nutrients such as nitrogen and phosphorus. Physical, biological and chemical methods are used to remove these contaminants. Among these methods, biologically activated sludge process that removes pollutants by using bacteria is most economically and efficiently used, and thus is most widely used in the field.
생물학적으로 유기물을 제거하는 일반적인 시스템은 도 1 과 같이 수처리공정부와 슬러지공정부로 이루어진다. 수처리 공정부는, 입자성 유기물을 제거하기 위한 1차 침전공정(1차침전부), 용존성 유기물을 제거하기 위하여 공기를 공급하여 미생물로 하여금 유기물을 산화하여 이산화탄소로 전환시키는 생물반응조, 반응이 완료된 후 처리수와 미생물을 침전/분리하여 깨끗한 처리수를 확보하는 2차 침전공정(고액분리부)으로 이루어진다. 슬러지처리 공정부는, 1차침전부 및 고액분리부에서 분리된 고형물을 처리하는 공정으로 고형물농도를 증가시키는 농축부, 농축된 고형물을 혐기성 소화하는 혐기성소화조, 혐기성 소화된 고형물을 고액분리하는 탈수부로 이루어진다.A general system for biologically removing organic matter consists of a water treatment facility and a sludge processing unit as shown in Fig. The water treatment process unit includes a first precipitation process (first preconditioning process) for removing particulate organic matter, a bioreactor that converts air into carbon dioxide by oxidizing the organic matter by supplying air to remove dissolved organic matter, And a secondary precipitation step (solid-liquid separation unit) for precipitating / separating the treated water and the microorganisms to ensure clean treated water. The sludge treatment process section comprises a concentrating section for increasing the solids concentration, an anaerobic digestion tank for anaerobic digesting the concentrated solids, and a dewatering section for solid-liquid separating the anaerobically digested solids, the step of treating the solids separated in the primary purifying section and the solid- .
일반적으로 생물학적 유기물 처리공정에서 유기물은 다음과 같은 반응을 통하여 제거되는데, 식에서 알 수 있듯이 전자수용체인 산소의 공급이 필요하며, 유김루 산화에 필요한 산소를 공급하기 위해 사용되는 비용이 전체 처리장 운영비의 30~50%를 차지할 정도로 높다.In general, in the biological organic treatment process, organic matter is removed through the following reaction. As shown in the formula, it is necessary to supply oxygen as an electron acceptor. 30 ~ 50% of the total.
CH3OH + O2 → CO2 + 2H2OCH 3 OH + O 2 ? CO 2 + 2H 2 O
1차 침전과 고액분리과정에서 발생하는 슬러지는 슬러지 처리공정부에서 처리를 하게 되는데, 일반적으로 농축(농축부)과 혐기성소화(혐기성소화조) 후 고액분리(탈수부)를 통하여 고형물(탈수케익)은 제거하고 탈리액은 별도의 처리를 하지 않고 수처리공정으로 다시 유입시켰다.The sludge generated in the primary precipitation and solid-liquid separation process is treated in the sludge treatment facility. Generally, the solid (dehydrated cake) is collected through the concentration (concentrated portion) and the anaerobic digestion (anaerobic digestion tank) Was removed, and the desalted liquid was flowed back into the water treatment process without any additional treatment.
생물학적으로 질소 및 인을 제거하는 일반적인 방법에서의 수처리공정부는, 도 1 과 같은 시스템에서 생물반응조로서 탈질화/질산화반응조를 채용하면 ㄷ된다.The water treatment process unit in a general method for biologically removing nitrogen and phosphorus employs a denitrification / nitrification reaction tank as a bioreactor in the system shown in FIG.
하수 및 폐수 내에 있는 질소를 제거하기 위해서는 여러 단계의 생물학적 반응을 거쳐야 한다. 우선 다음 식에서와 같이 환원상태의 암모니아성 질소를 공기를 공급하여 산화된 형태의 질소로 산화시켜야 한다. Removal of nitrogen in sewage and wastewater requires multiple steps of biological reactions. First, the reduced ammonia nitrogen should be oxidized to oxidized nitrogen by supplying air as in the following equation.
NH4 + + 1.5O2 → NO2 - + 2H+ + H2O NH 4 + + 1.5O 2 → NO 2 - + 2H + + H 2 O
NO2 - + 0.5O2 → NO3 - NO 2 - + 0.5O 2 → NO 3 -
NH4 + + 2O2 → NO3 - + 2H+ + H2O NH 4 + + 2O 2 → NO 3 - + 2H + + H 2 O
식에서 알 수 있듯이 1mg의 암모니아성 질소를 아질산성질소로 산화하는데 3.43mg의 산소가 필요하며 1mg의 아질산성 질소를 질산성 질소로 산화하는데 1.14mg의 산소가 추가적으로 소모되어 1mg의 암모니아성 질소를 질산성 질소로 산화하는데 4.57mg의 산소가 필요하다. 하수 내의 질소 농도는 약 40~50mg/L 정도인데 이를 산화하기 위해 필요한 산소가 182.8~228.5 mg/L로 유기물 산화에 필요한 산소량보다 많기 때문에 하수처리장 운영비 상승의 원인이 된다. 산화된 질산성 질소는 다음 식과 같은 반응을 통하여 대기 중으로 질소가스로 배출됨으로써 최종적으로 질소가 제거된다. 결과적으로 생물학적으로 질소를 제거하는데 많은 양의 산소 및 유기물이 필요하게 되는데 이는 결과적으로 운전비용의 상승을 초래하게 된다.As can be seen from the equation, 3.43 mg of oxygen is required to oxidize 1 mg of ammoniac nitrogen to nitrite, and 1.14 mg of oxygen is further consumed to oxidize 1 mg of nitrite nitrogen to nitrate nitrogen. Thus, 1 mg of ammonia nitrogen is nitrated 4.57 mg of oxygen is needed to oxidize to nitrogen. The nitrogen concentration in the sewage is about 40 ~ 50mg / L, and the oxygen required to oxidize it is 182.8 ~ 228.5 mg / L, which is higher than the amount of oxygen required for organic matter oxidation, which causes the increase in the sewage treatment plant operation cost. The oxidized nitrate nitrogen is discharged into the atmosphere through the reaction as shown in the following equation to finally remove nitrogen. As a result, a large amount of oxygen and organic matter is required to biologically remove nitrogen, which results in an increase in operating costs.
NO3 - + 1.08CH3OH + 0.24H2CO3 → 0.06C5H7O2N + 0.47N2 + 1.68H2O + HCO3 - NO 3 - + 1.08 CH 3 OH + 0.24H 2 CO 3 - > 0.06C 5 H 7 O 2 N + 0.47N 2 + 1.68H 2 O + HCO 3 -
생물학적 질소/인제거 공정에서도 슬러지가 발생하는데 일반적으로 농축, 혐기성소화, 탈수를 통하여 처리되면 이때 발생되는 탈리액은 별도의 처리없이 수처리공정으로 유입시켜 처리하였다. 일반적으로 탈리액을 포함한 슬러지처리공정에서 발생하는 반류수는 유입유량의 1~2% 정도로 적은 양이지만 질소 및 인의 부하는 유입부하의 10~20%로 매우 높아 적절한 처리의 필요성이 대두되고 있다.Sludge is also generated in the biological nitrogen / phosphorus removal process. Generally, when it is treated through concentration, anaerobic digestion, dehydration, the effluent generated at this time is treated by the water treatment process without any treatment. In general, the amount of reflux generated in the sludge treatment process including desalination is a small amount of 1 to 2% of the influent flow rate, but the load of nitrogen and phosphorus is 10 to 20% of the influent load, so that proper treatment is required.
근래에 지구온난화를 방지하기 위해 에너지 절감 및 이산화탄소 발생을 줄이기 위한 노력이 이루어지고 있는데, 하수처리에서도 이러한 목적을 달성하기 위한 연구들이 활발하게 진행되고 있다. 이를 위해 하폐수 내에 존재하는 유기물을 활용하여 유용한 에너지원인 메탄을 생산하기 위한 노력이 이루어지고 있다.Recently, in order to prevent global warming, efforts have been made to reduce energy consumption and carbon dioxide generation. Researches are being actively carried out to achieve this purpose in sewage treatment. Efforts are being made to produce methane, a useful energy source, by utilizing the organic matter present in wastewater.
많은 양의 메탄을 회수하기 위해서는 하·폐수 내에 존재하는 유기물을 최대한 혐기성공정으로 유입시켜 혐기성 상태에서 산발효 및 메탄발효 미생물을 이용하여 메탄 생산량을 극대화하는 것이 필요하다. 이를 위하여 1차 침전지에 응집제를 주입하거나 여과공정과 같은 고형물 제거 효과가 우수한 공정을 도입하게 되는데, 이럴 경우 후속되는 질소 제거에 필요한 탄소원의 부족이 발생하게 되고 반류수에 의한 질소 부하가 증가하게 되는 단점이 있다.In order to recover a large amount of methane, it is necessary to maximize the methane production using an anaerobic acid fermentation and methane fermentation microorganisms by introducing the organic substances present in the wastewater into the anaerobic process as much as possible. For this purpose, a coagulant is injected into the primary sedimentation tank or a process having a high solid removal effect such as a filtration process is introduced. In this case, a shortage of carbon source necessary for the subsequent nitrogen removal occurs and nitrogen load There are disadvantages.
이러한 문제를 해결하기 위해 개발된 방법이 암모니아성 질소를 아질산성(NO2 -) 단계까지만 산화한 후, 암모니아성 질소를 전자공여체로 활용하여 탈질을 통하여 질소를 제거하는 단축질소제거 공정이다. 이 방법을 사용할 경우 기존의 방법보다 산소는 60%, 유기물은 100%를 절감할 수 있는 장점이 있다.The method developed to solve this problem is a simple nitrogen removal process in which ammonia nitrogen is oxidized only to the nitrite (NO 2 - ) stage and then ammonia nitrogen is used as an electron donor to remove nitrogen through denitrification. This method has the advantage of saving 60% of oxygen and 100% of organic matter than the conventional method.
이러한 장점에도 불구하고 단축질소제거공정은 운전조건이 까다로워 일반적으로 특수한 폐수나 하수처리장 혐기성 소화조 상등액을 처리하는 데에 제한적으로 사용되고 있다. 그러나 근래에 들어 여러 연구자들이 하수처리장의 주처리 공정으로 도입하려는 시도가 꾸준히 진행되고 있다.Despite these advantages, the single-stage nitrogen removal process is often used to limit the treatment of special wastewater or anaerobic digestion tank supernatant at sewage treatment plants. However, in recent years, various researchers have been making steady efforts to introduce them into the main treatment process of the sewage treatment plant.
단축질소제거공정을 주 처리공정으로 도입하기 위해서 가장 중요한 것은 안정적인 아질산화를 이룩하는 것이다. 슬러지 처리공정의 혐기성소화조에서 발생하는 반류수는 암모니아성 질소의 농도가 1,000mg/L로 높고, 온도가 25℃ 이상으로 높아 아질산화를 용이하게 달성할 수 있다. 이러한 조건에서는 암모니아 산화 미생물(Ammonia Oxidation Bacteria, AOB)의 성장이 질산화 미생물(Nitrite Oxidation Bacteria, NOB)보다 높아 AOB 의 우점화가 가능하기 때문이다. 그러나 주처리 공정의 경우 암모니아 농도가 30~50mg/L로 낮고 수온도 15℃ 이하로 낮기 때문에 AOB 의 우점화가 용이하지 않다. 따라서 안정적인 아질산화가 이루어지지 않기 때문에 단축질소공정에 반드시 필요한 아질산의 확보가 어렵다는 단점이 있다.The most important thing to introduce a single-stage nitrogen removal process into the main treatment process is to achieve stable nitrification. The nitrification water generated in the anaerobic digester of the sludge treatment process has a high ammonia nitrogen concentration of 1,000 mg / L and a high temperature of 25 ° C or higher, which can easily achieve nitrification. In this condition, the growth of Ammonia Oxidation Bacteria (AOB) is higher than that of Nitrite Oxidation Bacteria (NOB). However, in the case of the main treatment process, the ammonia concentration is as low as 30 to 50 mg / L and the water temperature is as low as 15 ° C or less. Therefore, it is difficult to secure the required nitrite in the short-axis nitrogen process because stable nitrite oxidation is not achieved.
그리고 AOB를 NOB보다 우점화하기 위해서는 고형물 체류시간을 1일 이하로 해야 하는 것으로 알려져 있는데, 이는 NOB의 Doubling Time이 1일 이상이 요구되기 때문에 SRT를 1일 이하로 운영하여 ABO는 시스템 내에 유지시키고 NOB는 wash out시켜 AOB의 우점화가 가능하기 때문이다. 그러나 SRT를 1일 이하로 운영하여 NOB를 wash out시킬 수 있지만 기존처리장의 경우 유기물 제거를 위한 역할을 수행하고 있기 때문에 다량의 종속영양미생물이 우점화되기 때문에 기존 반응조 내에서 아질산화를 위한 AOB를 우점화시키는 것이 기술적으로 쉬운 문제는 아니다. 일반적으로 유기물제거를 수행하는 종속영양미생물은 doubling time이 0.17일로 매우 짧기 때문에 AOB를 우점화하기 위하여 SRT를 1일로 운영하여도 종속영양미생물이 우점화될 수밖에 없다. 따라서 기존처리장의 반응조를 이용하여 아질산화를 위한 AOB를 우점화하는 문제를 해결해야 단축질소제거공정을 주처리 공정에 적용할 수 있다. In order to ignite the AOB more than NOB, it is known that the solids retention time should be less than 1 day because the Doubling Time of NOB is required more than 1 day. NOB can be washed out and the AOB can be dominated. However, it is possible to wash out the NOB by operating the SRT for less than 1 day. However, since the existing treatment plant plays a role in removing organic matter, a large amount of heterotrophic microorganisms is ignited. Therefore, AOB It is not technically easy to dominate. Generally, the heterotrophic microorganisms that perform organic removal are very short with a doubling time of 0.17 days. Therefore, heterotrophic microorganisms can not but be ignited even if SRT is operated for 1 day to ignite AOB. Therefore, it is necessary to solve the problem of igniting the AOB for the nitrification by using the reaction tank of the existing treatment plant, so that the shortening nitrogen removal process can be applied to the main treatment process.
그리고 혐기성상태에서 아질산성 질소에 의한 암모니아 산화공정(단축질소제거)은 특수한 미생물에 의해 수행되어 진다. 단축질소제거 반응을 수행하는 혐기성 암모니아 산화미생물(Anaerobic Ammonia Oxidation Organism)은 증식속도가 매우 느려 Doubling Time이 11일 정도로 매우 길기 때문에 안정적인 미생물 확보를 위해서는 미생물이 washout되지 않는 반응조를 적용하는 것이 매우 중요하다.In anaerobic conditions, the ammonia oxidation process by nitrite nitrogen (shortening nitrogen removal) is carried out by specific microorganisms. Since Anaerobic Ammonia Oxidation Organism which performs single short Nitrogen Removal reaction has a very short growth rate and a very long Doubling Time of 11 days, it is very important to apply a reactor that does not wash-out microorganisms in order to obtain stable microorganisms .
본 발명이 이루고자 하는 기술적 과제는 기존 처리장을 활용하여 단축질소제거공정을 적용하는 데에 있어서 아질산을 안정적으로 확보하고 혐기성 암모늄산화균을 안정적으로 확보함으로써 주처리 공정의 안정적인 단축질소제거 반응을 통하여 질소를 제거하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method and apparatus for removing nitrogen gas by stably obtaining nitrite and stably maintaining anaerobic ammonium oxidizing bacteria in the application of a single- .
또한 본 발명의 다른 목적은, 기존 처리장을 활용하여 단축질소제거공정을 적용하는 데에 있어서 기존 처리장의 개조비용 및 운영비를 최소화할 수 있는 방안을 제공하는 것이다.Another object of the present invention is to provide a method for minimizing the remodeling cost and operating cost of a conventional treatment plant in applying a short-circuit nitrogen removal process using an existing treatment plant.
상기 목적을 달성하기 위하여 본 발명은, 오폐수의 입자성 유기물을 제거하기 위한 1차침전부, 1차 침전된 오폐수의 용존성 유기물을 제거하기 위한 생물반응조, 및 유기물이 제거된 오폐수를 고액분리하는 고액분리부를 구비한 수처리 공정부; 및 상기 1차침전부에서 분리된 고형물을 농축하는 농축부, 농축된 고형물을 혐기성 소화하는 혐기성소화조, 혐기성 소화된 고형물을 고액분리하는 탈수부를 구비하여, 상기 수처리 공정부에서 발생하는 슬러지를 처리하는 슬러지처리 공정부;를 구비하는 오폐수 처리장치에 있어서, 상기 수처리 공정부는 상기 고액분리부 후단에 혐기성암모늄산화조를 추가로 구비하며, 상기 생물반응조는 그 일부가 아질산반응조로 사용되어, 상기 아질산반응조에서 상기 탈수부에서 발생하는 탈리액을 아질산화하는 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a method for removing particulate organic matter from wastewater, comprising: a first step of removing particulate organic matter from wastewater, a bioreactor for removing dissolved organic matter from the first settled wastewater, A water treatment unit having a separation unit; An anaerobic digestion tank for anaerobic digesting the concentrated solids; and a dewatering unit for solid-liquid separating the anaerobically digested solids, wherein the sludge processing unit includes: Wherein the water treatment process unit further comprises an anaerobic ammonium oxidation vessel at the downstream end of the solid-liquid separation unit, wherein a part of the bioreactor is used as a nitrite reaction tank, and the nitrite reaction tank And the desolvation solution generated in the dehydration section is nitrified.
본 발명의 다른 측면에 의하면, 오폐수의 입자성 유기물을 제거하기 위한 1차침전부, 1차 침전된 오폐수의 용존성 유기물을 제거하기 위한 생물반응조, 및 유기물이 제거된 오폐수를 고액분리하는 고액분리부를 구비한 수처리 공정부; 및 상기 1차침전부에서 분리된 고형물을 농축하는 농축부, 농축된 고형물을 혐기성 소화하는 혐기성소화조, 혐기성 소화된 고형물을 고액분리하는 탈수부를 구비하여, 상기 수처리 공정부에서 발생하는 슬러지를 처리하는 슬러지처리 공정부;를 구비하는 오폐수 처리장치에 있어서, 상기 수처리 공정부는 상기 고액분리부 후단에 혐기성암모늄산화조를 추가로 구비하며, 상기 슬러지처리 공정부는 상기 탈수부 후단에 탈리액을 아질산화하는 아질산화조가 추가로 구비되어 상기 탈수부에서 발생하는 탈리액을 아질산화하여 상기 혐기성 암모늄산화조로 유입시키는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method for removing particulate organic matter from wastewater, comprising: a first step of removing particulate organic matter from wastewater, a bioreactor for removing dissolved organic matter from wastewater that has been firstly precipitated, and a solid- A water treatment apparatus provided with the water treatment apparatus; An anaerobic digestion tank for anaerobic digesting the concentrated solids; and a dewatering unit for solid-liquid separating the anaerobically digested solids, wherein the sludge processing unit includes: Wherein the water treatment process unit further comprises an anaerobic ammonium oxidation tank at the downstream end of the solid-liquid separation unit, and the sludge treatment process unit includes a nitrification tank for nitrifying the desorption liquid at the downstream end of the dehydration unit, And the desolvation solution generated in the dewatering unit is nitrified and introduced into the anaerobic ammonium oxidation tank.
상기 고액분리부는 분리막을 구비할 수 있다.The solid-liquid separator may include a separation membrane.
상기 혐기성암모늄산화조는 부착식 공정을 채용하는 것이 바람직하다.It is preferable that the above-described anaerobic ammonium oxidation tank employs an adhering process.
상기 1차 침전부의 유출수의 일부는 상기 아질산화조로 유입된다.A part of the effluent of the primary settling portion flows into the nitrification tank.
상기 부착식 공정에는 부상식 여재가 사용된다.An adhering type filter material is used in the above-mentioned attachment process.
본 발명을 통하여 기존처리장을 활용하여 단축질소제거가 가능한 공정으로 변경할 경우 경제적인 공정변경이 가능하다. 특히 기존 1차 처리시설, 고액분리공정, 슬러지 처리공정은 별도의 변경 없이 그대로 사용하기 때문에 추가적인 비용이 소요되지 않는다. 생물반응조는 유기물산화반응조, 아질산화반응조로 활용하는데 별도의 시설변경이 필요하지 않고 단지 공정의 운전방법을 변경되기 때문에 경제적인 변경이 가능하다. 일부 여유 반응조는 CSO처리를 위하여 활용이 가능하기 때문에 추가시설 없이 강우 유출수도 처리가 가능하다.Through the present invention, it is possible to change the process economically if the process is changed to a process capable of removing the shortened nitrogen by utilizing the existing treatment plant. In particular, the existing primary treatment facility, solid-liquid separation process, and sludge treatment process are used without modification, so no additional cost is required. The bioreactor is used as an organic oxidation reaction tank and a nitrification tank. It does not require any facility change and can be changed economically because only the operation method of the process is changed. Some of the effluent tank can be used for CSO treatment, so it is possible to treat rainwater effluent without additional facilities.
본 발명을 통하여 단축질소제거공정을 통하여 질소를 제거하기 때문에 기존 질소제거 공정에 비해 산소는 65%, 외부탄소원은 100%절감이 가능하다.According to the present invention, since nitrogen is removed through the single-stage nitrogen removal process, it is possible to reduce oxygen by 65% and external carbon source by 100% as compared with the conventional nitrogen removal process.
도 1 은 기존 유기물 제거공정
도 2 는 본 발명에 따른 기존시설을 이용한 단축질소제거 공정
도 3 는 기존 처리장에 본 발명이 도입된 기존처리장 변경 개념도
도 4 는 본 발명에 따른 별도의 아질산화조가 추가된 기존처리장 단축질소제거 공정 변경 개념도
도 5 은 본 발명에 따른 별도의 아질산화조가 도입된 기존 처리장 변경 개념도
도 6 은 본 발명에 따른 탈리액을 혐기성 암모늄 산화조로 유입시키는 변경 개념도
도 7 은 본 발명에 따른 탈리액을 혐기성 암모늄 산화조로 유입시키는 기존 처리장 변경 개념도FIG. 1 is a view showing a conventional organic material removal process
FIG. 2 is a schematic view showing a single-shaft nitrogen removal process using an existing facility according to the present invention
FIG. 3 is a view showing an existing plant change concept map
FIG. 4 is a conceptual diagram of a conventional process for shortening the nitrogen removal process by adding a separate nitrification tank according to the present invention
FIG. 5 is a conceptual diagram of a conventional treatment plant alteration scheme in which a separate nitrification tank according to the present invention is introduced
FIG. 6 is a schematic view showing a modification concept of introducing the desalination solution according to the present invention into the anaerobic ammonium oxidation tank.
FIG. 7 is a conceptual diagram of an existing treatment plant change-over scheme for introducing the desalination solution according to the present invention into the anaerobic ammonium oxidation tank
본 발명은, 기존처리장을 활용하여 단축질소 제거공정을 효율적으로 구현하는 방안을 제시한다. 이를 위하여 본 발명에서는 도 1 에 도시된 바와 같은 기존시설을 활용하며, 이에 따른 본 발명의 시스템이 도 2 에 도시되어 있다.The present invention proposes a method for effectively implementing a short-scale nitrogen removal process utilizing an existing treatment plant. To this end, the present invention utilizes an existing facility as shown in FIG. 1, and the system of the present invention is shown in FIG.
본 발명에 따른 오폐수 제거 장치는, 1차침전부, 유기물산화를 위한 생물반응조(아질산반응조), 고액분리부, 및 혐기성암모늄산화조를 구비하는 수처리(주처리) 공정부, 및 농축부, 혐기성소화조, 탈수부를 구비하여 수처리공정부에서 발생하는 고형물을 처리하는 슬러지처리 공정부를 포함한다. 도 1 에 도시된 기존의 설비와 비교할 때 본 발명에 따른 시스템은 수처리 공정부가 혐기성 암모늄산화조를 추가로 구비한 구성을 가지며, 또한 후술되는 바와 같이 생물반응조의 일부가 아질산반응조로 사용되는 구성을 갖는다. 이 아질산반응조는 나머지 생물반응조와 병렬로 배치된다.The wastewater elimination apparatus according to the present invention includes a water treatment (main treatment) purification unit including a primary purification unit, a biological reaction tank for oxidizing organic substances (nitrite reaction tank), a solid-liquid separation unit, and an anaerobic ammonium oxidation tank, and an enrichment unit, And a sludge treatment unit having a dehydration unit for treating the solid matter generated in the water treatment facility. 1, the system according to the present invention has a configuration in which the water treatment process part further comprises an anaerobic ammonium oxidation tank, and a part of the bioreactor is used as a nitrite tank as described later . This nitrite reaction tank is arranged in parallel with the remaining bioreactor.
우선 기존처리장 1차처리부에서 유입수 내의 고형물을 분리한다. 분리된 고형물은 슬러지처리 공정부 내의 농축부로 유입된다. 이때 기존처리장 1차 처리시설을 모두 활용하며, 추가적으로 고형물 제거효율을 높이기 위해 응집제를 사용할 수 있다.First, the solid material in the influent water is separated from the existing treatment station primary treatment unit. The separated solids are introduced into the concentrating section in the sludge treatment facility. At this time, it is possible to utilize all of the existing treatment plant primary treatment facilities and additionally use flocculant to increase the solid removal efficiency.
1차 처리시설에서 유출되는 1차 처리수는 기존처리장의 포기조인 생물반응조로 유입되어 공기주입을 통하여 유기물만을 신속히 제거한다. 유기물만을 신속히 제거하여 C/N비를 1이하 정도로 맞추면 되기 때문에 기존처리장 포기조의 일부만(50%)를 활용한다.The primary effluent from the primary treatment facility flows into the bioreactor, which is aeration tank of the existing treatment plant, and removes only organic matter through air injection. Only C / N ratio should be adjusted to 1 or less by quickly removing organic matter, so only a part (50%) of existing aeration tank is used.
슬러지처리 공정부에서 발생하는 고농도의 질소가 함유된 반류수(탈수부에서 발생하는 탈리액)는 기존처리장의 생물반응조인 포기조의 일부(25%)를 활용한 아질산 반응조로 유입시켜, 공기공급량(DO< 1.0mg/L) 및 SRT( < 1day )를 조절하여 AOB가 우점화될 수 있는 조건을 형성하여 암모니아성 질소를 아질산성 질소로 산화시킨다.(25%) of the aeration tank, which is the biological reactor of the existing treatment plant, and the amount of air supplied (DO <1.0 mg / L) and SRT (<1 day) to oxidize ammonia nitrogen to nitrite nitrogen by forming conditions under which AOB can be ignited.
생물반응조에서 유기물이 제거되고, 생물반응조의 일부로 구성된 아질산 반응조에서는 암모니아성 질소가 아질산으로 전환된 후, 고액분리부에서 고액분리를 통하여 미생물과 처리수를 분리한다. 고액분리 공정은 침전지와 같은 기존의 시설을 활용할 수도 있으며 안정적인 고액분리를 위하여 분리막을 추가적으로 도입하여 활용할 수 있다.Organics are removed from the bioreactor, and ammonia nitrogen is converted into nitrite in a nitrite reactor, which is a part of the bioreactor. Then, microorganisms and treated water are separated through solid-liquid separation at the solid-liquid separator. The solid-liquid separation process may utilize existing facilities such as sedimentation basin, and a separation membrane may be additionally used for stable solid-liquid separation.
고액분리가 이루진 하수는 혐기성소화조(혐기성 암모늄 산화조)로 유입되어 단축질소제거 반응을 통하여 질소가 제거된다. 단축질소제거 반응은 아질산과 암모니아가 1:1로 반응하는데 반류수 내의 질소부하가 전체 질소부하의 20~30% 정도이기 때문에 유입 하수에 존재하는 질소의 30~46%만을 제거할 수 있다. 이렇게 할 경우 기존 질소제거공정을 통하여 질소 30~40%를 제거할 경우에 비해 20~30%의 에너지를 절감할 수 있다.The sewage having the solid-liquid separation flows into the anaerobic digestion tank (anaerobic ammonium oxidation tank), and the nitrogen is removed through the shortening nitrogen removal reaction. The single - shot nitrogen removal reaction can remove only 30 to 46% of the nitrogen present in the inflow sewage, because the nitrogen load in the recirculating water is 20 to 30% of the total nitrogen load, since nitrite and ammonia react at a ratio of 1: 1. In this case, 20 ~ 30% of energy can be saved compared with the case of removing 30 ~ 40% of nitrogen through the existing nitrogen removal process.
도 3은 도 2의 개념을 처리장에 적용한 것으로 기존처리장 반응조가 4지일 경우 1지는 아질산화조로, 2지는 유기물제거 반응조로, 나머지 1지는 강우시 발생하는 CSO처리 반응조로 사용하거나 혐기성암모늄반응조로 활용하는 예를 나타낸 것이다.FIG. 3 shows the application of the concept of FIG. 2 to the treatment plant. In the case where the existing treatment plant reaction tank is four, 1 is used as the nitrite tank, 2 is used as the organic substance removal reaction tank, and the remaining 1 is used as the CSO treatment tank occurring during rainfall or as the anaerobic ammonium tank .
아질산화조와 유기물제거조의 유출수는 고액분리를 거쳐서 혐기성암모늄산화조로 유입되어 단축질소제거 반응을 통하여 질소를 제거한다. 혐기성암모늄산화조는 기존처리장 포기조를 활용할 수도 있고 추가적으로 설치할 수도 있으나 성장속도가 느린 혐기성암모늄산화균의 특성을 고려하여 이에 적합한 별도의 반응조를 추가적으로 설치하는 것이 유리하다. 혐기성암모늄산화조는 부유식 공정을 모두 사용할 수 있으나 부착식 공정이 유리한데 이는 부착식 공정이 별도의 고액분리 수단이 필요 없고 성장속도가 느린 혐기성 암모늄 산화 미생물의 washout을 방지하여 높은 농도의 미생물을 확보할 수 있기 때문이다. 부착성장공정의 경우 여재를 사용하게 되는데 부상식 및 침지식여재가 모두 사용될 수 있으나 경제적이고 효율적인 역세를 위해 부상식을 사용하는 것이 유리하다.The effluent from the nitrification tank and the organic material removal tank flows into the anaerobic ammonium oxidation tank through the solid-liquid separation, and the nitrogen is removed through the shortened nitrogen removal reaction. The anaerobic ammonium oxidation reactor may utilize a conventional aeration tank or may be additionally installed, but it is advantageous to additionally provide a separate reaction tank suitable for the characteristics of the anaerobic ammonium oxidizing bacteria having a low growth rate. The anaerobic ammonium oxidation reactor can be used in all floatation processes, but the deposition process is advantageous because the deposition process does not require separate solid-liquid separation means and prevents washout of anaerobic ammonium oxidizing microorganisms with a slow growth rate, thereby securing a high concentration of microorganisms I can do it. In the case of the adhered growth process, the filter material is used. Both the supernatant and the submerged filter media can be used, but it is advantageous to use the inversion method for economical and efficient backwashing.
도 4와 같이 기존 처리장의 생물반응조가 유기물제거 공정으로 설계되어 있어 기존 반응조를 활용하여 유기물 제거와 아질산화를 이룩하기에 생물반응조 체류시간이 부족할 경우, 기존 처리장의 슬러지처리 공정부 내의 탈수부 후단에 탈리액을 아질산화하는 아질산화조를 추가할 수 있다. 아질산화조에서 아질산화를 이룩하고 기존 생물반응조에서는 유기물제거를 수행한 후, 두 반응조의 유출수를 혐기성암모늄산화조로 유입시켜 단축질소제거 반응을 통하여 질소를 제거할 수 있도록 구성한 예이다. 반류수내의 질소가 충분한 아질산을 공급할 수 없을 때 1차 침전부 유출수의 일부가 아질산반응조로 반송되도록 할 수 있다. 이때 추가로 아질산화를 수행하기 위해 아질산반응조로 유입되는 하수의 양은 전체 유입하수량의 40%를 넘지 않도록 한다. 이때에도 혐기성암모늄산화조는 부상식 여재를 사용하는 부착식 공정을 채용하는 것이 유리하다.As shown in FIG. 4, when the bioreactor of the existing treatment plant is designed as an organic material removal process, organic substances are removed and the nitrification is accomplished by utilizing the existing reaction tank. If the bioreactor retention time is insufficient, A nitrification tank for nitrifying an etching liquid can be added. The nitrification is accomplished in the nitrite tank, the organic waste is removed from the existing bioreactor, the effluent of the two reactors is introduced into the anaerobic ammonium oxidation tank, and the nitrogen is removed through the shortened nitrogen removal reaction. Some of the primary effluent can be returned to the nitrite tank when the nitrogen in the reflux water can not supply sufficient nitrite. In this case, the amount of sewage introduced into the nitrite tank should not exceed 40% of the total inflow sewage to perform additional nitrification. At this time, it is advantageous to employ an adherent process using an annular-type filter medium in the anaerobic ammonium oxidation tank.
도 5는 도 4의 개념을 기존처리장에 적용한 예를 나타낸 것으로 기존의 모든 반응조는 유기물만 제거하고 아질산화는 별도의 반응조를 신설하여 이룩한다. 이때 아질산화조는 어떤 형태의 반응조도 적용이 가능하지만 분리막을 이용하여 고액분리를 수행함으로써 집약화가 가능한 MBR반응조를 사용하는 것이 유리하다.FIG. 5 shows an example in which the concept of FIG. 4 is applied to a conventional treatment plant. All of the existing reaction vessels are removed only by organic substances, and nitrification is performed by installing a separate reaction vessel. At this time, any type of reaction tank can be applied to the nitrite tank, but it is advantageous to use an MBR reactor capable of intensifying by performing solid-liquid separation using a separation membrane.
도 6은 슬러지 처리공정에서 발생하는 탈리액내의 알카리도가 암모니아를 산화하기에 부족할 경우에 반류수의 일부를 바로 혐기성암모늄산화조로 유입시키고 단축질소공정에 필요한 아질산성 질소를 기존처리장 생물반응조를 활용한 아질산반응조에서 공급하는 방법에 관한 것으로 이때에도 아질산화조는 어떤 형태의 반응조도 적용이 가능하지만 분리막을 이용하여 고액분리를 수행함으로써 짧은 체류시간에도 아질산화가 가능한 MBR반응조를 사용하는 것이 유리하다.FIG. 6 is a graph showing the relationship between the concentration of nitrite nitrogen in the nitrification process and the nitrite nitrogen in the nitrification process when the alkalinity in the desolvation solution generated in the sludge treatment process is insufficient for oxidizing ammonia. The nitrite tank can be applied to any type of reaction tank, but it is advantageous to use an MBR reactor capable of nitrification even at a short residence time by performing solid-liquid separation using a separation membrane.
도 7은 도 6의 개념을 기존처리장에 적용한 실시예로 반류수의 일부를 혐기성암모늄산화조 유입시키고 아질산은 기존처리장 반응조를 활용한 아질산반응조에서 생산한다.FIG. 7 shows an embodiment in which the concept of FIG. 6 is applied to a conventional treatment plant, in which a part of the recirculated water is introduced into an anaerobic ammonium oxidation tank and nitrite is produced in a nitrite tank using a conventional treatment tank.
본 발명을 통하여 기존처리장을 활용하여 단축질소제거가 가능한 공정으로 변경할 경우 경제적인 공정변경이 가능하다. 특히 기존 1차침전부, 고액분리부, 슬러지처리공정은 별도의 변경 없이 그대로 사용하기 때문에 추가적인 비용이 소요되지 않는다. 기존 생물반응조는 유기물산화반응조, 아질산화반응조로 활용하는데 별도의 시설변경이 필요하지 않고 단지 공정의 운전방법을 변경되기 때문에 경제적인 변경이 가능하다. 혐기성암모늄산화조는 별도로 설치될 수 있는데 혐기성암모늄산화 미생물의 특성을 고려하여 부상식여재를 이용한 부착식공정을 사용하기 때문에 별도의 침전공정이 필요하지 않고 기존공정과의 연결이 필요 없기 때문에 기존처리시설의 변경을 최소화 할 수 있다.Through the present invention, it is possible to change the process economically if the process is changed to a process capable of removing the shortened nitrogen by utilizing the existing treatment plant. Particularly, since the existing first-purifying unit, solid-liquid separating unit and sludge treatment process are used without modification, no additional cost is required. Existing bioreactors are used as organic oxidation reactors and nitrification reactors, and it is not necessary to change any facilities, and it is economical to change the operation method of the process. Since the anaerobic ammonium oxidation reactor can be installed separately, it does not require a separate precipitation process and does not need to be connected to the existing process because it uses an adhered process using an anaerobic ammonium media in consideration of the characteristics of the anaerobic ammonium oxidizing microorganism. Therefore, Can be minimized.
일부 여유 반응조가 발생할 경우 CSO처리를 위하여 활용이 가능하기 때문에 추가시설 없이 강우 유출수도 처리가 가능하다.If some residual tank is used, it can be used for CSO treatment.
본 발명을 통하여 단축질소제거공정을 통하여 질소를 제거하기 때문에 기존 질소제거 공정에 비해 산소는 65%, 외부탄소원은 100%절감이 가능하다.According to the present invention, since nitrogen is removed through the single-stage nitrogen removal process, it is possible to reduce oxygen by 65% and external carbon source by 100% as compared with the conventional nitrogen removal process.
Claims (6)
상기 1차침전부에서 분리된 고형물을 농축하는 농축부, 농축된 고형물을 혐기성 소화하는 혐기성소화조, 혐기성 소화된 고형물을 고액분리하는 탈수부를 구비하여, 상기 수처리 공정부에서 발생하는 슬러지를 처리하는 슬러지처리 공정부;
를 구비하는 오폐수 처리장치에 있어서,
상기 수처리 공정부는 상기 고액분리부 후단에 혐기성암모늄산화조를 추가로 구비하며,
상기 복수의 생물반응조 중 일부가 아질산반응조로 사용되어 나머지 생물반응조와 병렬로 배치되며, 상기 아질산반응조에서 상기 탈수부에서 발생하는 탈리액을 아질산화하는 것을 특징으로 하는 오폐수 처리장치.
A water purification unit having a first purification unit for removing particulate organic matter from the wastewater, a plurality of bioreactors for removing dissolved organic matter of the first settled wastewater, and a solid-liquid separation unit for solid-liquid separation of wastewater from which organic matter has been removed; And
An anaerobic digestion tank for anaerobic digesting the concentrated solids; and a dewatering unit for solid-liquid separating the anaerobically digested solids, wherein the sludge treatment for treating the sludge generated in the water treatment facility Government;
Wherein the waste water treatment apparatus comprises:
The water treatment process unit may further include an anaerobic ammonium oxidation tank at a downstream end of the solid-liquid separation unit,
Wherein a part of the plurality of bioreactors is used as a nitrite reaction tank and is arranged in parallel with the remaining bioreactor, and the nitrite generated in the dehydration part in the nitrite reaction tank is nitrified.
상기 1차침전부에서 분리된 고형물을 농축하는 농축부, 농축된 고형물을 혐기성 소화하는 혐기성소화조, 혐기성 소화된 고형물을 고액분리하는 탈수부를 구비하여, 상기 수처리 공정부에서 발생하는 슬러지를 처리하는 슬러지처리 공정부;
를 구비하는 오폐수 처리장치에 있어서,
상기 수처리 공정부는 상기 고액분리부 후단에 혐기성암모늄산화조를 추가로 구비하며,
상기 슬러지처리 공정부는 상기 탈수부 후단에 탈리액을 아질산화하는 아질산화조가 추가로 구비되어 상기 탈수부에서 발생하는 탈리액을 아질산화하여 상기 혐기성 암모늄산화조로 유입시키는 것을 특징으로 하는 오폐수 처리장치.
A water treatment facility having a first purification unit for removing particulate organic matter from the wastewater, a bioreactor for removing dissolved organic matter from the first settled wastewater, and a solid-liquid separation unit for solid-liquid separating wastewater from which organic matter has been removed; And
An anaerobic digestion tank for anaerobic digesting the concentrated solids; and a dewatering unit for solid-liquid separating the anaerobically digested solids, wherein the sludge treatment for treating the sludge generated in the water treatment facility Government;
Wherein the waste water treatment apparatus comprises:
The water treatment process unit may further include an anaerobic ammonium oxidation tank at a downstream end of the solid-liquid separation unit,
Wherein the sludge disposal unit further comprises a nitrite tank for nitrifying the desorption liquid at a downstream end of the dehydration unit, so that the desorption liquid generated in the dehydration unit is nitrified and introduced into the anaerobic ammonium oxidation tank.
상기 고액분리부는 분리막을 구비하는 것을 특징으로 하는 오폐수 처리장치.
3. The method according to claim 1 or 2,
Wherein the solid-liquid separator comprises a separation membrane.
상기 혐기성암모늄산화조는 부착식 공정을 채용하는 것을 특징으로 하는 오폐수 처리장치.
3. The method according to claim 1 or 2,
Wherein the anaerobic ammonium oxidation tank employs an attachment process.
상기 1차 침전부의 유출수의 일부는 상기 아질산화조로 유입되는 것을 특징으로 하는 오폐수 처리장치.
3. The method of claim 2,
Wherein a part of the effluent of the primary settling portion flows into the nitrification tank.
상기 부착식 공정에는 부상식 여재가 사용되는 것을 특징으로 하는 오폐수 처리장치.5. The method of claim 4,
Characterized in that an adhering type filter material is used in the adhering process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160153593A KR101828296B1 (en) | 2016-11-17 | 2016-11-17 | Wastewater Processing Appliance using Existing Activated Sludge Appliance as Shortcut Nitrogen Removal Process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160153593A KR101828296B1 (en) | 2016-11-17 | 2016-11-17 | Wastewater Processing Appliance using Existing Activated Sludge Appliance as Shortcut Nitrogen Removal Process |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101828296B1 true KR101828296B1 (en) | 2018-02-13 |
Family
ID=61231864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160153593A Active KR101828296B1 (en) | 2016-11-17 | 2016-11-17 | Wastewater Processing Appliance using Existing Activated Sludge Appliance as Shortcut Nitrogen Removal Process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101828296B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102114756B1 (en) * | 2019-01-31 | 2020-05-25 | 동성엔지니어링 주식회사 | System for automatic treatment of wastewater |
KR102144118B1 (en) * | 2019-07-03 | 2020-08-12 | 주식회사 부강테크 | Method for Removing Nitrogen and Phosphorus from Wastewater by Nutrient Removal Process via Nitrite and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100719434B1 (en) * | 2006-02-16 | 2007-05-17 | 민경석 | Method and apparatus for removing high concentration of nitrogen in anaerobic treated water |
KR101430722B1 (en) * | 2014-03-03 | 2014-08-18 | (주)전테크 | Sewage and Wastewater Treatment Method and System for Energy Saving |
-
2016
- 2016-11-17 KR KR1020160153593A patent/KR101828296B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100719434B1 (en) * | 2006-02-16 | 2007-05-17 | 민경석 | Method and apparatus for removing high concentration of nitrogen in anaerobic treated water |
KR101430722B1 (en) * | 2014-03-03 | 2014-08-18 | (주)전테크 | Sewage and Wastewater Treatment Method and System for Energy Saving |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102114756B1 (en) * | 2019-01-31 | 2020-05-25 | 동성엔지니어링 주식회사 | System for automatic treatment of wastewater |
KR102134218B1 (en) * | 2019-01-31 | 2020-07-15 | 동성엔지니어링 주식회사 | System for automatic treatment of wastewater |
KR102134217B1 (en) * | 2019-01-31 | 2020-07-15 | 동성엔지니어링 주식회사 | System for automatic treatment of wastewater |
KR102144118B1 (en) * | 2019-07-03 | 2020-08-12 | 주식회사 부강테크 | Method for Removing Nitrogen and Phosphorus from Wastewater by Nutrient Removal Process via Nitrite and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process |
WO2021002699A1 (en) * | 2019-07-03 | 2021-01-07 | 주식회사 부강테크 | Method for removing nitrogen and phosphorus from sewage and wastewater through combination of biological nitrogen and phosphorus removal process using nitrite nitrogen and anaerobic ammonium oxidation process (anammox) |
US20220144678A1 (en) * | 2019-07-03 | 2022-05-12 | Bkt Co., Ltd. | Method for removing nitrogen and phosphorus from sewage and wastewater through combination of biological nitrogen and phosphorus removal process using nitrite nitrogen and anaerobic ammonium oxidation process (anammox) |
US12116298B2 (en) | 2019-07-03 | 2024-10-15 | Bkt Co., Ltd. | Method for removing nitrogen and phosphorus from sewage and wastewater through combination of biological nitrogen and phosphorus removal process using nitrite nitrogen and anaerobic ammonium oxidation process (anammox) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11001517B2 (en) | Bioreactor for treating sewage and sewage treatment system comprising the same | |
Ødegaard | A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR) | |
KR101430722B1 (en) | Sewage and Wastewater Treatment Method and System for Energy Saving | |
EP2496532B1 (en) | Simultaneous anoxic biological phosphorus and nitrogen removal with energy recovery | |
KR101830902B1 (en) | Apparatus of high nitrogen wastewater treatment using partial nitritation sequencing batch reactor supplied with ammonium oxidation bacteria(AOB) granule from the connected AOB granule reactor and using anaerobic ammonium oxidation | |
US9181120B2 (en) | Treatment of municipal wastewater with anaerobic digestion | |
JP6081623B2 (en) | Wastewater treatment system | |
US10556816B2 (en) | Wastewater treatment apparatus | |
CN111908618A (en) | A kind of high ammonia nitrogen wastewater treatment system | |
KR101157532B1 (en) | Device and procedure for the anaerobic treatment of sewer and low strength wastewater | |
KR100327151B1 (en) | A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor | |
JP6084150B2 (en) | Denitrification treatment method and denitrification treatment apparatus | |
KR101828296B1 (en) | Wastewater Processing Appliance using Existing Activated Sludge Appliance as Shortcut Nitrogen Removal Process | |
CN101891352A (en) | Ultrasonic-assisting nitrogen and phosphorus removing process | |
CN212712945U (en) | High ammonia-nitrogen concentration effluent disposal system | |
KR100714825B1 (en) | Wastewater and high concentration organic wastewater treatment method using anaerobic / aerobic reactor combined with membrane and aerobic filter bed | |
KR100440748B1 (en) | High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR | |
KR100911443B1 (en) | Wastewater treatment device and wastewater treatment method using the same | |
CN102249487B (en) | Comprehensive processing device for wastewater and waste liquid | |
KR100321679B1 (en) | Advanced wastewater treatment method | |
KR20180128109A (en) | An anaerobic sewage treatment apparatus comprising a dissolved methane recovery apparatus and anaerobic sewage treatment method | |
KR20040070408A (en) | A waste water disposal plant | |
JP2007117842A (en) | Method and apparatus for removing nitrogen of high concentration organic waste water | |
KR20050099811A (en) | Advaned wastewater treatment system with electrolysis of sludge and sidestream | |
CN215667629U (en) | Landfill leachate and kitchen anaerobic biogas slurry coprocessing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20161117 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20161128 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20161117 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20170203 Patent event code: PE09021S01D |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20170619 Patent event code: PE09021S01D |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20171103 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20180119 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20180206 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20180207 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20210208 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20220208 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20230207 Start annual number: 6 End annual number: 6 |