KR19980071903A - Nutrient Removal Method of Improved Sewage and Wastewater Using Anaerobic Fermentation Tank - Google Patents

Nutrient Removal Method of Improved Sewage and Wastewater Using Anaerobic Fermentation Tank Download PDF

Info

Publication number
KR19980071903A
KR19980071903A KR1019980025448A KR19980025448A KR19980071903A KR 19980071903 A KR19980071903 A KR 19980071903A KR 1019980025448 A KR1019980025448 A KR 1019980025448A KR 19980025448 A KR19980025448 A KR 19980025448A KR 19980071903 A KR19980071903 A KR 19980071903A
Authority
KR
South Korea
Prior art keywords
sludge
wastewater
sewage
anaerobic fermentation
organic acid
Prior art date
Application number
KR1019980025448A
Other languages
Korean (ko)
Other versions
KR100304544B1 (en
Inventor
최의소
Original Assignee
최의소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최의소 filed Critical 최의소
Priority to KR1019980025448A priority Critical patent/KR100304544B1/en
Publication of KR19980071903A publication Critical patent/KR19980071903A/en
Application granted granted Critical
Publication of KR100304544B1 publication Critical patent/KR100304544B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2873Particular arrangements for anaerobic reactors with internal draft tube circulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

본 발명은 혐기발효조에 고농도 유기성 폐액을 주입하여 혐기성 상태에서 발효시킨 후 생성된 유기산(Volatile Fatty Acid, VFA)을 미생물 처리 공정에 공급시킴으로써 하·폐수중의 질소와 인을 효율적으로 제거하기 위한 것으로, 유입 하·폐수를 혐기조건, 제1무산소조건 및 호기조건의 순서로 미생물처리하는 공정(미생물처리공정), 상기 미생물처리된 방출수를 침전시키는 공정(침전공정), 상기 침전후의 침전미생물(반송슬러지)을 상기 미생물처리공정중의 혐기조건중으로 반송하는 공정(슬러지반송공정)으로 이루어진 하·폐수의 영양소 제거방법에 있어서, 고농도 유기성 폐액을 혐기발효하여 생성된 슬러지를 탈수하여 유기산을 생성하는 공정(유기산생성공정)과, 상기 슬러지반송공정중의 반송슬러지내의 질산화물(NOx-N)을 제거시키기 위하여 상기 생성된 유기산과 상기 침전공정으로부터의 반송슬러지를 제2무산소조건에서 혼합하는 공정(슬러지혼합공정)이 슬러지반송공정전에 부가된 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법이다.The present invention is to efficiently remove nitrogen and phosphorus from sewage and wastewater by supplying organic acid (Volatile Fatty Acid, VFA) produced after fermentation in an anaerobic state by injecting a high concentration of organic waste liquid into the anaerobic fermentation tank , Microbial treatment of inflow and wastewater in the order of anaerobic condition, first anoxic condition and aerobic condition (microbial treatment step), precipitation of the microbial treated discharge water (sedimentation step), precipitation microorganisms after the precipitation ( In the nutrient removal method of sewage and wastewater consisting of a step (return sludge) in the anaerobic conditions of the microbial treatment process, the sludge produced by anaerobic fermentation of high concentration organic waste liquid to dehydrate the sludge produced to produce an organic acid In order to remove the nitric oxide (NOx-N) in the conveying sludge during the process (organic acid production process) and the sludge conveying process. The process of mixing the formed organic acid and the return sludge from the precipitation process under the second anoxic condition (sludge mixing process) is an improved method for removing nutrients from sewage and wastewater using an anaerobic fermentation tank added before the sludge conveying process.

Description

혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법Nutrient Removal Method of Improved Sewage and Wastewater Using Anaerobic Fermentation Tank

본 발명은 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법에 관한 것으로, 더욱 상세하게는 혐기발효조에 고농도 유기성 폐액을 주입하여 혐기성 상태에서 발효시킨 후 생성된 유기산(Volatile Fatty Acid, VFA)을 미생물 처리 공정에 공급시킴으로써 하·폐수중의 질소와 인을 효율적으로 제거하기 위한 혐기발효조를 이용한 하·폐수의 영양소 제거방법에 관한 것이다.The present invention relates to an improved method for removing nutrients from sewage and wastewater using an anaerobic fermentation tank. More particularly, the organic acid (Volatile Fatty Acid (VFA)) produced after fermentation in an anaerobic state by injecting high concentration organic waste into an anaerobic fermentation tank The present invention relates to a method for removing nutrients from sewage and wastewater using an anaerobic fermenter for efficiently removing nitrogen and phosphorus from sewage and wastewater by supplying it to a microbial treatment process.

하·폐수에 적용되어야 할 정화처리정도는 처리대상 유입수의 상태에 따라 결정되어야 한다. 우리나라 하수의 경우 외국의 하수와는 달리 하수의 유기물 농도가 낮으며 또한 유기물의 농도에 비해 질소와 인의 농도가 높다. 따라서, 하·폐수를 정화하여 안정적인 수질을 확보하기 위해서는 상대적으로 높은 농도의 질소 및 인을 제거하기 위한 영양소 제거공정의 선택 및 운전조건이 매우 중요하다.The degree of purification to be applied to sewage and wastewater should be determined by the condition of the influent to be treated. Unlike sewage in foreign countries, the concentration of organic matter in sewage is low, and the concentration of nitrogen and phosphorus is higher than that of organic sewage. Therefore, in order to purify the sewage and wastewater to secure stable water quality, the selection and operating conditions of a nutrient removal process for removing nitrogen and phosphorus in a relatively high concentration are very important.

또한, 하수는 시간에 따라 심한 유량 및 농도의 변화가 발생하므로, 이러한 요인들을 고려하여 영양소 제거공정의 선택 및 운전조건을 설계하여야 한다.In addition, sewage is subject to severe flow rate and concentration change over time, so the selection and operating conditions of the nutrient removal process should be designed in consideration of these factors.

도 1은 분류식 하수관거가 설치된 하수처리장의 시간에 따른 유기물부하 및 질소부하 변동양상을 나타낸 것이다. 전체적으로 유기물부하가 질소부하보다 높으며 질소부하가 증가할 때 유기물 부하도 증가하나, 질소부하와 유기물부하가 비숫한 구간도 있다. 그러나, 영양소 제거 측면에서 볼 때 모든 구간에서 질소 및 인의 제거에 필요한 유기물이 부족하며 특히 유기물부하와 질소부하가 비슷한 구간에서는 유기물이 절대적으로 부족하다. 이러한 구간에서는 질소 및 인을 제거할 때 필요한 유기물을 확보하기 위해서 외부탄소원을 주입하는 등의 적절한 조치가 요구된다.Figure 1 shows the variation of organic load and nitrogen load according to the time of the sewage treatment plant installed fractional sewer pipe. Overall, organic load is higher than nitrogen load and organic load increases when nitrogen load increases, but there are some intervals where nitrogen load and organic load are similar. However, in terms of nutrient removal, organic matters necessary for the removal of nitrogen and phosphorus are insufficient in all sections, and in particular, organic matters are absolutely lacking in the section similar to organic load and nitrogen load. In such a section, appropriate measures such as injecting an external carbon source are required to secure the organic materials needed to remove nitrogen and phosphorus.

도 2는 인제거미생물 및 탈질소화미생물을 이용하여 하·폐수중의 영양소를 제거하는 종래 방법의 흐름도가 도시되어 있다. 상기 종래방법에 의하면, 혐기조(An), 제1무산소조(Ax) 및 호기조(Ox)가 연설되며, 1차침전지를 거쳐 혐기조(An)에 유입되는 하·폐수에 상기 호기조(Ox)와 연결된 2차 침전지로부터 반송된 슬러지를 혼합하여 인제거미생물의 활성을 높임으로써 혐기조(An)와 호기조(Ox)를 거치는 과정에서 인제거 효율을 높이고, 동시에 상기 2차 침전지로 이송되는 호기조(Ox) 방출수의 일부를 제1무산소조(Ax)로 탈질반송하여 탈질소화 작용을 촉진시키는 영양소 제거방법이며, 한편 2차 침전지에서 침전된 일부 슬러지 및 1차 침전지에서 침전된 슬러지는 농축조에서 1일동안 중력식 농축후에 혐기성 소화한 후 탈수시켜 제거하였다. 그러나, 종래 방법은 하수중 탄소물질이 부족하면 탈질반송에 의해서도 탈질소화미생물에 의한 탈질작용이 충분히 이루어지지 않으므로 결과적으로 상기 반송슬러지내에 질산화물(NOx-N)이 과량 존재하게 되며, 이처럼 질산화물(NOx-N)이 남아있는 반송슬러지는 인제거미생물의 성장이 보장되어야 하는 혐기조(An)로 반송되어 인제거미생물의 성장을 저해하는 단점이 있었다. 특히, 국내 하·폐수의 특성은 유기물이 상대적으로 부족하고 질소가 상대적으로 높은 농도로 함유되어 있어, 상기 종래 방법은 효율적인 영양소 처리방법이 되지 못하였다.Figure 2 is a flow diagram of a conventional method for removing nutrients in sewage and wastewater using phosphorus removal microorganisms and denitrification microorganisms. According to the conventional method, the anaerobic tank (An), the first anoxic tank (Ax) and the aerobic tank (Ox) is addressed, and connected to the aerobic tank (Ox) to the sewage and wastewater flowing into the anaerobic tank (An) through the primary settling cell. By increasing the activity of the phosphorus removal microorganism by mixing the sludge returned from the secondary sedimentation basin, the efficiency of phosphorus removal in the process of passing through the anaerobic tank (An) and the aerobic tank (Ox), and the aeration tank (Ox) discharged water transported to the secondary sedimentation basin at the same time It is a nutrient removal method that promotes denitrification by transporting a part of the product to the first anoxic tank (Ax), while some sludge precipitated in the secondary sedimentation basin and sludge precipitated in the primary sedimentation basin is subjected to gravity concentration in the concentration tank for 1 day. Anaerobic digestion was followed by dehydration. However, in the conventional method, when the carbon material in the sewage is insufficient, denitrification by the denitrification microorganism is not sufficiently performed even by denitrification transport. As a result, an excess amount of nitrate (NOx-N) is present in the conveying sludge. The return sludge remaining with -N) was returned to an anaerobic tank (An) where the growth of the phosphorus-removing microorganism should be ensured, thereby inhibiting the growth of the phosphorus-removing microorganism. In particular, the characteristics of domestic sewage and wastewater are relatively low in organic matter and contain a relatively high concentration of nitrogen, the conventional method was not an efficient nutrient treatment method.

본 발명의 목적은 종래 방법의 문제점을 해결하기 위한 것으로, 유기물의 농도가 낮고 질소농도가 상대적으로 높은 하·폐수로부터 질소 및 인을 포함한 영양소를 효율적으로 제거할 수 있는 하·폐수의 영양소 제거방법을 제공하는 것이다.An object of the present invention is to solve the problems of the conventional method, a method for removing nutrients in sewage and wastewater, which can efficiently remove nutrients including nitrogen and phosphorus from sewage and wastewater having a low concentration of organic matter and a relatively high nitrogen concentration. To provide.

또한, 본 발명의 또 다른 목적은 하수농도와 부하변동에 적절한 대응이 가능하고 목표한 수질을 안정적으로 확보할 수 있는 하·폐수의 영양소 제거방법을 제공하는 것이다.In addition, another object of the present invention is to provide a method for removing nutrients from sewage and wastewater capable of appropriately responding to sewage concentration and load fluctuations and stably securing a target water quality.

도 1은 분류식 하수관거가 설치된 하수처리장의 시간에 따른 유기물부하 및1 is an organic material load according to the time of the sewage treatment plant is installed sewage pipe

질소부하 변동 상태도.Nitrogen Load Variation State Diagram.

도 2는 종래 하·폐수의 영양소 제거방법의 흐름도Figure 2 is a flow chart of a conventional method for removing nutrients of sewage and wastewater

도 3은 본 발명의 실시예 1의 흐름도.3 is a flowchart of Embodiment 1 of the present invention;

도 4는 본 발명에 이용된 혐기발효조에서의 입출력 개략도.Figure 4 is a schematic diagram of the input and output in the anaerobic fermentation tank used in the present invention.

상기와 같은 목적을 달성하기 위하여 본 발명은 하·폐수를 유입하여 1차침전시키는 공정(1차침전공정), 상기 1차침전공정후의 처리수를 혐기조건, 제1무산소조건 및 호기조건의 순서로 미생물처리하는 공정(미생물처리공정), 상기 미생물처리된 방출수를 2차침전시키는 공정(2차침전공정), 상기 2차침전후의 2차침전미생물(반송슬러지)을 상기 미생물처리공정중의 혐기조건중으로 반송하는 공정(슬러지반송공정)을 포함한 하·폐수의 영양소 제거방법에 있어서, 1차침전공정으로부터의 1차슬러지를 포함한 고농도 유기성 폐액을 혐기발효하여 유기산을 생성하는 공정(유기산생성공정)과, 상기 반송슬러지내의 질산화물(NOx-N)을 제거시키기 위하여 상기 유기산과 2차침전공정으로부터의 반송슬러지를 제2무산소조건에서 혼합하는 공정(슬러지혼합공정)이 부가된 인 및 질소를 포함한 영양소 제거방법을 제공한다.In order to achieve the above object, the present invention is a step of first sedimentation by introducing wastewater and wastewater (first sedimentation step), the treatment water after the first sedimentation step in the anaerobic condition, the first anoxic condition and aerobic condition Microbial treatment step (microbial treatment step), the secondary precipitated microbial treated discharge water (secondary settling step), the secondary precipitated microorganisms (conveying sludge) after the second settling during the microbial treatment step In the nutrient removal method of sewage and wastewater, including the step of returning to anaerobic condition (sludge conveying step), the step of anaerobic fermentation of organic waste liquid containing primary sludge from the first settling step to produce organic acid (organic acid production step) ) And mixing the organic acid and the conveying sludge from the secondary precipitation process under a second anoxic condition in order to remove the nitric oxide (NOx-N) in the conveying sludge (sludge mixing process). It provides a method for removing nutrients including added phosphorus and nitrogen.

이하, 본 발명의 구성을 본 발명의 실시예에 의하여 상세히 설명하고자 하나, 본 발명은 이에 한정되는 것은 아니다. 또한 본 발명은 바람직하게는 하·폐수를 대상으로 하는 것이나 이에 한정하는 것은 물론 아니다.Hereinafter, the configuration of the present invention will be described in detail by the embodiments of the present invention, but the present invention is not limited thereto. In addition, the present invention preferably targets sewage and wastewater, but is not limited thereto.

(실시예)(Example)

실시예 1Example 1

본 발명 실시예 1의 흐름도가 도 3에 도시되어 있다.A flowchart of Embodiment 1 of the present invention is shown in FIG.

상기 도 3에 의하면, 본 발명의 실시예 1은 하·폐수가 유입되어 침전가능부유물질을 제거하기 위한 제1침전공정과, 상기 제1침전공정에서 1차침전슬러지가 제거된 처리수를 대상으로 인제거미생물 및 탈질소화미생물 처리하여 인, 질소 및 유기물질을 제거하기 위한 미생물처리공정과, 상기 미생물처리된 방출수를 2차침전시켜 2차침전슬러지와 외부방출수로 분리하기 위한 2차침전공정과, 상기 1차침전슬러지를 포함한 고농도 유기성 폐액을 혐기발효하여 유기산을 생성하는 공정(유기산생성공정)과, 상기 2차침전미생물(반송슬러지)을 제2무산소조건에서 상기 생성된 유기산과 혼합하여 질산화물(NOx-N)를 제거하는 공정(슬러지혼합공정)과, 상기 질산화물(NOx-N)가 제거된 반송슬러지를 상기 미생물처리공정에 유입시키는 공정을 포함하여 구성된다.According to FIG. 3, Embodiment 1 of the present invention is a first sedimentation process for removing sedimentable floating material by inflow of sewage and wastewater, and treated water from which primary sedimentation sludge is removed in the first sedimentation process. Microbial treatment process to remove phosphorus, nitrogen and organic substances by treatment of phosphorus removal microorganisms and denitrification microorganisms, and secondary sedimentation of the microbial treated effluent water to secondary sedimentation sludge and external effluent water. A process of producing an organic acid by anaerobic fermentation of a high concentration organic waste liquid including the primary settling sludge (organic acid production step), and the second settled microorganism (return sludge) under the second anoxic condition And a process of removing nitric oxide (NOx-N) by mixing (sludge mixing process) and introducing a return sludge from which the nitric oxide (NOx-N) has been removed into the microorganism treatment process.

본 발명의 실시예의 구성중 본 발명에 의해 개량되어 부가된 공정은 1차침전슬러지 및 고농도 유기성 폐액을 혐기조건하에서 발효하여 유기산을 생성하기 위한 유기산생성공정 및 2차침전슬러지의 반송 중에 제2무산소조건에서 상기 유기산을 혼합시켜 질산화물(NOx-N)를 제거하기 위한 슬러지혼합공정이다.In the configuration of the embodiment of the present invention, the process improved and added by the present invention is an organic acid producing process for producing organic acid by fermenting primary precipitated sludge and high concentration organic waste liquor under anaerobic conditions, and second oxygen-free during conveyance of secondary precipitated sludge. It is a sludge mixing process for removing the nitric oxide (NOx-N) by mixing the organic acid under the conditions.

이하, 상기 각 공정에 대하여 운전조건 및 효율을 언급하면서 설명하도록 한다.Hereinafter, each process will be described with reference to operating conditions and efficiency.

① 1차침전공정① 1st precipitation process

하·폐수내의 침전 가능 부유 물질을 제거시키기 위하여 미생물반응공정이전에 1차 침전을 실시하였다. 1차침전지에서의 체류시간은 약 1시간 내지 1.5시간으로 유지하였다. 본 발명자는 1차침전 체류시간을 가능한 짧게 유지함이, BOD제거를 최소화함으로써 탄소공급을 최대화 할 수 있어 질소 및 인의 제거를 목적으로 하는 경우에 유리한 조건임을 알 수 있었다. 또한, 침전된 슬러지는 후에 설명할 혐기 조건의 발효조로 공급하였다. 1차 침전지에서 1.5시간 체류시킨 결과, BOD 20%, SS 20%, TN 10%, TP10%의 제거효율을 보였으며, 발생된 침전 슬러지 농도는 2% 정도였다.In order to remove the sedimentable suspended solids in the sewage and wastewater, the first precipitation was carried out before the microbial reaction process. The residence time in the primary needle battery was maintained at about 1 hour to 1.5 hours. The inventors have found that keeping the first settling residence time as short as possible can maximize the carbon supply by minimizing the removal of BOD, which is an advantageous condition for the purpose of removing nitrogen and phosphorus. In addition, the precipitated sludge was fed to a fermenter in anaerobic conditions which will be described later. As a result of 1.5 hours of retention in the primary sedimentation basin, BOD 20%, SS 20%, TN 10%, and TP10% were removed, and the sediment sludge concentration was about 2%.

② 미생물처리공정② Microbial treatment process

혐기조(An), 제1무산소조(Ax) 및 호기조(Ox)로 구성된 미생물반응조에 1차침전지를 통과한 처리수를 유입하여 인 및 유기물질을 제거하는 공정이다. 혐기조에서는 후에 설명될 유기산생성공정으로부터의 유기산을 이용하여 반송슬러지를 처리함으로써 인제거미생물이 활성화되며, 그 결과 인이 방출된다. 혐기조에서의 체류시간은 1∼2시간으로 하였으며, 처리수내의 제거대상 인 농도의 5∼10배의 유기산, 유기물이 소요되었다.It is a process of removing phosphorus and organic substances by introducing the treated water passing through the primary settler into the microbial reactor consisting of anaerobic tank (An), first anoxic tank (Ax) and aerobic tank (Ox). In the anaerobic tank, the phosphorus removal microorganism is activated by treating the return sludge with the organic acid from the organic acid production process described later, and as a result, phosphorus is released. The residence time in the anaerobic tank was 1 to 2 hours, and 5 to 10 times the concentration of organic acid and organic matter in the treated water was removed.

제1무산소조에서는 내부반송에 의해 반송되는 질산화물(NOx-N)을 탈질시키며, 이 때 혐기조로부터 미제거된 유기산과 하수내의 유기물질이 제거된다. 소요체류시간은 2∼3시간(15℃)으로 유지하였으며 이 때 비탈질율은 20℃에서 3.5∼5㎎NOx-N/gMv·hr이며 15℃에서는 2∼3.5㎎NOx-N/gMv·hr이었다.In the first anoxic tank, the nitric oxide (NOx-N) conveyed by internal transport is denitrated. At this time, the organic acids and organic substances in the sewage are removed from the anaerobic tank. Required residence time was maintained at 2 to 3 hours (15 ℃), and the denitrification rate was 3.5 to 5mgNOx-N / gMv · hr at 20 ℃ and 2 to 3.5mgNOx-N / gMv · hr at 15 ℃. .

호기조에서는 혐기조에서 방출된 인과, 혐기 및 제1무산소조에서 미제거된 유기물질을 산화제거시키며 아울러 질소를 질산화물(NOx-N)으로 전환시킨다. 소요 체류시간은 4∼5시간(15∼20℃ 기준)으로 유지하였으며, 이 때 비질산화율은 2.4∼3.4㎎NH4-N/gMv·hr(15∼20℃ 기준)이었다. 반응조의 MLSS농도는 3,500㎎/L로 하며 호기 SRT(고형물질 체류기간)는 7∼10일로 운전하였다. 내부반송율(NRCY : nitrified recycle)은 유입 하수량 대비 100%(질소제거 60% 가능)정도로 하며 추가적인 질소제거를 위해서는 200%(질소제거 70% 가능)까지 증가시켜 운전할 수 있다.The aerobic tank oxidizes the phosphorus released from the anaerobic tank, the organic substances that have not been removed from the anaerobic and the first anoxic tank, and converts nitrogen into nitric oxide (NOx-N). The required residence time was maintained at 4 to 5 hours (based on 15 to 20 ° C), and the specific nitrification rate was 2.4 to 3.4 mg NH 4 -N / gMv · hr (based on 15 to 20 ° C). The MLSS concentration of the reactor was 3,500 mg / L and the aerobic SRT (solid material retention period) was operated for 7-10 days. Nitrified recycle (NRCY) is about 100% (nitrogen removal 60%) relative to the inflow sewage and can be increased to 200% (70% nitrogen removal) for additional nitrogen removal.

③ 2차침전공정③ Second precipitation process

상기 미생물처리공정에서 생산된 미생물을 침전 제거시키는 공정이다.Precipitating and removing microorganisms produced in the microbial treatment process.

침전된 미생물은 미생물처리공정중으로 반송〔슬러지 반송(RAS : return activated sludge)〕시키는데 반송슬러지의 양은 유입 하수량 대비 50%를 표준으로 하였으나 2차 슬러지의 침전 농도와 호기조의 MLSS 농도로부터 계산하여 조정할 수 있다. 이때에 반송슬러지내의 질산화물(NOx-N)은 인 제거 미생물에 위해작용을 하므로 다음의 슬러지반송공정중에서 미리 제거시켜야 한다.Precipitated microorganisms are returned to the microbial treatment process (return sludge), and the amount of returned sludge is 50% of the influent sewage, but it can be calculated by calculating the concentration of secondary sludge and MLSS concentration in the aerobic tank. have. At this time, the nitric oxide (NOx-N) in the conveying sludge is harmful to the phosphorus-removing microorganism, so it must be removed in advance during the next sludge conveying process.

2차 침전지로부터 제거시킨 슬러지에는 인이 과량 함유되어 있으므로 기계식 농축 방법을 사용한 후에 소각하여 다시 처리장에 반류되지 않도록 하였다. 2차침전지에서의 체류시간은 4시간 이상으로 하며 깊이는 4∼5m이상으로 하여 시간 최대 유량유입에 대해 안전하게 설계하였다.The sludge removed from the secondary sedimentation basin contained excess phosphorus so that it was incinerated after using the mechanical concentration method so as not to be returned to the treatment plant again. The residence time in the secondary sedimentation battery is more than 4 hours and the depth is more than 4 ~ 5m, and it is designed safely for the maximum flow rate of time.

2차침전지내에서의 내호흡에 의한 탈질율은 0.12∼1 NOx-N/gMv·hr(20℃ 기준)이며 SRT(고형물질 체류기간)에 따라 변화되었다.The denitrification rate due to internal breathing in the secondary sedimentation cell was 0.12 to 1 NOx-N / gMv · hr (based on 20 ° C) and was changed according to the SRT (solid material retention period).

④ 슬러지혼합공정④ Sludge Mixing Process

상기 2차침전공정에서 침전된 미생물로 이루어진 반송슬러지와 후에 설명될 유기산생성공정에서 생성된 유기산과 유기물질을 제2무산소조(Axr)에서 혼합시켜 반송슬러지내의 질산화물(NOx-N)를 제거시키는 공정으로, 질산화물(NOx-N)이 제거된 반송슬러지는 다시 미생물반응공정중 혐기조로 1차침전지를 통과한 처리수와 함께 투입되었다.A process for removing nitrates (NOx-N) in the conveying sludge by mixing the return sludge made of the microorganisms precipitated in the secondary precipitation process and the organic acid and the organic material produced in the organic acid production process to be described later in the second anoxic tank (Axr). The return sludge from which the nitric oxide (NOx-N) was removed was added together with the treated water which passed through the primary settling cell to the anaerobic tank during the microbial reaction process.

제2무산소조(Axr)에서의 체류시간은 0.5시간을 표준으로 하며 제2무산소조(Axr)로 유입시킬 유기산의 소요량은 제2무산소조(Axr)로 유입되는 질산화물(NOx-N) 농도의 약 5(COD 기준)배로 하였다.The residence time in the second anoxic tank (Axr) is 0.5 hours as a standard, and the amount of organic acid to be introduced into the second anoxic tank (Axr) is about 5 (nitrogen oxide (NOx-N) concentration flowing into the second anoxic tank (Axr). COD standard) times.

비탈질율은 3.6∼10 ㎎NOx-N/gMv·hr(20℃ 기준)이었다.The specific denitrification rate was 3.6-10 mgNOx-N / gMv · hr (based on 20 ° C).

⑤ 유기산생성공정(또는 혐기발효공정)⑤ Organic acid production process (or anaerobic fermentation process)

1차침전공정에서 제거된 1차침전슬러지, 분뇨, 정화조 폐액, 주방폐기물, 가축분 등의 고농도 유기성 폐액을 혐기발효시켜 유기산을 생성하는 공정이다.Anaerobic fermentation of high concentration organic waste liquids, such as primary sedimentation sludge, manure, septic tank waste, kitchen waste, and livestock meal, removed in the primary precipitation process, to produce organic acids.

도 4는 1차슬러지, 분뇨, 정화조 폐액, 축분으로부터 유기산을 생성하기 위한 혐기발효조에서의 입출력 개략도이다. 분뇨, 정화조 폐액, 주방폐기물, 가축분 등의 고농도 유기성 폐액으로부터 모래, 협잡물 등을 제거한 후 혐기발효조에서 6일이하의 체류기간동안 발효시켰다. 본 발명자는 혐기발효조에 침전된 슬러지가 상당량의 유기산을 흡착하고 있음을 감안하여 이를 탈수용 폴리머 주입 후 탈수기로 탈수하여 유기산을 효과적으로 이탈시킨 후 발생된 탈리액을 전량 상기 슬러지혼합공정중의 제2무산소조(Axr)에 공급시켜 반송슬러지내의 질산화물(NOx-N)를 제거하였다. 또한, 여분의 유기산은 하수와 함께 혐기조(An)로 유입시켜 인 제거 미생물이 이용할 수도 있다.Fig. 4 is a schematic diagram of input and output in an anaerobic fermentation tank for producing organic acid from primary sludge, manure, septic tank waste liquor and condensate. After removing sand and contaminants from high concentration organic waste such as manure, septic tank waste, kitchen waste, and livestock meal, fermentation was carried out for less than 6 days in an anaerobic fermentation tank. The present inventors consider that the sludge precipitated in the anaerobic fermentation tank adsorbs a considerable amount of organic acid, so that the desorbent generated after effectively desorbing the organic acid by dehydrating it with a dehydrator after the injection of a dehydrating polymer is effectively used for the second anoxic tank during the sludge mixing process. It was supplied to (Axr) to remove nitric oxide (NOx-N) in the conveying sludge. In addition, the excess organic acid may be introduced into the anaerobic tank (An) together with the sewage and used by the phosphorus removing microorganism.

혐기발효조를 이용하여 발효를 통하여 얻을 수 있는 유기산의 농도는 유입유량 기준으로 표1과 같으며 하·폐수내에 함유되어 있는 유기산(Volatile Fatty Acid, VFA) 농도를 대략 50% 가량 증가시킬 수 있었다.The concentrations of organic acids obtained through fermentation using anaerobic fermentation tanks are shown in Table 1 on the basis of the inflow rate, and the concentration of organic acids (Volatile Fatty Acid, VFA) contained in the sewage and wastewater was increased by about 50%.

혐기발효조에 의한 유기산의 증가 정도(㎎VFA/L)Degree of increase of organic acid by anaerobic fermentation tank (mgVFA / L) 구 분division 기존 농도Existing concentration 혐기발효후의 농도Concentration after anaerobic fermentation 하수(BOD 150㎎/L 기준)Sewage (Based on BOD 150mg / L) 3030 4545 분뇨excretions 5,0005,000 7,0007,000 정화조 폐액Septic tank waste liquid 1,5001,500 2,3002,300 축분(돈분)Money (money) -- 10,00010,000

실시예 2Example 2

본 발명자는 실시예 1의 1차침전공정의 체류시간이 짧을수록 영양소 제거에 유리하다는 실험결과에 근거하여 1차침전공정을 생략하고 하·폐수를 직접 미생물반응조로 유입하고, 유기산생성공정에서 분뇨, 정화조 폐액, 주방폐기물, 가축분 등의 고농도 유기성 폐액만을 혐기발효조에 투입하였다. 이외의 모든 공정은 실시예 1과 동일하게 실시하였다.The present inventor omitted the first settling process on the basis of the experimental results that the shorter the residence time of the first settling process of Example 1 is advantageous to the removal of nutrients, the sewage and wastewater flows directly into the microbial reaction tank, the manure in the organic acid production process Only high concentration organic wastes, such as septic tank waste, kitchen waste and livestock meal, were added to the anaerobic fermentation tank. All other processes were performed similarly to Example 1.

실시예 2는 특히 소규모처리장의 경우에 시설비의 절약 및 유지관리를 위하여 바람직한 방법이다.Example 2 is a preferred method for saving and maintaining facility costs, especially in small treatment plants.

실시예 3Example 3

본 발명자는 실시예 1의 유기산생성공정에서 혐기발효조에서 생성된 유기산이 부족한 경우에는 외부 탄소원으로 초산을 실시예 1의 슬러지혼합공정중에 보충하였다. 이외의 모든 공정은 실시예 1과 동일하게 실시하였다.The present inventors supplemented acetic acid with an external carbon source during the sludge mixing process of Example 1 when the organic acid produced in the anaerobic fermentation tank was insufficient in the organic acid production process of Example 1. All other processes were performed similarly to Example 1.

본 발명의 실시에 따라 일반 하수를 처리할 때에, 처리수의 수질은 15℃를 기준으로 BOD 10∼15㎎/L, TN 10∼15㎎/L, TP 0.5∼1.0 ㎎/L이며 사용되는 분뇨, 정화조 폐액, 주방폐기물, 축분 및 초산 사용량에 따라 변화가능하며 안정적인 수질 생산이 가능하다. 특히, TN과 TP의 농도를 상기 농도 이하로 자유롭게 변화시킬 수 있는데, 대체적으로 TN은 5㎎/L, TP는 0.5 ㎎/L 이하의 생산이 가능하다. 표 2에 유입하·폐수의 농도와 반송률에 따른 처리수의 수질을 비교하여 나타내었다.When treating general sewage according to the practice of the present invention, the water quality of the treated water is BOD 10-15 mg / L, TN 10-15 mg / L, TP 0.5-1.0 mg / L based on 15 ° C. It is possible to produce stable water quality which can be changed according to septic tank waste liquid, kitchen waste, livestock powder and acetic acid usage. In particular, it is possible to freely change the concentration of TN and TP below the above concentration, in general, TN production of 5 mg / L, TP can be produced below 0.5 mg / L. Table 2 shows the water quality of treated water according to the concentration of inflow and wastewater and the return rate.

상기와 같이, 본 발명은 질소가 상대적으로 높은 하·폐수로부터 영양소(질소 및 인)를 효율적으로 제거할 수 있으며, 하수농도와 부하변동에 적절한 대응이 가능하고 목표한 수질을 안정적으로 확보할 수 있는 하·폐수처리방법이다.As described above, the present invention can efficiently remove nutrients (nitrogen and phosphorus) from sewage and wastewater with relatively high nitrogen, and can appropriately respond to sewage concentration and load fluctuations, and stably secure the target water quality. Sewage and wastewater treatment.

또한, 본 발명은 혐기발효조 이용에 의하여 비탈질율이 종래보다 증대되며 액상폐기물인 인분뇨 또는 처리중인 폐수의 일부를 활용함으로써 유지관리가 용이할 뿐 아니라 유지관리비가 저렴하게 소요되는 효과가 있다.In addition, the present invention increases the non-denitrification rate by using an anaerobic fermentation tank and utilizes a portion of the liquid waste phosphorus manure or the wastewater being treated, thereby making it easy to maintain and inexpensive maintenance costs.

Claims (9)

유입 하·폐수를 혐기조건, 제1무산소조건 및 호기조건의 순서로 미생물처리하는 공정(미생물처리공정), 상기 미생물처리된 방출수를 침전시키는 공정(침전공정), 상기 침전후의 침전미생물(반송슬러지)을 상기 미생물처리공정중의 혐기조건중으로 반송하는 공정(슬러지반송공정)으로 이루어진 하·폐수의 영양소 제거방법에 있어서, 고농도 유기성 폐액을 혐기발효하여 생성된 슬러지를 탈수하여 유기산을 생성하는 공정(유기산생성공정)과, 상기 슬러지반송공정중의 반송슬러지내의 질산화물(NOx-N)을 제거시키기 위하여 상기 생성된 유기산과 상기 침전공정으로부터의 반송슬러지를 제2무산소조건에서 혼합하는 공정(슬러지혼합공정)이 슬러지반송공정전에 부가된 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.Microbial treatment (microbial treatment) in order of anaerobic, first anoxic and aerobic conditions, precipitation of the microbial treated effluent (sedimentation process), precipitation microorganisms after the precipitation (returning) In the nutrient removal method of sewage and wastewater consisting of the step of returning the sludge) to the anaerobic conditions of the microbial treatment process (sludge conveying step), a process of dehydrating the sludge produced by anaerobic fermentation of high concentration organic waste liquid to generate organic acid (Organic acid production step) and a step of mixing the produced organic acid and the return sludge from the precipitation step under a second anoxic condition in order to remove nitrates (NOx-N) in the transport sludge during the sludge conveying step (sludge mixing) Process for removing nutrients from sewage and wastewater using anaerobic fermentation tank added before the sludge conveying process. 제1항에 있어서, 상기 미생물처리공정전에 유입 하·폐수를 1차침전시켜 1차침전슬러지와 상기 미생물처리공정으로 유출되는 처리수로 분류하기 위하여 1차침전공정이 부가된 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.The method according to claim 1, wherein the anaerobic fermentation tank to which the first settling process is added in order to classify the inflow and wastewater into the first settling sludge and the treated water discharged to the microbial treatment process before the microbial treatment process is first settled. To remove nutrients from wastewater and wastewater. 제2항에 있어서, 상기 1차침전공정의 체류시간을 약 1∼1.5시간으로 하는 것을 특징으로 하는 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.3. The improved nutrient removal method of sewage and wastewater using an anaerobic fermentation tank according to claim 2, wherein the residence time of the primary precipitation process is about 1 to 1.5 hours. 제2항 또는 제3항에 있어서, 상기 1차침전공정으로부터의 1차침전슬러지를 상기 유기산생성공정에서 혐기발효하는 것을 특징으로 하는 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.The method for removing nutrients from sewage and wastewater using an anaerobic fermentation tank according to claim 2 or 3, characterized in that anaerobic fermentation of the primary sedimentation sludge from the primary sedimentation step in the organic acid production step. 제1항 또는 제2항에 있어서, 상기 고농도 유기성 폐액은 분뇨, 정화조 폐액, 주방폐기물 및 가축분으로 구성된 그룹에서 하나 이상이 선택된 것을 특징으로 하는 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.The method of claim 1 or claim 2, wherein the high concentration organic waste liquid is selected from the group consisting of manure, septic tank waste, kitchen waste and livestock meal improved nutrients for sewage and wastewater using an anaerobic fermentation tank. 제1항 또는 제2항에 있어서, 상기 침전공정에서 제거한 슬러지를 기계식 농축 후 탈수하여 소각하는 것을 특징으로 하는 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.The improved nutrient removal method of sewage and wastewater using an anaerobic fermentation tank according to claim 1 or 2, wherein the sludge removed in the precipitation step is mechanically concentrated and then dehydrated and incinerated. 제1항 또는 제2항에 있어서, 상기 슬러지혼합공정에 초산이 더욱 혼합된 것을 특징으로 하는 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.The improved nutrient removal method of sewage and wastewater using an anaerobic fermentation tank according to claim 1 or 2, wherein acetic acid is further mixed in the sludge mixing process. 제1항 또는 제2항에 있어서, 상기 유기산생성공정에서 생성된 유기산의 일부가 상기 미생물처리공정중의 혐기조건하에 반송되는 것을 특징으로 하는 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.The method for removing nutrients from sewage and wastewater using an anaerobic fermentation tank according to claim 1 or 2, wherein a part of the organic acid produced in the organic acid producing step is returned under anaerobic conditions during the microbial treatment step. 제1항 또는 제2항에 있어서, 상기 유기산생성공정중 혐기발효되어 생성된 슬러지를 탈수하기 전에 탈수용 폴리머를 상기 슬러지와 혼합하는 공정이 부가된 혐기발효조를 이용한 개량된 하·폐수의 영양소 제거방법.The improved nutrient removal of sewage and wastewater using an anaerobic fermentation tank according to claim 1 or 2, wherein a process of mixing the dewatering polymer with the sludge is added before dewatering the sludge produced by the anaerobic fermentation during the organic acid production process. Way.
KR1019980025448A 1998-06-30 1998-06-30 Method for removing nitrogen and phosphorus using anaerobic digestion KR100304544B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980025448A KR100304544B1 (en) 1998-06-30 1998-06-30 Method for removing nitrogen and phosphorus using anaerobic digestion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980025448A KR100304544B1 (en) 1998-06-30 1998-06-30 Method for removing nitrogen and phosphorus using anaerobic digestion

Publications (2)

Publication Number Publication Date
KR19980071903A true KR19980071903A (en) 1998-10-26
KR100304544B1 KR100304544B1 (en) 2002-01-09

Family

ID=37529910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980025448A KR100304544B1 (en) 1998-06-30 1998-06-30 Method for removing nitrogen and phosphorus using anaerobic digestion

Country Status (1)

Country Link
KR (1) KR100304544B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048460A (en) * 2000-12-16 2002-06-24 차호영 A process for removing a biological nutrient
KR100392747B1 (en) * 2000-04-14 2003-07-28 삼환기업주식회사 System for Removal of Nitrogen and Phosphorus from Sewage
KR100434858B1 (en) * 2002-04-25 2004-06-07 주식회사 디엠퓨어텍 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge
KR100564722B1 (en) * 2005-11-28 2006-03-27 (주)오에치케이 Advanced treatment system of wastewater and its method
KR100661625B1 (en) * 2004-11-27 2007-01-02 허인랑 Denitration apparatus for the wastewater having the nitrogenous compound
CN110357365A (en) * 2019-07-31 2019-10-22 安徽南岳生态科技有限公司 A kind of rural sewage treatment system
CN110877953A (en) * 2019-12-24 2020-03-13 北京城市排水集团有限责任公司 Reaction system for sludge resource utilization
KR102155524B1 (en) * 2020-05-07 2020-09-16 대한민국 Livestock manure integrated treatment system and operating method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663696B (en) * 2013-12-13 2016-02-03 重庆大学 A kind of membrane bioreactor for the treatment of the denitrogenation of preserved szechuan pickle waste water enhanced biological phosphorus removal
CN105330015B (en) * 2015-10-09 2017-07-14 北京工业大学 The method of maximum nitrite accumulation in denitrification process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210897A (en) * 1982-06-02 1983-12-08 Hitachi Plant Eng & Constr Co Ltd Biological dephosphorization method of waste water
JPH04131195A (en) * 1990-09-20 1992-05-01 Meidensha Corp Device and method for treating sludge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392747B1 (en) * 2000-04-14 2003-07-28 삼환기업주식회사 System for Removal of Nitrogen and Phosphorus from Sewage
KR20020048460A (en) * 2000-12-16 2002-06-24 차호영 A process for removing a biological nutrient
KR100434858B1 (en) * 2002-04-25 2004-06-07 주식회사 디엠퓨어텍 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge
KR100661625B1 (en) * 2004-11-27 2007-01-02 허인랑 Denitration apparatus for the wastewater having the nitrogenous compound
KR100564722B1 (en) * 2005-11-28 2006-03-27 (주)오에치케이 Advanced treatment system of wastewater and its method
CN110357365A (en) * 2019-07-31 2019-10-22 安徽南岳生态科技有限公司 A kind of rural sewage treatment system
CN110877953A (en) * 2019-12-24 2020-03-13 北京城市排水集团有限责任公司 Reaction system for sludge resource utilization
KR102155524B1 (en) * 2020-05-07 2020-09-16 대한민국 Livestock manure integrated treatment system and operating method thereof

Also Published As

Publication number Publication date
KR100304544B1 (en) 2002-01-09

Similar Documents

Publication Publication Date Title
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100390633B1 (en) Anoxic-anaerobic sequencing batch reactor and method for nitrogen and phosphorus removal thereby
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
Fatone et al. Biological short-cut nitrogen removal from anaerobic digestate in a demonstration sequencing batch reactor
KR100274534B1 (en) Nitrogen and phosphorus removal methods with using fermented organic wastes
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR200368392Y1 (en) Anaerobic tank, anaerobic tank, sedimentation concentration function
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
KR100258637B1 (en) A sewage disposal method
WO2014059990A1 (en) Improved process and system for biological water purification
KR20010045253A (en) Advanced method for treating wastewater and apparatus therefor
KR100460851B1 (en) Sewage and wastewater treatment apparatus which is no need internal recycle
KR100501307B1 (en) Improved method of wastewater treatment
KR100415437B1 (en) Advanced sludge reaeration process improving denitrification rate for nutrient removal
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
CN113149215A (en) Middle-placed aeration denitrification treatment method for papermaking wastewater
KR100542431B1 (en) High concentration organic wastewater treatment system combining biofilm fermentation tank and anaerobic, anaerobic and aerobic tank
KR20000026051A (en) Tertiary treatment of wastewater using digested sludge
KR100321679B1 (en) Advanced wastewater treatment method
KR100392747B1 (en) System for Removal of Nitrogen and Phosphorus from Sewage
KR20010056058A (en) Management Unit and Method of Foul and Waste Water
KR100303939B1 (en) A Sequential Batch Reactor type tank, which use cubic type floating material containing elvan and ativated carbon for purifying sewage
CN216005540U (en) Sewage treatment system utilizing internal carbon source based on sludge fermentation

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110615

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee