JP3737288B2 - Wastewater treatment system - Google Patents

Wastewater treatment system Download PDF

Info

Publication number
JP3737288B2
JP3737288B2 JP26856798A JP26856798A JP3737288B2 JP 3737288 B2 JP3737288 B2 JP 3737288B2 JP 26856798 A JP26856798 A JP 26856798A JP 26856798 A JP26856798 A JP 26856798A JP 3737288 B2 JP3737288 B2 JP 3737288B2
Authority
JP
Japan
Prior art keywords
tank
sludge
water
liquid
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26856798A
Other languages
Japanese (ja)
Other versions
JP2000093992A (en
Inventor
崇 伊東
裕樹 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environmental Technology Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP26856798A priority Critical patent/JP3737288B2/en
Publication of JP2000093992A publication Critical patent/JP2000093992A/en
Application granted granted Critical
Publication of JP3737288B2 publication Critical patent/JP3737288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水等の被処理水中に含まれる有機物のみならず、窒素やリンをも同時に効率よく除去するための排水処理システムに関するものである。
【0002】
【従来の技術】
図5は従来の排水処理システムを示すフローシート図であり、同図において、1は流入する被処理水中の固形物(懸濁物質)を重力沈降させて固液分離する最初沈殿池、2は最初沈殿池1から分離液を導入し、該分離液中のBODを利用して脱窒・脱リンを同時に行うための浮遊汚泥方式の反応槽であり、この反応槽2は、嫌気槽3と無酸素槽4と好気槽5とを備えた構成となっている。かかる反応槽2において、嫌気槽3と無酸素槽4のそれぞれの槽内には攪拌手段(図示せず)が配置され、且つ、好気槽5内には曝気手段(図示せず)が配置されている。
【0003】
6は好気槽5内の混合液を無酸素槽4に循環させるための循環手段、7は好気槽5から流出する混合液を導入して処理水と汚泥とに固液分離する最終沈殿池、8は最終沈殿池7で固液分離された汚泥の一部を嫌気槽3に返送するための返送汚泥管路であり、前記最終沈殿池7は固液分離された汚泥の一部を余剰汚泥として引き抜くための余剰汚泥引抜手段(図示せず)を有している。
【0004】
次に動作について説明する。
まず、最初沈殿池1に被処理水が流入することにより、その最初沈殿池1では被処理水中の固形物が重力沈降して固液分離され、その分離液が嫌気槽3に導入される。この嫌気槽3には、最終沈殿池7から返送汚泥管路8を介して汚泥の一部が返送されていることにより、その返送汚泥と前記分離液が接触する。この際、前記返送汚泥に含まれるリン蓄積菌は、被処理水中の溶解性BOD(主に揮発性有機酸)を取り込むと同時に、菌体内に蓄積していたリンを放出する。その後、嫌気槽3の流出水は無酸素槽4に導入され、ここでは、後段の好気槽5で酸化された酸化態窒素を含む混合液が循環されて無酸素状態で接触させる。この際、汚泥中に含まれる脱窒細菌が被処理水中のBODを利用して脱窒を行い、酸化態窒素は窒素ガスとして除去される。さらに、無酸素槽4の流出水は好気槽5に導入され、好気状態下で被処理水中のBODは酸化分解されると共に、汚泥中に含まれる硝化細菌によりアンモニア態窒素が硝化され、また、リンはリン蓄積菌により過剰に再摂取され液相中から除去される。
【0005】
好気槽5から流出する混合液は、最終沈殿池7に導入されて処理水と汚泥とに固液分離され、処理水は消毒後に放流され、汚泥は返送汚泥管路8を介して嫌気槽3に一部返送される。なお、最終沈殿池7で固液分離された汚泥の一部は余剰汚泥として汚泥処理工程で処理される。この際、前記余剰汚泥を一旦最初沈殿池1に移送し、初沈汚泥と共に汚泥処理工程で処理してもよい。かかる廃水処理方法は、いわゆる嫌気・無酸素・好気法と呼ばれ、近年、国内外を問わず多く実用化されている。
【0006】
【発明が解決しようとする課題】
従来の嫌気・無酸素・好気法を利用した排水処理システムは以上にように構成され、窒素の除去は比較的安定で且つ高効率に達成できる。しかしながら、リン除去に関しては、嫌気槽3でのリン蓄積菌のリン放出が不安定で好気槽5での十分なリン除去が得られないという課題があった。その原因としては、流入する排水の有機物(BOD)濃度が低い、排水水質の変動が大きい、好気槽での酸化が進み返送汚泥を介して酸化態窒素が嫌気槽に持ち込まれる、雨水の流入により排水が希薄になるなどが挙げられる。さらには、嫌気・無酸素・好気法を利用した場合、反応槽2の容積が従来の標準活性汚泥法の数倍必要となり、処理施設の建設費が大きく嵩み、より広いスペースが必要になるという課題があった。また、上記従来の排水処理システムでは、まず、最初沈殿池1において、被処理水中の固形物を重力沈降により自然分離させるので、流出水質が安定せず、最初沈殿池1での被処理水の滞留時間を必要以上に長くしなければならず、このため、システム全体が大型化すると共に、処理効率が悪いという課題があった。また、嫌気槽におけるリン蓄積菌のリン放出に有効なBOD(有機炭素源)を、いかに効率よく確保して供給できるかという課題があった。
【0007】
本発明は上記のような課題を解決するためになされたもので、とくに既存の標準活性汚泥処理施設において増設することなく、容易な改造を行うことにより、BODのみならず窒素・リンをも合わせて効率よく同時除去が行える排水処理システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る排水処理システムは、濾材洗浄手段を備え、流入する被処理水中の懸濁物質を固液分離する濾過装置と、攪拌手段を備え、前記濾過装置から濾過水を導入する無酸素槽と、曝気手段を備え、前記無酸素槽から流出する混合液を導入して活性汚泥処理を行う好気槽と、この好気槽内の混合液の一部を前記無酸素槽に循環させる循環手段と、前記好気槽から流出する混合液を導入して処理水と汚泥とに固液分離する固液分離装置と、前記濾過装置から排出される汚泥を導入して調質する汚泥調質槽と、攪拌手段を備え、前記汚泥調質槽から排出される分離液および前記固液分離装置で分離された分離汚泥の一部を導入する嫌気槽と、この嫌気槽からの流出水を前記無酸素槽に導入する導入手段とからなるものである。
【0009】
本発明に係る排水処理システムの嫌気槽は、汚泥調質槽から調質汚泥の一部を導入するようになっているものである。
【0010】
本発明に係る排水処理システムの濾過装置は、浮遊性濾材が充填され、且つ、被処理水を上向流で濾過する高速固液分離装置から成っているものである。
【0011】
本発明に係る排水処理システムの好気槽は、微生物を担持する担体を用いた活性汚泥処理槽から成っているものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の一形態を説明する。
実施の形態1.
図1は本発明の実施の形態1による排水処理システムを示すフローシートであり、図5と同一または相当部分には同一符号を付して重複説明を省略する。図1において、10は被処理水を受け入れて当該被処理水中の懸濁物質を固液分離するための濾過装置、11はその濾過装置10から固液分離後の濾過水を無酸素槽4に導入する濾過水管路、12は前記濾過装置10から固液分離により生じる汚泥(汚泥混合液)を汚泥調質槽13に導入するための汚泥管路であり、前記汚泥調質槽13は、前記濾過装置10から導入した汚泥を酸発酵させる汚泥酸発酵槽、もしくは前記汚泥を濃縮する汚泥濃縮槽から成るもので、要するに、濾過装置10からの導入汚泥を酸発酵させたり濃縮したりして嫌気状態下で調質するものである。14は汚泥調質槽13から汚泥調質後の分離液を嫌気槽3に導入する分離液管路、15は汚泥調質槽13から調質汚泥を汚泥処理工程に導くための調質汚泥管路である。
【0013】
図2は図1中の濾過装置10の詳細構成を示す断面図であり、同図において、21は濾過装置10の本体となる固液分離槽であり、この固液分離槽21内は、被処理水の流入ゾーンを兼ねた槽内下部の沈殿ゾーン22と、この沈殿ゾーン22の上部に濾材支持用のグレーチング23で仕切られた濾材充填ゾーン24と、この濾材充填ゾーン24の上部に濾材押え用のグレーチング25で仕切られた槽内上部の上澄ゾーン26とが形成されている。
【0014】
27は前記沈殿ゾーン22に被処理水を供給するための原水供給手段であり、この原水供給手段27は、原水流入管27aと原水ポンプ27bと原水弁27cとから成っている。なお、27dは前記沈殿ゾーン22における前記原水流入管27aの下向き開口端の下方に配置された邪魔板である。
【0015】
28は前記沈殿ゾーン22の底部に沈殿した汚泥を図1中の汚泥調質槽13に導入させるための汚泥管路12に設けられた排泥弁、29は前記濾材充填ゾーン24に充填された浮遊性濾材であり、この濾材29としては、例えばプラスチック製など比重1以下で中空状の浮遊性濾材が用いられる。また、前記濾材29は単なる貫通円筒中空状をなしたプラスチック製の浮遊性濾材、もしくは、その浮遊性濾材の内外全面がネジ状や凹凸状に形成されて表裏面積の拡大を図ったものの何れであってもよい。
【0016】
30は前記浮遊性濾材29を洗浄するための濾材洗浄手段であり、この濾材洗浄手段30は、沈殿ゾーン22における濾材支持用のグレーチング23の下部近傍に配置された洗浄空気管30aと、この洗浄空気管30aに設けられた洗浄弁30bと、前記洗浄空気管30aが接続された洗浄ブロア30cとを備え、前記洗浄弁30bの開弁時における前記洗浄ブロア30cの稼動によって、前記洗浄空気管30aが濾材充填ゾーン24に向って洗浄空気を吹き出す構成となっている。
【0017】
31は固液分離槽21の槽内上部(上澄ゾーン26)に配置されて濾過水を流入させる越流トラフであり、この越流トラフ31内は前記濾過水管路11によって図1中の無酸素槽2内に接続されている。
【0018】
以上のように構成された濾過装置10は、原水供給手段27によって固液分離槽21の槽内下部に被処理水が供給されることにより、その被処理水は、前記固液分離槽21内で上向流となって濾材充填ゾーン24を上昇通過し、該通過時に被処理水中の懸濁物質が浮遊性濾材29で効率よく捕捉されるようになっている。従って、前記濾過装置10は被処理水を上向流で濾過する高速固液分離装置となっている。
【0019】
図3は図1中の反応槽2の具体構成例を示す断面図であり、同図において、32は嫌気槽3内に配置された攪拌手段、33は嫌気槽3から流出する混合液を無酸素槽4に導入する導入手段、41は無酸素槽4内に配置された攪拌手段、42は無酸素槽4から流出する混合液を好気槽5に導入するための導入手段、51は好気槽5内に配置された曝気手段、52は好気槽5内に充填されて微生物を担持する微生物担体である。
【0020】
この微生物担体52は、例えばポリビニルアルコールなどに代表されるように微生物を包括して固定化する担体材料、もしくは浮遊性を有する多孔性の素材など、微生物の担持機能を有するものを用いるが、その形状は特定されるものでなく、また、担体材質は無機性物質および有機性物質のいずれも適用可能である。かかる微生物担体52を用いて好気槽5で活性汚泥処理を行うが、この好気槽5の混合液は循環手段6によって微生物担体52と共に無酸素槽4に循環されるようになっている。循環手段6は主にエアリフトポンプや水中ポンプなどの移送装置と移送管路とからなるものである。
【0021】
なお、好気槽5と無酸素槽4とでは微生物担体52を個別的に利用するようにしてもよく、また、無酸素槽4では微生物担体52を利用しなくてもよく、そのいずれの場合も、好気槽5の微生物担体52が無酸素槽4に循環しないようにして、好気槽5の混合液のみを無酸素槽4に循環させるようにすればよい。
【0022】
次に動作について説明する。
被処理水は、まず濾過装置10に流入する。即ち、被処理水は、図2中の原水ポンプ27bによって固液分離槽21の槽内下部に供給されることにより、その固液分離槽21内に流入した被処理水は、上向流となって濾材充填ゾーン24を上昇通過し、その通過時に被処理水中の懸濁物質が浮遊性濾材29で効率よく捕捉される。そして、前記濾材充填ゾーン24を上昇通過した上澄ゾーン26の濾過水は、越流トラフ31から濾過水管路11を介して無酸素槽4に流入する。この無酸素槽4には、後段の好気槽5からNOX −N(酸化態窒素)を含んだ混合液が循環手段6を介して循環していることにより、その無酸素槽4では、攪拌手段41による無酸素攪拌状態下で、前記循環混合液中のNOX −Nが微生物の作用によって脱窒される。
【0023】
ここで、無酸素槽4の運転のケースでは、当該無酸素槽4内に混合液中の酸化還元電位ORPを測定するORPセンサーを設置し、この値(ORPの範囲は概ね±0〜−300mV)に基づいてORP計、コンピュータによって循環水量を制御し、槽内を無酸素状態に保持させることが望ましい。循環水量は流入する廃水量の2倍量を基本としたが、ORPが高くなる(好気状態)と、循環水量を減少させ、ORPが低くなる(嫌気状態)と、循環水量を増加させる。概ね循環水量は流入する廃水量の1.5〜4.0倍が目安となる。また、循環水量ではなく好気槽5の曝気風量をコントロールして、無酸素状態を保持させてもよい。なお、嫌気槽3及び無酸素槽4に設けられた攪拌手段32,41は、主に攪拌羽根を備えた機械攪拌装置を用いるが、酸素供給を抑えて水流を発生させるものであればよい。
【0024】
上述のように無酸素槽4で脱窒処理された混合液は好気槽5に導入される。ここでの移流方法もオーバーフローを基本とするが、微生物担体52を循環させる場合には、当該微生物担体52が移流できる方式であれば、これにとらわれるものではない。
好気槽5に導入された混合液は、無酸素槽4からの残存BODの酸化分解、硝化細菌による窒素成分の硝化及びリン蓄積菌によるリンの過剰摂取を行わせるために、曝気手段51で曝気されて好気性処理される。
【0025】
この好気槽5の運転も、ここでは当該槽内にDOセンサー(溶存酸素濃度計)を設置し、この測定値(DO値の範囲は概ね0.5〜5mg/L)に基づいてDO計、コンピュータによって曝気ブロアの回転数を自動的に制御し、送風量を調整する。つまり、DO濃度が低い場合は送風量を増加させ、高い場合は送風量を減少させる。また、この指標はORP及びpHでも行うことができる。ORPの場合は概ね+50〜+300mVの範囲で、DOと同様に低い場合は送風量を増加させ、高い場合は送風量を減少させる。pHの場合は概ね6.4〜7.2の範囲で、DO、ORPとは逆に低い場合は送風量を減少させ、高い場合は送風量を増加させることが望ましい。このような操作を行うことにより、好気槽5内で安定した効率的な残存BODの酸化分解、窒素の硝化及びリンの過剰摂取除去が行えるわけである。なお、送風量は曝気ブロアの回転数と限らず、電動弁の操作やブロアの運転台数で調整してもよい。
【0026】
本発明では、反応槽2の容積の縮小化を図る目的で、無酸素槽4及び好気槽5での微生物保持量を高めるため上述のように微生物担体52を利用している。ここで、前記微生物担体52の利用により、無酸素槽4と好気槽5の両槽における浮遊汚泥MLSS濃度を1500〜2000mg/Lに保持した場合、微生物担体52に付着した汚泥(担体への汚泥付着量7000〜15000mg/L)を加味した全体(実質)のMLSS濃度は4000〜5000mg/Lに保持できる。また、前記微生物担体52がスポンジ担体の場合における無酸素槽4及び好気槽5での全(実質)MLSS濃度の計算例を以下に示す。

Figure 0003737288
【0027】
このように、硝化・脱窒にかかわる無酸素槽4及び好気槽5の全MLSS濃度は2倍以上保持できるため、汚泥滞留時間(SRT)を十分に確保でき、硝化菌のような増殖速度の遅い微生物を多く保持することが可能となった。さらに、脱窒工程においても汚泥濃度が高いことから、流入水や好気槽5内の混合液が流入しても無酸素槽4では短時間で無酸素状態になり、脱窒処理の効率が図れる。
【0028】
好気槽5から流出する混合液(処理水)は、微生物担体52が分離された後、固液分離装置7で汚泥と上澄水に分離される。そのため、固液分離槽7に流入する好気槽5からの混合液のMLSSは1500〜2000mg/Lであり、従来の標準活性汚泥施設での沈殿池で十分に固液分離できる。そして、前記固液分離槽装置7で固液分離された上澄水は消毒槽で滅菌処理されて系外に放流される。なお、前記固液分離装置7としては、重さを利用した沈殿機構のほかに膜を利用した分離機構を採用してもよい。
【0029】
また、前記固液分離装置7で分離した汚泥の一部は、水中ポンプやエアリフトポンプなどにより返送汚泥管路8を介して嫌気槽3に返送すると共に、余剰汚泥は引き抜かれて汚泥処理・処分される。
【0030】
嫌気槽3へは上記返送汚泥以外に、濾過装置10の汚泥を導入して調質する汚泥調質槽13からの調質分離液が適宜導入される。返送汚泥と調質分離液は嫌気槽3内で攪拌手段32により攪拌混合された後、順次導入手段33を介して無酸素槽4に導入される。導入手段33としては、水中ポンプやエアリフトポンプなどを用いてもよいし、嫌気槽3と無酸素槽4が隣接する場合には、オーバーフローさせたり隔壁の開口を利用して移流させてもよい。ただし、いずれの方式においても嫌気槽3を十分に嫌気状態に保つため、無酸素槽4の混合液が嫌気槽3に逆流することは避けなければならない。
【0031】
以上のような排水処理プロセスにおいて、前記濾過装置10の固液分離槽21では、図2中の原水ポンプ27bの運転を停止し、濾材洗浄手段30を稼動させて洗浄空気管30aから吹き出す洗浄空気で濾材29を洗浄することにより、当該濾材29で捕捉された懸濁物質が濾材29から分離し、排泥弁28を開けることにより、濾過装置10内に残存する懸濁液と共に当該懸濁物質を含む汚泥(汚泥混合液)が汚泥管路12から汚泥調質槽13に導入され、この汚泥調質槽13では、導入汚泥を嫌気状態下で調質する。この調質には、処理汚泥減量化のための濃縮や汚泥成分(有機物)の低分子化を目的とした酸発酵が含まれる。その調質により、有機物を低分子化させる有機酸発酵が行われ、その結果、VFA(主に炭素数2〜5の揮発性有機酸)が分離して水中に溶出する。そして、このVFAを含む調質分離水を嫌気槽3に導入し、嫌気槽3の汚泥中に含まれるリン蓄積菌のリン放出に利用される。
【0032】
即ち、濾過装置10の固液分離槽21ではSS除去率が高いので、その固液分離槽21から汚泥を導入する汚泥調質槽13では多量の溶解性有機物及び有機酸が生成され、その溶解性有機物や有機酸を含む酸発酵液が嫌気槽3に送られることにより、嫌気槽3では、前記溶解性有機物や有機酸を利用してリン蓄積菌が多量のリンを放出する。
【0033】
ここで、リン除去の前反応であるリン放出反応は、添加される有機酸の影響を受けるので、リン放出を十分に行わせるには如何に多量の溶解性有機物、とりわけ有機酸を添加できるかが重要なポイントである。また、本発明では、被処理水(汚水)を上述のように濾過装置10に流入させて嫌気槽3には投入しないので、MLSS濃度を高く保持でき、また流入水質の変動による影響を受けないので安定した嫌気状態が保たれ、このためリン放出が容易となるのも本発明の特徴である。加えて、本発明は、被処理水を濾過装置10で十分に固液分離するため、通常の最初沈殿池に比べSS除去率が高く、その分、汚泥量が増えることになる。また、濾過装置10の洗浄や汚泥引抜は頻繁に行われないため、濾過装置10内の汚泥は滞留している間に嫌気状態となる。これにより、汚泥調質槽13では多量で嫌気状態にある濾過装置10の汚泥を導入するため、有機酸発酵が促進されやすく、VFAも十分に確保できるという特徴がある。
【0034】
次に、被処理水を従来の最初沈殿池に流入させた場合と本発明の濾過装置10(高速固液分離装置21)に流入させた場合の実験結果による性能比較を以下に示す。
Figure 0003737288
【0035】
以上説明した実施の形態1によれば、被処理水を先ず濾過装置(高速固液分離装置)10に流入させ、流入した被処理水を上向流で濾過するので、被処理水の固液分離を高速で効率よく行うことができ、排水処理システム全体のコンパクト化が実現できるという効果がある。
また、前記濾過装置10ではSS除去率が高くなるので、その濾過装置10から汚泥を導入する汚泥調質槽13では多量の有機酸などの溶解性有機物を生成させることができるという効果がある。
さらには、前記汚泥調質槽13から嫌気槽3に多量の有機酸などの溶解性有機物を流入させ、且つ、前記嫌気槽3には被処理水(汚水)を流入させないので、嫌気槽3を高MLSS濃度に保持でき、また流入水質の変動による影響を受けないので安定して嫌気状態が保たれ、このため、嫌気槽3でのリン放出が安定して行われ、リン除去効率が大幅に向上するという効果がある。
【0036】
実施の形態2.
図4は本発明の実施の形態2による排水処理システムを示すフローシートであり、図1および図3と同一または相当部分については同一符号を付して重複説明を省略する。図4において、15aは調質汚泥管路15から分岐して汚泥調質槽13からの調質汚泥の一部を嫌気槽3に導入する調質汚泥導入管路である。即ち、上述した実施の形態1では、汚泥調質槽13の調質分離液のみを嫌気槽3に導入するようにしたが、この実施の形態2では、前記調質分離液と共に調質汚泥の一部をも嫌気槽3に導入するようにしたものである。
【0037】
この実施の形態2によれば、嫌気槽3に汚泥調質槽13から調質汚泥を導入することによって、その調質汚泥は低分子化した有機物質を豊富に含有しているため、嫌気槽3でのリン蓄積菌のリン放出を安定して効率よく行わせることができるという効果がある。
【0038】
【発明の効果】
以上のように、本発明によれば、嫌気槽・無酸素槽・好気槽を備えた排水処理システムにおいて、被処理水を嫌気槽には流入させずに濾過装置に流入させるので、その濾過装置では被処理水の滞留時間を従来の最初沈殿池の場合に比して大幅に短縮でき、このため、システム全体のコンパクト化が実現できるという効果がある。また、前記濾過装置ではSS除去率が高くなり、その汚泥を汚泥調質槽に導入するので、汚泥調質槽では多量の溶解性有機物や有機酸が生成されるという効果がある。さらには、前記汚泥調質槽から前記多量の溶解性有機物や有機酸を嫌気槽に流入させ、当該嫌気槽には上述のように被処理水を流入させないので、嫌気槽を高MLSS濃度に保持でき、また流入水質の変動による影響を受けないので安定して嫌気状態が保たれ、このため、リン放出を安定して行わせることができ、その結果、リン除去効率を大幅に向上させることができるという効果がある。
【0039】
本発明によれば、嫌気槽に汚泥調質槽から調質汚泥の一部を導入することによって、その調質汚泥は低分子化した有機物質を豊富に含有しているため、嫌気槽でのリン蓄積菌のリン放出を一層効率的に行わせることができるという効果がある。
【0040】
本発明によれば、浮遊性濾材が充填され、且つ、被処理水を上向流で濾過する高速固液分離装置から成る濾過装置としたことにより、被処理水中に含まれる懸濁物質を前記濾材で効率よく捕捉除去することができ、高速固液分離機能を一層高めることができるという効果がある。また、前記濾材は洗浄時において自由に流動するので、大きな濾材洗浄効果を得ることができる。
【0041】
本発明によれば、微生物を担持する微生物担体を用いた活性汚泥処理槽によって好気槽が構成されていることにより、混合液(MLSS)濃度を通常より低くしても十分に好気性生物学的水処理を行うことができ、後段の固液分離装置への負荷を軽減でき、また好気槽の混合液を無酸素槽へ循環させることにより、効率よく窒素除去することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態1による排水処理システムを示すフローシートである。
【図2】図1中の濾過装置の詳細構成を示す断面図である。
【図3】図1中の反応槽の具体構成例を示す断面図である。
【図4】本発明の実施の形態2による排水処理システムを示すフローシートである。
【図5】従来の排水処理システムを示すフローシートである。
【符号の説明】
3 嫌気槽
4 無酸素槽
5 好気槽
6 循環手段
7 固液分離装置(沈殿池)
10 濾過装置(高速固液分離装置)
13 汚泥調質槽
29 浮遊性濾材
30 濾材洗浄手段
32,41 攪拌手段
33,42 導入手段
51 曝気手段
52 微生物担体(担体)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment system for efficiently removing not only organic substances contained in treated water such as sewage but also nitrogen and phosphorus simultaneously.
[0002]
[Prior art]
FIG. 5 is a flow sheet diagram showing a conventional wastewater treatment system, in which 1 is a first sedimentation basin in which solids (suspended substances) in the treated water flowing in are gravity settled and separated into solid and liquid. This is a floating sludge type reaction tank for introducing a separation liquid from the first sedimentation basin 1 and simultaneously performing denitrification and dephosphorization using BOD in the separation liquid. An anaerobic tank 4 and an aerobic tank 5 are provided. In the reaction tank 2, agitation means (not shown) is arranged in each of the anaerobic tank 3 and the anoxic tank 4, and an aeration means (not shown) is arranged in the aerobic tank 5. Has been.
[0003]
6 is a circulating means for circulating the mixed solution in the aerobic tank 5 to the anaerobic tank 4, and 7 is a final precipitation in which the mixed liquid flowing out from the aerobic tank 5 is introduced and solid-liquid separated into treated water and sludge. A pond 8 is a return sludge conduit for returning a part of the sludge separated from the solid and liquid in the final sedimentation basin 7 to the anaerobic tank 3, and the final sedimentation basin 7 contains a part of the sludge separated from the solid and liquid. Excess sludge extraction means (not shown) for extracting as excess sludge is provided.
[0004]
Next, the operation will be described.
First, when the water to be treated flows into the first sedimentation basin 1, the solids in the water to be treated are gravity settled and separated into solid and liquid in the first sedimentation basin 1, and the separated liquid is introduced into the anaerobic tank 3. A part of the sludge is returned to the anaerobic tank 3 through the return sludge pipe line 8 from the final sedimentation basin 7 so that the return sludge and the separated liquid come into contact with each other. At this time, the phosphorus accumulating bacteria contained in the return sludge take in soluble BOD (mainly volatile organic acid) in the water to be treated and simultaneously release the phosphorus accumulated in the cells. Thereafter, the effluent water from the anaerobic tank 3 is introduced into the anaerobic tank 4, where a mixed liquid containing oxidized nitrogen oxidized in the aerobic tank 5 at the subsequent stage is circulated and brought into contact in an oxygen-free state. At this time, denitrifying bacteria contained in the sludge perform denitrification using BOD in the water to be treated, and oxidized nitrogen is removed as nitrogen gas. Furthermore, the effluent from the anaerobic tank 4 is introduced into the aerobic tank 5, and the BOD in the water to be treated is oxidatively decomposed under aerobic conditions, and ammonia nitrogen is nitrified by nitrifying bacteria contained in the sludge, Phosphorus is excessively retaken by the phosphorus accumulating bacteria and removed from the liquid phase.
[0005]
The mixed liquid flowing out from the aerobic tank 5 is introduced into the final sedimentation basin 7 and separated into solid and liquid into treated water and sludge, the treated water is discharged after disinfection, and the sludge is returned to the anaerobic tank via the return sludge pipe line 8. Part 3 is returned. A part of the sludge separated into solid and liquid in the final sedimentation basin 7 is treated as surplus sludge in the sludge treatment process. At this time, the excess sludge may be first transferred to the settling basin 1 and processed in the sludge treatment step together with the initial settling sludge. Such a wastewater treatment method is called a so-called anaerobic / anoxic / aerobic method and has been put into practical use in recent years regardless of whether it is in Japan or abroad.
[0006]
[Problems to be solved by the invention]
A conventional wastewater treatment system using an anaerobic / anoxic / aerobic method is configured as described above, and nitrogen removal can be achieved relatively stably and with high efficiency. However, with regard to phosphorus removal, there has been a problem that the phosphorus release of the phosphorus accumulating bacteria in the anaerobic tank 3 is unstable and sufficient phosphorus removal in the aerobic tank 5 cannot be obtained. The cause of this is the inflow of rainwater that has low organic matter (BOD) concentration in the influent wastewater, large fluctuations in the wastewater quality, oxidation in the aerobic tank proceeds, and oxidized nitrogen is brought into the anaerobic tank through the returned sludge. As a result, the waste water becomes diluted. Furthermore, when the anaerobic / anoxic / aerobic method is used, the volume of the reaction tank 2 is several times that of the conventional standard activated sludge method, and the construction cost of the treatment facility is increased and a larger space is required. There was a problem of becoming. In the conventional waste water treatment system, first, solids in the treated water are naturally separated by gravity sedimentation in the first sedimentation basin 1, so that the quality of the outflow water is not stable and the treated water in the first sedimentation basin 1 is not stable. The residence time has to be made longer than necessary, which causes a problem that the entire system is enlarged and the processing efficiency is poor. In addition, there has been a problem of how efficiently BOD (organic carbon source) effective for phosphorus release of phosphorus accumulating bacteria in an anaerobic tank can be secured and supplied.
[0007]
The present invention has been made to solve the above-described problems. In particular, the present invention can be easily modified without increasing the number of existing standard activated sludge treatment facilities, so that not only BOD but also nitrogen and phosphorus can be combined. The purpose is to provide a wastewater treatment system that can be removed simultaneously and efficiently.
[0008]
[Means for Solving the Problems]
The wastewater treatment system according to the present invention comprises a filter medium cleaning means, a filtration device for solid-liquid separation of suspended substances in the inflowing water, and an agitation means, and an oxygen-free tank for introducing filtrate water from the filtration device And an aerobic tank having aeration means for introducing the mixed liquid flowing out from the anaerobic tank to perform activated sludge treatment, and a circulation for circulating a part of the mixed liquid in the aerobic tank to the anoxic tank Means, a solid-liquid separation device that introduces the mixed liquid flowing out from the aerobic tank and separates it into treated water and sludge, and sludge tempering that introduces and refines the sludge discharged from the filtration device An anaerobic tank comprising a tank and an agitation means, and introducing a part of the separated liquid discharged from the sludge tempering tank and the separated sludge separated by the solid-liquid separator, and the effluent from the anaerobic tank And introducing means for introducing the oxygen-free tank.
[0009]
The anaerobic tank of the waste water treatment system according to the present invention is configured to introduce a part of the conditioned sludge from the sludge conditioned tank.
[0010]
The filtration device of the wastewater treatment system according to the present invention is composed of a high-speed solid-liquid separation device that is filled with a floating filter medium and that filters the water to be treated in an upward flow.
[0011]
The aerobic tank of the wastewater treatment system according to the present invention comprises an activated sludge treatment tank using a carrier supporting microorganisms.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a flow sheet showing a wastewater treatment system according to Embodiment 1 of the present invention. The same or corresponding parts as those in FIG. In FIG. 1, reference numeral 10 denotes a filtration device for receiving water to be treated and solid-liquid separation of suspended substances in the water to be treated, and 11 denotes filtered water after solid-liquid separation from the filtration device 10 to the anoxic tank 4. A filtration water pipe to be introduced, 12 is a sludge pipe for introducing sludge (sludge mixed liquid) generated by solid-liquid separation from the filtration device 10 into the sludge tempering tank 13, and the sludge tempering tank 13 is It consists of a sludge acid fermentation tank for acid fermentation of sludge introduced from the filtration device 10 or a sludge concentration tank for concentrating the sludge. In short, the sludge introduced from the filtration device 10 is anaerobically fermented or concentrated. It is tempered under conditions. 14 is a separation liquid pipe for introducing the separated liquid after sludge conditioning from the sludge refining tank 13 to the anaerobic tank 3, and 15 is a reconditioned sludge pipe for guiding the reconditioned sludge from the sludge refining tank 13 to the sludge treatment process. Road.
[0013]
2 is a cross-sectional view showing a detailed configuration of the filtration device 10 in FIG. 1. In FIG. 2, reference numeral 21 denotes a solid-liquid separation tank serving as a main body of the filtration device 10, and the inside of the solid-liquid separation tank 21 is covered. A sedimentation zone 22 in the lower part of the tank that also serves as an inflow zone for the treated water, a filter medium filling zone 24 partitioned by a grating 23 for supporting the filter medium at the top of the precipitation zone 22, and a filter medium presser at the top of the filter medium charge zone 24 A supernatant zone 26 in the upper part of the tank partitioned by the grating 25 for use is formed.
[0014]
Reference numeral 27 denotes raw water supply means for supplying water to be treated to the sedimentation zone 22, and this raw water supply means 27 comprises a raw water inflow pipe 27a, a raw water pump 27b, and a raw water valve 27c. In addition, 27d is a baffle plate arranged below the downward opening end of the raw water inflow pipe 27a in the sedimentation zone 22.
[0015]
28 is a sludge valve provided in the sludge conduit 12 for introducing the sludge precipitated at the bottom of the sedimentation zone 22 into the sludge refining tank 13 in FIG. 1, and 29 is filled in the filter medium filling zone 24. The filter medium 29 is a floatable filter medium having a specific gravity of 1 or less, such as plastic. Further, the filter medium 29 is either a plastic floating filter medium having a simple through-cylindrical hollow shape, or one in which the entire inner and outer surfaces of the floating filter medium are formed in a screw shape or an uneven shape to increase the front and back area. There may be.
[0016]
Reference numeral 30 denotes a filter medium cleaning means for cleaning the floating filter medium 29. The filter medium cleaning means 30 includes a cleaning air pipe 30a disposed in the vicinity of the lower part of the grating 23 for supporting the filter medium in the precipitation zone 22, and this cleaning medium. A cleaning valve 30b provided in the air pipe 30a and a cleaning blower 30c connected to the cleaning air pipe 30a are provided, and the cleaning air pipe 30a is operated by the operation of the cleaning blower 30c when the cleaning valve 30b is opened. However, the cleaning air is blown out toward the filter medium filling zone 24.
[0017]
Reference numeral 31 denotes an overflow trough which is arranged in the upper part (supernatant zone 26) of the solid-liquid separation tank 21 and allows filtrate to flow in. The overflow trough 31 is not shown in FIG. The oxygen tank 2 is connected.
[0018]
In the filtration device 10 configured as described above, the water to be treated is supplied to the lower part of the solid-liquid separation tank 21 by the raw water supply means 27, so that the water to be treated is contained in the solid-liquid separation tank 21. As a result, the flow passes upward through the filter medium filling zone 24, and suspended substances in the water to be treated are efficiently captured by the floating filter medium 29 during the passage. Therefore, the filtration device 10 is a high-speed solid-liquid separation device that filters the water to be treated in an upward flow.
[0019]
FIG. 3 is a cross-sectional view showing a specific configuration example of the reaction tank 2 in FIG. 1. In FIG. 3, 32 is a stirring means arranged in the anaerobic tank 3, and 33 is a mixture liquid flowing out of the anaerobic tank 3. Introducing means for introducing into the oxygen tank 4, 41 is an agitating means arranged in the anaerobic tank 4, 42 is introducing means for introducing the mixed solution flowing out of the anaerobic tank 4 into the aerobic tank 5, and 51 is a favorable one. Aeration means 52 and 52 arranged in the air tank 5 are microbial carriers that are filled in the aerobic tank 5 and carry microorganisms.
[0020]
As this microbial carrier 52, for example, a carrier material that comprehensively immobilizes microorganisms, such as polyvinyl alcohol, or a porous material having a floating property such as a porous material is used. The shape is not specified, and the carrier material can be either an inorganic substance or an organic substance. The activated sludge treatment is performed in the aerobic tank 5 using the microbial carrier 52, and the mixed solution of the aerobic tank 5 is circulated to the anoxic tank 4 together with the microbial carrier 52 by the circulation means 6. The circulation means 6 mainly comprises a transfer device such as an air lift pump or a submersible pump and a transfer pipe line.
[0021]
The aerobic tank 5 and the anaerobic tank 4 may use the microbial carrier 52 individually, and the anaerobic tank 4 may not use the microbial carrier 52. However, the microbial carrier 52 in the aerobic tank 5 may not be circulated to the anaerobic tank 4, and only the mixed solution in the aerobic tank 5 may be circulated to the anaerobic tank 4.
[0022]
Next, the operation will be described.
The treated water first flows into the filtration device 10. That is, the water to be treated is supplied to the lower part of the solid-liquid separation tank 21 by the raw water pump 27b in FIG. Then, it passes through the filter medium filling zone 24, and suspended substances in the water to be treated are efficiently trapped by the floating filter medium 29 during the passage. The filtered water in the supernatant zone 26 that has passed through the filter medium filling zone 24 flows from the overflow trough 31 into the anoxic tank 4 through the filtered water pipe 11. In the anaerobic tank 4, the mixed liquid containing NO x -N (oxidized nitrogen) is circulated through the circulation means 6 from the aerobic tank 5 at the subsequent stage. under oxygen-free stirring condition by the stirring means 41, NO X -N of the circulating mixed liquid is denitrification by the action of microorganisms.
[0023]
Here, in the case of the operation of the oxygen-free tank 4, an ORP sensor for measuring the oxidation-reduction potential ORP in the mixed solution is installed in the oxygen-free tank 4, and this value (the range of the ORP is approximately ± 0 to −300 mV). ) Based on the ORP meter and computer, it is desirable to keep the inside of the tank in an oxygen-free state. The amount of circulating water is basically twice the amount of wastewater that flows in, but when the ORP becomes high (aerobic state), the amount of circulating water decreases, and when the ORP becomes low (anaerobic state), the amount of circulating water increases. In general, the amount of circulating water is 1.5 to 4.0 times the amount of inflowing wastewater. Further, not the circulating water amount but the aeration air amount in the aerobic tank 5 may be controlled to maintain the oxygen-free state. The agitating means 32 and 41 provided in the anaerobic tank 3 and the anaerobic tank 4 mainly use a mechanical stirring device provided with stirring blades. However, any means may be used as long as the oxygen supply is suppressed and a water flow is generated.
[0024]
As described above, the mixed liquid denitrified in the oxygen-free tank 4 is introduced into the aerobic tank 5. The advection method here is also based on overflow, but when the microbial carrier 52 is circulated, the method is not limited to this as long as the microbial carrier 52 can be circulated.
The mixed solution introduced into the aerobic tank 5 is aerated by the aeration means 51 in order to cause oxidative decomposition of residual BOD from the anaerobic tank 4, nitrification of nitrogen components by nitrifying bacteria, and excessive intake of phosphorus by phosphorus accumulating bacteria. Aerated and aerobic processed.
[0025]
In the operation of the aerobic tank 5, a DO sensor (dissolved oxygen concentration meter) is installed in the tank here, and the DO meter is based on the measured value (the range of the DO value is approximately 0.5 to 5 mg / L). Then, the rotational speed of the aeration blower is automatically controlled by a computer to adjust the air flow rate. That is, when the DO concentration is low, the blowing amount is increased, and when the DO concentration is high, the blowing amount is decreased. This index can also be performed with ORP and pH. In the case of ORP, in the range of approximately +50 to +300 mV, the air flow rate is increased when it is low, and the air flow rate is decreased when it is high, similarly to DO. In the case of pH, it is generally in the range of 6.4 to 7.2, and it is desirable to decrease the blowing rate when it is low, as opposed to DO and ORP, and increase the blowing rate when it is high. By performing such an operation, stable and efficient oxidative decomposition of residual BOD, nitrification of nitrogen, and excessive intake removal of phosphorus can be performed in the aerobic tank 5. Note that the air flow rate is not limited to the number of rotations of the aeration blower, but may be adjusted by operating the motorized valve or the number of operating blowers.
[0026]
In the present invention, in order to reduce the volume of the reaction tank 2, the microbial carrier 52 is used as described above in order to increase the amount of microorganisms retained in the oxygen-free tank 4 and the aerobic tank 5. Here, when the suspended sludge MLSS concentration in both the anaerobic tank 4 and the aerobic tank 5 is maintained at 1500 to 2000 mg / L by using the microbial carrier 52, the sludge adhering to the microbial carrier 52 (to the carrier) The total (substantial) MLSS concentration taking into account the sludge adhesion amount of 7000 to 15000 mg / L can be maintained at 4000 to 5000 mg / L. An example of calculating the total (substantially) MLSS concentration in the anaerobic tank 4 and the aerobic tank 5 when the microbial carrier 52 is a sponge carrier is shown below.
Figure 0003737288
[0027]
As described above, since the total MLSS concentration in the anaerobic tank 4 and the aerobic tank 5 involved in nitrification / denitrification can be maintained more than twice, the sludge retention time (SRT) can be sufficiently secured, and the growth rate like nitrifying bacteria. It was possible to retain a large number of slow microorganisms. Furthermore, since the sludge concentration is high also in the denitrification process, even if the influent water or the mixed liquid in the aerobic tank 5 flows in, the anaerobic tank 4 becomes anoxic in a short time, and the efficiency of the denitrification process is improved. I can plan.
[0028]
The mixed liquid (treated water) flowing out from the aerobic tank 5 is separated into sludge and supernatant water by the solid-liquid separator 7 after the microorganism carrier 52 is separated. Therefore, MLSS of the liquid mixture from the aerobic tank 5 which flows into the solid-liquid separation tank 7 is 1500-2000 mg / L, and it can fully solid-liquid separate in the sedimentation basin in the conventional standard activated sludge facility. The supernatant water separated from the solid-liquid separation tank 7 is sterilized in the disinfection tank and discharged outside the system. The solid-liquid separation device 7 may employ a separation mechanism using a membrane in addition to a precipitation mechanism using weight.
[0029]
A part of the sludge separated by the solid-liquid separator 7 is returned to the anaerobic tank 3 via a return sludge pipe line 8 by an underwater pump, an air lift pump, etc., and surplus sludge is pulled out to treat and dispose of sludge. Is done.
[0030]
In addition to the returning sludge, the anaerobic tank 3 is appropriately introduced with a tempered separation liquid from the sludge tempering tank 13 that is tempered by introducing the sludge of the filtration device 10. The return sludge and the tempered separation liquid are stirred and mixed in the anaerobic tank 3 by the stirring means 32 and then sequentially introduced into the anoxic tank 4 through the introducing means 33. As the introducing means 33, a submersible pump, an air lift pump, or the like may be used. When the anaerobic tank 3 and the oxygen-free tank 4 are adjacent to each other, overflow may be performed or advection may be performed using an opening of the partition wall. However, in any system, in order to keep the anaerobic tank 3 sufficiently in an anaerobic state, it is necessary to avoid the mixed liquid in the anaerobic tank 4 from flowing back into the anaerobic tank 3.
[0031]
In the wastewater treatment process as described above, in the solid-liquid separation tank 21 of the filtration device 10, the operation of the raw water pump 27b in FIG. 2 is stopped, the filter medium cleaning means 30 is operated, and the cleaning air blown out from the cleaning air pipe 30a By washing the filter medium 29, the suspended substance trapped by the filter medium 29 is separated from the filter medium 29, and by opening the mud valve 28, the suspended substance together with the suspension remaining in the filter device 10 is collected. Sludge (sludge mixture) is introduced into the sludge tempering tank 13 from the sludge conduit 12, and in this sludge tempering tank 13, the introduced sludge is conditioned under anaerobic conditions. This tempering includes acid fermentation for the purpose of reducing the sludge components (organic matter) and concentrating to reduce the treated sludge. Due to the tempering, organic acid fermentation is performed to lower the molecular weight of the organic substance. As a result, VFA (mainly volatile organic acid having 2 to 5 carbon atoms) is separated and eluted into water. And the tempered separation water containing this VFA is introduce | transduced into the anaerobic tank 3, and is utilized for the phosphorus discharge | release of the phosphorus accumulating bacteria contained in the sludge of the anaerobic tank 3.
[0032]
That is, since the SS removal rate is high in the solid-liquid separation tank 21 of the filtration device 10, a large amount of soluble organic substances and organic acids are generated and dissolved in the sludge refining tank 13 for introducing sludge from the solid-liquid separation tank 21. By sending an acid fermentation broth containing an oxidative organic substance and an organic acid to the anaerobic tank 3, in the anaerobic tank 3, the phosphorus accumulating bacteria release a large amount of phosphorus using the soluble organic substance and the organic acid.
[0033]
Here, since the phosphorus release reaction, which is a reaction prior to phosphorus removal, is affected by the added organic acid, how much a soluble organic substance, particularly an organic acid, can be added to sufficiently release phosphorus. Is an important point. In the present invention, since the treated water (sewage) flows into the filtration device 10 as described above and does not enter the anaerobic tank 3, the MLSS concentration can be kept high and is not affected by fluctuations in the quality of the influent water. Therefore, it is a feature of the present invention that a stable anaerobic state is maintained, and phosphorous release is thus facilitated. In addition, according to the present invention, since the water to be treated is sufficiently solid-liquid separated by the filtration device 10, the SS removal rate is higher than that of a normal first settling basin, and the amount of sludge increases accordingly. In addition, since the filtration device 10 is not frequently cleaned and the sludge is drawn, the sludge in the filtration device 10 is in an anaerobic state while it remains. Thereby, in the sludge refining tank 13, since the sludge of the filtration apparatus 10 in a large amount of anaerobic state is introduced, organic acid fermentation is easily promoted, and VFA can be sufficiently secured.
[0034]
Next, the performance comparison by the experimental result when the treated water is made to flow into the conventional first sedimentation basin and when it is made to flow into the filtration device 10 (high-speed solid-liquid separation device 21) of the present invention is shown below.
Figure 0003737288
[0035]
According to the first embodiment described above, the water to be treated is first flowed into the filtration device (high-speed solid-liquid separation device) 10, and the inflowing water to be treated is filtered in an upward flow. Separation can be performed efficiently at high speed, and the entire waste water treatment system can be made compact.
Further, since the SS removal rate is high in the filtration device 10, the sludge refining tank 13 into which sludge is introduced from the filtration device 10 has an effect that a large amount of soluble organic matter such as organic acid can be generated.
Furthermore, since a large amount of soluble organic matter such as organic acid is caused to flow from the sludge refining tank 13 to the anaerobic tank 3 and water to be treated (sewage) does not flow into the anaerobic tank 3, the anaerobic tank 3 is provided. Since it can be maintained at a high MLSS concentration and is not affected by fluctuations in the influent water quality, the anaerobic state is stably maintained. For this reason, the phosphorus release in the anaerobic tank 3 is stably performed, and the phosphorus removal efficiency is greatly increased. There is an effect of improving.
[0036]
Embodiment 2. FIG.
FIG. 4 is a flow sheet showing a waste water treatment system according to Embodiment 2 of the present invention. The same or corresponding parts as those in FIGS. In FIG. 4, reference numeral 15 a denotes a tempered sludge introduction pipe that branches from the tempered sludge pipe 15 and introduces part of the tempered sludge from the sludge tempered tank 13 into the anaerobic tank 3. That is, in the first embodiment described above, only the tempered separation liquid of the sludge tempering tank 13 is introduced into the anaerobic tank 3, but in this second embodiment, the tempered sludge is mixed with the tempered separation liquid. A part is also introduced into the anaerobic tank 3.
[0037]
According to the second embodiment, by introducing the conditioned sludge into the anaerobic tank 3 from the sludge conditioned tank 13, the conditioned sludge contains abundant low molecular weight organic substances. 3 has an effect that the phosphorus release of the phosphorus accumulating bacteria can be stably and efficiently performed.
[0038]
【The invention's effect】
As described above, according to the present invention, in the wastewater treatment system provided with the anaerobic tank, the anaerobic tank, and the aerobic tank, the water to be treated flows into the filtration device without flowing into the anaerobic tank. In the apparatus, the residence time of the water to be treated can be greatly shortened as compared with the case of the conventional first settling basin, and therefore, there is an effect that the entire system can be made compact. Moreover, since the SS removal rate is increased in the filtration device and the sludge is introduced into the sludge refining tank, there is an effect that a large amount of soluble organic substances and organic acids are generated in the sludge refining tank. Furthermore, since the large amount of soluble organic substances and organic acids are allowed to flow into the anaerobic tank from the sludge refining tank, and the water to be treated does not flow into the anaerobic tank as described above, the anaerobic tank is maintained at a high MLSS concentration. In addition, because it is not affected by fluctuations in the quality of the influent water, the anaerobic state can be stably maintained. As a result, phosphorus release can be stably performed, and as a result, the phosphorus removal efficiency can be greatly improved. There is an effect that can be done.
[0039]
According to the present invention, by introducing a part of the conditioned sludge from the sludge tempering tank into the anaerobic tank, the tempered sludge contains abundant low molecular weight organic substances. There is an effect that phosphorus can be released more efficiently by the phosphorus accumulating bacteria.
[0040]
According to the present invention, the suspended substance contained in the water to be treated is obtained by the filtration device comprising the high-speed solid-liquid separator that is filled with the floating filter medium and filters the water to be treated in an upward flow. The filter medium can be efficiently captured and removed, and the high-speed solid-liquid separation function can be further enhanced. Moreover, since the said filter medium flows freely at the time of washing | cleaning, the big filter medium washing | cleaning effect can be acquired.
[0041]
According to the present invention, since the aerobic tank is constituted by the activated sludge treatment tank using the microorganism carrier carrying microorganisms, the aerobic biology can be sufficiently achieved even when the concentration of the mixed solution (MLSS) is lower than usual. Water treatment can be performed, the load on the subsequent solid-liquid separation device can be reduced, and the mixed liquid in the aerobic tank can be circulated to the anoxic tank to effectively remove nitrogen. is there.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a wastewater treatment system according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing a detailed configuration of the filtration device in FIG.
FIG. 3 is a cross-sectional view showing a specific configuration example of the reaction tank in FIG.
FIG. 4 is a flow sheet showing a wastewater treatment system according to Embodiment 2 of the present invention.
FIG. 5 is a flow sheet showing a conventional wastewater treatment system.
[Explanation of symbols]
3 Anaerobic tank 4 Anoxic tank 5 Aerobic tank 6 Circulating means 7 Solid-liquid separation device (sedimentation basin)
10 Filtration device (High-speed solid-liquid separator)
13 Sludge refining tank 29 Floating filter medium 30 Filter medium cleaning means 32, 41 Stirring means 33, 42 Introduction means 51 Aeration means 52 Microorganism carrier (carrier)

Claims (4)

濾材洗浄手段を備え、流入する被処理水中の懸濁物質を固液分離する濾過装置と、攪拌手段を備え、前記濾過装置から濾過水を導入する無酸素槽と、曝気手段を備え、前記無酸素槽から流出する混合液を導入して活性汚泥処理を行う好気槽と、この好気槽内の混合液の一部を前記無酸素槽に循環させる循環手段と、前記好気槽から流出する混合液を導入して処理水と汚泥とに固液分離する固液分離装置と、前記濾過装置から排出される汚泥を導入して調質する汚泥調質槽と、攪拌手段を備え、前記汚泥調質槽から排出される分離液および前記固液分離装置で分離された分離汚泥の一部を導入する嫌気槽と、この嫌気槽からの流出水を前記無酸素槽に導入する導入手段とからなることを特徴とする排水処理システム。A filtering device that includes a filtering medium cleaning means, and a solid-liquid separator for separating suspended solids in the water to be treated; a stirring means; an oxygen-free tank that introduces filtered water from the filtering device; an aeration means; An aerobic tank for introducing activated liquid sludge by introducing a mixed liquid flowing out from the oxygen tank, a circulation means for circulating a part of the mixed liquid in the aerobic tank to the anaerobic tank, and an outflow from the aerobic tank A solid-liquid separation device that introduces a mixed liquid and separates it into treated water and sludge, a sludge tempering tank that introduces and refines sludge discharged from the filtration device, and a stirring means, An anaerobic tank for introducing a part of the separated liquid discharged from the sludge refining tank and the separated sludge separated by the solid-liquid separator, and an introducing means for introducing the effluent water from the anaerobic tank to the anoxic tank; A wastewater treatment system comprising: 嫌気槽は汚泥調質槽から調質汚泥の一部を導入するようになっていることを特徴とする請求項1記載の排水処理システム。The wastewater treatment system according to claim 1, wherein the anaerobic tank is configured to introduce a part of the conditioned sludge from the sludge tempered tank. 濾過装置は、浮遊性濾材が充填され、且つ、被処理水を上向流で濾過する高速固液分離装置から成っていることを特徴とする請求項1記載の排水処理システム。The wastewater treatment system according to claim 1, wherein the filtration device is composed of a high-speed solid-liquid separation device that is filled with a floating filter medium and filters the water to be treated in an upward flow. 好気槽は、微生物を担持する担体を用いた活性汚泥処理槽から成っていることを特徴とする請求項1記載の排水処理システム。The waste water treatment system according to claim 1, wherein the aerobic tank is composed of an activated sludge treatment tank using a carrier supporting microorganisms.
JP26856798A 1998-09-22 1998-09-22 Wastewater treatment system Expired - Lifetime JP3737288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26856798A JP3737288B2 (en) 1998-09-22 1998-09-22 Wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26856798A JP3737288B2 (en) 1998-09-22 1998-09-22 Wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2000093992A JP2000093992A (en) 2000-04-04
JP3737288B2 true JP3737288B2 (en) 2006-01-18

Family

ID=17460323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26856798A Expired - Lifetime JP3737288B2 (en) 1998-09-22 1998-09-22 Wastewater treatment system

Country Status (1)

Country Link
JP (1) JP3737288B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502963A (en) * 2011-11-04 2012-06-20 浦华环保有限公司 Multi-mode sequencing batch active sludge sewage treatment method and system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329021B2 (en) * 2005-04-06 2013-10-30 株式会社西原環境 Sewage treatment equipment
JP5743448B2 (en) * 2010-07-26 2015-07-01 株式会社西原環境 Sewage treatment equipment
CN102923845A (en) * 2012-11-13 2013-02-13 常州大学 Chemical processor for sewage
CN107265816A (en) * 2017-07-26 2017-10-20 广州市卓冠环保科技有限公司 A kind of height processing septic tank
JP6879867B2 (en) * 2017-08-29 2021-06-02 水ing株式会社 How to repair wastewater treatment equipment
CN107399834A (en) * 2017-09-20 2017-11-28 张恺 A kind of environmentally friendly microorganism attachment device
CN109485151B (en) * 2018-11-26 2023-08-29 上海泓济环保科技股份有限公司 Device and process for treating wastewater from production of ethylene glycol from synthesis gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502963A (en) * 2011-11-04 2012-06-20 浦华环保有限公司 Multi-mode sequencing batch active sludge sewage treatment method and system
CN102502963B (en) * 2011-11-04 2013-07-10 浦华环保有限公司 Multi-mode sequencing batch active sludge sewage treatment method and system

Also Published As

Publication number Publication date
JP2000093992A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
CN203474603U (en) Sewage continuous flow A2O biochemical reaction and sludge static precipitation integrated device
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
JP2002529231A (en) Wastewater treatment apparatus including up-flow anaerobic reactor and wastewater treatment method using the same
JP3466444B2 (en) Wastewater treatment equipment
JP3737288B2 (en) Wastewater treatment system
CN105016578B (en) Aged percolation liquid treating system and method in a kind of refuse landfill
JP5743448B2 (en) Sewage treatment equipment
JP3962284B2 (en) Waste water treatment apparatus and waste water treatment method
JP2005313081A (en) Water treatment apparatus
JP2001009498A (en) Treatment of waste water and treating device therefor
KR100491900B1 (en) Apparatus for sewage and wastewater treatment and method for sewage and wastewater treatment using the same
JPH07163995A (en) Biological treatment of organic sewage and device therefor
JP4363260B2 (en) Wastewater treatment method and apparatus
JP3095620B2 (en) Biological nitrogen removal equipment
JP3907867B2 (en) Wastewater treatment system
KR100709456B1 (en) Waste water disposal plant and waste water disposal method
JP2000325988A (en) Waste water treatment system having sludge concentrating means
KR100402304B1 (en) Biological wastewater treatment system and methods using internal recycling
KR20040020325A (en) A method for treating the graywater by membrane
JPH09150181A (en) Sewage purifying device
JP2005254207A (en) Water treatment apparatus
CN111606506A (en) Domestic sewage treatment equipment for enhancing denitrification through ultraviolet and hydrogen peroxide
JP2004202387A (en) Sewage disposal treatment method
JP2000325992A (en) Waste water treatment apparatus with sludge concentrating means
KR100377947B1 (en) Aqua-composting BNR Device and Method for Clearing Wastewater Employing the Same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term