JP3907867B2 - Wastewater treatment system - Google Patents

Wastewater treatment system Download PDF

Info

Publication number
JP3907867B2
JP3907867B2 JP13842599A JP13842599A JP3907867B2 JP 3907867 B2 JP3907867 B2 JP 3907867B2 JP 13842599 A JP13842599 A JP 13842599A JP 13842599 A JP13842599 A JP 13842599A JP 3907867 B2 JP3907867 B2 JP 3907867B2
Authority
JP
Japan
Prior art keywords
sludge
anaerobic
tank
separated
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13842599A
Other languages
Japanese (ja)
Other versions
JP2000325986A (en
Inventor
崇 伊東
裕樹 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environmental Technology Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP13842599A priority Critical patent/JP3907867B2/en
Publication of JP2000325986A publication Critical patent/JP2000325986A/en
Application granted granted Critical
Publication of JP3907867B2 publication Critical patent/JP3907867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、下水等の廃水中のリンを除去すると同時に効率よく回収してリン資源として有効活用するための廃水処理システムに関するものである。
【0002】
【従来の技術】
従来から、下水等の廃水を例えば生物学的に処理して得られた処理水には、放流先の富栄養化を防止する等の目的から窒素、リンが含まれないことが求められている。
【0003】
リンを除去する方法である凝集沈殿法等で廃水中からリンを除去する場合、被処理水量も多く、ポリ塩化アルミニウム等の凝集剤などの薬品代などがかかり、ランニングコストが高くなる。加えて、凝集汚泥が多量に発生するため、処分に困難を要すると共に、処分費用も嵩む。
【0004】
そこで、嫌気槽・無酸素槽・好気槽を用いて廃水中から窒素やリンを除去する生物学的窒素リン同時除去法(以下、A2 O法という)が近年、国内外を問わず多く実用化されている。なお、A2 OはAnaerobic Anoxic Oxic、即ち嫌気、無酸素、好気の意であり、このプロセスを用いた生物学的水処理をさす。
【0005】
図5は従来のA2 O法による廃水処理装置の構成を示すフローシートである。図5において、1は流入する廃水に対し、本処理に先立ち、予め固液分離する最初沈殿池であり、2は最初沈殿池1から分離液を導入し、該分離液中のBODを利用して脱窒・脱リンを同時に行うための浮遊汚泥式の反応槽である。この反応槽2は、嫌気槽3と無酸素槽4と好気槽5とに3分割されている。6は嫌気槽3内に配置された攪拌機であり、7は無酸素槽4内に配置された攪拌機、8は好気槽5内に配置され攪拌機能とエアレーション機能を併せ持つ散気装置であり、9は好気槽5からの流出水を受け入れて固液分離する最終沈殿池である。
【0006】
10は好気槽5内の混合液を無酸素槽4に循環させるための循環手段であり、11は最初沈殿池1から初沈汚泥を汚泥処理工程へ引き出すための初沈汚泥管路であり、12aは最終沈殿池9で固液分離された汚泥の一部を嫌気槽3に返送するための返送汚泥管路であり、12bは最終沈殿池9で固液分離された汚泥の一部を余剰汚泥として最初沈殿池1へ引き抜くための余剰汚泥管路である。
【0007】
次に動作について説明する。
流入廃水は、まず最初沈殿池1で固液分離され、その分離液は嫌気槽3に導入される。この嫌気槽3内では、上記分離液が最終沈殿池9から返送汚泥管路12aを介して返送される返送汚泥と接触させられるが、その際に、返送汚泥中に含まれるリン蓄積菌が廃水中の溶解性BOD(主として揮発性有機酸)を取り込むと同時に、菌体内のリンを放出する。嫌気槽3からの流出水は無酸素槽4に導入される。ここでは、好気槽5から返送された酸化態窒素が脱窒細菌によって窒素ガスに還元されて除去される。無酸素槽4からの流出水は好気槽5に導入され、好気条件下で廃水中のBODが酸化分解され、硝化細菌によってアンモニア態窒素や有機態窒素が硝化されると共に、リンはリン蓄積菌により過剰に再摂取され液相中から除去される。好気槽5からの流出水は最終沈殿池9で固液分離され、処理水は消毒後に放流され、汚泥の一部は嫌気槽3に返送される。また、汚泥の一部は余剰汚泥として余剰汚泥管路12bを介して汚泥処理工程へ送られ、処理される。
【0008】
【発明が解決しようとする課題】
ところで、上記のような従来のA2 O法によれば、生物学的脱リン処理で発生する余剰汚泥(固相)中には多量のリンがリン蓄積菌によって取り込まれるが、この余剰汚泥を嫌気下で貯留すると、リン蓄積菌がリンを放出し、汚泥(固相)から分離水(液相)に移行してしまう。さらに、リンを多量に含む分離水を返流水として再び廃水処理施設に戻してしまうと、結果として廃水処理施設の系外にリンが排出されないため、リンの除去率が低下するという課題があった。
【0009】
この発明は上記のような課題を解決するためになされたもので、従来のA2 O法を見直し、BOD、窒素、リンのうち、特にリンを効率よく除去、回収することができる廃水処理システムを提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明に係る廃水処理システムは、廃水を導入して生物学的処理を行う生物反応槽と、該生物反応槽混合液を処理水と分離汚泥とに分離する固液分離装置と、該固液分離装置で分離された分離汚泥の全量を嫌気下で攪拌し、得られた嫌気汚泥を前記生物反応槽に返送する嫌気装置と、該嫌気装置で攪拌された嫌気汚泥の一部を濃縮汚泥と濃縮分離液とに分離する汚泥濃縮装置と、該汚泥濃縮装置で分離された濃縮分離液を導入し、該濃縮分離液に含まれるリンを除去するリン除去装置とを備えたことを特徴とするものである。
【0011】
この発明に係る廃水処理システムは、廃水を上澄水と沈殿汚泥とに固液分離する最初沈殿池と、前記上澄水を導入して生物学的処理を行う生物反応槽と、該生物反応槽混合液を処理水と分離汚泥とに分離する固液分離装置と、前記沈殿汚泥を導入して酸発酵させる酸発酵装置と、前記固液分離装置で分離された分離汚泥を前記酸発酵装置から排出される排出液と共に嫌気下で攪拌して前記生物反応槽に返送する嫌気装置と、該嫌気装置で攪拌された嫌気汚泥の一部を濃縮汚泥と濃縮分離液とに分離する汚泥濃縮装置と、前記濃縮分離液に含まれるリンを除去するリン除去装置とを備えたことを特徴とするものである。
【0012】
この発明に係る廃水処理システムは、生物反応槽が攪拌手段を備えた無酸素槽と、曝気手段を備えた好気槽と、該好気槽混合液を無酸素槽へ循環する循環手段とからなることを特徴とするものである。
【0013】
この発明に係る廃水処理システムは、生物反応槽が曝気手段および攪拌手段を備えた間欠曝気槽であることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1は、この発明の実施の形態1による廃水処理システムを示すフローシートである。図1において21は生物反応槽であり、22は固液分離工程を行う固液分離装置、23は嫌気工程を行う嫌気装置、24は汚泥濃縮工程を行う汚泥濃縮装置、25はリン除去工程を行うリン除去装置である。生物反応槽21は嫌気装置23から嫌気汚泥(返送汚泥)の供給を受け、通常の活性汚泥処理に代表される廃水の生物学的処理を行うものであり、具体的には後述する無酸素槽および好気槽の組み合わせ、あるいは曝気攪拌手段を備えた間欠曝気槽であってもよい。固液分離装置22は生物反応槽21からの流出液(混合液)を固液分離し、処理水を系外に排出すると共に、分離汚泥を嫌気装置23に返送するものである。固液分離装置22における固液分離としては、重力沈殿式の最終沈殿池が用いられるが、必要に応じて膜分離装置を用いることができる。嫌気装置23は嫌気条件下で固液分離装置22で分離された分離汚泥中の酸化態窒素を脱窒菌により還元すると同時にリン蓄積菌によりリンが多量に放出される。得られた嫌気汚泥は、生物反応槽21に供給される一方、嫌気汚泥の一部(5〜30%)は汚泥濃縮装置24に供給される。汚泥濃縮装置24は嫌気装置23で得られた嫌気汚泥の一部を濃縮するものであり、具体的には遠心濃縮機または遠心ろ過濃縮機等の機械式濃縮装置または分離膜で分離する濃縮方式が用いられるが、嫌気汚泥量が多いときには重力式濃縮法を用いてもよい。この汚泥濃縮装置24で分離された濃縮分離液中には、高濃度のリンを含有している。このリンを多量に含有している分離液は、次にリン除去装置25に導入される。このリン除去装置25には、リン酸マグネシウムアンモニウム(MAP)等のリン化合物を結晶核に析出させてリンを除去する晶析脱リン装置を用いることが望ましい。また、適宜ポリ塩化アルミニウム(PAC)等の凝集剤を用いた凝集沈殿装置を用いてもよい。
【0015】
この実施の形態1では、汚泥濃縮装置24で濃縮分離した高濃度にリンを含有する分離液をリン除去装置25に導入するようにしたので、廃水処理系に戻すことなく、確実にリンを除去、回収することができる。また、廃水の流入状況や生物処理状況に拘わらず、リン除去を安定して効率的に行うことができる。また、リン除去装置25での処理量を少量の濃縮分離液に限定したので、装置のコンパクト化を図れると共に、処理に必要なランニングコストを低減することができる。
【0016】
また、この実施の形態1では、汚泥濃縮装置24から余剰汚泥として引き抜かれる汚泥は既にリンを放出した後のリンをほとんど含まない濃縮汚泥であるため、汚泥処理施設でのMAPスケールによる配管の閉塞や機器のトラブルを未然に回避することができる。
【0017】
さらに、この実施の形態1では、リン除去装置25に晶析反応によるMAP除去装置を用いた場合に、肥大化して排出されるMAP粒子を回収して肥料などに有効利用することができる。また、凝集沈殿処理装置を用いた場合でも濃縮分離液量が少ないため、ランニングコストの低減や凝集汚泥の発生量を抑制することができる。
【0018】
実施の形態2.
図2は、この発明の実施の形態2による廃水処理システムを示すフローシートである。この実施の形態2の特徴は、汚泥濃縮装置24で得られたリン飢餓状態の嫌気汚泥を生物反応槽21内に供給すると共に、リン除去装置25で得られたリン除去水を生物反応槽21に返送する点にある。汚泥濃縮装置24で得られた濃縮汚泥は、既に嫌気装置23でリンを放出したリン飢餓状態のリン蓄積菌を多量に含有するので、生物反応槽21に戻すことにより、廃水中に含まれるリンを効率よく除去することができる。また、リン除去水には懸濁物質や溶解した有機物が残存するため、生物反応槽21内に返送することが望ましい。
【0019】
実施の形態3.
図3は、この発明の実施の形態3による廃水処理システムの要部を示すフローシートである。この実施の形態3の特徴は、先の実施の形態1または2において、生物反応槽21に導入される前の廃水を最初沈殿池26に導入してその沈殿上澄液である初沈流出水を生物反応槽21に導入すると共に、最初沈殿池26で沈殿分離された沈殿汚泥(初沈汚泥)を酸発酵装置27に導入してその酸発酵液を固液分離装置22からの分離汚泥と共に嫌気装置23に導入することとした点にある。
【0020】
この実施の形態3では、先の実施の形態1または2と異なり、廃水を直接生物反応槽21内に導入せず、最初沈殿池26を通すことにより上澄水(初沈分離水)と沈殿固形物とに分離する。沈殿固形物は次いで酸発酵装置27に導入して、酸発酵させて易分解性の有機酸を生成させる。易分解性有機酸を多量に含んだ酸発酵液は嫌気装置23に導入されるが、リン蓄積菌が嫌気装置23でリンを放出するときには有機物を摂取するが、このとき利用する有機物はタンパク質や炭水化物などの高分子有機物よりも易分解性の低分子有機酸が有効である。そのため、酸発酵装置27を設けることにより嫌気装置23でのリン放出を効率よく行わせることが可能になる。廃水中の負荷が大きい場合には特に有効である。
【0021】
実施の形態4.
図4は、この発明の実施の形態4による廃水処理システムを示すフローシートである。この実施の形態4の特徴は、先の実施の形態2において、生物反応槽21を無酸素槽28と好気槽29とから構成すると共に、好気槽29からの流出液を無酸素槽28に循環返送する循環手段30を設けた点にある。なお、循環手段30は主としてエアリフトポンプや水中ポンプ等の移送装置と移送管路とから構成されている。
【0022】
この実施の形態4では、最初沈殿池26から流出した初沈流出水は生物反応槽21の無酸素槽28に導入され、循環手段30によって好気槽29から循環された循環液、嫌気装置23から供給される嫌気汚泥、および汚泥濃縮装置24から返送された濃縮汚泥と共に混合される。無酸素槽28内の汚泥中の脱窒菌により循環液中に含まれる酸化態窒素が還元され、窒素ガスとして系外に排出される。無酸素槽28内の混合液は好気槽29へ流出して有機物が生物反応により分解されると共に、リン飢餓状態にあるリン蓄積菌により、リンが過剰に摂取される。好気槽29内の混合液は固液分離装置22に導入されて、分離液は処理水として消毒後に放流されるが、分離汚泥は嫌気装置23に返送され、酸発酵装置27からの酸発酵液と共に嫌気状態で混合される。嫌気装置23で得られた嫌気汚泥は無酸素槽28に導入されるが、嫌気汚泥の一部は汚泥濃縮装置24に送られ濃縮される。リンを高濃度に含む濃縮分離液はリン除去装置25に送られ、例えば晶析反応によるMAP除去装置等を用いて濃縮分離液中からリンを除去する。なお、MAP除去装置によるリン除去で選られるMAP粒子は農業用肥料または工業用材料等に再利用することができる。リンが除去され排出されるリン除去水には上述したように懸濁物質や溶解した有機物が残存するため、この場合には好気槽29内に返送することが望ましい。
【0023】
ここで、図4にはリンに関する物質収支データとして廃水および処理水の全量、全リン濃度を各工程(各装置)ごとに示した。図4に示すように、最初沈殿池26に廃水をQm3 /日の流量で導入することとし、その廃水中の全リン濃度を3.0mg/Lとすると、固液分離装置22から処理水は0.995Qm3 /日の流量で排出され、そのときの全リン濃度は0.5mg/Lとなり、リン除去率としては約83%以上となっている。なお、固液分離装置22から嫌気装置23に返送される分離汚泥は流入廃水量の20〜50%であり、また嫌気装置23から汚泥濃縮装置24への嫌気汚泥の移送量は流入廃水量の5〜20%の範囲が望ましい。嫌気汚泥を全量、汚泥濃縮装置24で濃縮することは効率が悪く実用的ではないと共に、上述した量でも十分なリン除去を行うことができる。また、リン除去装置25に導入される濃縮分離液中のリン濃度は30mg/L程度で流入廃水中のリン濃度の概ね10倍となっており、リン除去装置25により流入廃水からリンを確実に効率よく除去、回収することができることがわかる。
【0024】
なお、この実施の形態4における無酸素槽28の運転のケースでは、当該無酸素槽28内に混合液中の酸化還元電位ORPを測定するORPセンサを設置し、この値(ORPの範囲は概ね±0〜−300mV)を指標として無酸素槽28内の無酸素状態を好適に保持できるよう運転調整することが望ましい。無酸素槽28内の攪拌機(図示せず)としては主に攪拌羽根を備えた機械攪拌装置を用いるが、酸素供給を抑えて水流を発生させるものであればよく、特に限定されない。
【0025】
また、無酸素槽28から流出する混合液は好気槽29に導入される際における混合液の移流方法は、好気槽29内の混合液が無酸素槽28へ逆流しないようにオーバーフロー(越流)の形態をとることが望ましい。この好気槽29の運転も、当該槽内にDOセンサ(溶存酸素濃度計)を設置し、この測定値(DO値の範囲は概ね0.5〜5mg/L)に基いてDO計、コンピュータによって曝気ブロアの回転数を自動的に制御し、送風量を調整することが望ましい。この場合、DO濃度が低い場合は送風量を増加させ、高い場合は送風量を減少させる。また、この指標はORPまたはpHでも行うことができる。ORPの場合は概ね+50〜+300mVの範囲で、DOと同様に低い場合は送風量を増加させ、高い場合は送風量を減少させる。pHの場合は概ね6.4〜7.2の範囲で、DO,ORPとは逆に低い場合は送付量を減少させ、高い場合は送風量を増加させる。このような操作を行うことにより、好気槽29内で安定した効率的な残存BODの酸化分解、窒素成分の硝化およびリンの過剰摂取除去を行うことができる。なお、送風量は曝気ブロアの回転数に限らず、電動弁の操作やブロアの運転台数で調整してもよい。
【0026】
また、この実施の形態4では、固液分離装置22に代えて、好気槽29内に浸漬型膜分離装置等の膜分離手段(図示せず)を設けてもよい。分離膜としては精密ろ過膜等の種々の分離膜は勿論、好気槽29内の混合液中の浮遊微生物やSSなどを分離ろ過できるものであればいずれも使用可能である。具体的には、例えば有機系高分子をベースとした中空糸膜を用いたゼノン膜プロセス「マックバイオ」(株式会社西原環境衛生研究所)等が好適である。この膜分離手段は浸漬型膜分離装置で好気槽29内に配置されることで、好気槽29内の散気装置により膜の表面に付着する汚泥を効率よく剥離することができ、また時には逆洗操作を行うことで長期間にわたって安定した分離性能を維持することができる。なお、膜分離手段としては、浸漬型膜分離装置に代えて槽外に設置する膜分離装置を用いてもよい。
【0027】
また、この実施の形態4では、無酸素槽28と好気槽29に汚泥中の脱窒細菌および硝化細菌等の微生物を高濃度に保持した担体(図示せず)を浮遊させてもよい。この担体は主に一辺もしくは直径が5〜30mmの立体形状のポリウレタン製のものを用いるが、曝気や攪拌により槽内を流動し微生物を保持できる機能を有するものであれば、上記形状に限定されない。また、微生物の保持形態も、微生物を担体の表面や内部に付着固定させてもよいし、担体材料で包み込む包括固定でもよい。さらに、担体の材質は無機性物質または有機性物質のいずれも適用可能である。勿論、担体は循環手段30によって好気槽29から無酸素槽28に戻され、循環されるようになっている。なお、担体を除いた好気槽混合液のみを無酸素槽に循環させてもよい。
【0028】
【発明の効果】
以上説明したように、この発明によれば、嫌気汚泥を汚泥濃縮装置で濃縮汚泥と高濃度のリンを含む濃縮分離液とに分離し、この分離液をリン除去装置に導入するようにしたので、廃水処理系に戻すことなく、確実にリンを除去、回収することができる。また、廃水の流入状況や生物処理状況に拘わらず、リン除去を安定して効率的に行うことができる。また、リン除去装置での処理量を少量の濃縮分離液に限定したので、装置のコンパクト化を図れると共に、処理に必要なランニングコストを低減することができる。
【0029】
また、この発明によれば、汚泥濃縮装置から余剰汚泥として引き抜かれる汚泥は既にリンを放出した後のリンをほとんど含まない濃縮汚泥であるため、汚泥処理施設でのMAPによる配管の閉塞や機器のトラブルを未然に回避することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による廃水処理システムを示すフローシートである。
【図2】 この発明の実施の形態2による廃水処理システムを示すフローシートである。
【図3】 この発明の実施の形態3による廃水処理システムの要部を示すフローシートである。
【図4】 この発明の実施の形態4による廃水処理システムを示すフローシートである。
【図5】 従来の廃水処理装置を示すフローシートである。
【符号の説明】
1 最初沈殿池(固液分離手段)
2 浮遊汚泥式の反応槽
3 嫌気槽
4 無酸素槽
5 好気槽
6,7 攪拌機
8 散気装置
9 最終沈殿池(沈殿分離手段)
10 循環手段
11 初沈汚泥管路
12a 返送汚泥管路
12b 余剰汚泥管路
21 生物反応槽
22 固液分離装置
23 嫌気装置
24 汚泥濃縮装置
25 リン除去装置
26 最初沈殿池
27 酸発酵装置
28 無酸素槽
29 好気槽
30 循環手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste water treatment system for effective utilization of phosphorus resources collected simultaneously efficiently the removal of phosphorus in waste water sewage or the like.
[0002]
[Prior art]
Conventionally, treated water obtained by, for example, biologically treating wastewater such as sewage has been required not to contain nitrogen or phosphorus for the purpose of preventing eutrophication of the discharge destination. .
[0003]
When removing phosphorus from wastewater by a coagulation sedimentation method or the like, which is a method for removing phosphorus, the amount of water to be treated is large, and chemical costs such as a coagulant such as polyaluminum chloride are required, resulting in an increase in running cost. In addition, since a large amount of agglomerated sludge is generated, disposal is difficult and disposal costs increase.
[0004]
Therefore, in recent years, there are many biological nitrogen and phosphorus simultaneous removal methods (hereinafter referred to as A 2 O methods) that remove nitrogen and phosphorus from wastewater using anaerobic tanks, anoxic tanks, and aerobic tanks, both domestically and internationally. It has been put into practical use. A 2 O means Anaerobic Anoxic Oxic, that is, anaerobic, anoxic, and aerobic, and refers to biological water treatment using this process.
[0005]
FIG. 5 is a flow sheet showing the configuration of a conventional wastewater treatment apparatus using the A 2 O method. In FIG. 5, 1 is a first settling basin for solid-liquid separation prior to the main treatment of the inflowing wastewater, and 2 is a separation liquid introduced from the first settling basin 1 and BOD in the separated liquid is used. This is a floating sludge type reaction tank for simultaneous denitrification and dephosphorization. The reaction tank 2 is divided into an anaerobic tank 3, an oxygen-free tank 4, and an aerobic tank 5. 6 is an agitator disposed in the anaerobic tank 3, 7 is an agitator disposed in the anaerobic tank 4, and 8 is an aeration device disposed in the aerobic tank 5 and having both an agitating function and an aeration function, Reference numeral 9 denotes a final sedimentation basin that receives effluent water from the aerobic tank 5 and separates it into solid and liquid.
[0006]
10 is a circulation means for circulating the mixed liquid in the aerobic tank 5 to the anoxic tank 4, and 11 is an initial settling sludge pipe for drawing the first settling sludge from the first settling tank 1 to the sludge treatment process. , 12a is a return sludge pipe for returning a part of the sludge solid-liquid separated in the final sedimentation basin 9 to the anaerobic tank 3, and 12b is a part of the sludge separated solid-liquid in the final sedimentation basin 9. It is a surplus sludge conduit for drawing out to the first sedimentation basin 1 as surplus sludge.
[0007]
Next, the operation will be described.
The inflow wastewater is first solid-liquid separated in the settling tank 1, and the separated liquid is introduced into the anaerobic tank 3. In the anaerobic tank 3, the separation liquid is brought into contact with the return sludge returned from the final sedimentation tank 9 via the return sludge conduit 12a. At that time, the phosphorus accumulating bacteria contained in the return sludge are discharged into the waste water. Incorporates soluble BOD (mainly volatile organic acids) inside, and simultaneously releases phosphorus in the cells. Outflow water from the anaerobic tank 3 is introduced into the anoxic tank 4. Here, the oxidized nitrogen returned from the aerobic tank 5 is reduced to nitrogen gas by the denitrifying bacteria and removed. The effluent from the anaerobic tank 4 is introduced into the aerobic tank 5, the BOD in the wastewater is oxidatively decomposed under aerobic conditions, and ammonia nitrogen and organic nitrogen are nitrified by nitrifying bacteria. Excessive reuptake by accumulated bacteria and removal from the liquid phase. The outflow water from the aerobic tank 5 is solid-liquid separated in the final sedimentation tank 9, the treated water is discharged after disinfection, and a part of the sludge is returned to the anaerobic tank 3. Moreover, a part of sludge is sent to a sludge treatment process via the excess sludge pipe line 12b as excess sludge, and is processed.
[0008]
[Problems to be solved by the invention]
By the way, according to the conventional A 2 O method as described above, a large amount of phosphorus is taken up by phosphorus accumulating bacteria in the excess sludge (solid phase) generated by biological dephosphorization treatment. When stored under anaerobic conditions, phosphorus-accumulating bacteria release phosphorus and shift from sludge (solid phase) to separated water (liquid phase). Furthermore, if separation water containing a large amount of phosphorus is returned to the wastewater treatment facility as return water, phosphorus is not discharged out of the wastewater treatment facility, resulting in a decrease in phosphorus removal rate. .
[0009]
The present invention has been made to solve the above problems, reviewing the conventional A 2 O method, BOD, nitrogen, among phosphorus, in particular phosphorus efficiently removed, the waste water that can be recovered An object is to provide a processing system .
[0010]
[Means for Solving the Problems]
Waste water treatment system engaged Ru to the present invention includes a bioreactor for performing biological processes by introducing the waste water, and solid-liquid separator for separating the organism reactor mixture in the treated water and the separated sludge, the stirring the whole amount of the separated sludge separated in the solid-liquid separation device in under anaerobic and anaerobic device for returning anaerobic sludge obtained in said biological reactor, a portion of the anaerobic sludge was stirred at該嫌degasifier concentrated features and sludge concentrator for separating the sludge and concentrate separated liquid, that introducing the concentrate separated liquid separated in the sludge concentration device, and a phosphorus removal device for removing phosphorus contained in the concentrate separated liquid It is what.
[0011]
Waste water treatment system engaged Ru to the present invention includes a primary sedimentation of the solid-liquid separating the waste water into the upper supernatant water and the settled sludge, the bioreactor to perform biological treatment by introducing the upper supernatant water, the organism reaction A solid-liquid separation device that separates the tank mixture into treated water and separated sludge, an acid fermentation device that introduces the precipitated sludge to perform acid fermentation, and the acid fermentation device that separates the separated sludge separated by the solid-liquid separation device anaerobic device for returning to the bioreactor was stirred under anaerobic under with discharge liquid discharged from the sludge concentrating device for separating a portion of the stirred anaerobic sludge該嫌degasifier to the concentrated sludge and the concentration and separation liquid And a phosphorus removing device for removing phosphorus contained in the concentrated separation liquid.
[0012]
Waste water treatment system engaged Ru to the present invention includes a anoxic tank to the bioreactor was equipped with a stirring means, and aerobic tank provided with aeration means, circulation means for circulating該好gas tank mixture to the anoxic tank It is characterized by the following.
[0013]
Waste water treatment system engaged Ru in the present invention is characterized in that the bioreactor is intermittent aeration tank provided with aeration means and mixing means.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
Embodiment 1 FIG.
Figure 1 is a flow sheet showing the waste water treatment system that by the first embodiment of the present invention. In FIG. 1, 21 is a biological reaction tank, 22 is a solid-liquid separator that performs a solid-liquid separation process , 23 is an anaerobic apparatus that performs an anaerobic process , 24 is a sludge concentration apparatus that performs a sludge concentration process, and 25 is a phosphorus removal process . It is a phosphorus removal device to be performed . The biological reaction tank 21 is supplied with anaerobic sludge (return sludge) from the anaerobic device 23 and performs biological treatment of waste water represented by normal activated sludge treatment. Further, it may be a combination of aerobic tanks or an intermittent aeration tank provided with aeration stirring means. The solid-liquid separation device 22 performs solid-liquid separation on the effluent (mixed solution) from the biological reaction tank 21, discharges treated water to the outside of the system, and returns the separated sludge to the anaerobic device 23. As solid-liquid separation in the solid-liquid separation device 22, a gravitational precipitation type final sedimentation basin is used, but a membrane separation device can be used if necessary. The anaerobic device 23 reduces oxidized nitrogen in the separated sludge separated by the solid-liquid separation device 22 under anaerobic conditions by denitrifying bacteria and at the same time releases a large amount of phosphorus by the phosphorus accumulating bacteria. The resulting anaerobic sludge, while being fed to the biological reactor 21, a portion of the anaerobic sludge (5-30%) is fed to the sludge concentrating apparatus 24. Sludge concentrating apparatus 24 is intended to concentrate the portion of the anaerobic sludge obtained by the anaerobic device 23, concentration method is specifically separated by mechanical concentrator or separator film such as a centrifugal concentrator or centrifuge filtration concentrator However, when the amount of anaerobic sludge is large, a gravity concentration method may be used. The concentrated separation liquid separated by the sludge concentrating device 24 contains a high concentration of phosphorus. The separation liquid phosphorus containing large amounts are then introduced to the phosphorus removal device 25. As the phosphorus removal device 25, it is desirable to use a crystallization dephosphorization device that removes phosphorus by precipitating a phosphorus compound such as magnesium ammonium phosphate (MAP) in the crystal nucleus. Further, a coagulation precipitation apparatus using a coagulant such as polyaluminum chloride (PAC) may be used as appropriate.
[0015]
In the first embodiment, since the high concentration phosphorus-containing separation liquid concentrated and separated by the sludge concentrating device 24 is introduced into the phosphorus removing device 25, phosphorus is reliably removed without returning to the wastewater treatment system. Can be recovered. Moreover, phosphorus removal can be stably and efficiently performed regardless of the inflow situation of the wastewater and the biological treatment situation. Moreover, since the processing amount in the phosphorus removal apparatus 25 is limited to a small amount of concentrated separation liquid, the apparatus can be made compact and the running cost required for the processing can be reduced.
[0016]
Further, in the first embodiment, since sludge is withdrawn from the sludge concentrating apparatus 24 as excess sludge is already concentrated sludge containing little phosphorus after releasing phosphorus, clogging of piping due to MAP scale in the sludge treatment facilities And device troubles can be avoided.
[0017]
Furthermore, in this Embodiment 1, when the MAP removal apparatus by crystallization reaction is used for the phosphorus removal apparatus 25, the MAP particle | grains enlarged and discharged | emitted can be collect | recovered and can be used effectively as a fertilizer. In addition, even when a coagulation sedimentation processing apparatus is used, the amount of concentrated separation liquid is small, so that the running cost can be reduced and the amount of coagulated sludge generated can be suppressed.
[0018]
Embodiment 2. FIG.
Figure 2 is a flow sheet showing the waste water treatment system that by the second embodiment of the present invention. Features of the second embodiment, the sludge anaerobic sludge phosphorus starvation obtained by the concentrator 24 is supplied to the bioreactor 21, phosphorus removal water bioreactor 21 obtained in phosphorus removal device 25 It is in the point to return to. The concentrated sludge obtained by the sludge concentrating device 24 contains a large amount of phosphorus-starved phosphorus-accumulating bacteria that have already released phosphorus by the anaerobic device 23, so that the phosphorus contained in the wastewater is returned to the biological reaction tank 21. Can be efficiently removed. Moreover, since suspended substances and dissolved organic substances remain in the phosphorus-removed water, it is desirable to return them to the biological reaction tank 21.
[0019]
Embodiment 3 FIG.
3 is a flow sheet showing the main part of the waste water treatment system that by the third embodiment of the present invention. The feature of this third embodiment is that in the previous first or second embodiment, the waste water before being introduced into the biological reaction tank 21 is first introduced into the settling basin 26 and the first settling effluent as the precipitation supernatant. Is introduced into the biological reaction tank 21, and the sedimented sludge (primary sedimented sludge) first separated in the sedimentation tank 26 is introduced into the acid fermentation apparatus 27, and the acid fermentation liquid is separated with the sludge separated from the solid-liquid separation apparatus 22. The point is that it is introduced into the anaerobic device 23.
[0020]
In the third embodiment, unlike the first or second embodiment, the supernatant water (primary sediment separation water) and the solid precipitate are not introduced directly into the biological reaction tank 21 but passed through the first sedimentation basin 26. Separated into things. The precipitated solid is then introduced into the acid fermentation apparatus 27 and subjected to acid fermentation to produce an easily decomposable organic acid. The acid fermentation broth containing a large amount of readily degradable organic acid is introduced into the anaerobic device 23, but when the phosphorus accumulating bacteria release phosphorus with the anaerobic device 23, the organic matter is ingested. Easily degradable low molecular organic acids are more effective than high molecular organic substances such as carbohydrates. Therefore, by providing the acid fermentation device 27, it becomes possible to efficiently release phosphorus in the anaerobic device 23. This is particularly effective when the load in the wastewater is large.
[0021]
Embodiment 4 FIG.
Figure 4 is a flow sheet showing the waste water treatment system that by the fourth embodiment of the present invention. The feature of this fourth embodiment is that, in the previous second embodiment, the biological reaction tank 21 is composed of an anaerobic tank 28 and an aerobic tank 29, and the effluent from the aerobic tank 29 is passed through the anoxic tank 28. In this point, a circulation means 30 for circulating and returning is provided. The circulation means 30 is mainly composed of a transfer device such as an air lift pump or a submersible pump and a transfer pipe line.
[0022]
In the fourth embodiment, the initial settling effluent flowing out from the first settling basin 26 is introduced into the anoxic tank 28 of the biological reaction tank 21, and the circulating liquid and anaerobic device 23 circulated from the aerobic tank 29 by the circulation means 30. is mixed anaerobic sludge supplied, and with thickened sludge returned from the sludge concentrator 24. Oxidized nitrogen contained in the circulating liquid is reduced by denitrifying bacteria in the sludge in the anoxic tank 28 and discharged out of the system as nitrogen gas. The mixed solution in the anaerobic tank 28 flows into the aerobic tank 29 and the organic matter is decomposed by a biological reaction, and phosphorus is excessively ingested by the phosphorus-accumulating bacteria in the phosphorus-starved state. Mixture aerobic tank 29 is introduced into solid-liquid separator 22, although the separation liquid is discharged after disinfection as treated water, separated sludge is returned to the anaerobic unit 23, acid fermentation from acid fermentation apparatus 27 Mixed with liquid in anaerobic condition. The anaerobic sludge obtained by the anaerobic device 23 is introduced into the anoxic tank 28, but a part of the anaerobic sludge is sent to the sludge concentrating device 24 and concentrated. The concentrated separation liquid containing phosphorus in a high concentration is sent to the phosphorus removal apparatus 25, and phosphorus is removed from the concentrated separation liquid using, for example, a MAP removal apparatus by crystallization reaction. In addition, the MAP particle | grains selected by the phosphorus removal by a MAP removal apparatus can be reused for an agricultural fertilizer or an industrial material. As described above, suspended substances and dissolved organic substances remain in the phosphorus-removed water from which phosphorus is removed and discharged. In this case, it is desirable that the phosphorus-removed water be returned to the aerobic tank 29.
[0023]
Here, in FIG. 4, the total amount of waste water and treated water and the total phosphorus concentration are shown for each process (each device) as material balance data regarding phosphorus. As shown in FIG. 4, the wastewater primary sedimentation 26 and be introduced at a flow rate of Qm 3 / day, when the total phosphorus concentration in the waste water with 3.0 mg / L, the treated water from the solid-liquid separator 22 Is discharged at a flow rate of 0.995 Qm 3 / day, the total phosphorus concentration at that time is 0.5 mg / L, and the phosphorus removal rate is about 83% or more. Incidentally, the separation sludge returned from the solid-liquid separator 22 to the anaerobic apparatus 23 is 20-50% of the inlet waste water quantities and transfer amount anaerobic sludge from an anaerobic apparatus 23 to the sludge concentrating apparatus 24 of the inflow amount of waste water A range of 5 to 20% is desirable. Anaerobic sludge the total amount, with it is not bad practical efficiency of concentrated sludge concentrating apparatus 24, it is possible to perform a sufficient phosphorus removal in an amount described above. In addition, the phosphorus concentration in the concentrated separation liquid introduced into the phosphorus removal device 25 is about 30 mg / L, which is approximately 10 times the phosphorus concentration in the inflow wastewater, and the phosphorus removal device 25 ensures phosphorus from the inflow wastewater. It can be seen that it can be efficiently removed and recovered.
[0024]
In the case of operation of the oxygen-free tank 28 in the fourth embodiment, an ORP sensor for measuring the oxidation-reduction potential ORP in the mixed solution is installed in the oxygen-free tank 28, and this value (the range of the ORP is approximately It is desirable to adjust the operation so that the oxygen-free state in the oxygen-free tank 28 can be suitably maintained using ± 0 to -300 mV) as an index. As a stirrer (not shown) in the oxygen-free tank 28, a mechanical stirrer mainly equipped with stirring blades is used, but any means can be used as long as it can suppress the oxygen supply and generate a water flow, and is not particularly limited.
[0025]
In addition, when the mixed solution flowing out from the anaerobic tank 28 is introduced into the aerobic tank 29, the mixed solution is transferred so that the mixed solution in the aerobic tank 29 does not flow back to the anaerobic tank 28. Flow). In the operation of the aerobic tank 29, a DO sensor (dissolved oxygen concentration meter) is installed in the tank, and the DO meter, computer based on the measured value (DO value range is approximately 0.5 to 5 mg / L). Therefore, it is desirable to automatically control the rotation speed of the aeration blower and adjust the air flow rate. In this case, when the DO concentration is low, the blowing amount is increased, and when the DO concentration is high, the blowing amount is decreased. This index can also be performed by ORP or pH. In the case of ORP, in the range of approximately +50 to +300 mV, the amount of air flow is increased when it is low as in the case of DO, and the amount of air flow is decreased when it is high. In the case of pH, it is generally in the range of 6.4 to 7.2. In contrast to DO and ORP, when it is low, the sending amount is decreased, and when it is high, the blowing amount is increased. By performing such an operation, stable and efficient oxidative decomposition of residual BOD, nitrification of nitrogen component, and excessive intake removal of phosphorus can be performed in the aerobic tank 29. In addition, you may adjust ventilation volume not only by the rotation speed of an aeration blower but by operation of a motor operated valve or the number of blower operation.
[0026]
Further, in the fourth embodiment, instead of the solid-liquid separator 22, an immersion type membrane membrane separation means of the separating device or the like (not shown) into the aerobic tank 29 may be provided. As the separation membrane, various separation membranes such as a microfiltration membrane can be used as long as they can separate and filter suspended microorganisms, SS, and the like in the mixed solution in the aerobic tank 29. Specifically, for example, a Zenon membrane process “MacBio” (Nishihara Institute for Environmental Health) that uses a hollow fiber membrane based on an organic polymer is suitable. This membrane separation means is disposed in the aerobic tank 29 by a submerged membrane separator, so that the sludge adhering to the surface of the membrane can be efficiently peeled off by the air diffuser in the aerobic tank 29. Sometimes, by performing the backwash operation, stable separation performance can be maintained over a long period of time. As the membrane separation means, a membrane separation apparatus installed outside the tank may be used instead of the submerged membrane separation apparatus.
[0027]
In the fourth embodiment, a carrier (not shown) holding microorganisms such as denitrifying bacteria and nitrifying bacteria in sludge at a high concentration may be suspended in the anaerobic tank 28 and the aerobic tank 29. This carrier is mainly made of polyurethane having a three-dimensional shape with a side or diameter of 5 to 30 mm. However, the carrier is not limited to the above shape as long as it has a function of flowing in the tank and holding microorganisms by aeration and stirring. . The microorganisms may be held in a fixed manner by attaching and fixing the microorganisms on the surface or inside of the carrier, or by entrapping and fixing with a carrier material. Furthermore, the material of the carrier can be either an inorganic substance or an organic substance. Of course, the carrier is returned from the aerobic tank 29 to the anoxic tank 28 by the circulation means 30 and circulated. In addition, you may circulate only the aerobic tank liquid mixture except a support | carrier to an anoxic tank.
[0028]
【The invention's effect】
As described above, according to the present invention, the anaerobic sludge is separated into the concentrated sludge and the concentrated separation liquid containing high-concentration phosphorus by the sludge concentration apparatus , and this separation liquid is introduced into the phosphorus removal apparatus . The phosphorus can be reliably removed and recovered without returning to the wastewater treatment system. Moreover, phosphorus removal can be stably and efficiently performed regardless of the inflow situation of the wastewater and the biological treatment situation. In addition, since the amount of processing in the phosphorus removal apparatus is limited to a small amount of concentrated separation liquid, the apparatus can be made compact and the running cost required for the processing can be reduced.
[0029]
Further, according to the present invention, since the sludge drawn out as excess sludge from the sludge concentrating apparatus is already concentrated sludge containing little phosphorus after releasing phosphorus, piping by MAP in the sludge treatment facilities obstruction or equipment Trouble can be avoided in advance.
[Brief description of the drawings]
1 is a flow sheet showing the waste water treatment system that by the first embodiment of the present invention.
2 is a flow sheet showing the waste water treatment system that by the second embodiment of the present invention.
3 is a flow sheet showing the main part of the embodiment waste water treatment system that by the third embodiment of the present invention.
4 is a flow sheet showing the waste water treatment system that by the fourth embodiment of the present invention.
FIG. 5 is a flow sheet showing a conventional wastewater treatment apparatus.
[Explanation of symbols]
1 First sedimentation tank (solid-liquid separation means)
2 Floating sludge reaction tank 3 Anaerobic tank 4 Oxygen-free tank 5 Aerobic tank 6, 7 Stirrer 8 Air diffuser 9 Final sedimentation tank (precipitation separation means)
10 circulating means 11 primary sludge conduit 12a return sludge pipe 12b excess sludge pipe 21 biological reactor 22 solid-liquid separator 23 anaerobic device 24 sludge concentrator 25 phosphorus removal device 26 primary sedimentation 27 acid fermentation apparatus 28 anoxic Tank 29 Aerobic tank 30 Circulation means

Claims (4)

廃水を導入して生物学的処理を行う生物反応槽と、
該生物反応槽混合液を処理水と分離汚泥とに分離する固液分離装置と、
該固液分離装置で分離された分離汚泥の全量を嫌気下で攪拌し、
得られた嫌気汚泥を前記生物反応槽に返送する嫌気装置と、
該嫌気装置で攪拌された嫌気汚泥の一部を
濃縮汚泥と濃縮分離液とに分離する汚泥濃縮装置と、
該汚泥濃縮装置で分離された濃縮分離液を導入し、
該濃縮分離液に含まれるリンを除去するリン除去装置
を備えたことを特徴とする廃水処理システム
A biological reactor for biological treatment by introducing wastewater;
A solid-liquid separator which separates the organism reactor mixture in the treated water and the separated sludge,
The total amount of the separation sludge separated by the solid-liquid separator was stirred at under anaerobic
An anaerobic device for returning the obtained anaerobic sludge to the biological reaction tank;
A sludge concentrating device for separating a portion of the stirred anaerobic sludge and concentrated sludge and the concentrate separated liquid at該嫌air device,
Introducing the separated concentrated separated solution with the sludge concentrating apparatus,
Waste water treatment system that is characterized in that a phosphorus removal device for removing phosphorus contained in the concentrate separated liquid.
廃水を上澄水と沈殿汚泥とに固液分離する最初沈殿池と、前記上澄水を導入して生物学的処理を行う生物反応槽と、該生物反応槽混合液を処理水と分離汚泥とに分離する固液分離装置と、前記沈殿汚泥を導入して酸発酵させる酸発酵装置と、前記固液分離装置で分離された分離汚泥を前記酸発酵装置から排出される排出液と共に嫌気下で攪拌して前記生物反応槽に返送する嫌気装置と、該嫌気装置で攪拌された嫌気汚泥の一部を濃縮汚泥と濃縮分離液とに分離する汚泥濃縮装置と、前記濃縮分離液に含まれるリンを除去するリン除去装置とを備えたことを特徴とする廃水処理システムAn initial sedimentation basin for solid-liquid separation of waste water into supernatant water and precipitated sludge, a biological reaction tank for biological treatment by introducing the supernatant water, and a mixture of the biological reaction tank into treated water and separated sludge A solid-liquid separation device for separation, an acid fermentation device that introduces the precipitated sludge for acid fermentation, and a separation sludge separated by the solid-liquid separation device is stirred under anaerobic together with the effluent discharged from the acid fermentation device An anaerobic device that is returned to the biological reaction tank, a sludge concentrating device that separates a portion of the anaerobic sludge stirred by the anaerobic device into a concentrated sludge and a concentrated separated liquid, and phosphorus contained in the concentrated separated liquid. waste water treatment system that is characterized in that a phosphorus removal apparatus for removing. 生物反応槽は、攪拌手段を備えた無酸素槽と、曝気手段を備えた好気槽と、該好気槽混合液を無酸素槽へ循環する循環手段とからなることを特徴とする請求項1または請求項2に記載の廃水処理システムThe biological reaction tank comprises an anaerobic tank provided with stirring means, an aerobic tank provided with aeration means, and a circulation means for circulating the aerobic tank mixed solution to the anoxic tank. waste water treatment system according to 1 or claim 2. 生物反応槽は、曝気手段および攪拌手段を備えた間欠曝気槽であることを特徴とする請求項1または請求項2に記載の廃水処理システムBiological reactor is a waste water treatment system of claim 1 or claim 2, characterized in that the intermittent aeration tank provided with aeration means and mixing means.
JP13842599A 1999-05-19 1999-05-19 Wastewater treatment system Expired - Fee Related JP3907867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13842599A JP3907867B2 (en) 1999-05-19 1999-05-19 Wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13842599A JP3907867B2 (en) 1999-05-19 1999-05-19 Wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2000325986A JP2000325986A (en) 2000-11-28
JP3907867B2 true JP3907867B2 (en) 2007-04-18

Family

ID=15221677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13842599A Expired - Fee Related JP3907867B2 (en) 1999-05-19 1999-05-19 Wastewater treatment system

Country Status (1)

Country Link
JP (1) JP3907867B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547799B2 (en) * 2000-12-19 2010-09-22 栗田工業株式会社 Biological phosphorus removal equipment
JP2003047988A (en) * 2001-08-03 2003-02-18 Ebara Corp Method and apparatus for treating organic polluted water
JP4516025B2 (en) * 2003-11-21 2010-08-04 荏原エンジニアリングサービス株式会社 Method and apparatus for producing / recovering magnesium ammonium phosphate
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP4995215B2 (en) * 2009-03-23 2012-08-08 前澤工業株式会社 Sewage treatment equipment
CN113480096A (en) * 2021-07-13 2021-10-08 西安建筑科技大学 Sewage treatment system and process for step-by-step backflow and double circulation of biological activated sludge

Also Published As

Publication number Publication date
JP2000325986A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
US7931808B2 (en) Sequencing batch reactor with continuous membrane filtration and solids reduction
JP4508694B2 (en) Water treatment method and apparatus
WO2005021448A1 (en) Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
US20140097136A1 (en) Composite microorganism reactor, and apparatus and method for water treatment using the same
JP2008284427A (en) Apparatus and method for treating waste water
JP4997724B2 (en) Organic wastewater treatment method
JP3466444B2 (en) Wastewater treatment equipment
CN110431114A (en) Waste water treatment system and method
JP4678577B2 (en) Wastewater treatment system
JP3907867B2 (en) Wastewater treatment system
CA2300719A1 (en) Membrane supported biofilm process
JP5743448B2 (en) Sewage treatment equipment
JP4002851B2 (en) Sewage treatment equipment
JP2001009498A (en) Treatment of waste water and treating device therefor
JP3737288B2 (en) Wastewater treatment system
JP4027217B2 (en) Livestock wastewater treatment equipment
JPH07163995A (en) Biological treatment of organic sewage and device therefor
JP2000325988A (en) Waste water treatment system having sludge concentrating means
JPH1034185A (en) Drainage treatment method
JP5194484B2 (en) Biological treatment apparatus and biological treatment method for water containing organic matter
JP2000325992A (en) Waste water treatment apparatus with sludge concentrating means
KR100402304B1 (en) Biological wastewater treatment system and methods using internal recycling
JPH09150181A (en) Sewage purifying device
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
JP2000107797A (en) Purification method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Ref document number: 3907867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees