JP5194484B2 - Biological treatment apparatus and biological treatment method for water containing organic matter - Google Patents

Biological treatment apparatus and biological treatment method for water containing organic matter Download PDF

Info

Publication number
JP5194484B2
JP5194484B2 JP2007046040A JP2007046040A JP5194484B2 JP 5194484 B2 JP5194484 B2 JP 5194484B2 JP 2007046040 A JP2007046040 A JP 2007046040A JP 2007046040 A JP2007046040 A JP 2007046040A JP 5194484 B2 JP5194484 B2 JP 5194484B2
Authority
JP
Japan
Prior art keywords
biological treatment
tank
liquid
sludge
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007046040A
Other languages
Japanese (ja)
Other versions
JP2008207094A (en
Inventor
聡 山田
総介 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007046040A priority Critical patent/JP5194484B2/en
Priority to TW97103463A priority patent/TW200840803A/en
Priority to KR20080016794A priority patent/KR20080079213A/en
Publication of JP2008207094A publication Critical patent/JP2008207094A/en
Application granted granted Critical
Publication of JP5194484B2 publication Critical patent/JP5194484B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/10Temperature conditions for biological treatment
    • C02F2301/106Thermophilic treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Description

本発明は、有機物含有水を活性汚泥法により処理する有機物含有水の生物処理装置および生物処理方法に関し、特に、生物処理槽を2段以上、直列接続した多段式の生物処理装置および生物処理方法に関する。   The present invention relates to a biological treatment apparatus and biological treatment method for treating organic substance-containing water by an activated sludge method, and in particular, a multistage biological treatment apparatus and biological treatment method in which two or more biological treatment tanks are connected in series. About.

有機物含有水の生物処理は、物理化学的処理に比べて処理に要するエネルギーが少ないため、経済性に優れる。有機物含有水の生物処理は、好気的処理と嫌気的処理に大別される。嫌気的処理は、処理に要するエネルギーが好気的処理に比べても少なく、有機物が微生物に転換されることで発生する余剰汚泥の発生量も少ない。このため、嫌気的処理は、好気的処理より経済性に優れる利点を有するが、適用可能な有機物含有水の範囲、条件は狭い。   Biological treatment of organic matter-containing water is excellent in economic efficiency because it requires less energy than physicochemical treatment. Biological treatment of organic matter-containing water is broadly divided into aerobic treatment and anaerobic treatment. The anaerobic treatment requires less energy than the aerobic treatment, and the amount of surplus sludge generated by converting organic matter into microorganisms is also small. For this reason, anaerobic treatment has the advantage of being more economical than aerobic treatment, but the range and conditions of applicable organic matter-containing water are narrow.

一方、好気的処理は嫌気的処理に比べて様々な性状の有機物含有水に適用可能であり、メンテナンスも容易で、また良好な水質の処理水が得られることから、生物処理の中では好気的処理が広く用いられている。しかし、活性汚泥法に代表される好気的処理では、生物処理槽に導入される有機物含有水に含まれるBOD成分(生物化学的酸素消費量で表される有機物)の20〜30質量%が、活性汚泥を構成する細菌の増殖に用いられる。BOD成分を基質として増殖した細菌は余剰汚泥として排出されるため、通常の活性汚泥法では大量の余剰汚泥が発生し、余剰汚泥の処理が必要になる。   On the other hand, aerobic treatment can be applied to water containing organic matter with various properties compared to anaerobic treatment, and it is easy to maintain and can provide treated water with good water quality. Air treatment is widely used. However, in the aerobic treatment represented by the activated sludge method, 20 to 30% by mass of the BOD component (organic matter represented by biochemical oxygen consumption) contained in the organic matter-containing water introduced into the biological treatment tank is It is used for the growth of bacteria that make up activated sludge. Bacteria proliferated using the BOD component as a substrate are discharged as excess sludge. Therefore, a large amount of excess sludge is generated in the normal activated sludge method, and it is necessary to treat the excess sludge.

また、好気的処理では、生物処理槽に酸素を供給する必要があるため、酸素を供給する曝気装置を駆動させるエネルギーが必要である。さらに、好気的処理では嫌気的処理に比べて生物処理槽の負荷が低いため、より大型の生物処理槽が必要になる。好気的処理における余剰汚泥の発生量、曝気用のエネルギー量、および生物処理槽容積は、有機物含有水のBOD濃度が高いほど大きくなり、処理コストが高くなる。   Moreover, since it is necessary to supply oxygen to a biological treatment tank in an aerobic process, the energy which drives the aeration apparatus which supplies oxygen is required. Furthermore, since the load of the biological treatment tank is lower in the aerobic treatment than in the anaerobic treatment, a larger biological treatment tank is required. The amount of surplus sludge generated in the aerobic treatment, the amount of energy for aeration, and the volume of the biological treatment tank increase as the BOD concentration of the organic substance-containing water increases, and the treatment cost increases.

上記好気的処理の課題を解決するため、例えば、酸化剤や熱で余剰汚泥を可溶化させた後、生物学的消化処理を行うことで余剰汚泥の発生量を減らす汚泥減容化技術が開発されている。また、生物処理槽に、微生物を保持する担体を添加することで生物処理槽の微生物濃度を高めて槽容積の小型化を図る生物膜法も開発されている。   In order to solve the above aerobic treatment problems, for example, sludge volume reduction technology that reduces the amount of excess sludge generated by solubilizing excess sludge with an oxidizing agent or heat and then performing biological digestion treatment. Has been developed. In addition, a biofilm method has been developed to increase the microbial concentration in the biological treatment tank by adding a carrier for holding microorganisms to the biological treatment tank to reduce the tank volume.

上記従来技術は、好気的生物処理における課題を個別に解決しようとするものである。例えば、汚泥を可溶化して減容すると、生物処理槽の負荷が高くなるため、生物処理槽の大型化を招く。生物処理槽に担体を添加する生物膜法ではBOD負荷を高くできるものの余剰汚泥の発生は浮遊式の通常の活性汚泥法より多くなる。   The above-described prior art is intended to individually solve the problems in aerobic biological treatment. For example, when sludge is solubilized and volume-reduced, the load on the biological treatment tank increases, leading to an increase in the size of the biological treatment tank. In the biofilm method in which a carrier is added to a biological treatment tank, the BOD load can be increased, but the generation of excess sludge is greater than that in a normal activated sludge method.

これら従来技術に対し、複数の生物処理槽を直列接続した多段式の好気的生物処理法も開発されている。多段式の好気的生物処理法では、例えば第1の生物処理槽と第2の生物処理槽とを直列に並べ、第1の生物処理槽をBOD成分容積負荷1kg−BOD/m/日以上の高負荷で、第2の生物処理槽をBOD成分汚泥負荷1kg−BOD/kg−VSS/日以下の低負荷で運転する。このように、第1の生物処理槽を高負荷で運転することで、微生物を対数増殖させて分散性の細菌を増殖させる。一方、第2の生物処理槽では、原生動物による分散性細菌の捕食および微生物の自己消化を利用して、余剰汚泥を減量させるとともに微生物群集の凝集(フロック化)を進行させる。 In contrast to these conventional techniques, a multi-stage aerobic biological treatment method in which a plurality of biological treatment tanks are connected in series has been developed. In the multi-stage aerobic biological treatment method, for example, a first biological treatment tank and a second biological treatment tank are arranged in series, and the first biological treatment tank is arranged with a BOD component volumetric load of 1 kg-BOD / m 3 / day. With the above high load, the second biological treatment tank is operated with a low load of BOD component sludge load 1 kg-BOD / kg-VSS / day or less. Thus, by operating the first biological treatment tank with a high load, the microorganisms are grown logarithmically to grow dispersible bacteria. On the other hand, in the second biological treatment tank, by using predatory animals' predation of dispersible bacteria and microbial self-digestion, excess sludge is reduced and microbial community aggregation (flocculation) is advanced.

このように、多段式活性汚泥法は生物処理槽の小型化と余剰汚泥減容化を図るものであるが、第2の生物処理槽で汚泥を減容化しつつフロック化を進行させる条件の維持は容易ではない。例えば、第1の生物処理槽で生物分解が容易なBOD成分のほとんどが除去されることで、第2の生物処理槽で必要とされる有機物量が不足してフロック化が進行しない場合がある。そこで、BOD成分を多く含む有機物含有水の一部を、第1の生物処理水を迂回して第2の生物処理槽に直接導入することで、かかる問題の解決を図った技術も提案されている(特許文献1)。
特許第3258600号公報
As described above, the multistage activated sludge method is intended to reduce the size of the biological treatment tank and reduce the volume of excess sludge. However, maintaining the conditions for proceeding with flocking while reducing the volume of sludge in the second biological treatment tank. Is not easy. For example, since most of the BOD components that are easily biodegradable in the first biological treatment tank are removed, the amount of organic matter required in the second biological treatment tank may be insufficient and flocking may not proceed. . In view of this, a technique has been proposed in which a part of the organic substance-containing water containing a large amount of the BOD component is directly introduced into the second biological treatment tank by bypassing the first biological treated water. (Patent Document 1).
Japanese Patent No. 3258600

しかし、本発明者らは、特許文献1に記載された技術では、第2の生物処理槽から流出する第2の処理液中に有機物が残存し易くなることを知見した。このように、好気的生物処理における複数の課題を同時に解決することは困難である。このため、上述したとおり好気的処理においては、各要素技術を個別に向上させることを目的として(例えば汚泥減容のみを目的とする、あるいは負荷増大のみを目的として)技術開発が行われる傾向がある。   However, the present inventors have found that with the technique described in Patent Document 1, organic substances are likely to remain in the second treatment liquid flowing out from the second biological treatment tank. Thus, it is difficult to solve a plurality of problems in aerobic biological treatment at the same time. For this reason, as described above, in the aerobic process, the technical development tends to be performed for the purpose of improving each elemental technology individually (for example, only for sludge volume reduction or only for the purpose of increasing the load). There is.

これに対し、本発明は好気的生物処理の一連の処理操作全体を調整して上記複数の課題を同時に解決することを目的とする。具体的には、多段式活性汚泥法全体の処理フローを見直して、BOD容積負荷向上による処理槽の小型化および汚泥減容化を同時に実現し、かつ、処理水水質を悪化させない有機物含有水の生物処理装置を提供することを目的とする。   On the other hand, an object of the present invention is to solve the plurality of problems at the same time by adjusting an entire series of aerobic biological treatment operations. Specifically, the overall processing flow of the multi-stage activated sludge process was reviewed to simultaneously reduce the size of the treatment tank and reduce the sludge volume by improving the BOD volumetric load, while also preventing the deterioration of the quality of treated water An object is to provide a biological treatment apparatus.

本発明者は、多段式生物処理法において、無機凝集剤を添加せずに第1の生物処理槽から流出する第1の処理液を固液分離した後、分離液を第2の生物処理槽で好気的に生物処理すると共に分離汚泥を生物学的に減容化させることで上記課題を達成できること見出し、本発明を完成した。具体的には、本発明は以下を提供する。   In the multistage biological treatment method, the inventor performs solid-liquid separation of the first treatment liquid flowing out from the first biological treatment tank without adding an inorganic flocculant, and then separating the separated liquid into the second biological treatment tank. The present invention was completed by finding that the above-mentioned problems can be achieved by aerobic biological treatment and biologically reducing the volume of separated sludge. Specifically, the present invention provides the following.

(1)有機物を含む有機物含有水が導入され好気的処理を行う第1の生物処理槽と、前記第1の生物処理槽から流出する第1の処理液が導入され、無機凝集剤を用いることなく前記第1の処理液を浮上分離槽で分離液と分離汚泥とに固液分離する固液分離手段と、前記分離液が導入され好気的処理を行う第2の生物処理槽と、前記分離汚泥を生物学的に減容する減容手段と、を含み、前記減容手段は、高温好気性消化槽から流出する消化液が導入され前記消化液を濃縮して濃縮汚泥と脱離液とを排出する濃縮機と、前記濃縮汚泥を前記高温好気性消化槽に返送する濃縮汚泥返送路と、前記脱離液を前記第1の生物処理槽に返送する脱離液返送路と、をさらに含む有機物含有水の生物処理装置。
(2)前記第2の生物処理槽は、担体流動床式である(1)に記載の有機物含有水の生物処理装置。
(3)前記第2の生物処理槽は、膜式活性汚泥方式である(1)に記載の有機物含有水の生物処理装置。
(4)前記第2生物処理槽から流出する第2の処理液を高度処理する高度処理手段をさらに含む(1)から()のいずれかに記載の有機物含有水の生物処理装置。
)有機物を含む有機物含有水を第1の生物処理槽で好気的に処理し、前記第1の生物処理槽から流出する第1の処理液を、無機凝集剤を用いることなく浮上分離槽で分離液と分離汚泥とに固液分離し、前記分離液を第2の生物処理槽で好気的に処理し、高温好気性消化槽から流出する消化液を導入して濃縮し、濃縮汚泥と脱離液とを排出し、前記濃縮汚泥を前記高温好気性消化槽に返送し、前記脱離液を前記第1の生物処理槽に返送して、前記分離汚泥を生物学的に減容する有機物含有水の生物処理方法。
)前記第2の生物処理槽は、担体流動床式である()に記載の有機物含有水の生物処理装置。
)前記第2の生物処理槽は、膜式活性汚泥方式である()に記載の有機物含有水の生物処理装置。
)前記第1の生物処理槽において、BOD成分容積負荷2kg−BOD/m/日以上の高負荷での好気的処理を行う()から()のいずれかに記載の有機物含有水の生物処理方法。
(1) A first biological treatment tank in which organic substance-containing water containing an organic substance is introduced to perform an aerobic treatment, and a first treatment liquid flowing out from the first biological treatment tank are introduced, and an inorganic flocculant is used. A solid-liquid separation means for solid-liquid separation of the first treatment liquid into a separation liquid and separated sludge in a floating separation tank, a second biological treatment tank in which the separation liquid is introduced and an aerobic treatment is performed, wherein the separation sludge biologically volume reduction means for volume reduction, only contains the volume reducing means, de the concentrated sludge is introduced digestive fluid flowing out from the hot aerobic digester by concentrating the digested slurry A concentrator for discharging the separated liquid, a concentrated sludge return path for returning the concentrated sludge to the high-temperature aerobic digestion tank, and a desorbed liquid return path for returning the desorbed liquid to the first biological treatment tank. And a biological treatment apparatus for water containing organic matter.
(2) The biological treatment apparatus for organic matter-containing water according to (1), wherein the second biological treatment tank is a carrier fluidized bed type.
(3) The biological treatment apparatus for organic matter-containing water according to (1), wherein the second biological treatment tank is a membrane activated sludge system.
(4 ) The organic treatment water biological treatment apparatus according to any one of (1) to ( 3 ), further including advanced treatment means for advanced treatment of the second treatment liquid flowing out of the second biological treatment tank.
( 5 ) Organic matter-containing water containing organic matter is treated aerobically in the first biological treatment tank, and the first treatment liquid flowing out of the first biological treatment tank is floated and separated without using an inorganic flocculant. Solid-liquid separation into separation liquid and separation sludge in the tank, the separation liquid is treated aerobically in the second biological treatment tank, digestion liquid flowing out from the high temperature aerobic digestion tank is introduced, concentrated and concentrated Sludge and desorbed liquid are discharged, the concentrated sludge is returned to the high-temperature aerobic digestion tank, the desorbed liquid is returned to the first biological treatment tank, and the separated sludge is biologically reduced. A method for biological treatment of water containing organic matter.
( 6 ) The biological treatment apparatus for organic matter-containing water according to ( 5 ), wherein the second biological treatment tank is a carrier fluidized bed type.
( 7 ) The biological treatment apparatus for organic matter-containing water according to ( 5 ), wherein the second biological treatment tank is a membrane activated sludge system.
( 8 ) The organic substance according to any one of ( 5 ) to ( 7 ), wherein an aerobic treatment is performed at a high load of BOD component volumetric load 2 kg-BOD / m 3 / day or more in the first biological treatment tank. Biological treatment method of contained water.

第1の生物処理槽は、活性汚泥による江気的処理を行なう処理槽であって、有機物含有水に含まれるBOD成分の大部分(例えば60%程度以上、特に70〜80%程度)を除去し、かつ、BOD成分を基質として増殖した活性汚泥の自己消化が起こらないように運転される。具体的には、第1の生物処理槽は2〜20kg−BOD/m/日、特に4〜15kg−BOD/m/日、の負荷とするとよい。 The first biological treatment tank is a treatment tank that performs an aerobic treatment with activated sludge, and removes most of the BOD components (for example, about 60% or more, especially about 70 to 80%) contained in the organic substance-containing water. In addition, the operation is performed so that the activated sludge grown using the BOD component as a substrate does not undergo self-digestion. Specifically, the first biological treatment tank may have a load of 2 to 20 kg-BOD / m 3 / day, particularly 4 to 15 kg-BOD / m 3 / day.

第1の生物処理槽には、溶存酸素(DO)濃2mg/L程度となるように酸素を供給する。酸素の供給手段は限定されず、散気管等を槽内に設置して空気を吹き込めばよいが、高い負荷(例えば10kg−BOD/m/日以上)をかける場合、エジェクタを用いるか、空気に代えて純酸素を供給するとよい。 Oxygen is supplied to the first biological treatment tank so that the dissolved oxygen (DO) concentration is about 2 mg / L. The oxygen supply means is not limited, and an air diffuser may be installed in the tank to blow in air. However, when a high load (for example, 10 kg-BOD / m 3 / day or more) is applied, an ejector is used, or air Instead of pure oxygen, pure oxygen may be supplied.

第1の生物処理槽の形式も限定されないが、高負荷条件下で菌体を安定的に保持するため、担体を添加して生物膜式とすることが好ましい。また、浮遊式とする場合は、第1の生物処理槽からの流出水が導入される固液分離手段(第1の固液分離手段)で分離された汚泥を返送するとよい。pHや温度等のその他の条件は通常の活性汚泥法と同様でよい。   Although the type of the first biological treatment tank is not limited, it is preferable to add a carrier to form a biofilm type in order to stably hold the cells under high load conditions. Moreover, when making it a floating type, it is good to return the sludge isolate | separated by the solid-liquid separation means (1st solid-liquid separation means) into which the effluent from a 1st biological treatment tank is introduce | transduced. Other conditions such as pH and temperature may be the same as those of the normal activated sludge method.

第1の生物処理槽は、固液分離手段(第1の固液分離手段)と接続し、第1の生物処理槽からの流出液(第1の処理液)を第1の固液分離手段で固液分離する。第1の固液分離手段としては、凝集剤、特に無機凝集剤を用いることなく固液分離が可能な装置を用いる。第1の処理液は、フロック化していない分散状態の微生物を含み、汚泥沈降性は例えばSVI(Sludge Volume Index)は200を超える。なお、SVIとは汚泥1gあたりの沈降体積(ml)を意味し、数式1で示される。また数式1にSV30おいては、汚泥を30分間、静置したときの沈降体積(%)である。
(数式1)
SVI=SV30×10/汚泥濃度(MLSS)
The first biological treatment tank is connected to the solid-liquid separation means (first solid-liquid separation means), and the effluent (first treatment liquid) from the first biological treatment tank is used as the first solid-liquid separation means. Solid-liquid separation with. As the first solid-liquid separation means, an apparatus capable of solid-liquid separation without using a flocculant, particularly an inorganic flocculant, is used. The first treatment liquid contains dispersed microorganisms that are not flocked, and the sludge sedimentation property is, for example, 200 or more in SVI (Sludge Volume Index). In addition, SVI means the sedimentation volume (ml) per 1g of sludge, and is shown by Numerical formula 1. Moreover, in Formula 30, in SV30, it is a sedimentation volume (%) when sludge is left still for 30 minutes.
(Formula 1)
SVI = SV 30 × 10 4 / sludge concentration (MLSS)

凝集沈殿槽や膜分離装置は、無機凝集剤を用いずに上述した性状の生物処理液を固液分離するには必ずしも適していないため、第1の固液分離手段としては浮上分離槽を使用することが好ましい。凝集剤を添加して凝集浮上分離を行う場合、凝集剤としては生物分解されやすい有機凝集剤、例えばキトサン類やポリアスパラギン酸塩を使用し、添加量は数〜50mg/L程度とするとよい。   Since the coagulation sedimentation tank and the membrane separation apparatus are not necessarily suitable for solid-liquid separation of the biological treatment liquid having the above-described properties without using an inorganic flocculant, a floating separation tank is used as the first solid-liquid separation means. It is preferable to do. When flocculant floating separation is performed by adding a flocculant, an organic flocculant that is easily biodegradable, for example, chitosans or polyaspartate is used as the flocculant, and the addition amount is preferably about several to 50 mg / L.

第1の固液分離手段は、第2の生物処理槽および減容手段と接続する。第1の固液分離手段で固形分と分離された液分(分離液)は第2の生物処理槽へ、液分と分離された固形分(分離汚泥)は減容手段へ供給して、減容化手段で減容する。   The first solid-liquid separation unit is connected to the second biological treatment tank and the volume reduction unit. The liquid (separated liquid) separated from the solid content by the first solid-liquid separation means is supplied to the second biological treatment tank, and the solid content separated from the liquid (separated sludge) is supplied to the volume reducing means. Reduce volume with volume reduction means.

分離汚泥は無機凝集剤を添加せずに得られ、分離汚泥を構成する細菌はポリマー状物質を産生していない分散状態の菌体であり、生物分解性が高い。このため、減容化手段として消化槽を採用することで、生物の代謝反応を利用して汚泥減容に要するエネルギー消費を抑えて汚泥を減容化できる。消化速度を高くするため分離汚泥は高温消化するとよく、必要に応じて分離汚泥を濃縮して消化すれば、消化の際の反応熱を利用することで高温条件の維持に必要なエネルギーを低減できる。また、分離汚泥は酸化剤、加熱、機械的破壊等により可溶化して消化槽に供給して消化効率を上げるとよい。消化槽は、嫌気性であってもよいが、好気性消化槽は運転管理が容易であり、分散性細菌由来の分離汚泥の自己消化を促すため、本発明において好適に採用できる。   The separated sludge is obtained without adding an inorganic flocculant, and the bacteria constituting the separated sludge are dispersed cells that do not produce a polymer substance and are highly biodegradable. For this reason, by adopting a digestion tank as a volume reducing means, it is possible to reduce the volume of sludge by suppressing the energy consumption required for volume reduction of sludge using the metabolic reaction of living organisms. In order to increase the digestion rate, the separated sludge should be digested at a high temperature. If the separated sludge is concentrated and digested as necessary, the energy required to maintain the high temperature conditions can be reduced by utilizing the heat of reaction during digestion. . The separated sludge is preferably solubilized by an oxidizing agent, heating, mechanical destruction, etc., and supplied to the digester to increase digestion efficiency. The digester may be anaerobic, but the aerobic digester is easy to manage and promotes self-digestion of the separated sludge derived from dispersible bacteria, so that it can be suitably employed in the present invention.

一方、分離液は第2の生物処理槽で処理する。第2の生物処理槽にはBODを含む原水(有機物含有水)のバイパス注入を行わず、第2の生物処理槽に導入する液のBOD濃度を低く(例えば500mg/L以下)して分離液を処理すると、第2の生物処理槽で処理されて得られる処理液(第2の処理液)の水質を良好にできる。   On the other hand, the separation liquid is processed in the second biological treatment tank. The second biological treatment tank is not subjected to bypass injection of raw water (organic matter-containing water) containing BOD, and the BOD concentration of the liquid introduced into the second biological treatment tank is lowered (for example, 500 mg / L or less) to separate the liquid. Can improve the water quality of the treatment liquid (second treatment liquid) obtained by being treated in the second biological treatment tank.

第2の生物処理槽としては、担体流動床式または膜式活性汚泥方式を採用し、第1の生物処理槽から流入する主として難分解性の物質を基質として資化する菌を優占種として保持する。第2の生物処理槽を担体流動床式とする場合には、第2の生物処理槽に担体を添加し、第1の生物処理槽より有機物負荷を低くする。担体の添加量は、30容積%以上70容積%以下程度とすればよい。第2の生物処理槽の負荷は、分離液の有機物濃度と目標水質に応じて設定すればよいが、概ね2kg−BOD/m/日以下、特に1.5kg−BOD/m/日以下の範囲に設定すればよい。第2の生物処理槽のDO濃度、pH、温度条件は通常の活性汚泥法と同様でよく、酸素供給方法も特に限定されない。 As the second biological treatment tank, a carrier fluidized bed type or membrane activated sludge system is adopted, and bacteria that assimilate mainly persistent substances flowing from the first biological treatment tank as substrates are used as dominant species. Hold. In the case where the second biological treatment tank is a carrier fluidized bed type, a carrier is added to the second biological treatment tank, and the organic load is made lower than that of the first biological treatment tank. The added amount of the carrier may be about 30% by volume to 70% by volume. The load of the second biological treatment tank may be set according to the organic substance concentration of the separation liquid and the target water quality, but is generally 2 kg-BOD / m 3 / day or less, particularly 1.5 kg-BOD / m 3 / day or less. Should be set within the range. The DO concentration, pH, and temperature conditions of the second biological treatment tank may be the same as those in the normal activated sludge method, and the oxygen supply method is not particularly limited.

膜式活性汚泥方式は、処理水と活性汚泥との固液分離に限外濾過膜、精密濾過膜等の分離膜を用いるもので、曝気槽内に分離膜を浸漬して設置する膜浸漬型と、曝気槽内の混合液を曝気槽外に設けた膜分離機で固液分離して分離汚泥を曝気槽に返送する非膜浸漬型とがある。第2の生物処理槽として、前述の担体流動床式に代えて、この膜式活性汚泥方式のものを採用することができる。   The membrane activated sludge system uses a separation membrane such as an ultrafiltration membrane and a microfiltration membrane for solid-liquid separation between treated water and activated sludge. A membrane immersion type in which a separation membrane is immersed in an aeration tank. And a non-membrane immersion type in which the mixed liquid in the aeration tank is solid-liquid separated by a membrane separator provided outside the aeration tank and the separated sludge is returned to the aeration tank. As the second biological treatment tank, a membrane type activated sludge type can be adopted instead of the above-described carrier fluidized bed type.

第2の生物処理槽から流出する第2の処理液は、第2の固液分離手段で固液分離し、処理水を得る。第2の固液分離手段は、第2の処理液の沈降性が悪い場合は浮上分離槽を用いればよく、凝集性がよければ無機凝集剤を使用する凝集沈殿池を用いてもよい。処理水を回収して再利用する等の理由で、処理水を活性炭や膜分離装置、イオン交換樹脂塔等に供給する場合は、凝集浮上濾過装置、凝集沈殿濾過装置、膜分離装置等を用いて高度処理するとよい。第2の固液分離手段で分離された汚泥は減容化手段に供給してもよいが、無機凝集剤の含有量が多い(例えば1,000mg/L以上)場合は減容化手段へは供給しない。   The second treatment liquid flowing out of the second biological treatment tank is subjected to solid-liquid separation by the second solid-liquid separation means to obtain treated water. As the second solid-liquid separation means, a floating separation tank may be used when the second treatment liquid has poor sedimentation, and a coagulation sedimentation basin using an inorganic flocculant may be used when the coagulation is good. When the treated water is supplied to activated carbon, a membrane separation device, an ion exchange resin tower, etc. for the purpose of recovering and reusing the treated water, a coagulation flotation filtration device, a coagulation sedimentation filtration device, a membrane separation device, etc. are used. And advanced processing. The sludge separated by the second solid-liquid separation means may be supplied to the volume reduction means, but if the content of the inorganic flocculant is large (for example, 1,000 mg / L or more), the volume reduction means Do not supply.

本発明では、第1の生物処理槽で分散性の細菌を増殖させることでBOD負荷を高くして処理槽の容積を小さくできる。また、生分解しがたいポリマー状物質に覆われていない分散性の細菌を減容化するため、好気性消化が進行しやすく、減容化に要するエネルギー量を低減でき、余剰汚泥を減容することで余剰汚泥の処分コストも低減できる。このように、本発明によれば、生物処理槽の容積低減、および余剰汚泥発生量の低減等の複数の課題を同時に解決できる。   In the present invention, the BOD load can be increased and the volume of the treatment tank can be reduced by growing dispersible bacteria in the first biological treatment tank. In addition, the volume of dispersible bacteria that are not covered with polymer substances that are difficult to biodegrade is reduced, so that aerobic digestion is easy to proceed, the amount of energy required for volume reduction can be reduced, and excess sludge is reduced. By doing so, the disposal cost of surplus sludge can also be reduced. Thus, according to the present invention, it is possible to simultaneously solve a plurality of problems such as a reduction in the volume of the biological treatment tank and a reduction in the amount of excess sludge generated.

以下、本発明について図面を用いて詳細に説明する図1は、本発明の第1実施形態に係る有機物含有水の生物処理装置(以下、単に「処理装置」という)1の模式図である。処理装置1は、2つの生物処理槽が互いに直列に並べられた二段活性汚泥処理装置であり、第1の生物処理槽11、第1の固液分離手段としての第1の浮上分離槽21、第2の生物処理槽12、第2の固液分離手段としての第2の浮上分離槽22、および減容化手段40を含む。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of a biological treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 of organic matter-containing water according to a first embodiment of the present invention. The treatment apparatus 1 is a two-stage activated sludge treatment apparatus in which two biological treatment tanks are arranged in series. The first biological treatment tank 11 and a first floating separation tank 21 as a first solid-liquid separation means. , A second biological treatment tank 12, a second floating separation tank 22 as a second solid-liquid separation means, and a volume reduction means 40.

第1の生物処理槽11には原水管31が接続され、原水管31を介して有機物含有水が第1の生物処理槽11に導入される。有機物含有水は、従来用いられている活性汚泥法で処理される有機物含有水より有機物濃度が高くてよく、例えば全有機物(TOC)濃度400〜2,000mg/L程度、BOD濃度1,000〜6,000mg/L程度であってよい。このような有機物濃度が比較的高い有機物含有水は、従来法に係る活性汚泥法では処理コストが高くなるが本発明によれば後述するように、処理コストの増大を抑制できるためである。   A raw water pipe 31 is connected to the first biological treatment tank 11, and organic matter-containing water is introduced into the first biological treatment tank 11 through the raw water pipe 31. The organic substance-containing water may have a higher organic substance concentration than the organic substance-containing water processed by the conventionally used activated sludge method. For example, the total organic substance (TOC) concentration is about 400 to 2,000 mg / L, and the BOD concentration is 1,000 to 1,000. It may be about 6,000 mg / L. This is because such organic-containing water having a relatively high organic concentration has a high processing cost in the activated sludge method according to the conventional method, but according to the present invention, an increase in the processing cost can be suppressed as described later.

第1の生物処理槽11は高濃度の菌体を保持しており、高負荷で運転して分散性の細菌を増殖させる。第1の生物処理槽11の好ましい運転条件は上述したとおりであり、本実施態様では担体15を添加量30容積%程度で添加した生物膜式としている。第1の生物処理槽11には、酸素供給手段としてエジェクタ16を設置して酸素の溶解効率を高めて、高負荷条件下でもDO濃度2mg/L以上を維持できるようにしている。   The first biological treatment tank 11 holds a high concentration of microbial cells and operates with a high load to grow dispersible bacteria. The preferable operating conditions of the first biological treatment tank 11 are as described above, and in this embodiment, a biofilm type in which the carrier 15 is added at an addition amount of about 30% by volume is used. The first biological treatment tank 11 is provided with an ejector 16 as an oxygen supply means to increase the dissolution efficiency of oxygen so that a DO concentration of 2 mg / L or more can be maintained even under high load conditions.

第1の生物処理槽11は、第1処理液管32を介して第1の浮上分離槽21と接続されている。第1の浮上分離槽21は加圧浮上分離槽であり、凝集剤を用いることなく加圧気体を供給して大気圧開放することにより固形分を浮上させて液分から分離する。   The first biological treatment tank 11 is connected to the first floating separation tank 21 via the first treatment liquid pipe 32. The first flotation separation tank 21 is a pressurized flotation separation tank, which supplies a pressurized gas without using a flocculant and releases it to atmospheric pressure to float the solid content and separate it from the liquid.

第1の浮上分離槽21は、分離液管33を介して第2の生物処理槽12と接続され、分離汚泥管41を介して減容化手段40の消化槽14と接続されている。分離汚泥管41の途中には後述する凝集分離汚泥管43が接続され、さらに、遠心濃縮機23が設けられている。なお、分離汚泥管41は分岐させ、分岐先を第1の生物処理槽11と接続することで分離汚泥の一部を第1の生物処理槽11へ返送するようにしてもよい。   The first flotation separation tank 21 is connected to the second biological treatment tank 12 via a separation liquid pipe 33 and is connected to the digestion tank 14 of the volume reducing means 40 via a separation sludge pipe 41. In the middle of the separation sludge pipe 41, a coagulation separation sludge pipe 43 described later is connected, and a centrifugal concentrator 23 is further provided. The separated sludge pipe 41 may be branched and a part of the separated sludge may be returned to the first biological treatment tank 11 by connecting the branch destination to the first biological treatment tank 11.

消化槽14は、酸素供給手段としての散気管18を有する高温好気性消化槽であり、第1の浮上分離槽21から排出された分離汚泥は遠心濃縮機23で濃縮して汚泥濃度を高くして消化槽14に供給する。分離汚泥の濃縮により排出される濃縮濾液は、濃縮濾液管42から第1の生物処理槽11へ返送する。   The digestion tank 14 is a high-temperature aerobic digestion tank having an air diffuser 18 as an oxygen supply means, and the separated sludge discharged from the first flotation separation tank 21 is concentrated by a centrifugal concentrator 23 to increase the sludge concentration. To the digester 14. The concentrated filtrate discharged by the concentration of the separated sludge is returned to the first biological treatment tank 11 from the concentrated filtrate pipe 42.

遠心濃縮機23で濃縮された分離汚泥は、濃縮分離汚泥管47から消化槽14へ送る。このように消化処理する汚泥濃度を高くすることで、消化槽14の槽内液を消化する高温消化に要するエネルギー量を低減できる。消化槽14には散気管18から純酸素を吹き込めば、曝気による温度低下を防止できる。また、本実施態様では濃縮分離汚泥管47の途中にオゾン反応槽13を設け、濃縮した分離汚泥をオゾンで可溶化してから消化するようにしている。このように、分離汚泥を可溶化することで、消化効率を高めることができる。消化槽14には、消化汚泥管44が接続され、消化汚泥が消化汚泥管44から適宜、排出される。   The separated sludge concentrated by the centrifugal concentrator 23 is sent from the concentrated separated sludge pipe 47 to the digestion tank 14. By increasing the concentration of the sludge to be digested in this way, the amount of energy required for high-temperature digestion that digests the liquid in the digestion tank 14 can be reduced. If pure oxygen is blown into the digestion tank 14 from the diffusing tube 18, a temperature drop due to aeration can be prevented. In this embodiment, the ozone reaction tank 13 is provided in the middle of the concentrated and separated sludge tube 47 so that the concentrated separated sludge is solubilized with ozone and then digested. Thus, digestion efficiency can be improved by solubilizing the separated sludge. A digested sludge pipe 44 is connected to the digestion tank 14, and the digested sludge is appropriately discharged from the digested sludge pipe 44.

第2の生物処理槽12は、担体15が添加量50%程度で添加された担体流動床式で、酸素供給手段として散気管17が設置されている。第2の生物処理槽12の好ましい運転条件は上述したとおりである。第2の生物処理槽12は、第2処理液管34を介して第2の浮上分離槽22と接続されている。   The second biological treatment tank 12 is a carrier fluidized bed type in which the carrier 15 is added at an addition amount of about 50%, and an aeration pipe 17 is installed as an oxygen supply means. Preferred operating conditions for the second biological treatment tank 12 are as described above. The second biological treatment tank 12 is connected to the second floating separation tank 22 via the second treatment liquid pipe 34.

第2の浮上分離槽22は、凝集剤添加手段(図示せず)を有する凝集浮上槽である。凝集剤としては、上述した有機系のポリマーを用いることが好ましく、添加量は1〜50mg/L程度とすることが好ましいが、これに限定されず、無機凝集剤を使用してもよい。   The second flotation separation tank 22 is a flocculation levitation tank having a flocculant addition means (not shown). As the flocculant, the organic polymer described above is preferably used, and the addition amount is preferably about 1 to 50 mg / L, but is not limited thereto, and an inorganic flocculant may be used.

第2の浮上分離槽22から排出される固形分(凝集分離汚泥)は、凝集分離汚泥管43を介して排出する。本実施態様では、凝集分離汚泥管43は、分離汚泥管41と接続され、凝集分離汚泥が消化槽14で消化されるように構成されている。凝集分離汚泥は、凝集剤を含むが、その発生量は、第1の浮上分離槽21から排出される分離汚泥の量の5〜30%と少なく、凝集分離汚泥を消化槽14に供給しても凝集剤が消化を阻害するおそれは少なく、凝集分離汚泥を減容することで、生物処理装置1全体から排出される余剰汚泥量を低減できる。   The solid content (aggregated separation sludge) discharged from the second flotation separation tank 22 is discharged through the aggregation separation sludge pipe 43. In the present embodiment, the flocculated separation sludge pipe 43 is connected to the separated sludge pipe 41 so that the flocculated separation sludge is digested in the digestion tank 14. The agglomerated separation sludge contains a flocculant, but the amount generated is as small as 5 to 30% of the amount of the separated sludge discharged from the first floating separation tank 21, and the agglomerated separation sludge is supplied to the digestion tank 14. However, the coagulant is less likely to inhibit digestion, and the amount of excess sludge discharged from the entire biological treatment apparatus 1 can be reduced by reducing the volume of the coagulated and separated sludge.

第2の浮上分離槽22で凝集分離汚泥と分離された液分は処理水として取り出すが、回収水等として再利用する場合は、高度処理を行う。図2は、本発明の第2実施態様に係る生物処理装置2の模式図である。生物処理装置2では、第2の固液分離手段を凝集沈殿池22Aと砂濾過装置22Bとを含む高度処理手段として構成している。凝集沈殿池22Aと砂濾過装置22Bとは接続管22Cで接続し、凝集沈殿した液を砂濾過によってさらに清澄化する。   The liquid separated from the coagulation / separation sludge in the second flotation separation tank 22 is taken out as treated water. However, when it is reused as recovered water or the like, advanced treatment is performed. FIG. 2 is a schematic diagram of the biological treatment apparatus 2 according to the second embodiment of the present invention. In the biological treatment apparatus 2, the second solid-liquid separation means is configured as an advanced treatment means including a coagulation sedimentation basin 22A and a sand filtration device 22B. Coagulation sedimentation basin 22A and sand filtration device 22B are connected by connecting pipe 22C, and the coagulated and settled liquid is further clarified by sand filtration.

また、生物処理装置2では、消化槽14の後段に消化汚泥濃縮機24を設け、消化汚泥管44を介して消化槽14から排出される消化汚泥を消化汚泥濃縮機24に供給する。消化汚泥濃縮機24で濃縮された固形分は濃縮消化汚泥管45から排出する。濃縮汚泥管45は、消化槽14に接続して濃縮した消化汚泥をさらに消化し、一部は余剰汚泥として排出すればよい。液分(消化脱離液)は、消化脱離液管46から取り出す。消化脱離液管46は、濃縮濾液管42と接続することで、消化脱離液管46と濃縮濾液管42とを脱離液返送路として、消化脱離液を第1の生物処理槽11で生物処理するように構成している。   In the biological treatment apparatus 2, a digested sludge concentrator 24 is provided at the subsequent stage of the digester tank 14, and digested sludge discharged from the digester tank 14 is supplied to the digested sludge concentrator 24 through the digested sludge pipe 44. The solid content concentrated by the digested sludge concentrator 24 is discharged from the concentrated digested sludge tube 45. The concentrated sludge pipe 45 is further connected to the digestion tank 14 to further digest the concentrated sludge and a part thereof may be discharged as excess sludge. The liquid (digestion / detachment liquid) is taken out from the digestion / detachment liquid tube 46. The digestion / desorption liquid pipe 46 is connected to the concentrated filtrate pipe 42, and the digestion / desorption liquid is used as the first biological treatment tank 11 with the digestion / desorption liquid pipe 46 and the concentrated filtrate pipe 42 as the desorption liquid return path. It is configured to be biologically processed.

このように構成すれば、消化槽14での生物処理残渣であって無機成分等が濃縮された汚泥(余剰汚泥)を消化槽14から排出し、濃縮することで含水率を低下させることができるため、生物処理装置2全体から排出される余剰汚泥量をさらに低減できる。   If comprised in this way, the moisture content can be reduced by discharging | emitting the sludge (excess sludge) which was the biological treatment residue in the digestion tank 14, and the inorganic component etc. were concentrated from the digestion tank 14, and concentrating. Therefore, the amount of excess sludge discharged from the entire biological treatment apparatus 2 can be further reduced.

図3は、本発明の第3実施態様に係る生物処理装置3の模式図である。生物処理装置3では、分離汚泥管41および凝集分離汚泥管43を汚泥供給管48に接続し、汚泥供給管48を遠心濃縮機23に接続する。第1の浮上分離槽21から排出される分離汚泥と第2の浮上分離槽22から排出される凝集分離汚泥を遠心濃縮機23で濃縮する。遠心濃縮機23で濃縮された濃縮汚泥は、濃縮分離汚泥管47を介して消化槽14に供給して減容化する。   FIG. 3 is a schematic view of the biological treatment apparatus 3 according to the third embodiment of the present invention. In the biological treatment apparatus 3, the separated sludge pipe 41 and the aggregated separated sludge pipe 43 are connected to the sludge supply pipe 48, and the sludge supply pipe 48 is connected to the centrifugal concentrator 23. The separated sludge discharged from the first flotation separation tank 21 and the agglomerated separation sludge discharged from the second flotation separation tank 22 are concentrated by the centrifugal concentrator 23. The concentrated sludge concentrated by the centrifugal concentrator 23 is supplied to the digestion tank 14 through the concentrated separation sludge pipe 47 to reduce the volume.

消化槽14からは適宜、余剰汚泥を排出するが、本実施態様では、消化槽14から消化汚泥を引き抜く消化汚泥管44を汚泥供給管48に接続することで消化汚泥を遠心濃縮機23で濃縮する。余剰汚泥は、遠心濃縮機23に取り付けた余剰汚泥管45から排出する。遠心濃縮機23から排出される濃縮濾液は消化脱離液管46を介して第1の生物処理槽11に送る(図示せず)。   Excess sludge is appropriately discharged from the digestion tank 14. In this embodiment, the digested sludge is concentrated by the centrifugal concentrator 23 by connecting the digested sludge pipe 44 that draws the digested sludge from the digestion tank 14 to the sludge supply pipe 48. To do. Excess sludge is discharged from an excess sludge pipe 45 attached to the centrifugal concentrator 23. The concentrated filtrate discharged from the centrifugal concentrator 23 is sent to the first biological treatment tank 11 through the digestion / desorption liquid tube 46 (not shown).

生物処理装置3における汚泥減容処理は、バッチ処理で行えばよい。生物処理装置3では1台の濃縮機により、消化槽14に供給する分離汚泥の濃度を高くし、かつ、消化槽14から排出される余剰汚泥の含水率を低下させることができる。このため、生物処理装置2に比べて簡易な装置で装置全体から発生する余剰汚泥の量を低減できる。   What is necessary is just to perform the sludge volume reduction process in the biological treatment apparatus 3 by a batch process. In the biological treatment apparatus 3, the concentration of the separated sludge supplied to the digestion tank 14 can be increased and the water content of the excess sludge discharged from the digestion tank 14 can be reduced by a single concentrator. For this reason, compared with the biological treatment apparatus 2, the quantity of the excess sludge generated from the whole apparatus with a simple apparatus can be reduced.

本発明では、第1の生物処理槽において高い負荷をかけることで処理槽あたりのBOD除去効率(BOD除去量/処理槽容積m/日)を高める。第1の生物処理槽を高負荷で運転すると、細菌の自己消化が起こらないため余剰汚泥の発生量は多くなるが、フロック化しない分散性の細菌が増殖する。このような分散性の細菌は、ポリマー状の物質で包まれていないため濃縮しやすく高温消化により容易に減容化できる。本発明では、凝集剤を用いずに分散性の細菌を液分から分離し、好ましくは濃縮して高温消化により減容化することで、高いBOD除去効率を得つつ、余剰汚泥の減容化を可能とする。 In the present invention, the BOD removal efficiency per treatment tank (BOD removal amount / treatment tank volume m 3 / day) is increased by applying a high load in the first biological treatment tank. When the first biological treatment tank is operated at a high load, since bacteria do not self-digest, the amount of excess sludge generated increases, but dispersible bacteria that do not flock grow. Such dispersible bacteria are not encapsulated in a polymer substance, so that they can be concentrated easily and can be easily reduced in volume by high-temperature digestion. In the present invention, dispersible bacteria are separated from the liquid without using a flocculant, and preferably concentrated to reduce the volume by high-temperature digestion, thereby reducing excess sludge while obtaining high BOD removal efficiency. Make it possible.

また、第2の生物処理槽に供給する液分は、第1の固液分離手段により固形分と分離されているため、第2の生物処理槽でのBOD分解負荷が低い。このため、第2の生物処理槽では、BOD以外の有機物、例えば難分解性有機物と呼ばれる界面活性剤のような有機物を分解する微生物が増殖しやすくなり、第2の生物処理槽で処理された処理水の水質が向上する。さらに、第2の生物処理槽に担体を添加することで、増殖速度が遅い原生動物等も第2の生物処理槽に保持できるため、原生動物の捕食作用による汚泥減容も図ることができる。   Moreover, since the liquid component supplied to the second biological treatment tank is separated from the solid content by the first solid-liquid separation means, the BOD decomposition load in the second biological treatment tank is low. For this reason, in the second biological treatment tank, microorganisms that decompose organic substances other than BOD, for example, organic substances such as surfactants called hardly decomposable organic substances, are likely to grow and were treated in the second biological treatment tank. The quality of treated water is improved. Furthermore, by adding a carrier to the second biological treatment tank, a protozoan or the like having a slow growth rate can be held in the second biological treatment tank, and therefore, sludge volume reduction due to the predatory action of the protozoa can be achieved.

〈実施例〉
以下、実施例に基づき本発明をさらに詳しく説明する。実施例で用いる有機物含有水は流量24m/日、BOD濃度2,000mg/L、全窒素濃度300mg/L、全リン濃度25mg/L、導電率50mg/m、pH8、温度25℃、不溶解性懸濁物(SS)濃度1mg/L未満であった。
<Example>
Hereinafter, the present invention will be described in more detail based on examples. The organic substance-containing water used in the examples has a flow rate of 24 m 3 / day, BOD concentration of 2,000 mg / L, total nitrogen concentration of 300 mg / L, total phosphorus concentration of 25 mg / L, conductivity of 50 mg / m, pH of 8, temperature of 25 ° C., insoluble Concentration (SS) concentration was less than 1 mg / L.

実施例では、図1に示す処理装置1を模した実験装置を用いた。第1の生物処理槽および第2の生物処理槽は、いずれもポリウレタン製の角型担体を容積比40%で添加した担体添加流動床式である。その他の装置の仕様および処理条件を以下に記載する。   In the example, an experimental apparatus simulating the processing apparatus 1 shown in FIG. 1 was used. Each of the first biological treatment tank and the second biological treatment tank is a carrier-added fluidized bed type in which a polyurethane square carrier is added at a volume ratio of 40%. The specifications and processing conditions of other devices are described below.

[第1の生物処理槽]
容積 ;4m
MLSS濃度 ;5,000mg/L
BOD槽負荷 ;12kg−BOD/m/日
HRT ;4時間
[第2の生物処理槽]
容積 ;9m
MLSS濃度 ;2,500mg/L
BOD槽負荷 ;1kg−BOD/m/日
HRT ;9時間
[第1の生物処理槽および第2の生物処理槽を合せた生物処理槽全体]
処理水量 ;24m/日
[First biological treatment tank]
Volume; 4m 3
MLSS concentration: 5,000 mg / L
BOD tank load; 12 kg-BOD / m 3 / day HRT; 4 hours [second biological treatment tank]
Volume; 9m 3
MLSS concentration; 2500 mg / L
BOD tank load; 1 kg-BOD / m 3 / day HRT; 9 hours [the entire biological treatment tank including the first biological treatment tank and the second biological treatment tank]
Treated water volume: 24 m 3 / day

減容手段としては、高温好気消化槽を用い、遠心濃縮機で第1の浮上分離槽および第2の浮上分離槽から送られた分離汚泥を濃縮して消化槽に供給した。消化槽に供給する濃縮汚泥は、オゾン反応槽でオゾン処理して可溶化した。可溶化処理および減容手段での減容処理の条件は以下である。
[消化槽]
容積 ;4.8m
[オゾン反応槽]
容積 ;4.8m
オゾン供給量 ;0.6kg/日
As a volume reduction means, a high-temperature aerobic digester was used, and the separated sludge sent from the first flotation separation tank and the second flotation separation tank was concentrated by a centrifugal concentrator and supplied to the digestion tank. The concentrated sludge supplied to the digestion tank was solubilized by ozone treatment in an ozone reaction tank. The conditions for the solubilization treatment and the volume reduction treatment by the volume reduction means are as follows.
[Digestion tank]
Volume; 4.8m 3
[Ozone reaction tank]
Volume; 4.8m 3
Ozone supply amount: 0.6 kg / day

第1の浮上分離槽および第2の浮上分離槽では加圧浮上を行うこととした。詳細を以下に記載する。
[第1の浮上分離槽]
容積 ;0.5m
凝集剤 ;添加なし
[第1の浮上分離槽]
容積 ;0.5m
凝集剤 ;あり
In the first levitation separation tank and the second levitation separation tank, pressure levitation was performed. Details are described below.
[First floating separation tank]
Volume: 0.5m 3
Flocculant; no addition [first flotation separation tank]
Volume: 0.5m 3
Flocculant ; Yes

実施例において、第1の生物処理槽および第2の生物処理槽それぞれから発生した汚泥量は1日あたりそれぞれ12kg、0.9kgであり、生物処理装置全体から発生した余剰汚泥量は1日あたり1kgであった。また、第1の生物処理槽から流出し、第1の浮上分離槽で固液分離された分離液の水質(TOC濃度)は150mg/L、および第2の生物処理槽から流出し、第2の浮上分離槽で固液分離された処理水の水質(TOC濃度)は5mg/Lとなった。   In Examples, the sludge amount generated from each of the first biological treatment tank and the second biological treatment tank is 12 kg and 0.9 kg, respectively, and the surplus sludge amount generated from the whole biological treatment apparatus is per day. 1 kg. Further, the water quality (TOC concentration) of the separated liquid that has flowed out of the first biological treatment tank and solid-liquid separated in the first floating separation tank is 150 mg / L, and flows out of the second biological treatment tank, The quality of the treated water (TOC concentration) separated into solid and liquid in the floating separation tank was 5 mg / L.

〈比較例1〉
比較例1では、図4に示す生物処理装置4を模した実験装置を用いた。生物処理装置4は原水管31から分岐したバイパス管30が第2の生物処理槽12と接続され、原水の一部が第1の生物処理槽11を迂回して第2の生物処理槽12に添加されるようになっている。また、第1の固液分離手段21´および第2の固液分離手段22´´は、凝集沈殿池であり、凝集剤貯槽20に貯留された凝集剤(ポリ塩化アルミニウム、以下「PAC」)を添加した。詳細を以下に記載する。
<Comparative example 1>
In Comparative Example 1, an experimental apparatus simulating the biological treatment apparatus 4 shown in FIG. 4 was used. In the biological treatment apparatus 4, the bypass pipe 30 branched from the raw water pipe 31 is connected to the second biological treatment tank 12, and a part of the raw water bypasses the first biological treatment tank 11 and becomes the second biological treatment tank 12. It is to be added. Further, the first solid-liquid separation means 21 ′ and the second solid-liquid separation means 22 ″ are coagulation sedimentation basins, and a coagulant (polyaluminum chloride, hereinafter “PAC”) stored in the coagulant storage tank 20. Was added. Details are described below.

[第2の生物処理装置]
原水分注量 ;5m/日
[第1の固液分離手段]
容積 ;0.5m
凝集剤(PAC)添加量 ;500mg/L
[第2の固液分離手段]
容積 ;0.5m
凝集剤(PAC)添加量 ;100mg/L
[Second biological treatment apparatus]
Raw water injection amount: 5 m 3 / day [first solid-liquid separation means]
Volume: 0.5m 3
Flocculant (PAC) addition amount: 500 mg / L
[Second solid-liquid separation means]
Volume: 0.5m 3
Flocculant (PAC) addition amount: 100 mg / L

比較例1では、原水をバイパスさせたことと、凝集剤を用いて第1の処理液および第2の処理液を固液分離したこと以外は実施例と同じ条件で試験を行った。その結果、第1の生物処理槽および第2の生物処理槽それぞれから発生した汚泥量はそれぞれ1日あたり9.8kg、3.1kgであり、生物処理装置全体から発生した余剰汚泥量は1日あたり2.3kgであった。また、第1の生物処理槽から流出し、第1の固液分離手段で固液分離された分離液の水質(TOC濃度)は120mg/L、および第2の生物処理槽から流出し、第2の固液分離手段で固液分離された処理水の水質(TOC濃度)は20mg/Lとなった。   In Comparative Example 1, the test was performed under the same conditions as in Examples except that raw water was bypassed and the first treatment liquid and the second treatment liquid were solid-liquid separated using a flocculant. As a result, the amount of sludge generated from the first biological treatment tank and the second biological treatment tank is 9.8 kg and 3.1 kg, respectively, and the amount of excess sludge generated from the entire biological treatment apparatus is 1 day. 2.3 kg per unit. In addition, the water quality (TOC concentration) of the separated liquid that has flowed out of the first biological treatment tank and solid-liquid separated by the first solid-liquid separation means is 120 mg / L, and has flowed out of the second biological treatment tank, The water quality (TOC concentration) of the treated water that was solid-liquid separated by the solid-liquid separation means 2 was 20 mg / L.

表1に実施例および比較例1の結果を示す。

Figure 0005194484
Table 1 shows the results of Examples and Comparative Example 1.
Figure 0005194484

表1に示すように、本発明によれば比較例に比べて処理装置全体から発生する汚泥発生量が少なく、処理水水質も良好となることが示された。   As shown in Table 1, according to the present invention, it was shown that the amount of sludge generated from the entire treatment apparatus is small and the quality of the treated water is good according to the present invention.

〈比較例2〉
比較例2として、実施例において生物処理槽を1段とした実験を行った。図5に比較例2で用いた実験装置の模式図を示し、装置仕様および処理条件を以下に記載する。
[生物処理槽]
容積 ;32m
MLSS濃度 ;4,000mg/L
BOD槽泥負荷 ;1.5kg−BOD/m/日
HRT ;32時間
<Comparative example 2>
As Comparative Example 2, an experiment was conducted in which one biological treatment tank was used in the example. FIG. 5 shows a schematic diagram of the experimental apparatus used in Comparative Example 2, and the apparatus specifications and processing conditions are described below.
[Biological treatment tank]
Volume; 32m 3
MLSS concentration: 4,000 mg / L
BOD tank mud load; 1.5 kg-BOD / m 3 / day HRT; 32 hours

比較例2では、固液分離手段も1台にした。その他の条件は、実施例と同じにした結果、処理装置5全体から発生した余剰汚泥量は生物処理槽から発生した余剰汚泥量は1日あたり9.6kg、処理装置5全体の余剰汚泥発生量は1.12kg/日であり、処理水質(TOC濃度)は30mg/Lであった。   In Comparative Example 2, the solid-liquid separation means is also one. The other conditions were the same as in the example. As a result, the amount of excess sludge generated from the entire treatment apparatus 5 was 9.6 kg of excess sludge generated from the biological treatment tank per day, and the amount of excess sludge generated in the entire treatment apparatus 5 was Was 1.12 kg / day and the treated water quality (TOC concentration) was 30 mg / L.

以上のように、本発明によれば高い有機物負荷で生物処理槽の容積を小型化しつつ余剰汚泥の発生量を低減し、かつ、良好な水質の処理水を得ることができた。   As described above, according to the present invention, it was possible to reduce the generation amount of excess sludge while reducing the volume of the biological treatment tank with a high organic load, and to obtain treated water with good water quality.

本発明は、有機物含有水の処理に用いることができる。   The present invention can be used for the treatment of organic substance-containing water.

本発明の第1実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 3rd Embodiment of this invention. 比較例1で用いた生物処理装置の模式図。The schematic diagram of the biological treatment apparatus used in the comparative example 1. FIG. 比較例2で用いた生物処理装置の模式図。The schematic diagram of the biological treatment apparatus used in the comparative example 2. FIG.

符号の説明Explanation of symbols

1〜5 生物処理装置
11 第1の生物処理装置
12 第2の生物処理装置
13 オゾン反応槽
14 消化槽
15 担体
21 第1の固液分離手段
22 第2の固液分離手段
23 遠心濃縮機
24 消化汚泥濃縮機
DESCRIPTION OF SYMBOLS 1-5 Biological treatment apparatus 11 1st biological treatment apparatus 12 2nd biological treatment apparatus 13 Ozone reaction tank 14 Digestion tank 15 Carrier 21 1st solid-liquid separation means 22 2nd solid-liquid separation means 23 Centrifugal concentrator 24 Digested sludge concentrator

Claims (8)

有機物を含む有機物含有水が導入され好気的処理を行う第1の生物処理槽と、
前記第1の生物処理槽から流出する第1の処理液が導入され、無機凝集剤を用いることなく前記第1の処理液を浮上分離槽で分離液と分離汚泥とに固液分離する固液分離手段と、前記分離液が導入され好気的処理を行う第2の生物処理槽と、
前記分離汚泥を生物学的に減容する減容手段と、を含み、
前記減容手段は、高温好気性消化槽から流出する消化液が導入され前記消化液を濃縮して濃縮汚泥と脱離液とを排出する濃縮機と、前記濃縮汚泥を前記高温好気性消化槽に返送する濃縮汚泥返送路と、前記脱離液を前記第1の生物処理槽に返送する脱離液返送路と、をさらに含む有機物含有水の生物処理装置。
A first biological treatment tank in which organic matter-containing water containing organic matter is introduced to perform aerobic treatment;
A first liquid that flows out of the first biological treatment tank is introduced, and the first treatment liquid is separated into a separated liquid and separated sludge in a floating separation tank without using an inorganic flocculant. Separation means, a second biological treatment tank in which the separation liquid is introduced and performs aerobic treatment,
See containing and a volume reduction means for compacting said separated sludge biologically,
The volume reducing means includes a concentrator that introduces digestion liquid flowing out from the high-temperature aerobic digestion tank, concentrates the digestion liquid and discharges the concentrated sludge and desorption liquid, and the concentrated sludge into the high-temperature aerobic digestion tank. A biological treatment apparatus for organic matter-containing water, further comprising: a concentrated sludge return path for returning to the water and a desorbed liquid return path for returning the desorbed liquid to the first biological treatment tank .
前記第2の生物処理槽は、担体流動床式である請求項1に記載の有機物含有水の生物処理装置。 The biological treatment apparatus for organic matter-containing water according to claim 1, wherein the second biological treatment tank is a carrier fluidized bed type. 前記第2の生物処理槽は、膜式活性汚泥方式である請求項1に記載の有機物含有水の生物処理装置。 The biological treatment apparatus for organic matter-containing water according to claim 1, wherein the second biological treatment tank is a membrane activated sludge system. 前記第2生物処理槽から流出する第2の処理液を高度処理する高度処理手段をさらに含む請求項1からのいずれかに記載の有機物含有水の生物処理装置。 The biological treatment apparatus for organic matter-containing water according to any one of claims 1 to 3 , further comprising advanced treatment means for advanced treatment of the second treatment liquid flowing out of the second biological treatment tank. 有機物を含む有機物含有水を第1の生物処理槽で好気的に処理し、
前記第1の生物処理槽から流出する第1の処理液を、無機凝集剤を用いることなく浮上分離槽で分離液と分離汚泥とに固液分離し、
前記分離液を第2の生物処理槽で好気的に処理し、
高温好気性消化槽から流出する消化液を導入して濃縮し、濃縮汚泥と脱離液とを排出し、
前記濃縮汚泥を前記高温好気性消化槽に返送し、
前記脱離液を前記第1の生物処理槽に返送して、前記分離汚泥を生物学的に減容する有機物含有水の生物処理方法。
Organically containing water containing organic matter is treated aerobically in the first biological treatment tank,
The first treatment liquid flowing out from the first biological treatment tank is solid-liquid separated into a separation liquid and a separated sludge in a floating separation tank without using an inorganic flocculant,
Aerobically treating the separation liquid in a second biological treatment tank;
Introduce and concentrate the digested liquid flowing out of the high temperature aerobic digester, discharge the concentrated sludge and desorbed liquid,
Return the concentrated sludge to the high-temperature aerobic digester,
A biological treatment method for organic matter-containing water, wherein the desorbed liquid is returned to the first biological treatment tank to biologically reduce the separated sludge.
前記第2の生物処理槽は、担体流動床式である請求項に記載の有機物含有水の生物処理方法。 The biological treatment method for organic substance-containing water according to claim 5 , wherein the second biological treatment tank is a carrier fluidized bed type. 前記第2の生物処理槽は、膜式活性汚泥方式である請求項に記載の有機物含有水の生物処理方法。 The biological treatment method for organic matter-containing water according to claim 5 , wherein the second biological treatment tank is a membrane activated sludge system. 前記第1の生物処理槽において、BOD成分容積負荷2kg−BOD/m/日以上の高負荷での好気的処理を行う請求項からのいずれかに記載の有機物含有水の生物処理方法。
In the said 1st biological treatment tank, the biological treatment of the organic substance containing water in any one of Claim 5 to 7 which performs the aerobic treatment by the high load of BOD component volumetric load 2kg-BOD / m < 3 > / day or more. Method.
JP2007046040A 2007-02-26 2007-02-26 Biological treatment apparatus and biological treatment method for water containing organic matter Expired - Fee Related JP5194484B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007046040A JP5194484B2 (en) 2007-02-26 2007-02-26 Biological treatment apparatus and biological treatment method for water containing organic matter
TW97103463A TW200840803A (en) 2007-02-26 2008-01-30 Biological treatment processor and method for organic matter-containing water
KR20080016794A KR20080079213A (en) 2007-02-26 2008-02-25 Biological treatment apparatus and biological treatment process of aqueous organic wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046040A JP5194484B2 (en) 2007-02-26 2007-02-26 Biological treatment apparatus and biological treatment method for water containing organic matter

Publications (2)

Publication Number Publication Date
JP2008207094A JP2008207094A (en) 2008-09-11
JP5194484B2 true JP5194484B2 (en) 2013-05-08

Family

ID=39783866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046040A Expired - Fee Related JP5194484B2 (en) 2007-02-26 2007-02-26 Biological treatment apparatus and biological treatment method for water containing organic matter

Country Status (3)

Country Link
JP (1) JP5194484B2 (en)
KR (1) KR20080079213A (en)
TW (1) TW200840803A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092810A (en) * 2009-10-27 2011-05-12 Asahi Kasei Engineering Kk Apparatus for producing organic sludge, method for producing organic sludge, system for manufacturing oils and fats, and method for manufacturing oils and fats
CN103613245B (en) * 2013-12-02 2015-02-25 安徽省绿巨人环境技术有限公司 Treatment process for waste water in neuropeptide product production
JP6934358B2 (en) * 2017-08-18 2021-09-15 水ing株式会社 Organic wastewater treatment equipment and treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803759C3 (en) * 1978-01-28 1983-01-13 Böhnke, Botho, Prof. Dr.-Ing. Two-stage system for the treatment of wastewater according to the activated sludge process
JP3100885B2 (en) * 1995-09-14 2000-10-23 神鋼パンテツク株式会社 Activated sludge treatment method and activated sludge treatment apparatus therefor
JP3258600B2 (en) * 1997-06-30 2002-02-18 神鋼パンテツク株式会社 Method and apparatus for treating organic-containing water
JP2002233890A (en) * 2001-02-13 2002-08-20 Mitsubishi Kakoki Kaisha Ltd Oil-containing wastewater treatment system
JP2004130275A (en) * 2002-10-15 2004-04-30 Fuji Clean Kogyo Kk Sewage treatment tank, garbage waste water treatment system, and sewage treatment method
JP2004230377A (en) * 2003-01-09 2004-08-19 Asahi Kasei Chemicals Corp Method for treating organic waste water
JP2006000828A (en) * 2004-06-21 2006-01-05 Japan Organo Co Ltd Organic wastewater treatment method
JP4591678B2 (en) * 2004-12-14 2010-12-01 栗田工業株式会社 Biological treatment equipment

Also Published As

Publication number Publication date
TW200840803A (en) 2008-10-16
JP2008207094A (en) 2008-09-11
KR20080079213A (en) 2008-08-29

Similar Documents

Publication Publication Date Title
JP2008284427A (en) Apparatus and method for treating waste water
WO2012133386A1 (en) Wastewater treatment method and wastewater treatment system
JP2019025438A (en) Organic waste water treatment apparatus and organic wastewater treatment method
JP3619950B2 (en) Sewage treatment apparatus and sewage treatment method
CN111559836A (en) Sewage treatment system and process based on carbon capture energy recovery and for denitrification
JP5194484B2 (en) Biological treatment apparatus and biological treatment method for water containing organic matter
JP2007050387A (en) Apparatus for treating organic waste liquor
JP3653427B2 (en) Tofu drainage treatment method and equipment
KR100479649B1 (en) The procces and apparatus of Livestock wastewater treatment.
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
KR100859594B1 (en) Advanced wastewater treatment method with the biosolids reduction and the recovery of rbdcod
JP2001009498A (en) Treatment of waste water and treating device therefor
JP3907867B2 (en) Wastewater treatment system
JP3797554B2 (en) Organic wastewater treatment method and equipment
JP6899104B2 (en) Wastewater treatment method and wastewater treatment equipment
KR20010007939A (en) Advanced Treatment Process of Domestic Wastewater by Biological and Chemical
KR102208641B1 (en) Treatment system of waste water using oxidation preprocess
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2002316191A (en) Method and apparatus for treating organic foul water
KR20190142521A (en) The Method for Treatment of Dairy Manure
JP7282920B2 (en) Wastewater treatment system and wastewater treatment method
JP7398601B1 (en) Organic wastewater treatment equipment and organic wastewater treatment method
JP2006122861A (en) Apparatus for treating organic waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees