JP2004230377A - Method for treating organic waste water - Google Patents

Method for treating organic waste water Download PDF

Info

Publication number
JP2004230377A
JP2004230377A JP2003428166A JP2003428166A JP2004230377A JP 2004230377 A JP2004230377 A JP 2004230377A JP 2003428166 A JP2003428166 A JP 2003428166A JP 2003428166 A JP2003428166 A JP 2003428166A JP 2004230377 A JP2004230377 A JP 2004230377A
Authority
JP
Japan
Prior art keywords
tank
membrane
liquid
organic wastewater
solubilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428166A
Other languages
Japanese (ja)
Inventor
Takayoshi Koseki
貴義 小関
Tsugio Konno
次雄 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003428166A priority Critical patent/JP2004230377A/en
Publication of JP2004230377A publication Critical patent/JP2004230377A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for treating organic waste water, which can remarkably reduce the amount of surplus sludge generated during a biological treatment of the organic waste water. <P>SOLUTION: The organic waste water is subjected to the biological treatment in a biological reaction tank, and the waste water equal to or above one and less than two times the generated surplus sludge is transferred to a solubilization tank. At least a part of liquid in the solubilization tank is separated into separated liquid and concentrated liquid by a solid-liquid separator, and the separated liquid and the concentrated liquid are returned to the biological treatment tank and the solubilization treatment tank, respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、有機性廃水を生物反応により処理する方法に関する。   The present invention relates to a method for treating organic wastewater by a biological reaction.

有機性廃水を処理する方法としては、活性汚泥法と呼ばれる好気性生物処理法が、最も一般的に実施されている。この方法は、例えば図2に示すように、有機性廃水貯留槽1から生物反応槽3に導入された下水などの有機性廃水が、生物反応槽3において好気性条件にて、微生物による酸化分解反応である生物酸化によって、二酸化炭素もしくは水などの無機物にまで分解される方法である。そして、生物反応槽3にて処理された有機性廃水は、固液分離槽5にて処理水301と汚泥302に固液分離され、汚泥302の一部は微生物源として生物反応槽3に返送されるとともに、残りの汚泥は余剰汚泥303として廃棄等の処理をされているのが一般的である。   As a method for treating organic wastewater, an aerobic biological treatment method called an activated sludge method is most commonly performed. In this method, as shown in FIG. 2, for example, organic wastewater such as sewage introduced from an organic wastewater storage tank 1 into a biological reaction tank 3 is oxidatively decomposed by microorganisms under aerobic conditions in the biological reaction tank 3. This is a method of decomposing to inorganic substances such as carbon dioxide or water by biological oxidation as a reaction. The organic wastewater treated in the biological reaction tank 3 is solid-liquid separated into treated water 301 and sludge 302 in the solid-liquid separation tank 5, and a part of the sludge 302 is returned to the biological reaction tank 3 as a microorganism source. At the same time, the remaining sludge is generally disposed of as excess sludge 303 by disposal or the like.

このため、できるだけ余剰汚泥を排出しない処理方法として、近年、余剰汚泥を可溶化処理槽で可溶化して、可溶化した汚泥を生物反応槽にもどし、再び生物処理する方法が提案されている。例えば、汚泥を高温好気状態の可溶化処理槽で好熱菌により可溶化し、その液を生物反応槽に戻すことで、活性汚泥法において、余剰汚泥を減容化する技術が開示されている(例えば特許文献1)。
また、可溶化処理槽部分に投入する汚泥を濃縮機などを利用して、水分率99%以下にすることで可溶化処理槽の大きさを小さくできる技術が開示されている(例えば特許文献2)。
Therefore, as a treatment method that does not discharge excess sludge as much as possible, in recent years, a method has been proposed in which excess sludge is solubilized in a solubilization treatment tank, the solubilized sludge is returned to the biological reaction tank, and biological treatment is performed again. For example, a technique for reducing the volume of excess sludge in the activated sludge method by solubilizing sludge with a thermophilic bacterium in a solubilization treatment tank in a high-temperature aerobic state and returning the solution to a biological reaction tank has been disclosed. (For example, Patent Document 1).
Further, there is disclosed a technology in which the size of the solubilization tank can be reduced by reducing the water content of the sludge to be supplied to the solubilization tank to 99% or less using a concentrator (for example, Patent Document 2). ).

さらに、可溶化後に固液分離装置を利用して、固体部分を再度可溶化処理することと曝気槽に可溶化処理により、有機物の好気性生物処理に寄与しない、活性のなくなった汚泥(以下この汚泥を不活性汚泥とする)を曝気槽に戻さないことにより処理水質の悪化を防止することができ、かつ効率よく有機性廃水を好気性生物処理する技術が開示されている(例えば特許文献3)。   Further, after the solubilization, the solid portion is again solubilized by using a solid-liquid separation device, and the solubilization process in the aeration tank is performed. By not returning sludge to inert sludge) to the aeration tank, deterioration of treated water quality can be prevented, and a technique for efficiently treating organic wastewater with an aerobic biological treatment is disclosed (for example, Patent Document 3). ).

しかし、特許文献1のような汚泥の可溶化方法では、完全に溶けない物質が生物反応槽で難分解性物質として蓄積されてくる。この蓄積物は、可溶化した汚泥を生物反応槽に戻す方法において固液分離後の処理水の化学的酸素要求量いわゆるCODや透視度などの水質を悪化させる原因の1つとなっている。特許文献2では、可溶化処理反応槽を小さくするために、可溶化処理槽の前に濃縮機を入れている。その際脱水しやすくするために、高分子凝集剤などの凝集剤を入れることがあるが、そのような場合には高分子凝集剤自体が有機物であるために、生物処理をするための負荷が高くなることがあった。また、特許文献3の方法は、可溶化処理槽に移送する汚泥の量は、生物処理によって発生する汚泥の2〜2.5倍と多量の汚泥を可溶化処理に送っており、可溶化処理槽の規模が大きくなってしまっている。   However, in the method for solubilizing sludge as in Patent Document 1, substances that are not completely dissolved accumulate as hardly decomposable substances in a biological reaction tank. The accumulated matter is one of the causes of deteriorating the water quality such as the so-called COD and transparency of the treated water after solid-liquid separation in the method of returning the solubilized sludge to the biological reaction tank. In Patent Literature 2, a concentrator is placed in front of the solubilization tank in order to reduce the size of the solubilization reaction tank. At this time, a flocculant such as a polymer flocculant may be added to facilitate dehydration.In such a case, the load for biological treatment is increased because the polymer flocculant itself is an organic substance. It could be high. Further, in the method of Patent Document 3, the amount of sludge transferred to the solubilization treatment tank is 2 to 2.5 times as large as the sludge generated by biological treatment, and is sent to the solubilization treatment. The size of the tank has increased.

また、一般的に溶質を溶媒に溶かした液は、粘度が高くなるため、汚泥を可溶化した際にも、菌などが液にとけるので、液の粘度が上がり、膜での濾過には高粘度のために適さないと思われてきた。
特開平9−10791号公報 特開平11−235598号公報 特開2001−225090号公報
Also, in general, a liquid in which a solute is dissolved in a solvent has a high viscosity, so that when sludge is solubilized, bacteria and the like dissolve in the liquid. It has been considered unsuitable due to viscosity.
JP-A-9-10791 JP-A-11-235598 JP 2001-225090 A

本発明は、上記のような従来技術の問題点を解消し、有機性廃水の生物処理に伴って発生する余剰汚泥の発生量を顕著に減少させることが可能な新規な有機性廃水の処理方法を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and a novel method for treating organic wastewater that can significantly reduce the amount of excess sludge generated due to biological treatment of organic wastewater. The purpose is to provide.

本発明者は、有機性廃水の生物処理に伴って発生する汚泥を可溶化処理槽で可溶化し、可溶化液を固液分離装置により分離し、分離処理液を生物反応槽で生物処理し、濃縮液は、可溶化処理槽内で濃縮される方法により余剰汚泥発生量を顕著に減少することが可能であることを見出し、本発明を完成させた。   The inventor of the present invention solubilized sludge generated in the biological treatment of organic wastewater in a solubilization treatment tank, separated the solubilized liquid by a solid-liquid separator, and biologically treated the separated treatment liquid in a biological reaction tank. The present inventors have found that the amount of surplus sludge can be remarkably reduced by a method of concentrating a concentrated liquid in a solubilization tank, and completed the present invention.

すなわち本発明は、下記のとおりである。
1)有機性廃水を生物反応槽にて生物処理し、発生する余剰汚泥分の1倍以上2倍未満を可溶化処理槽に移送し、該可溶化処理槽中の液の少なくとも一部を固液分離装置により分離処理液と濃縮液に分離し、分離処理液は前記生物反応槽に戻し、濃縮液は該可溶化処理槽に戻すことを特徴とする有機性廃水の処理方法。
2)生物反応槽に戻す分離処理液のBOD負荷が、有機性廃水のBOD負荷に対して10%以下であることを特徴とする1)記載の有機性廃水の処理方法。
3)可溶化処理槽での可溶化方法が中高温の微生物処理であることを特徴とする1)または2)の有機性廃水の処理方法。
4)濃縮液のプロテアーゼ活性が0.2[mUnit/ml]以上であることを特徴とする1)〜3)のいずれかに記載の有機性廃水の処理方法。
5)固液分離が中高温で行われることを特徴とする請求項1)〜4)のいずれかに記載の有機性廃水の処理方法。
6)固液分離装置が、遠心分離装置又は、膜濾過装置であることを特徴とする請求項1)〜5)のいずれかに記載の有機性廃水の処理方法。
7)膜濾過装置の濾過膜が、限外濾過膜であることを特徴とする6)に記載の有機性廃水の処理方法。
8)膜濾過装置の濾過膜が、精密濾過膜であることを特徴とする6)に記載の有機性廃水の処理方法。
9)膜濾過装置が、精密濾過膜と限外濾過膜を直列に組み合わせてなり、前者の透過液が後者の供給液となることを特徴とする6)に記載の有機性廃水の処理方法。
10)有機性廃水を生物反応槽にて生物処理し、発生する汚泥を可溶化処理槽で中高温の微生物処理により可溶化させるとともに、該可溶化処理槽の液中に浸漬した濾過膜により、濾過と濃縮を行い、膜濾過液を、前記生物反応槽に戻すことを特徴とする有機性廃水の処理方法。
That is, the present invention is as follows.
1) Biological treatment of the organic wastewater in a biological reaction tank, transferring 1 to 2 times the excess sludge generated to the solubilization tank, and solidifying at least a part of the liquid in the solubilization tank. A method for treating organic wastewater, comprising separating a separation treatment liquid and a concentrated liquid by a liquid separation device, returning the separated treatment liquid to the biological reaction tank, and returning the concentrated liquid to the solubilization treatment tank.
2) The method for treating organic wastewater according to 1), wherein the BOD load of the separation treatment liquid returned to the biological reaction tank is 10% or less of the BOD load of the organic wastewater.
3) The method for treating organic wastewater according to 1) or 2), wherein the solubilization method in the solubilization treatment tank is a medium-high temperature microorganism treatment.
4) The method for treating organic wastewater according to any one of 1) to 3), wherein the protease activity of the concentrate is 0.2 [mUnit / ml] or more.
(5) The method for treating organic wastewater according to any one of (1) to (4), wherein the solid-liquid separation is performed at an intermediate temperature.
(6) The method for treating organic wastewater according to any one of (1) to (5), wherein the solid-liquid separation device is a centrifugal separation device or a membrane filtration device.
7) The method for treating organic wastewater according to 6), wherein the filtration membrane of the membrane filtration device is an ultrafiltration membrane.
8) The method for treating organic wastewater according to 6), wherein the filtration membrane of the membrane filtration device is a microfiltration membrane.
9) The method for treating organic wastewater according to 6), wherein the membrane filtration device comprises a series combination of a microfiltration membrane and an ultrafiltration membrane, and the former permeate serves as the latter feed.
10) Organic wastewater is biologically treated in a biological reaction tank, and the generated sludge is solubilized by medium-high temperature microbial treatment in a solubilization tank, and a filtration membrane immersed in the liquid in the solubilization tank is used. A method for treating organic wastewater, comprising performing filtration and concentration, and returning a membrane filtrate to the biological reaction tank.

有機性廃水の生物処理に伴って発生する汚泥を可溶化処理槽で可溶化し、可溶化液を固液分離装置で分離し、分離処理液を生物反応槽で生物処理し、濃縮液は、可溶化処理槽内で濃縮する方法により余剰汚泥発生量を顕著に減少させることが可能である。
また、生物反応槽後の固液分離後の処理水の水質も放流可能な水質を保つことが可能である。
The sludge generated during the biological treatment of organic wastewater is solubilized in a solubilization tank, the solubilized liquid is separated by a solid-liquid separator, and the separated liquid is subjected to biological treatment in a biological reaction tank. The amount of excess sludge generated can be significantly reduced by a method of concentrating in the solubilization tank.
Further, the quality of the treated water after the solid-liquid separation after the biological reaction tank can be maintained at the quality that can be discharged.

以下、本発明について、特にその好ましい形態を中心に、具体的に説明する。
本発明に用いる、生物反応槽は、好気性生物処理あるいは嫌気性生物処理のいずれの方式も適用できる。一般的には、かかる有機性廃水を処理する方法としては、活性汚泥法と呼ばれる好気性生物処理法が、最も一般的に実施されている。
本発明における生物処理とは、下水などの廃水中の汚濁物質を生物学的作用により分解、安定化させる処理のことであり、好気性処理と嫌気性処理に区別される。一般的に有機物は、生物処理により酸素呼吸・硝酸呼吸・発酵過程などで分解されて、ガス化されるか、微生物の体内に取り込まれ、汚泥として除去される。窒素(硝化脱窒法)やりん(生物学的リン除去法)の除去処理もできる。このような生物処理を行なう槽を生物反応槽という。
Hereinafter, the present invention will be specifically described with a particular emphasis on its preferred embodiments.
The biological reaction tank used in the present invention can employ either aerobic biological treatment or anaerobic biological treatment. In general, as a method for treating such organic wastewater, an aerobic biological treatment method called an activated sludge method is most commonly performed.
The biological treatment in the present invention is a treatment for decomposing and stabilizing pollutants in wastewater such as sewage by a biological action, and is classified into an aerobic treatment and an anaerobic treatment. In general, organic substances are decomposed in the process of oxygen respiration, nitrate respiration, fermentation, and the like by biological treatment, and are gasified or taken into microorganisms and removed as sludge. It can also remove nitrogen (nitrification and denitrification) and phosphorus (biological phosphorus removal). A tank for performing such biological treatment is called a biological reaction tank.

可溶化とは、水不溶物であった有機物が微生物による生分解や熱処理による熱分解、或いは、オゾン等による酸化を受け、低分子化等の変化の結果、水にとける様になることである。可溶化処理槽で中高温の微生物処理とは、中高温の温度がかかっている状態で上記の可溶化が微生物による酵素反応で起こっていることを指す。温度として、好ましくは、40〜70℃である。
膜濾過装置とは、濾過膜と配管とポンプ等を組み合わせて濾過できるしくみにした装置を指す。ここでいうポンプとは、液を送るポンプや空気を送るエアーポンプも含まれる。
プロテアーゼ活性とは、下記のように測定した。
Solubilization means that water-insoluble organic matter undergoes biodegradation by microorganisms, thermal decomposition by heat treatment, or oxidation by ozone, etc., and becomes soluble in water as a result of changes such as low molecular weight. . The medium-high temperature microbial treatment in the solubilization tank means that the above-described solubilization is caused by an enzymatic reaction by the microorganism in a state where the medium-high temperature is applied. The temperature is preferably 40 to 70 ° C.
The membrane filtration device refers to a device configured to perform filtration by combining a filtration membrane, piping, a pump, and the like. The pump here includes a pump for sending a liquid and an air pump for sending air.
The protease activity was measured as described below.

1)試料の調整
0.1(mol/l)リン酸バッファーの調整は、リン酸水素2ナトリウム(和光純薬)14.196gを水に溶かす。これをA液とする。リン酸2水素カリウム(和光純薬)13.069gを水1L溶かす。これをB液とする。A:B=7:3の割合で混合し、pHを確認し、pH=7.2からずれていたら、1N塩酸あるいは、1N水酸化ナトリウムを使って、調整する。これをリン酸バッファー液とする。
指標となるプロテアーゼは、メーカー:シグマ。商品番号P5568のプロテーゼKを使用した。このプロテアーゼの活性は、344[UNIT/ml]であった。たんぱく質の基質として、アゾカゼイン(シグマ社:商品名A2765)を使用した。アゾカゼインは、1重量%液を使用した。反応停止剤として、トリクロロ酢酸(和光純薬)の10%溶液を使用した。
1) Preparation of Sample To adjust the 0.1 (mol / l) phosphate buffer, dissolve 14.196 g of disodium hydrogen phosphate (Wako Pure Chemical Industries) in water. This is designated as solution A. 13.069 g of potassium dihydrogen phosphate (Wako Pure Chemical) is dissolved in 1 L of water. This is called liquid B. A: B: Mix at a ratio of 7: 3, check the pH, and if the pH deviates from 7.2, adjust with 1N hydrochloric acid or 1N sodium hydroxide. This is used as a phosphate buffer solution.
Protease used as an indicator is a manufacturer: Sigma. Prosthesis K with product number P5568 was used. The activity of this protease was 344 [UNIT / ml]. Azocasein (Sigma: A2765) was used as a protein substrate. Azocasein used was a 1% by weight solution. As a reaction terminator, a 10% solution of trichloroacetic acid (Wako Pure Chemical Industries, Ltd.) was used.

2)検量線の作成
上記のプロテアーゼKを1万倍、10万倍、100万倍希釈したものを試験管に1mlづつ入れた。希釈には、リン酸バッファーを使用した。各々の試験管に1重量%溶液のアゾカゼインを2ml入れた。対照として、試験管にリン酸バッファーを1mlと1重量%溶液のアゾカゼインを2ml入れ、各々撹拌した。これらを60℃の恒温水槽で1時間加温した。1時間の加温後、恒温水槽から取り出し、反応停止剤を2ml添加し、反応停止とした。反応停止した液を撹拌した後、49km/sで10分間の遠心分離により、上澄み液を採取して、λ(波長)=376nmで吸光度を測定し、アゾカゼインを基質としたプロテアーゼKの活性の検量線とした。吸光度の測定には、島津製作所のUV−1200(商品名)を使用した。吸光度のゼロ点調整は、対照の上澄み液で行った。
2) Preparation of calibration curve The above-mentioned protease K was diluted 10,000 times, 100,000 times, and 1,000,000 times, and each 1 ml was put into a test tube. For dilution, a phosphate buffer was used. Each test tube contained 2 ml of a 1% by weight solution of azocasein. As a control, 1 ml of a phosphate buffer and 2 ml of a 1% by weight solution of azocasein were placed in a test tube, and each was stirred. These were heated in a constant temperature water bath at 60 ° C. for 1 hour. After heating for 1 hour, the reaction mixture was taken out of the thermostatic water bath, and 2 ml of a reaction terminator was added to stop the reaction. After the reaction-stopped solution was stirred, the supernatant was collected by centrifugation at 49 km / s 2 for 10 minutes, the absorbance was measured at λ (wavelength) = 376 nm, and the activity of protease K using azocasein as a substrate was measured. The calibration curve was used. For the measurement of absorbance, UV-1200 (trade name) manufactured by Shimadzu Corporation was used. Zero adjustment of the absorbance was performed with the control supernatant.

3)サンプルの測定
対象となる液を固液分離するため、98km/sの10分間の遠心分離にて、上澄みをとった。この上澄み液を試験管に1ml採取し、各々の試験管に1重量%溶液のアゾカゼインを2ml入れた。対照として、試験管にリン酸バッファーを1mlとアゾカゼインを2ml入れた。これらを60℃の恒温水槽で1時間加温した。1時間の加温後、恒温水槽から取り出し、反応停止剤を2ml添加し、反応停止とした。反応停止した液を撹拌した後、49km/sで10分間の遠心分離により、上澄み液を採取して、λ=376nmで吸光度を測定し、得られた吸光度から上記検量線に照らし合わせ、アゾカゼインを基質としたプロテアーゼKの活性とした。吸光度のゼロ点調整は、対照の上澄み液で行った。
以上は、Bioresource Technology (2002)157-164 Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion processsを参考にした。
3) Measurement of sample In order to separate the liquid to be subjected to solid-liquid separation, the supernatant was collected by centrifugation at 98 km / s 2 for 10 minutes. 1 ml of the supernatant was collected in a test tube, and each test tube was charged with 2 ml of a 1% by weight solution of azocasein. As a control, 1 ml of a phosphate buffer and 2 ml of azocasein were placed in a test tube. These were heated in a constant temperature water bath at 60 ° C. for 1 hour. After heating for 1 hour, the reaction mixture was taken out of the thermostatic water bath, and 2 ml of a reaction terminator was added to stop the reaction. After stirring the liquid after stopping the reaction, the supernatant was collected by centrifugation at 49 km / s 2 for 10 minutes, the absorbance was measured at λ = 376 nm, and the obtained absorbance was compared with the above calibration curve to obtain azocasein. Was used as the activity of protease K. Zero adjustment of the absorbance was performed with the control supernatant.
The above refers to Bioresource Technology (2002) 157-164 Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process.

本発明を、図1で説明する。有機性廃水貯留槽1から生物反応槽3に導入された下水などの有機性廃水が、生物反応槽3において好気性条件にて、微生物による酸化分解反応である生物酸化によって、二酸化炭素もしくは水などの無機物に分解される方法である。そして、生物反応槽3にて処理された廃水は、固液分離槽5にて処理水301と汚泥302に固液分離され、汚泥302の一部は微生物源として生物反応槽3に返送される。
生物反応槽に返送される汚泥の一部を可溶化処理槽8に送る。この可溶化反応、としては、任意の方法を採用することが できる。例えば、中高温での微生物による可溶化処理、オゾン処理による可溶化処理、酸処理による可溶化処理、アルカリ処理による可溶化処理、加熱処理による可溶化処理、高圧パルス放電処理、ボールミル、コロイドミル等のミルによる磨砕処理、これらを組み合わせた可溶化処理等を採用することができる。これらの処理は公知の処理装置を可溶化処理槽として用いることができる。
The present invention is illustrated in FIG. Organic wastewater such as sewage introduced from the organic wastewater storage tank 1 to the biological reaction tank 3 is subjected to biooxidation, which is an oxidative decomposition reaction of microorganisms, under aerobic conditions in the biological reaction tank 3, such as carbon dioxide or water. It is a method that is decomposed into inorganic substances. The wastewater treated in the biological reaction tank 3 is separated into treated water 301 and sludge 302 in the solid-liquid separation tank 5, and a part of the sludge 302 is returned to the biological reaction tank 3 as a microorganism source. .
A part of the sludge returned to the biological reaction tank is sent to the solubilization tank 8. Any method can be adopted as the solubilization reaction. For example, solubilization treatment by microorganisms at medium and high temperatures, solubilization treatment by ozone treatment, solubilization treatment by acid treatment, solubilization treatment by alkali treatment, solubilization treatment by heat treatment, high-pressure pulse discharge treatment, ball mill, colloid mill, etc. , A solubilization treatment or the like obtained by combining them. For these treatments, a known treatment device can be used as a solubilization treatment tank.

本発明で使用する固液分離装置は特に制限されず、膜濾過装置、遠心分離装置、デカンター、濾過装置などの任意の 固液分離装置を用いることができる。
本発明では、可溶化処理と固液分離装置の組み合わせることによって、可溶化処理槽に送る液は、発生する余剰汚泥分の1倍以上2倍未満が好ましい。さらに好ましくは、1倍以上1.7倍以下である。この倍率は、可溶化処理方法や固液分離方法により、倍率を変更する。本発明では、固液分離することにより、生物処理槽に返送される液のBOD負荷が低くなることと可溶化した際に発生する不活性汚泥が生物処理槽に移送されなくなるので、可溶化処理槽に送る液が少なくて済む。この中で好ましい形態は、生物処理槽には、好気性生物処理を用い、固液分離し、固液分離した汚泥の可溶化反応には、中高温での微生物処理を用い、固液分離法には、膜濾過法を用いることが、有機性排液の処理に際し、低コストで汚泥を減容化して系外へ排出する汚泥量を減少させ、しかも処理水質の悪化を防止し、かつ効率よく有機性廃水を処理することができる点で好ましい。本発明の中高温での微生物処理は、40〜70℃が好ましい。この方法は、中高温の嫌気性処理、好気性処理のいずれでも適用できる。好気性にするためには、該可溶化処理槽の中に空気を入れ、可溶化処理槽の液を曝気できれば、何でも良い。例えば、ブロアーで可溶化処理槽中に空気を管で導入しても良い。また、エアレータを可溶化処理槽内に入れて、曝気しても良い。膜濾過法の場合、濾過膜は、中空糸膜状、平膜状、など何でも良いが、中空糸膜状のものが目詰まり物質の洗浄を逆洗により行ないやすく好ましい。膜の材質は、ポリエチレン系、ポリアクリロニトリル系、ポリスルホン系、ポリフッ化ビニリデン系、酢酸セルロース系など様々なものが適用できるが、温度や液により膜の材質を使い分けることが効果的である。耐熱性、薬品洗浄の耐性からポリスルホン系およびポリフッ化ビニリデン系が特に好ましい。
The solid-liquid separator used in the present invention is not particularly limited, and any solid-liquid separator such as a membrane filter, a centrifuge, a decanter, and a filter can be used.
In the present invention, by combining the solubilization treatment and the solid-liquid separation device, it is preferable that the amount of the liquid to be sent to the solubilization treatment tank is not less than one time and less than twice the amount of excess sludge generated. More preferably, it is 1 time or more and 1.7 times or less. The magnification is changed by a solubilization method or a solid-liquid separation method. In the present invention, the solid-liquid separation reduces the BOD load of the liquid returned to the biological treatment tank, and the inert sludge generated when solubilized is not transferred to the biological treatment tank. Less liquid needs to be sent to the tank. Among these, a preferred form is that the biological treatment tank uses an aerobic biological treatment, is subjected to solid-liquid separation, and the solubilization reaction of the solid-liquid separated sludge uses a microbial treatment at a medium to high temperature. In order to reduce the volume of sludge discharged at low cost and reduce the amount of sludge discharged out of the system at the time of treating organic wastewater, it is also possible to use a membrane filtration method to This is preferable because organic wastewater can be treated well. The microorganism treatment at a medium to high temperature of the present invention is preferably at 40 to 70 ° C. This method can be applied to both anaerobic and aerobic treatments at medium and high temperatures. In order to achieve aerobicity, anything may be used as long as air can be introduced into the solubilization tank and the liquid in the solubilization tank can be aerated. For example, air may be introduced into the solubilization tank with a blower through a tube. Further, an aerator may be placed in the solubilization tank and aerated. In the case of the membrane filtration method, the filtration membrane may be a hollow fiber membrane, a flat membrane, or the like, but a hollow fiber membrane is preferred because the clogging substance can be washed by backwashing. As the material of the film, various materials such as polyethylene, polyacrylonitrile, polysulfone, polyvinylidene fluoride, and cellulose acetate can be used. It is effective to use different materials for the film depending on the temperature and liquid. Polysulfone and polyvinylidene fluoride are particularly preferred from the viewpoint of heat resistance and resistance to chemical cleaning.

濾過膜は、膜同士を束ねたり、のり巻き状に巻いたり、端部を接着材によりシールして膜モジュールという濾過膜の一次側と2次側とを隔離した形にして使用する。膜モジュールの形は、スパイラル型、中空糸膜型、管状型及びプレート型のいずれでも良い。先に述べた理由で中空糸膜型がより好ましい。本発明で使用する膜濾過装置とは、濾過膜の1次側入り口配管と出口配管と2次側の出口配管を備え、1次側と2次側に差圧を与える手段を持つ装置をいう。
例えば、本実施例での膜濾過装置は、ポリスルホン系の膜材質を使用した中空糸膜型モジュールを使用し、中空糸膜モジュールの1次側入り口配管と出口配管と2次側出口配管を備え、1次側の入り口配管には、膜モジュールに液を送るためのポンプと1次側出口配管には、バルブを備え、1次側と2次側に差圧を与える手段を持つ装置とした。
The filtration membrane is used in a form in which the primary side and the secondary side of a filtration membrane, which is a membrane module, are separated by bundling the membranes, winding the membranes in a roll, or sealing the ends with an adhesive. The shape of the membrane module may be any of a spiral type, a hollow fiber type, a tubular type and a plate type. The hollow fiber membrane type is more preferable for the reasons described above. The membrane filtration device used in the present invention refers to a device provided with a primary side inlet pipe, an outlet pipe, and a secondary side outlet pipe of a filtration membrane, and having a means for giving a differential pressure between the primary side and the secondary side. .
For example, the membrane filtration device in the present embodiment uses a hollow fiber membrane type module using a polysulfone-based membrane material, and is provided with a primary inlet pipe, an outlet pipe, and a secondary outlet pipe of the hollow fiber membrane module. 1. A pump for sending liquid to the membrane module at the inlet pipe on the primary side, and a valve at the outlet pipe on the primary side, and a device having means for applying a differential pressure between the primary side and the secondary side. .

本発明の処理方法では、濾過速度を高く保つために、逆洗を適用したほうが良い。逆洗とは、濾過速度の低下を極力抑制するための膜の洗浄方法であり、この方法は、膜の濾過液側に濾過時とは逆の濾過圧をかけて、膜濾過液側から膜濃縮液側に液を流して、膜濃縮液側の膜表面に付着した目詰まり物質を除く方法である。さらに、逆洗の時に膜に対する目詰まり物を洗浄する薬剤を投入しても良い。膜濾過装置には、逆洗可能な設備、例えば膜モジュールの濾過液側から圧力がかけられるように逆洗ポンプと逆洗時薬剤を添加できる装置を付加した方が好ましい。また、濾過をせずに、1次側に可溶化処理槽内の液を流すことやろ過しながらも通常よりも早い線速で液を循環することをフラッシングという。   In the treatment method of the present invention, it is better to apply backwashing in order to keep the filtration rate high. Backwashing is a method of cleaning a membrane in order to minimize a decrease in filtration rate. This method applies a reverse filtration pressure to the filtrate side of the membrane during filtration, so that the membrane is filtered from the membrane filtrate side. In this method, a clogging substance attached to the membrane surface on the membrane concentrate side is removed by flowing the solution to the concentrate side. Further, at the time of back washing, an agent for washing clogs on the membrane may be added. It is preferable to add a device capable of backwashing, for example, a backwash pump and a device capable of adding a backwashing agent so that pressure is applied from the filtrate side of the membrane module to the membrane filtration device. Also, flushing refers to flowing the liquid in the solubilization tank to the primary side without filtering or circulating the liquid at a linear velocity faster than usual while filtering.

また、フラッシングの循環方向は、ろ過している時と逆でも良い。逆方向にフラッシングする方法を逆フラッシングとする。このフラッシングや逆フラッシングを濾過や逆洗の間に行なうとさらに良く、濾過速度を保つことができる。膜濾過装置での膜濾過液は、生物反応槽に戻し、膜濃縮液は、可溶化処理槽に戻す。膜濃縮液には、膜を透過できない好熱菌や酵素が存在し、可溶化処理槽で再利用される。   Further, the circulation direction of the flushing may be opposite to that during the filtration. The method of flushing in the reverse direction is referred to as reverse flushing. This flushing or backflushing is more preferably performed during filtration or backwashing, and the filtration speed can be maintained. The membrane filtrate in the membrane filtration device is returned to the biological reaction tank, and the membrane concentrate is returned to the solubilization tank. The membrane concentrate contains thermophilic bacteria and enzymes that cannot pass through the membrane, and is reused in the solubilization tank.

本発明では、図3のように、生物反応槽に返送される液の一部を中高温の微生物処理による可溶化反応可能な装置に送るところまでは、図1と同様であるが、図3のように濾過液側から吸引ポンプ15などで濾過液を吸引することが好ましい。膜濾過液を得て、得た膜濾過液は、生物反応槽に戻す。濾過膜を透過しない濃縮液は、可溶化処理槽内に返送される。濾過膜の孔径は、限外濾過膜の場合は、分画分子量500〜100万程度の孔径ものを指し、精密濾過膜の場合0.01マイクロメートルから10マイクロメートル程度の平均膜孔径のものを指す。分画分子量とは、膜が特定の阻止率で阻止できる最小の分子量を意味する。
本発明では特定の阻止率として90%を用いた。分画分子量を測定する際の標準物質としては、ポリエチレングリコールやデキストラン、球状タンパクなどが用いられる。
In the present invention, as shown in FIG. 3, up to a point where a part of the liquid returned to the biological reaction tank is sent to a device capable of solubilization reaction by microbial treatment at medium and high temperatures, the same as FIG. It is preferable to suck the filtrate from the filtrate side with the suction pump 15 or the like. A membrane filtrate is obtained, and the obtained membrane filtrate is returned to the biological reactor. The concentrate that does not pass through the filtration membrane is returned to the solubilization tank. The pore size of the filtration membrane refers to a pore size having a molecular weight cut off of about 500 to 1,000,000 in the case of an ultrafiltration membrane, and an average membrane pore size of about 0.01 to 10 micrometers in the case of a microfiltration membrane. Point. By fractional molecular weight is meant the minimum molecular weight that the membrane can block at a particular rejection.
In the present invention, 90% is used as a specific rejection. As a standard substance for measuring the molecular weight cut off, polyethylene glycol, dextran, globular protein and the like are used.

本発明において、限外濾過膜は、可溶化処理槽内の酵素の濃縮に有効に使用される。一般的に酵素は、数千から数十万の分子量である。従って、限外濾過膜は酵素を阻止できる分画分子量1,000〜100,000程度である事が好ましい。さらに好ましくは、分画分子量5,000〜50,000程度である。さらに好ましくは、6,000〜10,000である。あまり小さいと、濾過速度が小さくなる傾向があり、大きすぎても、酵素が抜けやすくなる。酵素が濃縮できると可溶化処理槽において酵素による可溶化反応が進む効果がある。   In the present invention, the ultrafiltration membrane is effectively used for concentrating the enzyme in the solubilization tank. Generally, enzymes have molecular weights of thousands to hundreds of thousands. Therefore, it is preferable that the ultrafiltration membrane has a molecular weight cut-off of about 1,000 to 100,000 that can inhibit the enzyme. More preferably, the molecular weight cut off is about 5,000 to 50,000. More preferably, it is 6,000 to 10,000. If it is too small, the filtration rate tends to be low, and if it is too large, the enzyme tends to escape. When the enzyme can be concentrated, the solubilization reaction by the enzyme proceeds in the solubilization tank.

精密濾過膜は、菌体を濃縮できる。一般に菌体の大きさは、0.2マイクロメートルから数マイクロメートルであるので、精密濾過膜の平均膜孔径は、0.1マイクロメートルから1マイクロメートルが好ましい。あまり小さいと、濾過速度が小さくなる傾向があり、大きすぎても、菌体が抜けやすい。菌体を可溶化処理槽において濃縮できると菌体による可溶化が進む効果がある。精密濾過膜の平均膜孔径とは、ASTM F316−86の「泡立ち点試験及び平均流量細孔試験による薄膜フィルタ細孔径の特定標準試験方法による測定」で平均流量の細孔の圧力から求めた細孔径のことを指す。   The microfiltration membrane can concentrate cells. In general, the size of the microbial cells is from 0.2 micrometer to several micrometers, so the average membrane pore size of the microfiltration membrane is preferably from 0.1 micrometer to 1 micrometer. If it is too small, the filtration rate tends to be low, and if it is too large, the cells are easily removed. When the cells can be concentrated in the solubilization treatment tank, the solubilization by the cells is effective. The average membrane pore diameter of the microfiltration membrane is a fine pore diameter obtained from the pore pressure at the average flow rate in ASTM F316-86 “Measurement by a specific standard test method for the thin film filter pore diameter by the bubble point test and the average flow pore test”. It refers to the pore size.

また、中高温の微生物処理の場合、固液分離は、中高温のまま行なうことが最も好ましい。中高温のまま固液分離すると、固液分離した濃縮液の無機化合物や汚泥を不活性汚泥が温度を高くすることにより、溶解し、濾過液となって、生物処理槽に移行する。また、固液分離の濃縮液は、可溶化処理槽に戻るので、再び、温度がかかるので、可溶化処理槽の温度に近ければ、再び可溶化させる熱量を節約できる。   Further, in the case of a microorganism treatment at an intermediate temperature, it is most preferable to perform the solid-liquid separation at an intermediate temperature. When the solid-liquid separation is performed at a high temperature, the inert sludge dissolves the inorganic compounds and sludge of the concentrated liquid that has been solid-liquid separated by increasing the temperature, and turns into a filtrate to be transferred to the biological treatment tank. In addition, since the concentrated liquid for solid-liquid separation returns to the solubilization tank and is heated again, if the temperature is close to the temperature of the solubilization tank, the amount of heat to be solubilized again can be saved.

本発明では、図5に示すように、膜濾過装置として1段目に精密濾過膜13を設置し、2段目に限外濾過膜14を設置することが好ましい。それぞれから発生する膜濃縮液はまとめて膜濾過装置の膜濃縮液として、可溶化処理槽に戻すようにした。2段目の限外濾過の膜濾過液は、膜濾過装置の膜濾過液として生物反応槽にもどす。   In the present invention, as shown in FIG. 5, it is preferable to install a microfiltration membrane 13 at the first stage and an ultrafiltration membrane 14 at the second stage as a membrane filtration device. The membrane concentrates generated from each of them were collectively returned to the solubilization tank as a membrane concentrate of the membrane filtration device. The membrane filtrate of the second stage ultrafiltration is returned to the biological reaction tank as a membrane filtrate of the membrane filtration device.

以下に、本発明の実施例を記載する。
〔実施例1〕
実施例1で使用した装置概略図を図1に示す。図1において、3が生物反応槽、5が固液分離槽、6が返送汚泥ラインである。6の返送汚泥ラインから分岐して送液ライン7を経て、可溶化処理槽8に液を送る。81がばっ気装置からのエアー配管である。10が膜濾過装置である。本実施例において、生物反応槽3に流入する有機性廃水は、BOD濃度200mg/Lであった。該有機性廃水は、肉エキス:ペプトン=1:1(重量比)とし、BOD濃度:窒素濃度:リン濃度=100:5:1になるように更に無機塩類を添加したモデル液を使用した。BOD濃度とは、1リットル(L)の水中の有機物が微生物の働きによって分解されるときに消費される酸素の量で、河川の有機汚濁を測る代表的な指標であり、日本工業規格、工場排水試験方法K0102.21によって測定した。有機性廃水は流入量40L/dayで生物反応槽3に供給した。生物反応槽の容量は10Lであった。生物反応槽3から流出した液は、固液分離槽5に送られる。固液分離槽としてはここでは沈降分離法による固液分離槽を用い、上澄み液と汚泥に分けた。固液分離槽5で沈降分離した汚泥は、一部返送汚泥として生物反応槽3に返送される。
Hereinafter, examples of the present invention will be described.
[Example 1]
FIG. 1 shows a schematic diagram of the apparatus used in Example 1. In FIG. 1, 3 is a biological reaction tank, 5 is a solid-liquid separation tank, and 6 is a return sludge line. The liquid is sent from the return sludge line 6 to the solubilization tank 8 via the liquid sending line 7. 81 is an air pipe from the aeration device. 10 is a membrane filtration device. In this example, the organic wastewater flowing into the biological reaction tank 3 had a BOD concentration of 200 mg / L. The organic wastewater used was a model liquid in which meat extract: peptone = 1: 1 (weight ratio) and inorganic salts were further added so that BOD concentration: nitrogen concentration: phosphorus concentration = 100: 5: 1. The BOD concentration is the amount of oxygen consumed when one liter (L) of organic matter in water is decomposed by the action of microorganisms, and is a representative index for measuring organic pollution in rivers. It measured by the drainage test method K0102.21. The organic wastewater was supplied to the biological reaction tank 3 at an inflow rate of 40 L / day. The volume of the biological reactor was 10 L. The liquid flowing out of the biological reaction tank 3 is sent to the solid-liquid separation tank 5. Here, a solid-liquid separation tank by a sedimentation method was used as a solid-liquid separation tank, and the liquid was separated into a supernatant and sludge. The sludge settled and separated in the solid-liquid separation tank 5 is partially returned to the biological reaction tank 3 as returned sludge.

また、一部の汚泥は、7の送液ラインを通り、浮遊物質(SS)1重量%で0.5L/dayの流量で可溶化処理槽8に送られる。可溶化反応槽は、1.0Lであった。可溶化処理槽8には、ばっ気装置からのエアー配管81で0.05L/分のエアーを送り、60℃の温度が保てるように、保温措置のために可溶化処理槽8のジャケットに温水をいれておいた。可溶化処理槽8を通った液は、送液ライン9の経路上にポンプ(図示せず)を設置し、膜濾過装置10に送った。固液分離槽5で分離された汚泥はポンプで適宜可溶化処理槽8に送られた。膜濾過装置10での膜濃縮液は、膜濾過装置濃縮液ライン11を通り、可溶化処理槽8に送る。膜濾過液は、膜濾過液ライン12をとおり、生物反応槽3に送液した。膜濾過装置の連続運転条件は、膜濾過液量は、0.5L/dayであった。膜濃縮液量3L/hrで可溶化処理槽8に送った。膜濾過装置に使用した濾過膜モジュールは、ポリスルホン製の中空糸型限外濾過膜である旭化成(株)製、SLP−0053(商品名、膜面積0.02m)を使用した。分画分子量は10,000である。この状態で、15日間の連続運転を行った。このとき、固液分離後の膜濾過液のBODは、50[mg/l]であり、BOD負荷の増分は、流入水のBOD負荷が8g/dayに対して、0.025g/dayであったので、BOD負荷の増分は、0.3%であった。また、膜濾過液のSSは、0mg/Lであった。そのために、可溶化処理槽に移送する液量は、余剰汚泥量の1倍であった。結果は、表1のとおりである。 Further, a part of the sludge is sent to the solubilization tank 8 at a flow rate of 0.5 L / day with 1% by weight of suspended solids (SS) through the liquid sending line 7. The solubilization reactor was 1.0 L. Air is supplied to the solubilization tank 8 through the air pipe 81 from the aeration apparatus at a rate of 0.05 L / min, and hot water is applied to the jacket of the solubilization tank 8 for heat retention so that the temperature of 60 ° C. can be maintained. I put in. The liquid that passed through the solubilization tank 8 was sent to the membrane filtration device 10 by installing a pump (not shown) on the path of the liquid sending line 9. The sludge separated in the solid-liquid separation tank 5 was appropriately sent to a solubilization tank 8 by a pump. The membrane concentrate in the membrane filtration device 10 is sent to the solubilization tank 8 through the membrane filtration device concentrate line 11. The membrane filtrate was sent to the biological reaction tank 3 through the membrane filtrate line 12. Regarding the continuous operation conditions of the membrane filtration device, the amount of the membrane filtrate was 0.5 L / day. The solution was sent to the solubilization tank 8 at a membrane concentration of 3 L / hr. As a filtration membrane module used for the membrane filtration device, SLP-0053 (trade name, membrane area 0.02 m 2 ) manufactured by Asahi Kasei Corporation, which is a hollow fiber type ultrafiltration membrane made of polysulfone, was used. The molecular weight cut off is 10,000. In this state, continuous operation was performed for 15 days. At this time, the BOD of the membrane filtrate after the solid-liquid separation was 50 [mg / l], and the increase of the BOD load was 0.025 g / day with respect to the BOD load of influent water of 8 g / day. Therefore, the increase in BOD load was 0.3%. The SS of the membrane filtrate was 0 mg / L. Therefore, the amount of liquid transferred to the solubilization tank was one time the amount of excess sludge. The results are as shown in Table 1.

表1は、実験開始日を1日目として、10日目以降を定常状態として、10〜15日目の平均した各値を記載した。
定常状態での可溶化処理槽8に入る液のSSは、10,000mg/Lであったが膜濾過液のSSは、0mg/Lであった。固液分離後の処理水の透視度は、30度。
固液分離後の処理水の化学的酸素要求量CODは、8mg/Lであった。可溶化反応槽のプロテアーゼ活性を確認したところ、0.3mUNIT/mlであった。また、可溶化処理槽内の強熱残留物を測定したら、5日目は、1.8[g/L]10日目は、1.7[g/L]15日目は、1.8[g/L]であった。
Table 1 describes the average values on the 10th to 15th days, with the experiment start date as the first day, the 10th day and after as the steady state.
The SS of the liquid entering the solubilization tank 8 in the steady state was 10,000 mg / L, but the SS of the membrane filtrate was 0 mg / L. The transparency of the treated water after solid-liquid separation is 30 degrees.
The chemical oxygen demand COD of the treated water after the solid-liquid separation was 8 mg / L. When the protease activity of the solubilization reaction tank was confirmed, it was 0.3 mUNIT / ml. Further, when the ignition residue in the solubilization tank was measured, 1.8 [g / L] on the 5th day, 1.7 [g / L] on the 10th day, 1.8 [g / L] on the 15th day [g / L].

浮遊物質(SS)は、日本工業規格、工場排水試験方法K102.14.1により測定した。
CODは、日本工業規格、工場排水試験方法K0102.14.1により測定した。
BODは日本工業規格、工場排水試験方法K0102.17により測定した。
透視度は、日本工業規格、工場排水試験方法K0102.9により測定した。
強熱残留物は、日本工業規格、工場排水試験方法K102.14.4により測定した。
The suspended solids (SS) were measured according to Japanese Industrial Standards, Factory Wastewater Test Method K102.14.1.
COD was measured according to Japanese Industrial Standards, Factory Drainage Test Method K0102.14.1.1.
BOD was measured according to Japanese Industrial Standards, Factory Wastewater Test Method K0102.17.
The degree of transparency was measured according to Japanese Industrial Standards, Factory Drainage Test Method K0102.9.
Ignition residue was measured according to Japanese Industrial Standards, Factory Wastewater Test Method K102.14.4.

〔比較例1〕
比較例1で使用した装置概略図を図2に示す。図2において、3が生物反応槽、5が固液分離槽、6が返送汚泥ラインであり、一般的な生物処理装置である。
生物反応槽3に流入する有機性廃水は、BOD濃度200mg/L。有機性廃水は、実施例1と同じ組成のものを使用した。有機性廃水は、40L/dayで生物反応槽に供給した。生物反応槽3の容量は10Lであった。生物反応槽3から流出した液は、固液分離槽5に送られる。固液分離槽5で沈降分離した汚泥は、一部返送汚泥として、生物反応槽3に返送される。
その連続運転のデータとして表1の結果を得た。固液分離後の処理水の水質は、表1のように透視度は、30度、CODは、6mg/Lと良好なものの、余剰汚泥は、乾燥重量で、10〜15日目の平均で4.8g/day発生した。
〔比較例2〕
使用した装置概略図を図4に示す。図4において、3が生物反応槽、5が固液分離槽、6が返送汚泥ラインであり、一般的な生物処理装置である。6の返送汚泥ラインから分岐して、可溶化処理槽8に液を送る。81がばっ気装置からのエアー配管である。本比較例において、生物反応槽3に流入する有機性廃水は、BOD濃度200mg/L。有機性廃水は、実施例1と同じ組成のものを使用し生物反応槽3へは40L/dayの流入量であった。生物反応槽3の容量は20L。生物反応槽3から流出した液は、固液分離槽5に送られる。固液分離槽5で沈降分離した汚泥は、一部返送汚泥として、生物反応槽3に返送される。また、一部の汚泥は、7の送液ラインを通り、SS濃度1重量%で1.5L/dayの流量で可溶化処理槽8に送られる。可溶化処理槽の大きさは、3.0Lであった。可溶化処理槽8には、ばっ気装置からのエアー配管81で0.05リットル/分のエアーを送り、60℃の温度が保てるように、保温措置のためにジャケットに温水をいれておいた。可溶化処理槽8を通った液は、可溶化液返送ライン20で生物反応槽3に戻した。
[Comparative Example 1]
FIG. 2 shows a schematic diagram of the apparatus used in Comparative Example 1. In FIG. 2, 3 is a biological reaction tank, 5 is a solid-liquid separation tank, and 6 is a return sludge line, which is a general biological treatment apparatus.
The organic wastewater flowing into the biological reaction tank 3 has a BOD concentration of 200 mg / L. Organic wastewater having the same composition as in Example 1 was used. Organic wastewater was supplied to the biological reactor at 40 L / day. The volume of the biological reaction tank 3 was 10 L. The liquid flowing out of the biological reaction tank 3 is sent to the solid-liquid separation tank 5. The sludge settled and separated in the solid-liquid separation tank 5 is returned to the biological reaction tank 3 as partially returned sludge.
Table 1 shows the results of the continuous operation. As shown in Table 1, the quality of the treated water after solid-liquid separation is as good as 30 ° in transparency and 6 mg / L in COD, but the excess sludge is dry weight and averaged from 10 to 15 days. 4.8 g / day was generated.
[Comparative Example 2]
FIG. 4 shows a schematic diagram of the apparatus used. In FIG. 4, 3 is a biological reaction tank, 5 is a solid-liquid separation tank, and 6 is a return sludge line, which is a general biological treatment apparatus. The liquid is branched from the return sludge line 6 and sent to the solubilization tank 8. 81 is an air pipe from the aeration device. In this comparative example, the organic wastewater flowing into the biological reaction tank 3 has a BOD concentration of 200 mg / L. Organic wastewater having the same composition as that of Example 1 was used, and the flow rate into the biological reaction tank 3 was 40 L / day. The capacity of the biological reaction tank 3 is 20 L. The liquid flowing out of the biological reaction tank 3 is sent to the solid-liquid separation tank 5. The sludge settled and separated in the solid-liquid separation tank 5 is returned to the biological reaction tank 3 as partially returned sludge. Further, a part of the sludge is sent to the solubilization tank 8 at a SS concentration of 1% by weight and a flow rate of 1.5 L / day through the liquid sending line 7. The size of the solubilization tank was 3.0 L. Air was supplied to the solubilization tank 8 through the air pipe 81 from the aeration apparatus at a rate of 0.05 liter / min, and warm water was placed in the jacket to keep the temperature at 60 ° C. . The liquid that passed through the solubilization treatment tank 8 was returned to the biological reaction tank 3 via the solubilization liquid return line 20.

その連続運転のデータとして表1の結果を得た。固液分離後の処理水の水質は、表1のように透視度は15度、化学的酸素要求量であるCODは、21mg/L。余剰汚泥は、乾燥重量で、0g/dayであった。このとき、生物処理槽に戻した液のBODは、1100[mg/l]であり、BOD負荷の増分は、流入水のBOD負荷が8g/dayに対して、1.65g/dayであったので、BOD負荷の増分は、20.6%であった。また、生物反応槽に戻すSSは、4.3g/L、1.5L/dayで移送される。そのために、可溶化処理槽に移送する液量は、余剰汚泥量の約3倍必要になった。また、可溶化反応槽のプロテアーゼ活性を確認したところ、0.1[mUNIT/ml]であった。
比較例1では、余剰汚泥が発生し、比較例2では、固液分離後の処理水のCODが多く残留し、可溶化処理槽の大きさが大きいが、実施例1では、余剰汚泥は、0g/L、CODは、8mg/Lと可溶化反応処理装置と膜濾過装置を入れて、余剰汚泥の削減、固液分離後の処理水水質の維持になっている。
Table 1 shows the results of the continuous operation. As shown in Table 1, the water quality of the treated water after the solid-liquid separation is 15 degrees, and the COD, which is the chemical oxygen demand, is 21 mg / L. Excess sludge was 0 g / day in dry weight. At this time, the BOD of the liquid returned to the biological treatment tank was 1100 [mg / l], and the increase of the BOD load was 1.65 g / day, while the BOD load of the inflow water was 8 g / day. Therefore, the increase in BOD load was 20.6%. The SS returned to the biological reaction tank is transferred at 4.3 g / L and 1.5 L / day. Therefore, the amount of liquid to be transferred to the solubilization tank was required to be about three times the amount of excess sludge. When the protease activity of the solubilization reaction tank was confirmed, it was 0.1 [mUNIT / ml].
In Comparative Example 1, excess sludge is generated, and in Comparative Example 2, a large amount of COD of the treated water after solid-liquid separation remains and the size of the solubilization treatment tank is large. 0 g / L, COD is 8 mg / L, and a solubilization reaction treatment device and a membrane filtration device are installed to reduce excess sludge and maintain the quality of treated water after solid-liquid separation.

本発明は、下水処理場、屎尿処理場などの下水処理プロセス、食品工場、化学工場などの製造プロセスから排出される有機性汚泥を含有する有機性廃水の処理に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for treating organic wastewater containing organic sludge discharged from a sewage treatment process such as a sewage treatment plant, a human waste treatment plant, or a manufacturing process such as a food factory or a chemical factory.

実施例1の処理方法を示す模式図。FIG. 3 is a schematic diagram illustrating a processing method according to the first embodiment. 従来の活性汚泥法を示す模式図。The schematic diagram which shows the conventional activated sludge method. 本発明の処理方法の例を示す模式図。FIG. 2 is a schematic view showing an example of the processing method of the present invention. 比較例2の処理方法を示す模式図。FIG. 9 is a schematic diagram illustrating a processing method of Comparative Example 2. 本発明の処理方法の例を示す模式図。FIG. 2 is a schematic view showing an example of the processing method of the present invention.

符号の説明Explanation of reference numerals

1 有機性廃水貯留槽
2 廃水送液ライン
3 生物反応槽
4 送液ライン
5 固液分離槽
6 返送汚泥ライン
7 送液ライン
8 可溶化処理槽
9 送液ライン
10 膜濾過装置
11 膜濾過装置濃縮液ライン
12 膜濾過液ライン
13 精密濾過膜
14 限外濾過膜
15 吸引ポンプ
20 可溶化液返送ライン
31 エアー配管
81 エアー配管
111 限外濾過膜濃縮液ライン
121 精密濾過膜濾過液ライン
301 処理液
302 汚泥
303 余剰汚泥
REFERENCE SIGNS LIST 1 Organic wastewater storage tank 2 Wastewater liquid feed line 3 Biological reaction tank 4 Liquid feed line 5 Solid-liquid separation tank 6 Return sludge line 7 Liquid feed line 8 Solubilization treatment tank 9 Liquid feed line 10 Membrane filtration device 11 Membrane filtration device concentration Liquid line 12 Membrane filtrate line 13 Microfiltration membrane 14 Ultrafiltration membrane 15 Suction pump 20 Solubilized liquid return line 31 Air pipe 81 Air pipe 111 Ultrafiltration membrane concentrate liquid line 121 Microfiltration membrane filtrate line 301 Treatment liquid 302 Sludge 303 Excess sludge

Claims (10)

有機性廃水を生物反応槽にて生物処理し、発生する余剰汚泥分の1倍以上2倍未満を可溶化処理槽に移送し、該可溶化処理槽中の液の少なくとも一部を固液分離装置により分離処理液と濃縮液に分離し、分離処理液は前記生物反応槽に戻し、濃縮液は該可溶化処理槽に戻すことを特徴とする有機性廃水の処理方法。   The organic wastewater is biologically treated in a biological reaction tank, and at least 1 to less than 2 times the amount of excess sludge generated is transferred to the solubilization tank, and at least a part of the liquid in the solubilization tank is solid-liquid separated. A method for treating organic wastewater, comprising separating a separated liquid and a concentrated liquid by an apparatus, returning the separated liquid to the biological reaction tank, and returning the concentrated liquid to the solubilizing tank. 生物反応槽に戻す分離処理液のBOD負荷が、有機性廃水のBOD負荷に対して10%以下であることを特徴とする請求項1記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1, wherein the BOD load of the separation treatment liquid returned to the biological reaction tank is 10% or less of the BOD load of the organic wastewater. 可溶化処理槽での可溶化方法が中高温の微生物処理であることを特徴とする請求項1または2の有機性廃水の処理方法。   3. The method for treating organic wastewater according to claim 1, wherein the solubilization method in the solubilization tank is a medium-high temperature microorganism treatment. 濃縮液のプロテアーゼ活性が0.2[mUnit/ml]以上であることを特徴とする請求項1〜3のいずれかに記載の有機性廃水の処理方法。   The method for treating organic wastewater according to any one of claims 1 to 3, wherein the protease activity of the concentrated solution is 0.2 [mUnit / ml] or more. 固液分離が中高温で行われることを特徴とする請求項1〜4のいずれかに記載の有機性廃水の処理方法。   The method for treating organic wastewater according to any one of claims 1 to 4, wherein the solid-liquid separation is performed at an intermediate temperature. 固液分離装置が、遠心分離装置又は、膜濾過装置であることを特徴とする請求項1〜5のいずれかに記載の有機性廃水の処理方法。   The method for treating organic wastewater according to any one of claims 1 to 5, wherein the solid-liquid separation device is a centrifugal separation device or a membrane filtration device. 膜濾過装置の濾過膜が、限外濾過膜であることを特徴とする請求項6に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 6, wherein the filtration membrane of the membrane filtration device is an ultrafiltration membrane. 膜濾過装置の濾過膜が、精密濾過膜であることを特徴とする請求項6に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 6, wherein the filtration membrane of the membrane filtration device is a microfiltration membrane. 膜濾過装置が、精密濾過膜と限外濾過膜を直列に組み合わせてなり、前者の透過液が後者の供給液となることを特徴とする請求項6に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 6, wherein the membrane filtration device comprises a series combination of a microfiltration membrane and an ultrafiltration membrane, and the former permeate serves as the latter feed. 有機性廃水を生物反応槽にて生物処理し、発生する汚泥を可溶化処理槽で中高温の微生物処理により可溶化させるとともに、該可溶化処理槽の液中に浸漬した濾過膜により、濾過と濃縮を行い、膜濾過液を、前記生物反応槽に戻すことを特徴とする有機性廃水の処理方法。   The organic wastewater is biologically treated in a biological reaction tank, and the generated sludge is solubilized by microbial treatment at a medium and high temperature in a solubilization tank. A method for treating organic wastewater, comprising concentrating and returning a membrane filtrate to the biological reaction tank.
JP2003428166A 2003-01-09 2003-12-24 Method for treating organic waste water Pending JP2004230377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428166A JP2004230377A (en) 2003-01-09 2003-12-24 Method for treating organic waste water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003003256 2003-01-09
JP2003428166A JP2004230377A (en) 2003-01-09 2003-12-24 Method for treating organic waste water

Publications (1)

Publication Number Publication Date
JP2004230377A true JP2004230377A (en) 2004-08-19

Family

ID=32964650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428166A Pending JP2004230377A (en) 2003-01-09 2003-12-24 Method for treating organic waste water

Country Status (1)

Country Link
JP (1) JP2004230377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268468A (en) * 2006-03-31 2007-10-18 Toyo Eng Corp High temperature treatment method for hydrocarbon or manufacture plant waste water of oxygenated compound
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
JP2008207094A (en) * 2007-02-26 2008-09-11 Kurita Water Ind Ltd Biological treatment apparatus and method for organic matter-containing water

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277095A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Biological treatment of organic waste solution
JP2000024690A (en) * 1998-07-09 2000-01-25 Shinko Pantec Co Ltd Organic waste water treating device and its operation
JP2001025789A (en) * 1999-07-14 2001-01-30 Kurita Water Ind Ltd Treatment of organic waste liquid and device therefor
JP2001179285A (en) * 1999-12-24 2001-07-03 Mitsubishi Heavy Ind Ltd Wastewater treatment system
JP2001225090A (en) * 2000-02-17 2001-08-21 Kurita Water Ind Ltd Method and apparatus for treating organic waste liquid
JP2002166289A (en) * 2000-09-22 2002-06-11 Shinko Pantec Co Ltd Method to treat organic waste water and apparatus therefor
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
JP2002177981A (en) * 2000-12-13 2002-06-25 Sumitomo Heavy Ind Ltd Waste water treatment method and equipment
JP2003024972A (en) * 2001-07-16 2003-01-28 Ebara Corp Biological treatment method for organic sewage and apparatus therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277095A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Biological treatment of organic waste solution
JP2000024690A (en) * 1998-07-09 2000-01-25 Shinko Pantec Co Ltd Organic waste water treating device and its operation
JP2001025789A (en) * 1999-07-14 2001-01-30 Kurita Water Ind Ltd Treatment of organic waste liquid and device therefor
JP2001179285A (en) * 1999-12-24 2001-07-03 Mitsubishi Heavy Ind Ltd Wastewater treatment system
JP2001225090A (en) * 2000-02-17 2001-08-21 Kurita Water Ind Ltd Method and apparatus for treating organic waste liquid
JP2002166289A (en) * 2000-09-22 2002-06-11 Shinko Pantec Co Ltd Method to treat organic waste water and apparatus therefor
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
JP2002177981A (en) * 2000-12-13 2002-06-25 Sumitomo Heavy Ind Ltd Waste water treatment method and equipment
JP2003024972A (en) * 2001-07-16 2003-01-28 Ebara Corp Biological treatment method for organic sewage and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268468A (en) * 2006-03-31 2007-10-18 Toyo Eng Corp High temperature treatment method for hydrocarbon or manufacture plant waste water of oxygenated compound
JP4679413B2 (en) * 2006-03-31 2011-04-27 東洋エンジニアリング株式会社 High temperature treatment method for hydrocarbon or oxygenated compound production plant wastewater
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
JP2008207094A (en) * 2007-02-26 2008-09-11 Kurita Water Ind Ltd Biological treatment apparatus and method for organic matter-containing water

Similar Documents

Publication Publication Date Title
Mutamim et al. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review
Mutamim et al. Membrane bioreactor: applications and limitations in treating high strength industrial wastewater
Stephenson et al. Membrane bioreactors for wastewater treatment
Li et al. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling
Dialynas et al. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater
Trussell et al. The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater
Baek et al. Lab-scale study of an anaerobic membrane bioreactor (AnMBR) for dilute municipal wastewater treatment
Ghyoot et al. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor
Tian et al. Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: as compared to membrane bioreactor (MBR)
Baek et al. Aerobic and anaerobic membrane bioreactors for municipal wastewater treatment
KR20080078550A (en) Method for biological processing of water containing organic material
Tian et al. Submerged membrane bioreactor (sMBR) for the treatment of contaminated raw water
Hosseinzadeh et al. Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment
WO2008066497A1 (en) Water reclamation without biosludge production
JP5034778B2 (en) Membrane separation wastewater treatment method and apparatus
Kocadagistan et al. Treatment investigation of the Erzurum City municipal wastewaters with anaerobic membrane bioreactors
Hasani Zonoozi et al. Operation of integrated sequencing batch membrane bioreactor treating dye-containing wastewater at different SRTs: study of overall performance and fouling behavior
JP4293529B2 (en) Organic wastewater treatment method
JP2016117064A (en) Sewage treatment device and sewage treatment method using it
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP2004230377A (en) Method for treating organic waste water
JP2009189943A (en) Water treatment method and apparatus
Itonaga et al. Performance of membrane bioreactor combined with pre-coagulation/sedimentation
JP2014213265A (en) Method and device for biologically treating organic matter-containing water
Гракова Optimization of the structure decisions in designing a membrane bioreactor to increase the efficiency of treatment waste water of the dairy industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111