JP2001025789A - Treatment of organic waste liquid and device therefor - Google Patents

Treatment of organic waste liquid and device therefor

Info

Publication number
JP2001025789A
JP2001025789A JP20025399A JP20025399A JP2001025789A JP 2001025789 A JP2001025789 A JP 2001025789A JP 20025399 A JP20025399 A JP 20025399A JP 20025399 A JP20025399 A JP 20025399A JP 2001025789 A JP2001025789 A JP 2001025789A
Authority
JP
Japan
Prior art keywords
sludge
liquid
treatment
tank
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20025399A
Other languages
Japanese (ja)
Inventor
Takaaki Tokutomi
孝明 徳富
Rajibu Goeru
ラジブ ゴエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20025399A priority Critical patent/JP2001025789A/en
Publication of JP2001025789A publication Critical patent/JP2001025789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treating method of an organic waste liquid and the device decreased in quantity of sludge discharged out of the system at low cost by reducing volume of the sludge without increasing capacity of an aeration tank and the quantity of oxygen to be supplied in an aerobic treating process, prevented in deterioration of quality of the treated liquid and capable of recovering resource and energy as a form of methane. SOLUTION: A mixed liquid aerobically biologically treated by activated sludge in the aeration tank 1 is solid-liquid separated in a settling tank 2, a part of the separated sludge 18 is taken out, the taken-out sludge 22 is brought into contact with ozone 25 in an ozone treating tank 3 to be reformed easily decomposable, the ozone treated sludge 26 is kept in an anaerobic state in an acid generating tank 4 to generate an organic acid. The acid generated liquid 28 is separated by a membrane separation device 5, the concentrated liquid 40 is returned to the acid generating tank 4 and the permeated liquid 39 is methane fermented in a methane fermentation tank 6 and after that, returned to the aeration tank 1 to be aerobically biologically treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排液を活性
汚泥の存在下に生物処理する方法および装置、特に活性
汚泥処理系における余剰汚泥を減容化することができる
とともにエネルギーを回収することができる有機性排液
の処理方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for biologically treating an organic effluent in the presence of activated sludge, and in particular, it is possible to reduce excess sludge in an activated sludge treatment system and to recover energy. Organic wastewater treatment method and apparatus.

【0002】[0002]

【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して有機性排液を好気条件で処理する
好気性生物処理方法は、処理コストが安く、処理性能も
優れているため、一般に広く利用されているが、難脱水
性の余剰汚泥が大量に生成する。このため汚泥を減容化
する処理方法が注目されている。
2. Description of the Related Art An aerobic biological treatment method, such as an activated sludge treatment method, in which an organic effluent is treated under aerobic conditions by utilizing the action of aerobic microorganisms has a low treatment cost and excellent treatment performance. Therefore, it is widely used in general, but generates a large amount of hardly dewaterable surplus sludge. For this reason, a treatment method for reducing the volume of sludge has attracted attention.

【0003】このような汚泥の減容化を行う処理方法と
して、曝気槽または沈殿槽から汚泥を引き抜き、この引
抜汚泥をオゾン処理、加熱処理、酸またはアルカリ処理
等の改質処理により易生物分解性に改質し、改質された
汚泥を曝気槽に返送して生物分解させる方法が提案され
ている(例えば、特開平6−206088号)。
[0003] As a treatment method for reducing the volume of such sludge, sludge is extracted from an aeration tank or a sedimentation tank, and the extracted sludge is easily biodegraded by a reforming treatment such as ozone treatment, heat treatment, acid or alkali treatment. A method has been proposed in which the sludge is returned to an aeration tank and biodegraded by returning the sludge to an aeration tank (for example, JP-A-6-206088).

【0004】図2は、特開平6−206088号に記載
されている有機性排液の処理方法を示すフローシートで
あり、41は曝気槽、42は汚泥分離槽、43はオゾン
処理槽である。図2の処理方法では、曝気槽41に有機
性排液44および返送汚泥45を導入するとともに、オ
ゾン処理汚泥46を導入し、曝気槽41内の活性汚泥と
混合し、空気供給管47から空気を送り散気装置48か
ら散気して好気性生物処理を行う。
FIG. 2 is a flow sheet showing a method for treating an organic waste liquid described in Japanese Patent Application Laid-Open No. 6-2060888. Reference numeral 41 denotes an aeration tank, 42 denotes a sludge separation tank, and 43 denotes an ozone treatment tank. . In the treatment method of FIG. 2, the organic wastewater 44 and the return sludge 45 are introduced into the aeration tank 41, and the ozone-treated sludge 46 is introduced and mixed with the activated sludge in the aeration tank 41. Is sent from the air diffuser 48 to perform aerobic biological treatment.

【0005】曝気槽41の槽内液は一部ずつ取出して汚
泥分離槽42に導入し、分離液と分離汚泥51とに分離
する。分離液は処理液50として系外へ排出し、分離汚
泥51は一部を返送汚泥45として曝気槽41に返送
し、他の一部を引抜汚泥53としてオゾン処理槽43に
導入してオゾン処理し、残部を余剰汚泥54として系外
に排出する。引抜汚泥53はオゾン処理槽43に導入
し、オゾン供給管55からオゾンを供給してオゾンと接
触させ、汚泥を酸化分解してBOD成分に変換する。オ
ゾン排ガスは排オゾン管56から排出し、オゾン処理汚
泥46は曝気槽41に戻して前記のように好気性生物処
理を行う。
[0005] The liquid in the aeration tank 41 is partly taken out and introduced into a sludge separation tank 42 to be separated into a separated liquid and a separated sludge 51. The separated liquid is discharged out of the system as a processing liquid 50, a part of the separated sludge 51 is returned to the aeration tank 41 as returned sludge 45, and the other part is introduced into the ozonation tank 43 as drawn sludge 53 to perform ozone treatment. Then, the remaining part is discharged out of the system as excess sludge 54. The extracted sludge 53 is introduced into the ozone treatment tank 43 and supplied with ozone from an ozone supply pipe 55 to be brought into contact with ozone to oxidize and decompose the sludge to convert it into a BOD component. The ozone exhaust gas is discharged from the discharge ozone pipe 56, and the ozone-treated sludge 46 is returned to the aeration tank 41 to perform the aerobic biological treatment as described above.

【0006】上記図2の従来の方法では、引抜汚泥53
を易生物分解性に改質して曝気槽41に返送することに
より、易生物分解性となった改質汚泥が曝気槽41内の
微生物に資化されるので、生成する汚泥量が減少する。
この場合被処理BODから生成する汚泥量よりも多い量
の引抜汚泥53を改質して返送すると、系外へ排出する
余剰汚泥を実質的にゼロにすることができる。
[0006] In the conventional method shown in FIG.
Is reformed into biodegradable and returned to the aeration tank 41, whereby the biodegradable modified sludge is assimilated to the microorganisms in the aeration tank 41, so that the amount of generated sludge decreases. .
In this case, if the amount of the extracted sludge 53 that is larger than the amount of the sludge generated from the BOD to be treated is reformed and returned, the excess sludge discharged out of the system can be substantially reduced to zero.

【0007】上記従来の方法では、改質処理した汚泥を
すべて曝気槽に返送して好気性条件下で分解させている
ので、活性汚泥処理装置へのBOD負荷が大幅に増大す
るために曝気槽容量をBOD負荷に合わせて大きくする
必要がある。また、増加したBODを好気的に分解する
ために酸素供給装置の能力も大きくする必要がある。こ
のように活性汚泥処理装置の設備能力を大きくする必要
があるだけでなく、酸素供給のための動力も大幅に増加
するため、エネルギー多消費型の処理システムとなる。
また、改質処理する汚泥からエネルギーを回収すること
はできない。さらに従来の方法では、系外へ排出する余
剰汚泥をゼロにするためには、通常の余剰汚泥量の3倍
程度の多量の汚泥を引抜汚泥としてオゾン処理する必要
がある。これは、オゾン処理によりBOD化された汚泥
が曝気槽に戻されて好気性生物処理される工程で、オゾ
ン処理により生成したBODの30〜40%が再び汚泥
に転換するためである。このためオゾン処理には多量の
オゾン、薬品、エネルギーなどが必要となり、コスト高
になる。また多量の汚泥を引抜汚泥としてオゾン処理す
ると、処理に必要な微生物量を確保できないため、処理
水質が悪化するという問題点もある。
In the above-mentioned conventional method, all the sludge that has been subjected to the reforming treatment is returned to the aeration tank and decomposed under aerobic conditions. Therefore, the BOD load on the activated sludge treatment apparatus is greatly increased. It is necessary to increase the capacity according to the BOD load. Also, the capacity of the oxygen supply device needs to be increased in order to aerobically decompose the increased BOD. As described above, not only is it necessary to increase the facility capacity of the activated sludge treatment apparatus, but also the power for oxygen supply is greatly increased, so that an energy-consuming treatment system is obtained.
Further, energy cannot be recovered from sludge to be reformed. Furthermore, in the conventional method, in order to reduce the amount of excess sludge discharged to the outside of the system to zero, it is necessary to ozone-treat a large amount of sludge, which is about three times the normal amount of excess sludge, as drawn sludge. This is because 30 to 40% of the BOD generated by the ozone treatment is converted into sludge again in the process in which the sludge that has been converted into BOD by the ozone treatment is returned to the aeration tank and subjected to aerobic biological treatment. For this reason, ozone treatment requires a large amount of ozone, chemicals, energy, and the like, which increases costs. Further, when a large amount of sludge is subjected to ozone treatment as drawn sludge, there is a problem that the quality of treated water deteriorates because the amount of microorganisms required for treatment cannot be secured.

【0008】また特開平1−224100号には、嫌気
性消化した汚泥を100〜180℃で加熱した後、この
加熱処理汚泥を嫌気消化槽に返送する有機性汚泥の処理
方法が記載されている。しかしこの方法は嫌気性処理に
関するものであり、好気性処理における適用の可能性に
ついては開示されていない。
Japanese Patent Application Laid-Open No. 1-2224100 describes a method for treating organic sludge in which anaerobic digested sludge is heated at 100 to 180 ° C., and then this heat-treated sludge is returned to an anaerobic digestion tank. . However, this method relates to anaerobic treatment, and does not disclose the possibility of application in aerobic treatment.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、好気
性生物処理工程の曝気槽容量および供給酸素量を増大さ
せることなく、かつ低コストで汚泥を減容化して系外へ
排出する汚泥量を減少させ、しかも処理水質の悪化を防
止するとともに、メタンの形で資源、エネルギーの回収
が可能な有機性排液の処理方法および装置を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to reduce sludge volume at a low cost without increasing the aeration tank capacity and supply oxygen amount in an aerobic biological treatment step, and to discharge sludge to the outside of the system. It is an object of the present invention to provide an organic wastewater treatment method and apparatus capable of reducing the amount and preventing deterioration of treated water quality and recovering resources and energy in the form of methane.

【0010】[0010]

【課題を解決するための手段】本発明は、次の有機性排
液の処理方法および装置である。 (1)有機性排液を曝気槽に導入して、活性汚泥の存在
下に好気性生物処理する好気性生物処理工程、曝気槽の
混合液を固液分離し、分離液を処理水として排出し、分
離汚泥の少なくとも一部を曝気槽に返送する第1の固液
分離工程、第1の固液分離工程の分離汚泥または曝気槽
の混合液から活性汚泥の少なくとも一部を引き抜き、こ
の引抜汚泥を易生物分解性に改質する改質処理工程、改
質処理汚泥を、酸生成菌を含む汚泥の存在下に嫌気状態
に維持して可溶化し、有機酸を生成させる酸生成工程、
酸生成工程の混合液を固液分離し、分離液をメタン発酵
工程に移送し、分離汚泥を前記酸生成工程に戻す第2の
固液分離工程、第2の固液分離工程の分離液を、メタン
生成菌を含む汚泥の存在下に嫌気状態に維持し、メタン
発酵するメタン発酵工程、およびメタン発酵液を前記好
気性生物処理工程に導入する移送工程を含む有機性排液
の処理方法。 (2)有機性排液を曝気槽に導入して、活性汚泥の存在
下に好気性生物処理する好気性生物処理装置、曝気槽の
混合液を固液分離し、分離液を処理水として排出し、分
離汚泥の少なくとも一部を曝気槽に返送する第1の固液
分離装置、第1の固液分離装置の分離汚泥または曝気槽
の混合液から活性汚泥の少なくとも一部を引き抜き、こ
の引抜汚泥を易生物分解性に改質する改質処理装置、改
質処理汚泥を、酸生成菌を含む汚泥の存在下に嫌気状態
に維持して可溶化し、有機酸を生成させる酸生成槽、酸
生成槽の混合液を固液分離し、分離液をメタン発酵槽に
移送し、分離汚泥を前記酸生成槽に戻す第2の固液分離
装置、第2の固液分離装置の分離液を、メタン生成菌を
含む汚泥の存在下に嫌気状態に維持し、メタン発酵する
メタン発酵槽、およびメタン発酵液を前記好気性生物処
理装置に導入する移送装置を含む有機性排液の処理装
置。
SUMMARY OF THE INVENTION The present invention is a method and an apparatus for treating an organic effluent. (1) An aerobic biological treatment step in which an organic wastewater is introduced into an aeration tank and an aerobic biological treatment is performed in the presence of activated sludge. The mixed liquid in the aeration tank is solid-liquid separated, and the separated liquid is discharged as treated water. And a first solid-liquid separation step of returning at least a part of the separated sludge to the aeration tank, and extracting at least a part of the activated sludge from the separated sludge of the first solid-liquid separation step or the mixed liquid of the aeration tank. A reforming step of reforming the sludge to be easily biodegradable, an acid generating step of solubilizing the modified sludge while maintaining it in an anaerobic state in the presence of sludge containing acid-producing bacteria to generate an organic acid,
The mixed solution of the acid generation step is subjected to solid-liquid separation, the separated liquid is transferred to the methane fermentation step, and the separated liquid of the second solid-liquid separation step is returned to the acid generation step. A method for treating organic wastewater, comprising: a methane fermentation step of maintaining anaerobic conditions in the presence of sludge containing methane-producing bacteria for methane fermentation; and a transfer step of introducing a methane fermentation liquor to the aerobic biological treatment step. (2) An aerobic biological treatment device that introduces an organic wastewater into an aeration tank and performs aerobic biological treatment in the presence of activated sludge. The mixed liquid in the aeration tank is solid-liquid separated, and the separated liquid is discharged as treated water. A first solid-liquid separator for returning at least a part of the separated sludge to the aeration tank, at least a part of the activated sludge from the separated sludge of the first solid-liquid separator or the mixed liquid of the aeration tank, and the extraction. A reforming treatment apparatus for reforming sludge to be easily biodegradable, an acid generating tank for maintaining the reformed sludge in an anaerobic state in the presence of sludge containing acid-producing bacteria to solubilize and generate an organic acid, The liquid mixture in the acid generation tank is subjected to solid-liquid separation, the separated liquid is transferred to a methane fermentation tank, and the separated sludge is returned to the acid generation tank. A methane fermentation tank that maintains anaerobic conditions in the presence of sludge containing methanogens and performs methane fermentation. Organic effluent processing apparatus including a transfer device for introducing the finely methane fermentation liquid in the aerobic biological treatment apparatus.

【0011】本発明において処理の対象となる有機性排
液は、通常の好気性生物処理法により処理される有機物
を含有する排液であるが、難生物分解性の有機物または
無機物が含有されていてもよく、またアンモニア性窒素
等が含有されていてもよい。このような有機性排液とし
ては、下水、し尿、食品工場排水その他の産業排液など
があげられる。
The organic effluent to be treated in the present invention is an effluent containing an organic substance which is treated by a usual aerobic biological treatment method, but contains an organic substance or an inorganic substance which is hardly biodegradable. And ammonia nitrogen or the like may be contained. Such organic effluents include sewage, night soil, food factory effluents and other industrial effluents.

【0012】本発明における好気性生物処理工程は、有
機性排液を曝気槽に導入して、活性汚泥の存在下に好気
性生物処理を行うように構成される。また第1の固液分
離工程は曝気槽から混合液を固液分離槽に導いて固液分
離し、分離液を処理水として排出し、分離汚泥の少なく
とも一部を曝気槽へ返送するように構成される。このよ
うな処理系および処理装置としては、有機性排液を曝気
槽で活性汚泥と混合して曝気し、混合液を固液分離槽に
おいて分離し、分離汚泥の一部を曝気槽に返送する標準
活性汚泥処理法における好気性生物処理および処理装置
が一般的であるが、これを変形した他のものでもよい。
アンモニア性窒素を含む排液を処理する場合は硝化脱窒
工程を組み合せて処理することができる。
The aerobic biological treatment step in the present invention is configured to introduce an organic wastewater into an aeration tank and perform aerobic biological treatment in the presence of activated sludge. In the first solid-liquid separation step, the mixed liquid is guided from the aeration tank to the solid-liquid separation tank to perform solid-liquid separation, the separated liquid is discharged as treated water, and at least a part of the separated sludge is returned to the aeration tank. Be composed. As such a processing system and a processing apparatus, an organic effluent is mixed with activated sludge in an aeration tank and aerated, the mixed liquid is separated in a solid-liquid separation tank, and a part of the separated sludge is returned to the aeration tank. Aerobic biological treatment and treatment equipment in the standard activated sludge treatment method is generally used, but other modified forms of this may be used.
When treating the wastewater containing ammoniacal nitrogen, the treatment can be carried out by combining the nitrification and denitrification step.

【0013】改質処理工程は上記の好気性生物処理にお
ける処理系からの活性汚泥(生物汚泥)の少なくとも一
部を引き抜き、この引抜汚泥を易生物分解性に改質する
工程である。生物汚泥を引き抜く場合、固液分離槽で分
離された分離汚泥の一部を引き抜くのが好ましいが、曝
気槽から混合液の状態で引き抜いてもよい。分離汚泥か
ら引き抜く場合、余剰汚泥として排出される部分の一部
または全部を引抜汚泥として引き抜くことができるが、
余剰汚泥(被処理液中のBODの同化により増殖する汚
泥量に相当)に加えて、返送汚泥として曝気槽に返送さ
れる返送汚泥の一部をさらに引き抜いて改質処理するこ
とにより、系外に排出する余剰汚泥の発生量をより少な
くし、場合によってはゼロにすることができる。余剰汚
泥の発生量をゼロにするためには、改質汚泥を直接曝気
槽に戻す場合は増殖汚泥量の約3倍を改質処理する必要
があったが、本発明では増殖汚泥量の約1.8倍を改質
処理すればよく、改質処理のために引き抜く汚泥量は従
来の半分近くになる。
The reforming treatment step is a step of extracting at least a part of the activated sludge (biological sludge) from the treatment system in the aerobic biological treatment and reforming the extracted sludge to be easily biodegradable. When extracting biological sludge, it is preferable to extract a part of the separated sludge separated in the solid-liquid separation tank, but it may be extracted in a mixed liquid state from the aeration tank. When extracting from the separated sludge, part or all of the part discharged as excess sludge can be extracted as extracted sludge,
In addition to excess sludge (corresponding to the amount of sludge multiplied by assimilation of BOD in the liquid to be treated), a part of the returned sludge returned to the aeration tank as returned sludge is further extracted and reformed, so that it is out of the system. The amount of excess sludge discharged to the wastewater can be reduced, and in some cases, reduced to zero. In order to reduce the amount of surplus sludge generated to zero, it was necessary to reform about three times the amount of multiplied sludge when returning the reformed sludge directly to the aeration tank. It is sufficient to perform 1.8 times the reforming treatment, and the amount of sludge drawn out for the reforming treatment is close to half of the conventional sludge amount.

【0014】引抜汚泥を生物が分解し易い性状に改質す
る改質処理方法としては、任意の方法を採用することが
できる。例えば、オゾン処理による改質処理、酸処理に
よる改質処理、アルカリ処理による改質処理、加熱処理
による改質処理、高圧パルス放電処理、ボールミル、コ
ロイドミル等のミルによる磨砕処理、これらを組み合せ
た改質処理等を採用することができる。これらの処理は
公知の処理装置を用いて行うことができる。これらの中
ではオゾン処理による改質処理が、処理操作が簡単かつ
処理効率が高いため好ましい。
[0014] As a reforming treatment method for reforming the drawn sludge into a property easily decomposed by living organisms, any method can be adopted. For example, reforming treatment by ozone treatment, reforming treatment by acid treatment, reforming treatment by alkali treatment, reforming treatment by heat treatment, high-pressure pulse discharge treatment, grinding by ball mill, colloid mill, etc. Modified treatment or the like can be employed. These processes can be performed using a known processing device. Among these, the reforming treatment by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high.

【0015】改質処理としてのオゾン処理は、好気性生
物処理系から引き抜いた引抜汚泥をオゾンと接触させれ
ばよく、オゾンの酸化作用により汚泥は易生物分解性に
改質される。オゾン処理はpH5以下の酸性領域で行う
と酸化分解効率が高くなる。このときのpHの調整は、
硫酸、塩酸または硝酸などの無機酸をpH調整剤として
生物汚泥に添加する方法などを採用することができる。
pH調整剤を添加する場合、pHは3〜4に調整するの
が好ましい。
In the ozone treatment as the reforming treatment, the sludge extracted from the aerobic biological treatment system may be brought into contact with ozone, and the sludge is reformed to be easily biodegradable by the oxidizing action of ozone. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the oxidative decomposition efficiency increases. The pH adjustment at this time is as follows:
A method in which an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid is added as a pH adjuster to biological sludge can be adopted.
When adding a pH adjuster, it is preferable to adjust pH to 3-4.

【0016】オゾン処理は、引抜汚泥をそのまま、また
は必要により遠心分離機などで濃縮した後、オゾンと接
触させることにより行うことができる。接触方法として
は、オゾン処理槽に汚泥を導入してオゾンを吹込む方
法、機械撹拌による方法、充填層を利用する方法などが
採用できる。オゾンとしては、オゾンガスの他、オゾン
含有空気、オゾン化空気などのオゾン含有ガスが使用で
きる。オゾンの使用量は0.002〜0.05g−O3
/g−VSS、好ましくは0.005〜0.03g−O
3/g−VSSとするのが望ましい。オゾン処理により
生物汚泥は酸化分解されて、BOD成分に変換される。
The ozone treatment can be carried out by directly contacting the extracted sludge or, if necessary, concentrating it with a centrifugal separator or the like, and then contacting it with ozone. As a contact method, a method of introducing sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, and the like can be adopted. As ozone, ozone-containing gas such as ozone-containing air and ozonized air can be used in addition to ozone gas. The amount of ozone used is 0.002-0.05 g-O 3
/ G-VSS, preferably 0.005 to 0.03 g-O
3 / g-VSS is desirable. The biological sludge is oxidatively decomposed and converted into a BOD component by the ozone treatment.

【0017】改質処理としての酸処理では、好気性生物
処理系から引き抜いた引抜汚泥を改質槽に導き、塩酸、
硫酸などの鉱酸を加え、pH2.5以下、好ましくはp
H1〜2の酸性条件下で所定時間滞留させればよい。滞
留時間は、例えば5〜24時間程度とする。この際、汚
泥を加熱、例えば50〜100℃に加熱すると改質が促
進されるので好ましい。
In the acid treatment as the reforming treatment, the extracted sludge extracted from the aerobic biological treatment system is guided to a reforming tank, and hydrochloric acid,
A mineral acid such as sulfuric acid is added, and pH 2.5 or less, preferably p
What is necessary is just to stay for a predetermined time under the acidic condition of H1-2. The residence time is, for example, about 5 to 24 hours. At this time, it is preferable to heat the sludge, for example, to 50 to 100 ° C., since the reforming is promoted.

【0018】また、汚泥の改質処理としてのアルカリ処
理では、好気性生物処理系から引き抜いた引抜汚泥を改
質槽に導き、水酸化ナトリム、水酸化カリウム等のアル
カリを汚泥に対して0.1〜1重量%加え、所定時間滞
留させればよい。滞留時間は、例えば0.5〜2時間程
度とする。この際、汚泥を加熱し、例えば50〜100
℃に加熱すると改質が促進されるので好ましい。
In the alkali treatment as the sludge reforming treatment, the extracted sludge extracted from the aerobic biological treatment system is led to a reforming tank, and alkali such as sodium hydroxide and potassium hydroxide is added to the sludge at 0.1%. What is necessary is just to add 1 to 1% by weight and to stay for a predetermined time. The residence time is, for example, about 0.5 to 2 hours. At this time, the sludge is heated to, for example, 50 to 100.
Heating to ° C. is preferable because reforming is promoted.

【0019】改質処理としての加熱処理は、加熱処理単
独で行うこともできるが、酸処理またはアルカリ処理と
組み合せて行うのが好ましい。加熱処理単独で行う場合
は、例えば温度70〜100℃、滞留時間2〜3時間と
することができる。
The heat treatment as the reforming treatment can be performed alone, but is preferably performed in combination with an acid treatment or an alkali treatment. When heat treatment is performed alone, for example, the temperature may be 70 to 100 ° C., and the residence time may be 2 to 3 hours.

【0020】高電圧のパルス放電処理は、電極間隔3〜
10mm、好ましくは4〜8mmのタングステン/トリ
ウム合金等のプラス極と、ステンレス鋼等のマイナス極
間に汚泥を存在させ、印加電圧10〜50kV、好まし
くは20〜40kV、パルス間隔20〜80Hz、好ま
しくは40〜60Hzでパルス放電を行い、汚泥は順次
循環させながら処理を行うことができる。
The high-voltage pulse discharge process is performed with an electrode spacing of 3 to
Sludge is present between a positive electrode of 10 mm, preferably 4 to 8 mm such as a tungsten / thorium alloy, and a negative electrode of stainless steel or the like, and an applied voltage of 10 to 50 kV, preferably 20 to 40 kV, and a pulse interval of 20 to 80 Hz, preferably Performs pulse discharge at 40 to 60 Hz, and can perform treatment while circulating sludge sequentially.

【0021】酸生成工程は酸生成槽において酸生成菌を
含む汚泥の存在下に改質処理汚泥を嫌気状態に維持して
可溶化し、有機酸を生成させる工程である。また酸生成
工程では、後述の第2の固液分離工程で分離された分離
汚泥も酸生成槽に戻されて処理される。このような酸生
成工程では、酸生成菌の作用により有機物が液化→低分
子化→有機酸生成のステップにより、メタン生成菌によ
って分解されやすい有機酸に転換する。有機酸の生成に
より酸性となるので、水酸化ナトリウム等のアルカリを
添加してpH調整することができる。
The acid generating step is a step of solubilizing the reformed sludge in an acid generating tank in the presence of sludge containing acid-producing bacteria in an anaerobic state to generate an organic acid. In the acid generation step, the separated sludge separated in the second solid-liquid separation step described later is also returned to the acid generation tank for processing. In such an acid generation step, an organic substance is converted into an organic acid which is easily decomposed by a methane-producing bacterium in a step of liquefaction → low molecular weight → organic acid generation by the action of an acid-producing bacterium. Since the organic acid becomes acidic due to its generation, the pH can be adjusted by adding an alkali such as sodium hydroxide.

【0022】酸生成の条件としては、35℃付近に最適
温度がある中温酸生成菌、および55℃付近に最適温度
がある高温酸生成菌のいずれも利用可能であり、それぞ
れ30〜38℃または45〜60℃で処理される。酸生
成槽での滞留時間(SRT)は3日以上、好ましくは5
〜10日程度とすることができる。この滞留時間は実質
的にメタン生成菌が増殖しない範囲に設定される。酸生
成工程におけるpHは5〜7、好ましくは5.8〜6.
2とするのが好適である。
As conditions for acid generation, either a medium-temperature acid-producing bacterium having an optimum temperature around 35 ° C. and a high-temperature acid-producing bacterium having an optimum temperature near 55 ° C. can be used. Processed at 45-60 ° C. The residence time (SRT) in the acid generator is 3 days or more, preferably 5 days.
About 10 to about 10 days. This residence time is set within a range where the methanogen does not substantially grow. The pH in the acid generation step is 5-7, preferably 5.8-6.
Preferably, it is 2.

【0023】第2の固液分離工程は酸生成槽から混合液
(以下、酸生成液という場合がある)を固液分離装置に
導いて固液分離し、分離液はメタン発酵工程に送り、分
離汚泥は酸生成工程に戻すように構成される。第2の固
液分離工程で使用される固液分離装置は特に制限され
ず、膜分離装置、デカンター、ろ過装置などの任意の固
液分離装置を用いることができる。膜分離を利用する場
合は、中空糸、チューブラー、平膜などの種々の膜形式
が利用できる。また膜分離は固形物を分離することが目
的であるため、MF、UFなどの比較的大きなポアサイ
ズを有する膜が好ましい。
In the second solid-liquid separation step, a liquid mixture (hereinafter, sometimes referred to as an acid generation liquid) is guided from the acid generation tank to a solid-liquid separation device to perform solid-liquid separation, and the separated liquid is sent to the methane fermentation step. The separated sludge is configured to return to the acid generation step. The solid-liquid separation device used in the second solid-liquid separation step is not particularly limited, and any solid-liquid separation device such as a membrane separation device, a decanter, and a filtration device can be used. When using membrane separation, various types of membrane such as hollow fiber, tubular, and flat membrane can be used. Since the purpose of membrane separation is to separate solids, a membrane having a relatively large pore size such as MF and UF is preferable.

【0024】メタン発酵工程は第2の固液分離工程で分
離された分離液をメタン生成菌を含む汚泥の存在下に嫌
気状態に維持し、メタン発酵する工程である。メタン発
酵の方法はUASB(上向流嫌気性スラッジブランケッ
ト)式、固定床式および流動床式等の高負荷嫌気性処
理;浮遊式など、任意の方式のメタン発酵法を採用する
ことができるが、高負荷嫌気性処理、特にUASB式が
好ましい。
The methane fermentation step is a step of performing methane fermentation while maintaining the separated liquid separated in the second solid-liquid separation step in an anaerobic state in the presence of sludge containing methanogens. The method of methane fermentation can employ any type of methane fermentation method such as UASB (upflow anaerobic sludge blanket) type, high load anaerobic treatment such as fixed bed type and fluidized bed type; and floating type. High load anaerobic treatment, especially UASB type, is preferred.

【0025】UASB式はメタン生成菌を高密度でグラ
ニュール化した汚泥を用い、上向流で通液することによ
り、スラッジブランケットを形成し、嫌気性処理する方
法である。固定床方式は固定床式の担体の表面にメタン
生成菌を高密度で付着させた汚泥を用いて嫌気処理を行
う方法である。流動床法はメタン生成菌を高密度で含む
生物汚泥を粒状担体に担持させて、流動床を形成して嫌
気性処理を行う方法である。これらは高負荷嫌気性処理
であって、いずれも溶解性の有機物について高負荷かつ
高流速で通液して比較的短時間で処理する方法である。
浮遊式は浮遊状態の生物汚泥と分離液とを混合して嫌気
処理する方法である。
The UASB method is an anaerobic treatment method in which sludge blanket is formed by using sludge obtained by granulating methane-producing bacteria at high density and passing the solution in an upward flow. The fixed bed method is a method of performing anaerobic treatment using sludge in which methanogens are attached at a high density to the surface of a fixed bed type carrier. The fluidized bed method is a method in which biological sludge containing methanogens at a high density is supported on a granular carrier, and a fluidized bed is formed to perform anaerobic treatment. These are high-load anaerobic treatments, which are methods in which a soluble organic substance is passed at a high load and a high flow rate in a relatively short time.
The floating type is a method in which biological sludge in a floating state and a separated liquid are mixed and subjected to anaerobic treatment.

【0026】メタン発酵の条件としては、35℃付近に
最適温度がある中温メタン生成菌、および55℃付近に
最適温度がある高温メタン生成菌のいずれも利用可能で
あり、それぞれ30〜40℃または45〜60℃で処理
される。メタン発酵槽での負荷は5〜20kg−COD
/m3・day、好ましくは10〜15kg−COD/
3・day、滞留時間は3〜48時間、好ましくは4
〜24時間程度とすることができる。UASB式の場合
の上向流速度は0.5〜2m/hr、好ましくは1〜
1.5m/hrとするのが望ましい。
As conditions for the methane fermentation, either a medium-temperature methanogen having an optimum temperature around 35 ° C. or a high-temperature methanogen having an optimum temperature near 55 ° C. can be used. Processed at 45-60 ° C. Load in methane fermentation tank is 5-20kg-COD
/ M 3 · day, preferably 10 to 15 kg-COD /
m 3 · day, residence time 3 to 48 hours, preferably 4
About 24 hours. The upward flow velocity in the case of the UASB type is 0.5 to 2 m / hr, preferably 1 to 2 m / hr.
It is desirable to set it to 1.5 m / hr.

【0027】メタン発酵により分離液中の有機酸がメタ
ンガスおよび二酸化炭素に転換される。通常、メタンガ
スは発生ガスの60〜70容量%を占める。このメタン
ガスを回収することにより、燃料として有効利用するこ
とができる。またメタンガス発電を行い、電気と熱の両
方の形で有効利用(コジェネレーション)することもで
きる。
The organic acid in the separated liquid is converted into methane gas and carbon dioxide by methane fermentation. Usually, methane gas accounts for 60-70% by volume of the generated gas. By recovering this methane gas, it can be effectively used as fuel. It can also generate methane gas and use it effectively in both electricity and heat (cogeneration).

【0028】移送工程はメタン発酵したメタン発酵液を
前記好気性生物処理工程に移送する工程である。曝気槽
に導入したメタン発酵液は、有機性排液および槽内の活
性汚泥と混合されて好気性生物処理されるが、メタン発
酵液は改質処理汚泥に比べると生物分解可能な有機物
(BOD)量が大幅に減少しているので、新たにBOD
負荷になる量は少なく、このため曝気槽容量を大きくす
る必要はなく、また供給酸素量を増大させる必要もな
い。すなわち本発明では、改質処理汚泥中のBODを酸
生成およびメタン発酵により除去しているので、メタン
発酵液を曝気槽に導入しても、好気性生物処理工程の活
性汚泥処理能力を増大させる必要はない。また処理水質
の悪化も防止される。
The transfer step is a step of transferring the methane fermented liquid obtained by methane fermentation to the aerobic biological treatment step. The methane fermentation liquor introduced into the aeration tank is mixed with the organic wastewater and the activated sludge in the tank and is subjected to aerobic biological treatment. The methane fermentation liquor is more biodegradable than the modified sludge. ) Since the volume has decreased significantly, a new BOD
The amount of load is small, so there is no need to increase the capacity of the aeration tank, and it is not necessary to increase the amount of supplied oxygen. That is, in the present invention, since the BOD in the modified sludge is removed by acid generation and methane fermentation, even if the methane fermentation solution is introduced into the aeration tank, the activated sludge treatment capacity of the aerobic biological treatment step is increased. No need. In addition, deterioration of treated water quality is prevented.

【0029】メタン発酵液を曝気槽で好気性生物処理す
ることにより、メタン生成菌が曝気によりほとんど死滅
して、一部BOD化するので、系外へ排出する汚泥の発
生量はさらに少なくなる。また改質処理がオゾン処理の
場合は、メタン発酵液を直接改質処理工程に戻すと、メ
タン発酵液には還元性物質(H2Sなど)が含まれてい
るのでオゾンを無駄に消費してしまうが、一旦曝気槽に
導入して曝気することにより、還元性物質を除去するこ
とができる。
By subjecting the methane fermentation liquor to aerobic biological treatment in an aeration tank, the methane-producing bacteria almost die by aeration and partially become BOD, so that the amount of sludge discharged to the outside of the system is further reduced. When the reforming treatment is ozone treatment, when the methane fermentation liquor is returned directly to the reforming treatment step, ozone is consumed wastefully because the methane fermentation liquor contains a reducing substance (such as H 2 S). However, once introduced into the aeration tank and aerated, the reducing substance can be removed.

【0030】このように本発明では、好気性生物処理工
程の曝気槽容量および供給酸素量を増大させることなく
汚泥を減容化して系外へ排出する汚泥量を減少させるこ
とができ、しかも好気性処理系に十分な汚泥を保持して
処理水質の悪化も防止することができるとともに、メタ
ンの形で資源、エネルギーの回収が可能である。
As described above, according to the present invention, it is possible to reduce the volume of sludge and reduce the amount of sludge discharged outside the system without increasing the aeration tank capacity and the amount of supplied oxygen in the aerobic biological treatment step. While sufficient sludge is retained in the aerobic treatment system, deterioration of treated water quality can be prevented, and resources and energy can be recovered in the form of methane.

【0031】また本発明では、従来の方法に比べて低コ
ストで効率よく汚泥を減容化することができる。例え
ば、従来と同じ量の引抜汚泥を改質処理した場合、系外
へ排出する汚泥の発生量は従来よりも少なくなる。これ
は、従来の方法では、改質処理により生成したBODの
30〜40%が好気性生物処理工程で再び汚泥に転換す
るのに対して、本発明では酸生成工程およびメタン発酵
工程におけるBODの汚泥転換率が約5%と非常に小さ
く、曝気槽に戻った菌体から生成する汚泥量はほとんど
無視できるためである。従って、従来と同程度の汚泥減
容化率を達成する場合、改質処理する引抜汚泥の量を少
なくすることができ、低コストでの処理が可能となる。
例えば、改質処理がオゾン処理の場合、使用するオゾン
量、薬品、エネルギー量などを少なくすることができ、
低コストで処理することが可能となる。
Further, according to the present invention, the volume of sludge can be reduced efficiently at lower cost than in the conventional method. For example, when the same amount of extracted sludge is reformed as in the conventional case, the amount of sludge discharged to the outside of the system is smaller than in the conventional case. This is because, in the conventional method, 30 to 40% of the BOD generated by the reforming treatment is converted into sludge again in the aerobic biological treatment step, whereas in the present invention, the BOD in the acid generation step and the methane fermentation step is converted. This is because the sludge conversion rate is very small, about 5%, and the amount of sludge generated from the cells returned to the aeration tank can be almost ignored. Therefore, when achieving the same sludge volume reduction ratio as the conventional one, the amount of the extracted sludge to be reformed can be reduced, and the treatment can be performed at low cost.
For example, when the reforming treatment is ozone treatment, the amount of ozone used, chemicals, energy amount, etc. can be reduced,
Processing can be performed at low cost.

【0032】酸生成工程で生じる酸生成液を固液分離す
ることなくメタン発酵工程に導入してメタン発酵する
と、メタン発酵菌の活性が低下し、メタン発酵に時間が
かかるほか、汚泥生成量も増加し、このため曝気槽に導
入される負荷が大きくなり、汚泥減容化率も低下する。
これに対し本発明のように、酸生成液を固液分離して固
形分を酸生成工程に戻すことにより、可溶性成分のみを
メタン発酵工程に移送することができ、これによりメタ
ン発酵の効率を高くして曝気槽に導入する負荷を小さく
し、汚泥減容化率を高くすることができる。
When methane fermentation is carried out by introducing the acid-generating solution produced in the acid-generating step into the methane-fermenting step without solid-liquid separation, the activity of the methane-fermenting bacteria decreases, and the methane fermentation takes a long time, and the sludge production amount also decreases. As a result, the load introduced into the aeration tank increases, and the sludge volume reduction rate also decreases.
On the other hand, as in the present invention, by solid-liquid separation of the acid generation liquid and returning the solid content to the acid generation step, only the soluble component can be transferred to the methane fermentation step, thereby improving the efficiency of the methane fermentation. By increasing the load, the load introduced into the aeration tank can be reduced, and the sludge volume reduction rate can be increased.

【0033】[0033]

【発明の効果】本発明の有機性排液の処理方法は、引抜
汚泥を改質処理したのち酸生成処理し、次にこの酸生成
液を固液分離し、分離液はメタン発酵したのち好気性生
物処理工程に導入し、分離汚泥は酸生成工程に戻してい
るので、好気性生物処理工程の曝気槽容量および供給酸
素量を増大させることなく、かつ低コストで汚泥を減容
化して系外へ排出する汚泥量を減少させ、しかも処理水
質の悪化を防止するとともに、メタンの形で資源、エネ
ルギーの回収が可能である。
According to the method for treating organic effluent of the present invention, the extracted sludge is subjected to a reforming treatment, followed by an acid generation treatment, and then the acid production liquid is subjected to solid-liquid separation. Introduced to the aerobic biological treatment process, and the separated sludge is returned to the acid generation process, so the sludge volume can be reduced at low cost without increasing the aeration tank capacity and supply oxygen amount in the aerobic biological treatment process. It can reduce the amount of sludge discharged to the outside, prevent the deterioration of treated water quality, and recover resources and energy in the form of methane.

【0034】本発明の有機性排液の処理装置は、改質処
理装置、酸生成槽、第2の固液分離装置、メタン発酵槽
および移送装置を備え、引抜汚泥を改質処理したのち酸
生成処理し、次にこの酸生成液を固液分離し、分離液は
メタン発酵したのち好気性生物処理工程に導入し、分離
汚泥は酸生成工程に戻すように構成されているので、有
機性排液を処理するに際し、好気性生物処理工程の曝気
槽容量および供給酸素量を増大させることなく、かつ低
コストで汚泥を減容化して系外へ排出する汚泥量を減少
させ、しかも処理水質の悪化を防止するとともに、メタ
ンの形で資源、エネルギーの回収が可能である。
The organic wastewater treatment apparatus of the present invention includes a reforming treatment apparatus, an acid generation tank, a second solid-liquid separation apparatus, a methane fermentation tank, and a transfer apparatus. The acid production solution is subjected to solid-liquid separation, and the separated solution is subjected to methane fermentation and then introduced into the aerobic biological treatment process, and the separated sludge is returned to the acid production process. In treating wastewater, the volume of sludge is reduced at low cost without increasing the aeration tank capacity and supply oxygen amount in the aerobic biological treatment process, and the amount of sludge discharged outside the system is reduced. And the recovery of resources and energy in the form of methane.

【0035】[0035]

【発明の実施の形態】次に本発明の実施例を図面により
説明する。図1は本発明の実施形態の有機性排液の生物
処理装置を示す系統図であり、改質処理としてオゾン処
理する場合の例を示している。図1において、1は曝気
槽、2は沈殿槽、3はオゾン処理槽、4は酸生成槽、5
は膜分離装置、6はUASB式のメタン発酵槽である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an organic wastewater biological treatment apparatus according to an embodiment of the present invention, and shows an example in which ozone treatment is performed as a reforming treatment. In FIG. 1, 1 is an aeration tank, 2 is a sedimentation tank, 3 is an ozone treatment tank, 4 is an acid generation tank, 5
Denotes a membrane separation device, and 6 denotes a UASB type methane fermentation tank.

【0036】曝気槽1には原水路11および返送汚泥路
12が連絡し、また底部には散気装置15が設けられ
て、空気供給路14が連絡している。曝気槽1から沈殿
槽2に連絡路16が連絡している。沈殿槽2の上部には
処理水路17が連絡し、下部には汚泥排出路18が連絡
し、返送汚泥路12に連絡している。21は余剰汚泥排
出路である。
The aeration tank 1 is connected to a raw water channel 11 and a return sludge channel 12, and a diffuser 15 is provided at the bottom, and an air supply channel 14 is connected. A communication path 16 communicates from the aeration tank 1 to the precipitation tank 2. The upper part of the settling tank 2 communicates with the treatment water channel 17, the lower part communicates with the sludge discharge channel 18, and communicates with the return sludge channel 12. 21 is an excess sludge discharge passage.

【0037】オゾン処理槽3には汚泥排出路18から分
岐する引抜汚泥路22および排オゾン路23が上部に連
絡している。またオゾン発生機24から連絡するオゾン
供給路25およびオゾン処理汚泥路26が下部に連絡し
ている。酸生成槽4には、オゾン処理汚泥路26、ポン
プ27を有する酸生成液路28および濃縮液路29が連
絡し、内部には撹拌機30が設けられている。
The ozone treatment tank 3 is connected to an upper part of a drawn sludge passage 22 and an exhaust ozone passage 23 branched from the sludge discharge passage 18. Further, an ozone supply passage 25 and an ozonized sludge passage 26 which are communicated from the ozone generator 24 communicate with the lower part. The acid generation tank 4 is connected to an ozone treatment sludge passage 26, an acid generation liquid passage 28 having a pump 27, and a concentrated liquid passage 29, and a stirrer 30 is provided therein.

【0038】膜分離装置5には酸生成液路28、濃縮液
路29およびポンプ32を有する透過液路33が連絡
し、内部には分離膜34が設けられている。メタン発酵
槽6には透過液路33が下部に連絡し、メタン発酵液移
送路35およびメタンガス排出路36が上部に連絡して
いる。メタン発酵槽6の内部には透過液路33から連絡
する透過液流入部37が設けられ、その上部にグラニュ
ール汚泥によりスラッジブランケット38が形成されて
いる。メタン発酵液移送路35は原水路11に連絡して
いる。
The membrane separation apparatus 5 is connected to an acid generation liquid passage 28, a concentrated liquid passage 29, and a permeate passage 33 having a pump 32, and a separation membrane 34 is provided therein. The methane fermentation tank 6 is connected to a permeated liquid passage 33 at a lower portion, and a methane fermented liquid transfer passage 35 and a methane gas discharge passage 36 are connected to an upper portion. Inside the methane fermenter 6 is provided a permeate inlet 37 communicating from the permeate passage 33, and a sludge blanket 38 is formed by granule sludge on the upper part thereof. The methane fermentation liquid transfer passage 35 communicates with the raw water passage 11.

【0039】図1の生物処理装置により有機性排液(原
水)を処理するには、原水路11から原水を曝気槽1に
導入し、返送汚泥路12から返送される返送汚泥、メタ
ン発酵液移送路35から移送されるメタン発酵液、およ
び曝気槽1内の活性汚泥と混合し、空気供給路14から
供給される空気を散気装置15から散気して好気性生物
処理する。
In order to treat organic effluent (raw water) by the biological treatment apparatus shown in FIG. 1, raw water is introduced into the aeration tank 1 from the raw water channel 11 and returned sludge and methane fermentation liquid returned from the returned sludge channel 12 The methane fermentation liquid transferred from the transfer path 35 and the activated sludge in the aeration tank 1 are mixed, and the air supplied from the air supply path 14 is diffused from the diffuser 15 to perform aerobic biological treatment.

【0040】曝気槽1内の混合液は連絡路16から一部
ずつ取り出して沈殿槽2に導入し、分離液と分離汚泥と
に固液分離する。分離液は処理水として処理水路17か
ら系外へ排出し、分離汚泥は汚泥排出路18から取り出
し、その一部を返送汚泥として返送汚泥路12から曝気
槽1に返送し、残部を引抜汚泥として引抜汚泥路22か
らオゾン処理槽3に導入する。なお、系外へ排出する汚
泥が生じる場合は余剰汚泥排出路21から系外へ排出す
る。
The mixed liquid in the aeration tank 1 is partly taken out from the communication path 16 and introduced into the sedimentation tank 2 to be separated into a separated liquid and a separated sludge. The separated liquid is discharged as treatment water from the treatment water passage 17 to the outside of the system, the separated sludge is taken out from the sludge discharge passage 18, a part of which is returned to the aeration tank 1 from the return sludge passage 12 as return sludge, and the remaining portion is extracted as sludge. It is introduced into the ozone treatment tank 3 from the drawing sludge passage 22. If sludge to be discharged to the outside of the system is generated, the sludge is discharged to the outside of the system from the excess sludge discharge passage 21.

【0041】オゾン処理槽3では、オゾン発生機24で
発生させたオゾンをオゾン供給路25から供給し、引抜
汚泥と接触させてオゾン処理(改質処理)を行う。これ
により引抜汚泥中の汚泥がBOD化する。オゾン処理汚
泥はオゾン処理汚泥路26から酸生成槽4に導入する。
オゾン排ガスは排オゾン路23から排出する。
In the ozone treatment tank 3, ozone generated by the ozone generator 24 is supplied from an ozone supply passage 25, and is brought into contact with the extracted sludge to perform ozone treatment (reforming treatment). Thereby, the sludge in the extracted sludge is converted to BOD. The ozonized sludge is introduced into the acid generating tank 4 from the ozonized sludge passage 26.
The ozone exhaust gas is discharged from a discharge ozone passage 23.

【0042】酸生成槽4では、オゾン処理汚泥および濃
縮液路29から戻される濃縮液40を、酸生成槽4内の
酸生成菌を含む汚泥と混合し、撹拌機30により緩やか
に撹拌しながら嫌気性処理して酸生成を行う。これによ
り、オゾン処理汚泥中の有機物は酸生成菌により分解さ
れ有機酸が生成する。
In the acid generating tank 4, the ozone-treated sludge and the concentrated liquid 40 returned from the concentrated liquid passage 29 are mixed with the sludge containing the acid-producing bacteria in the acid generating tank 4, while being gently stirred by the stirrer 30. An acid is generated by anaerobic treatment. Thereby, the organic matter in the ozone-treated sludge is decomposed by the acid-producing bacteria to generate an organic acid.

【0043】酸生成槽4内の混合液の一部は酸生成液路
28から取り出し、ポンプ27で加圧して膜分離装置5
に導き、分離膜34により膜分離する。この膜分離によ
り透過液39と濃縮液40とに分離される。透過液39
は透過液路33からメタン発酵槽6へ送られる。濃縮液
40は濃縮液路29から酸生成槽4に戻し、前記のよう
に酸生成を行う。濃縮液40に無機SS成分が含まれる
場合には連続的または間欠的に汚泥排出路29aから排
出することができる。
A part of the mixed solution in the acid generating tank 4 is taken out from the acid generating liquid passage 28, and is pressurized by a pump 27 so that the membrane separation device 5
And the membrane is separated by the separation membrane 34. By this membrane separation, a permeate 39 and a concentrate 40 are separated. Permeate 39
Is sent from the permeate passage 33 to the methane fermentation tank 6. The concentrated liquid 40 is returned from the concentrated liquid passage 29 to the acid generation tank 4 to generate an acid as described above. When the concentrated SS 40 contains an inorganic SS component, it can be continuously or intermittently discharged from the sludge discharge passage 29a.

【0044】膜分離装置5で分離された透過液39は、
透過液路33からポンプ32によりメタン発酵槽6の下
部に導入し、透過液流入部37から上向流でスラッジブ
ランケット38を通過させる。この際、透過液39は嫌
気性下にグラニュール汚泥と接触し、これより有機酸は
グラニュール汚泥に含まれるメタン生成菌の作用により
嫌気的に分解されてメタンと二酸化炭素に転換する。メ
タン発酵液はメタン発酵液移送路35から一部ずつ取り
出し、原水路11を通して曝気槽1に移送し、前記のよ
うに好気性生物処理する。メタンガスはメタンガス排出
路36から回収する。回収したメタンガスはエネルキー
源などとして利用することができる。
The permeated liquid 39 separated by the membrane separation device 5 is
The liquid is introduced into the lower part of the methane fermentation tank 6 from the permeate passage 33 by the pump 32, and passes through the sludge blanket 38 from the permeate inlet 37 in an upward flow. At this time, the permeated liquid 39 comes into contact with the granular sludge under anaerobic conditions, whereby the organic acid is anaerobically decomposed into methane and carbon dioxide by the action of methane-forming bacteria contained in the granular sludge. The methane fermentation liquid is taken out partly from the methane fermentation liquid transfer passage 35, transferred to the aeration tank 1 through the raw water passage 11, and subjected to the aerobic biological treatment as described above. The methane gas is recovered from a methane gas discharge path 36. The recovered methane gas can be used as an energy source.

【0045】曝気槽1に導入されるメタン発酵液は、酸
生成およびメタン発酵によりBODのほとんどが分解さ
れているので、曝気槽1における新たなBOD負荷には
ほとんどならず、このため処理水質の悪化は生じること
はなく、また曝気槽1の容量を大きくする必要はなく、
空気供給路14から供給する酸素の量を増大させる必要
もない。
Since most of the BOD in the methane fermentation liquor introduced into the aeration tank 1 has been decomposed by acid generation and methane fermentation, the BOD load in the aeration tank 1 is hardly increased, and thus the quality of the treated water is low. There is no deterioration and there is no need to increase the capacity of the aeration tank 1,
It is not necessary to increase the amount of oxygen supplied from the air supply path 14.

【0046】図1の装置ではメタン発酵槽6としてUA
SB式のメタン発酵槽を採用しているが、固定床式、流
動床式、浮遊式など、任意の方式のメタン発酵法により
行うことができ、それに応じた装置を採用することがで
きる。
In the apparatus shown in FIG.
Although an SB type methane fermentation tank is employed, the methane fermentation can be performed by any type of methane fermentation method such as a fixed bed type, a fluidized bed type, and a floating type, and an apparatus according to the method can be employed.

【0047】[0047]

【実施例】比較例1 ペプトンおよび酵母エキスを有機源とするCOD=34
0mg/lの有機性排液を改質処理しないで好気性生物
処理を行った。すなわち、図2の装置においてオゾン処
理を省略して好気性生物処理を行った。このときの運転
条件は曝気槽負荷=1kg−BOD/m3/day、曝
気槽内の汚泥濃度=約4000mg/l、SRT=10
日であった。減容化処理を全く行わなかった比較例1場
合、余剰汚泥生成量は0.38kg−SS/m3/da
y、処理水質はCODで18mg/lであった。
EXAMPLES Comparative Example 1 COD = 34 using peptone and yeast extract as organic sources
Aerobic biological treatment was performed on the 0 mg / l organic effluent without modification. That is, the aerobic biological treatment was performed in the apparatus of FIG. 2 omitting the ozone treatment. The operation conditions at this time were: aeration tank load = 1 kg-BOD / m 3 / day, sludge concentration in the aeration tank = about 4000 mg / l, SRT = 10
It was a day. In the case of Comparative Example 1 in which no volume reduction treatment was performed, the amount of excess sludge generated was 0.38 kg-SS / m 3 / da.
y, The treated water quality was 18 mg / l in COD.

【0048】実施例1 図1の装置により比較例1と同じ有機性排液を好気性生
物処理した。ただし、膜分離装置の代わりに沈殿槽を用
いた。オゾン処理槽におけるオゾン注入率は0.05g
−O3/g−SS、酸生成槽のSRTは5日、メタン発
酵槽の滞留時間は1日とした。酸生成槽の後では沈降処
理を行い、上澄液をUASBリアクターに供給し、沈殿
汚泥は酸生成槽に戻した。
Example 1 The same organic effluent as in Comparative Example 1 was subjected to aerobic biological treatment using the apparatus shown in FIG. However, a sedimentation tank was used instead of the membrane separation device. Ozone injection rate in the ozone treatment tank is 0.05 g
-O 3 / g-SS, the SRT of the acid production tank was 5 days, and the residence time of the methane fermentation tank was 1 day. After the acid generation tank, a sedimentation treatment was performed, the supernatant was supplied to the UASB reactor, and the settled sludge was returned to the acid generation tank.

【0049】各工程での水質変化を表1に示す。オゾン
処理後は溶解性の有機物成分が上昇、酸生成によって有
機酸に転換され、メタン発酵槽(UASB)で効率よく
メタンガスが発生した。メタン発酵液は曝気槽に戻し
た。
Table 1 shows the change in water quality in each step. After the ozone treatment, soluble organic components increased, were converted to organic acids by acid generation, and methane gas was efficiently generated in a methane fermenter (UASB). The methane fermentation liquor was returned to the aeration tank.

【0050】余剰汚泥が生じない100%減容化状態に
おけるオゾン処理槽への引抜汚泥の循環量は、発生する
汚泥に対して約1.8倍量程度となった。オゾン処理を
単独で行って汚泥の100%減容化を行う従来の方法に
おける循環量は約3倍であるので、実施例1における引
抜汚泥の循環量は従来の方法に比べて約半分の量であ
り、オゾン必要量もそれに伴って半減することができ
た。
The amount of circulation of the extracted sludge to the ozone treatment tank in a 100% volume-reduced state in which no excess sludge was generated was about 1.8 times the amount of the generated sludge. Since the circulation amount in the conventional method of performing 100% volume reduction of the sludge by performing the ozone treatment alone is about three times, the circulation amount of the extracted sludge in Example 1 is about half the amount of the conventional method. The ozone requirement could be halved accordingly.

【0051】[0051]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の有機性排液の生物処理装置
を示す系統図である。
FIG. 1 is a system diagram illustrating an organic wastewater biological treatment apparatus according to an embodiment of the present invention.

【図2】従来の有機性排液の処理方法を示すフローシー
トである。
FIG. 2 is a flow sheet showing a conventional method for treating organic wastewater.

【符号の説明】[Explanation of symbols]

1、41 曝気槽 2 沈殿槽 3、43 オゾン処理槽 4 酸生成槽 5 膜分離装置 6 メタン発酵槽 11 原水路 12 返送汚泥路 14 空気供給路 15、48 散気装置 16 連絡路 17 処理水路 18 汚泥排出路 21 余剰汚泥排出路 22 引抜汚泥路 23 排オゾン路 24 オゾン発生機 25 オゾン供給路 26 オゾン処理汚泥路 27、32 ポンプ 28 酸生成液路 29 濃縮液路 29a 汚泥排出路 30 撹拌機 33 透過液路 34 分離膜 35 メタン発酵液移送路 36 メタンガス排出路 37 透過液流入部 38 スラッジブランケット 39 透過液 40 濃縮液 42 汚泥分離槽 44 有機性排液 45 返送汚泥 46 オゾン処理汚泥 47 空気供給管 50 処理液 51 分離汚泥 53 引抜汚泥 54 余剰汚泥 55 オゾン供給管 56 排オゾン管 1, 41 aeration tank 2 sedimentation tank 3, 43 ozone treatment tank 4 acid generation tank 5 membrane separation device 6 methane fermentation tank 11 raw water passage 12 return sludge passage 14 air supply passage 15, 48 air diffuser 16 communication passage 17 treatment water passage 18 Sludge discharge path 21 Excess sludge discharge path 22 Pull-out sludge path 23 Waste ozone path 24 Ozone generator 25 Ozone supply path 26 Ozonized sludge path 27, 32 Pump 28 Acid generation liquid path 29 Concentrated liquid path 29a Sludge discharge path 30 Stirrer 33 Permeate liquid path 34 Separation membrane 35 Methane fermentation liquid transfer path 36 Methane gas discharge path 37 Permeate liquid inflow section 38 Sludge blanket 39 Permeate liquid 40 Concentrate 42 Sludge separation tank 44 Organic waste liquid 45 Return sludge 46 Ozonized sludge 47 Air supply pipe 50 Treatment liquid 51 Separated sludge 53 Extracted sludge 54 Excess sludge 55 Ozone supply pipe 56 Waste ozone pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機性排液を曝気槽に導入して、活性汚
泥の存在下に好気性生物処理する好気性生物処理工程、 曝気槽の混合液を固液分離し、分離液を処理水として排
出し、分離汚泥の少なくとも一部を曝気槽に返送する第
1の固液分離工程、 第1の固液分離工程の分離汚泥または曝気槽の混合液か
ら活性汚泥の少なくとも一部を引き抜き、この引抜汚泥
を易生物分解性に改質する改質処理工程、 改質処理汚泥を、酸生成菌を含む汚泥の存在下に嫌気状
態に維持して可溶化し、有機酸を生成させる酸生成工
程、 酸生成工程の混合液を固液分離し、分離液をメタン発酵
工程に移送し、分離汚泥を前記酸生成工程に戻す第2の
固液分離工程、 第2の固液分離工程の分離液を、メタン生成菌を含む汚
泥の存在下に嫌気状態に維持し、メタン発酵するメタン
発酵工程、およびメタン発酵液を前記好気性生物処理工
程に導入する移送工程を含む有機性排液の処理方法。
1. An aerobic biological treatment step of introducing an organic wastewater into an aeration tank and performing an aerobic biological treatment in the presence of activated sludge, solid-liquid separation of the mixed liquid in the aeration tank, and separation of the separated liquid into treated water. As a first solid-liquid separation step of returning at least a part of the separated sludge to the aeration tank, extracting at least a part of the activated sludge from the separated sludge of the first solid-liquid separation step or the mixed liquid of the aeration tank, A reforming process for reforming the extracted sludge to be easily biodegradable; an acid generating process for solubilizing the reformed sludge in the presence of sludge containing acid-producing bacteria in an anaerobic state to generate an organic acid A solid-liquid separation of the mixture in the acid generation step, a separation liquid transfer to the methane fermentation step, and a return of the separated sludge to the acid generation step; a second solid-liquid separation step; a separation in the second solid-liquid separation step The liquor is maintained anaerobically in the presence of sludge containing methanogens and methane fermented. Methane fermentation step, and processing method of organic waste liquid containing a transfer step of introducing a methane fermentation liquid in the aerobic biological treatment process.
【請求項2】 有機性排液を曝気槽に導入して、活性汚
泥の存在下に好気性生物処理する好気性生物処理装置、 曝気槽の混合液を固液分離し、分離液を処理水として排
出し、分離汚泥の少なくとも一部を曝気槽に返送する第
1の固液分離装置、 第1の固液分離装置の分離汚泥または曝気槽の混合液か
ら活性汚泥の少なくとも一部を引き抜き、この引抜汚泥
を易生物分解性に改質する改質処理装置、 改質処理汚泥を、酸生成菌を含む汚泥の存在下に嫌気状
態に維持して可溶化し、有機酸を生成させる酸生成槽、 酸生成槽の混合液を固液分離し、分離液をメタン発酵槽
に移送し、分離汚泥を前記酸生成槽に戻す第2の固液分
離装置、 第2の固液分離装置の分離液を、メタン生成菌を含む汚
泥の存在下に嫌気状態に維持し、メタン発酵するメタン
発酵槽、およびメタン発酵液を前記好気性生物処理装置
に導入する移送装置を含む有機性排液の処理装置。
2. An aerobic biological treatment apparatus for introducing an organic effluent into an aeration tank to perform aerobic biological treatment in the presence of activated sludge. As a first solid-liquid separation device for returning at least a part of the separated sludge to the aeration tank, and extracting at least a part of the activated sludge from the separated sludge of the first solid-liquid separation device or the mixed solution of the aeration tank, A reforming treatment device that reforms the extracted sludge to be easily biodegradable. An acid generator that keeps the reformed sludge in an anaerobic state in the presence of sludge containing acid-producing bacteria, solubilizes it, and generates organic acids. A second solid-liquid separator, a second solid-liquid separator for returning the separated sludge to the acid generator, and a second solid-liquid separator. The liquid is maintained in an anaerobic state in the presence of sludge containing methanogens, and methane is fermented.酵槽, and organic drainage of the processing apparatus including a transfer device for introducing the methane fermentation liquid in the aerobic biological treatment apparatus.
JP20025399A 1999-07-14 1999-07-14 Treatment of organic waste liquid and device therefor Pending JP2001025789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20025399A JP2001025789A (en) 1999-07-14 1999-07-14 Treatment of organic waste liquid and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20025399A JP2001025789A (en) 1999-07-14 1999-07-14 Treatment of organic waste liquid and device therefor

Publications (1)

Publication Number Publication Date
JP2001025789A true JP2001025789A (en) 2001-01-30

Family

ID=16421314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20025399A Pending JP2001025789A (en) 1999-07-14 1999-07-14 Treatment of organic waste liquid and device therefor

Country Status (1)

Country Link
JP (1) JP2001025789A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1444058A1 (en) * 2001-10-18 2004-08-11 Clemson University Process for ozonating and converting organic materials into useful products
JP2004230377A (en) * 2003-01-09 2004-08-19 Asahi Kasei Chemicals Corp Method for treating organic waste water
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
US7651615B2 (en) 2005-12-23 2010-01-26 Clemson University Research Foundation Process for reducing waste volume
JP2010036074A (en) * 2008-08-01 2010-02-18 Nittetsu Kankyo Engineering Kk Organic wastewater treatment method
JP2018079438A (en) * 2016-11-17 2018-05-24 株式会社サピエナント System and method for treating organic material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1444058A1 (en) * 2001-10-18 2004-08-11 Clemson University Process for ozonating and converting organic materials into useful products
EP1444058A4 (en) * 2001-10-18 2007-01-24 Univ Clemson Process for ozonating and converting organic materials into useful products
US7498163B2 (en) 2001-10-18 2009-03-03 Clemson University Process for reducing solid waste volume and landfill mass
JP2004230377A (en) * 2003-01-09 2004-08-19 Asahi Kasei Chemicals Corp Method for treating organic waste water
US7651615B2 (en) 2005-12-23 2010-01-26 Clemson University Research Foundation Process for reducing waste volume
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
JP2010036074A (en) * 2008-08-01 2010-02-18 Nittetsu Kankyo Engineering Kk Organic wastewater treatment method
JP2018079438A (en) * 2016-11-17 2018-05-24 株式会社サピエナント System and method for treating organic material

Similar Documents

Publication Publication Date Title
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
JP4292610B2 (en) Organic wastewater treatment equipment
JP3959843B2 (en) Biological treatment method for organic drainage
JPH09206786A (en) Anaerobic treatment and apparatus therefor
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
JPH10192889A (en) Method for treating organic drainage
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP4631162B2 (en) Organic waste treatment methods
JP2000246280A (en) Treatment apparatus of organic waste water
JP4590756B2 (en) Organic drainage treatment method and organic drainage treatment apparatus
JP2001327998A (en) Organic sludge digesting method
JP2005125322A (en) Treatment method and apparatus for organic waste
JP4581174B2 (en) Biological treatment method
JPH0254160B2 (en)
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
JPH091178A (en) Anaerobic treatment of high-concentration organic waste liquid
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JPH09206785A (en) Anaerobic treatment and apparatus therefor
JP4311264B2 (en) Anaerobic treatment method
JP2001025796A (en) Method for anaerobically digesting organic sludge
JP2000167586A (en) Method and apparatus for anaerobic treatment
JPH06142685A (en) Method and device for treating waste fluid containing organic nitrogen
JP2001225090A (en) Method and apparatus for treating organic waste liquid
JP2003275784A (en) Biological treatment method and biological treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028