JPH11333494A - Method and apparatus for biological dentrification of waste water - Google Patents

Method and apparatus for biological dentrification of waste water

Info

Publication number
JPH11333494A
JPH11333494A JP10148089A JP14808998A JPH11333494A JP H11333494 A JPH11333494 A JP H11333494A JP 10148089 A JP10148089 A JP 10148089A JP 14808998 A JP14808998 A JP 14808998A JP H11333494 A JPH11333494 A JP H11333494A
Authority
JP
Japan
Prior art keywords
sludge
tank
treatment
denitrification
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10148089A
Other languages
Japanese (ja)
Inventor
Akishi Hori
晃士 堀
Hidenari Yasui
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP10148089A priority Critical patent/JPH11333494A/en
Publication of JPH11333494A publication Critical patent/JPH11333494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To modify biological sludge to an easily biodegradable one by a simple modifying treatment to enhance the utilization efficiency of org. matter at a time of the utilization of the modified sludge as a hydrogen donor in a denitrification process to reduce the vol. of sludge thereby and to reduce the amt. of org. matter added from the outside. SOLUTION: Biological sludge is withdrawn to a modifying treatment tank 16 from a biological denitrification treatment system 10 including a denitrification tank 1 and a nitration and solid-separation tank 2 is modified to an easily biodegradable state by ozone treatment, heat treatment, an acid and alkali treatment or the like and the modified sludge is subjected to acid fermentation in an acid fermentation tank 18 to be introduced into the denitrification tank 1 and org. matter formed by acid fermentation is used as a hydrogen donor to perform denitrification treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒素含有排水から窒
素を生物学的硝化脱窒処理により除去するようにした排
水の生物学的窒素除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing biological nitrogen from wastewater containing nitrogen by biological nitrification and denitrification.

【0002】[0002]

【従来の技術】アンモニア性または有機性窒素化合物を
含む排水を処理する方法として、生物学的硝化脱窒処理
法がある。この方法は活性汚泥により排水中のCOD、
BOD成分を分解するとともに、有機性窒素化合物をア
ンモニア性窒素とし、アンモニア性窒素を硝化細菌によ
り硝酸性または亜硝酸性窒素に硝化(酸化)した後、脱
窒細菌により窒素ガスに還元して脱窒する方法である。
この処理法では、脱窒槽を前段に設け、硝化液と分離汚
泥を脱窒槽に返送して原水と混合し、脱窒を行うと同時
にBOD成分を分解する方法も行われている。
2. Description of the Related Art As a method for treating wastewater containing ammoniacal or organic nitrogen compounds, there is a biological nitrification and denitrification treatment method. This method uses activated sludge for COD in wastewater,
While decomposing the BOD component, converting the organic nitrogen compound into ammonia nitrogen, nitrifying (oxidizing) the ammonia nitrogen to nitrate or nitrite nitrogen by nitrifying bacteria, and reducing it to nitrogen gas by denitrifying bacteria to remove nitrogen gas It is a method of nitriding.
In this treatment method, a method is also provided in which a denitrification tank is provided in a preceding stage, a nitrification solution and separated sludge are returned to a denitrification tank, mixed with raw water, denitrified, and simultaneously decomposed BOD components.

【0003】上記の処理系を構成する活性汚泥処理法な
どのように、好気性微生物の作用を利用して、有機性排
液を好気条件で処理する一般的な好気性生物処理方法
は、処理コストが安く、処理性能も優れているため、一
般に広く利用されているが、難脱水性の余剰汚泥が大量
に生成するため、汚泥を減容化する処理方法が行われて
いる。
[0003] A general aerobic biological treatment method for treating an organic wastewater under aerobic conditions by utilizing the action of aerobic microorganisms, such as the activated sludge treatment method constituting the above treatment system, comprises: Since the processing cost is low and the processing performance is excellent, it is widely used in general. However, since a large amount of hardly dewaterable excess sludge is generated, a processing method for reducing the volume of the sludge is performed.

【0004】このような汚泥の減容化を行う処理方法と
して、一般的な好気性処理法では、曝気槽または沈殿槽
から汚泥を引き抜き、この引抜汚泥をオゾン処理、加熱
処理、酸またはアルカリ処理等の改質処理により易生物
分解性に改質し、改質された汚泥を曝気槽に返送して生
物分解させる方法が提案されている(例えば特開平7−
116685号)。このような方法では改質汚泥はBO
D源として曝気槽の負荷となるため、これを基質として
汚泥が増殖し、新たな汚泥の増殖量は改質汚泥の約1/
3とされている。このため大量の汚泥を改質処理して返
送する必要があり、余剰汚泥発生量をゼロにするために
は、余剰汚泥の3倍量の生物汚泥を改質処理する必要が
ある。
As a treatment method for reducing the volume of such sludge, in a general aerobic treatment method, sludge is extracted from an aeration tank or a sedimentation tank, and the extracted sludge is subjected to ozone treatment, heat treatment, acid or alkali treatment. There has been proposed a method in which the sludge is reformed to be easily biodegradable by a reforming treatment, and the reformed sludge is returned to an aeration tank for biodegradation (for example, Japanese Patent Application Laid-Open No.
No. 116686). In such a method, the reformed sludge is BO
Since the load of the aeration tank is used as the D source, the sludge is multiplied using this as a substrate, and the amount of new sludge multiplied is about 1 / of the reformed sludge.
It is set to 3. For this reason, it is necessary to reform and return a large amount of sludge, and in order to reduce the amount of surplus sludge to zero, it is necessary to reform three times the amount of surplus sludge.

【0005】生物学的窒素除去法においても汚泥を改質
処理により易生物分解性に改質し脱窒工程に導入する方
法が提案されている(例えば特開平8−1190号)。
生物学的窒素除去方法では、硝化工程において生成する
硝酸性または亜硝酸性窒素を脱窒工程において脱窒細菌
の作用により還元して窒素ガスに転換する際、脱窒細菌
の硝酸呼吸に必要な電子供与体(水素供与体)を添加す
る必要がある。この水素供与体としてメタノールのよう
な有機物を添加すると、処理コストが高くなるととも
に、余剰汚泥が増加する。
[0005] Also in the biological nitrogen removal method, a method has been proposed in which sludge is modified to be easily biodegradable by a modification treatment and introduced into a denitrification step (for example, Japanese Patent Application Laid-Open No. Hei 8-1190).
In the biological nitrogen removal method, when nitrate or nitrite generated in the nitrification step is reduced by the action of the denitrifying bacteria in the denitrification step and converted into nitrogen gas, it is necessary for nitric acid respiration of the denitrification bacteria. It is necessary to add an electron donor (hydrogen donor). When an organic substance such as methanol is added as the hydrogen donor, the treatment cost increases and excess sludge increases.

【0006】前記特開平8−1190号はこのような生
物学的窒素除去方法において、汚泥の減容化を行うため
に、オゾン処理により汚泥を易生物分解性に改質して返
送する際、脱窒工程に導入して水素供与体として利用す
ることにより外部から添加する有機物の添加量を少なく
する方法である。
[0006] Japanese Patent Application Laid-Open No. Hei 8-1190 discloses that in such a biological nitrogen removal method, in order to reduce the volume of sludge, when sludge is returned to be easily biodegradable by ozone treatment and returned. This is a method in which the amount of an organic substance added from the outside is reduced by being introduced into the denitrification step and used as a hydrogen donor.

【0007】ところで一般に汚泥を易生物分解性に改質
する方法としてはオゾン処理、熱処理、酸、アルカリ処
理等があり、これらはいずれも生物分解性に乏しい生物
汚泥を生物分解可能にするものであるが、通常は活性汚
泥処理法のような長い滞留時間の処理が可能となるよう
に改質が行われており、低分子化合物に分解するまでは
改質されていない。
[0007] By the way, in general, methods for modifying sludge to be easily biodegradable include ozone treatment, heat treatment, acid treatment, alkali treatment and the like, all of which make biosludge having poor biodegradability biodegradable. However, reforming is usually performed so as to enable treatment with a long residence time as in the activated sludge treatment method, and is not modified until it is decomposed into low-molecular compounds.

【0008】このため易生物分解性に改質された汚泥を
脱窒工程に供給すると、電子供与体として利用される速
度が遅く、脱窒反応における利用効率はあまり高くな
い。すなわち易生物分解化汚泥は、微生物を構成してい
た高分子有機物(破壊された細胞膜等)を多く含んでお
り、これが新たに微生物の基質として利用されるために
は、まず加水分解反応により高分子が低分子化された後
に、この低分子化された化合物が微生物に取り込まれ、
代謝されるというプロセスを経る必要がある。当然脱窒
反応においても、易生物分解化汚泥が低分子化されて微
生物に取り込まれた後、電子供与体として利用されるの
であって、高分子化合物のままでは利用されない。
For this reason, when sludge that has been modified to be easily biodegradable is supplied to the denitrification step, the rate of use as an electron donor is low, and the utilization efficiency in the denitrification reaction is not very high. That is, easily biodegradable sludge contains a large amount of high-molecular organic matter (such as broken cell membranes) that constituted microorganisms. After the molecule has been degraded, the degraded compound is taken up by the microorganism,
It needs to go through the process of being metabolized. Naturally, even in the denitrification reaction, the biodegradable sludge is used as an electron donor after being depolymerized and taken up by microorganisms, and is not used as a high molecular compound as it is.

【0009】ところがこの加水分解速度は比較的遅く、
完全に加水分解されるには1〜2日を要する。これに対
して脱窒工程の反応時間(滞留時間)は通常数時間であ
り、間欠曝気法等においては30分以下の場合もある。
従って上記の方法では、脱窒工程で完全に加水分解され
ずに次の工程へ送られた易生物分解化汚泥中の有機物が
有効利用されないという問題がある。この未利用の有機
物の割合は20〜60%にのぼると推定され、これを有
効利用することができればさらなる効率化が可能である
と考えられる。また改質処理において有機物を低分子に
分解することも考えられるが、このためには多量のオゾ
ン、熱、酸、アルカリ等が必要となり実用的ではない。
However, the hydrolysis rate is relatively slow,
It takes 1-2 days for complete hydrolysis. On the other hand, the reaction time (residence time) of the denitrification step is usually several hours, and may be 30 minutes or less in an intermittent aeration method or the like.
Therefore, the above method has a problem that the organic matter in the easily biodegradable sludge sent to the next step without being completely hydrolyzed in the denitrification step is not effectively used. The ratio of the unused organic matter is estimated to be as high as 20 to 60%, and it can be considered that if the organic matter can be effectively used, the efficiency can be further improved. It is also conceivable to decompose organic substances into low molecules in the reforming treatment, but this requires a large amount of ozone, heat, acid, alkali, etc., and is not practical.

【0010】通常脱窒工程の後段には好気工程(BOD
酸化や硝化反応を行う)が設けられるが、高分子有機物
の加水分解速度は、脱窒環境下よりも好気環境下の方が
速いため、脱窒工程で取り残された高分子有機物が返送
汚泥等と一緒に再び脱窒工程に戻ってくることはほとん
ど期待できない。このように未利用の有機物が次の工
程、すなわちBOD酸化工程や硝化工程へ送られると、
この残留した有機物は負荷として微生物により酸化分解
されるため、曝気空気量がより多く必要になるほか、汚
泥増殖量が大きくなるという問題も生じていた。
Usually, an aerobic step (BOD) is provided after the denitrification step.
Oxidation or nitrification reaction), but the rate of hydrolysis of high-molecular organic matter is higher in an aerobic environment than in a denitrification environment. It is hardly expected to return to the denitrification process again with the above. Thus, when the unused organic matter is sent to the next step, that is, the BOD oxidation step or the nitrification step,
Since the remaining organic matter is oxidatively decomposed by microorganisms as a load, a large amount of aerated air is required, and there is a problem that the amount of sludge multiplication becomes large.

【0011】一方、生物汚泥を酸発酵させた後オゾン処
理して易生物分解性に改質し、生物処理工程に返送する
方法も知られている(特開平7−88495号)。しか
しこの方法における酸発酵はオゾン処理に適したpHに
調整するために行われているにすぎず、オゾン処理した
汚泥はそのまま生物処理系に返送されるため、これを脱
窒工程に返送したとしても上記と同様の問題が生じる。
On the other hand, there is also known a method in which biological sludge is subjected to acid fermentation, then subjected to ozone treatment, modified to be easily biodegradable, and returned to the biological treatment step (Japanese Patent Laid-Open No. 7-88495). However, the acid fermentation in this method is merely performed to adjust the pH to a value suitable for ozone treatment, and the sludge subjected to ozone treatment is returned to the biological treatment system as it is. Also has the same problem as described above.

【0012】[0012]

【発明が解決しようとする課題】本発明の課題は、簡易
な改質処理により生物汚泥を易生物分解性に改質し、こ
れを脱窒工程における水素供与体として利用する際の有
機物利用率を高くすることができ、これにより汚泥を減
容化するとともに、外部から添加する有機物量を少なく
することが可能な排水の生物学的窒素除去方法および装
置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to convert organic sludge into easily biodegradable one by a simple reforming treatment, and to use the organic sludge as a hydrogen donor in a denitrification step. It is an object of the present invention to provide a method and an apparatus for removing biological nitrogen from wastewater, which can reduce the volume of sludge and reduce the amount of organic substances added from the outside.

【0013】[0013]

【課題を解決するための手段】本発明は次の排水の生物
学的窒素除去方法および装置である。 (1) 脱窒工程を含む排水の生物学的窒素除去方法に
おいて、処理系において生成する生物汚泥の一部を引き
抜く工程、この引抜汚泥を易生物分解性に改質する改質
処理工程、改質処理汚泥を酸発酵させる酸発酵工程、お
よび酸発酵汚泥を脱窒工程に導入する移送工程を含む排
水の生物学的窒素除去方法。 (2) 脱窒槽を含む生物学的窒素除去処理系、処理系
から生物汚泥の一部を引き抜く引抜手段、引抜汚泥を易
生物分解性に改質する改質処理槽、改質処理汚泥を酸発
酵させる酸発酵槽、および酸発酵汚泥を脱窒槽に導入す
る移送手段を含む排水の生物学的窒素除去装置。
SUMMARY OF THE INVENTION The present invention is a method and apparatus for removing biological nitrogen from wastewater. (1) In a method for removing biological nitrogen from wastewater including a denitrification step, a step of extracting a part of biological sludge generated in a treatment system, a reforming step of reforming the extracted sludge to be easily biodegradable, A method for removing biological nitrogen from wastewater, comprising: an acid fermentation step of acid-fermenting sludge-treated sludge; and a transfer step of introducing the acid-fermented sludge to a denitrification step. (2) Biological nitrogen removal treatment system including a denitrification tank, extraction means for extracting a part of biological sludge from the treatment system, reforming treatment tank for reforming the extracted sludge to be easily biodegradable, and acidification of the reformed sludge An apparatus for removing biological nitrogen from wastewater, comprising an acid fermenter for fermentation and a transfer means for introducing acid fermentation sludge into a denitrification tank.

【0014】本発明の処理対象とする排水は、アンモニ
ア性、有機性、硝酸性、亜硝酸性等の窒素化合物を含有
する排水であるが、特に処理に適しているのはアンモニ
ア性または有機性窒素化合物を含有する排水であり、こ
のほか有機物、その他の不純物を含んでいてもよい。こ
のような排水の例としては、し尿、下水、食品排水など
があげられる。これらの排水の中では、BOD/N比が
4以下、好ましくは0.1〜2の排水が処理対象として
好ましい。
The wastewater to be treated according to the present invention is wastewater containing a nitrogen compound such as ammoniacal, organic, nitric, nitrite, etc., and it is particularly suitable for the treatment. The wastewater contains nitrogen compounds, and may further contain organic substances and other impurities. Examples of such wastewater include night soil, sewage, food wastewater, and the like. Among these wastewaters, wastewater having a BOD / N ratio of 4 or less, preferably 0.1 to 2 is preferable as a treatment target.

【0015】本発明ではこのような排水を、脱窒槽を有
する生物学的窒素除去処理を行うための処理系において
処理を行い、生物学的に窒素除去を行う。上記処理系は
脱窒工程のほか有機物を分解するための有機物分解工
程、アンモニア性または有機性窒素を硝酸性または亜硝
酸性窒素に酸化するための硝化工程、汚泥と処理液を分
離するための固液分離工程等を含むが、これらの工程は
それぞれ独立して行ってもよく、また複数の工程を同時
に、または時間をずらせて行ってもよい。
In the present invention, such wastewater is treated in a biological nitrogen removal treatment system having a denitrification tank to biologically remove nitrogen. The above treatment system includes an organic matter decomposing step for decomposing organic substances in addition to a denitrifying step, a nitrification step for oxidizing ammoniacal or organic nitrogen to nitric acid or nitrite nitrogen, and a method for separating sludge and treatment liquid. Although a solid-liquid separation step and the like are included, each of these steps may be performed independently, or a plurality of steps may be performed simultaneously or with a time delay.

【0016】このような処理系を構成する装置として
は、脱窒工程のための脱窒槽のほか、有機物分解工程の
ための曝気槽、硝化工程のための硝化槽、固液分離のた
めの固液分離槽を設けることができるが、これらを兼用
して複数工程を同時に、または時間をずらせて行うよう
な構成とすることができる。例えば曝気槽と硝化槽は兼
用することができ、さらに固液分離槽も、これらの中に
収容することもできる。脱窒槽も曝気槽および/または
硝化槽と兼用することができ、例えば間欠曝気槽とする
ことにより、曝気時は有機物分解工程および硝化工程、
非曝気時は脱窒工程とすることができる。固液分離とし
ては、沈降分離、濾過分離、浮上分離、遠心分離、膜分
離など公知の分離法が採用できる。原水中の有機物含有
量が少ないときは有機物分解用の曝気槽を省略でき、ま
た窒素が、硝酸または亜硝酸性窒素の場合は硝化槽を省
略することができる。
Apparatuses constituting such a treatment system include a denitrification tank for a denitrification step, an aeration tank for an organic matter decomposition step, a nitrification tank for a nitrification step, and a solidification tank for solid-liquid separation. Although a liquid separation tank can be provided, it is also possible to adopt a configuration in which a plurality of steps are performed simultaneously or with a time lag by using these tanks. For example, an aeration tank and a nitrification tank can be shared, and a solid-liquid separation tank can also be accommodated therein. The denitrification tank can also be used as an aeration tank and / or a nitrification tank. For example, by using an intermittent aeration tank, an organic matter decomposition step and a nitrification step can be performed during aeration.
At the time of non-aeration, a denitrification step can be performed. Known solid-liquid separation methods such as sedimentation separation, filtration separation, flotation separation, centrifugation, and membrane separation can be employed. The aeration tank for decomposing organic substances can be omitted when the content of organic substances in the raw water is small, and the nitrification tank can be omitted when nitrogen is nitric acid or nitrite nitrogen.

【0017】上記の処理系による処理は、被処理水とし
ての排水を、有機物分解工程において好気性または嫌気
性下に処理して、活性汚泥により排水中のCOD、BO
D成分を分解するとともに、有機性窒素化合物をアンモ
ニア性窒素とし、硝化工程においてアンモニア性窒素を
硝化細菌により好気性下に硝酸性または亜硝酸性窒素に
硝化(酸化)した後、脱窒工程において硝酸性または亜
硝酸性窒素を脱窒細菌により嫌気性下に還元して脱窒す
る点は従来のもの同様である。このような窒素除去系で
は、各工程の組合せあるいは回数等は排水に応じて自由
に設定でき、例えば脱窒槽を前段に設け、硝化液と分離
汚泥を脱窒槽に返送して原水と混合し、脱窒と同時にB
ODの除去を行い、その後硝化、脱窒を行う方法、ある
いは有機物分解工程として好気処理と嫌気処理を組合せ
る方法などを採用することも可能である。
In the treatment by the above-mentioned treatment system, wastewater as the water to be treated is treated under aerobic or anaerobic conditions in the organic matter decomposition step, and COD and BO in the wastewater are treated with activated sludge.
In addition to decomposing the D component, the organic nitrogen compound is converted to ammonia nitrogen, and in the nitrification process, the ammonia nitrogen is nitrified (oxidized) to nitric acid or nitrite nitrogen under aerobic conditions by nitrifying bacteria. It is the same as the conventional one in that nitrate or nitrite nitrogen is reduced under anaerobic conditions by denitrifying bacteria and denitrified. In such a nitrogen removal system, the combination or the number of each step can be freely set according to the wastewater.For example, a denitrification tank is provided in the former stage, and the nitrification liquid and the separated sludge are returned to the denitrification tank and mixed with the raw water, B with denitrification
It is also possible to adopt a method of removing OD and then nitrification and denitrification, or a method of combining aerobic treatment and anaerobic treatment as an organic matter decomposition step.

【0018】本発明は特に原水中のBOD/N比が4以
下と低い排水を硝化脱窒処理する場合に有効であり、特
に微生物により排水中の窒素成分を低減、除去した後、
微生物と処理水との固液分離を膜分離により行う膜分離
式活性汚泥処理法において有効である。なぜなら本発明
のように易生物分解化した余剰汚泥を、原水を処理する
のと同じ処理系内で分解させる装置は、処理系への負荷
が単に原水を処理するだけの処理系に比べて増大するか
らである。一方硝化反応を行う装置は、硝化反応を円滑
に進行させるためにSRT(汚泥滞留時間)を一定値以
上に確保することが重要である。このようにより大きな
負荷を従来と同一のSRTで処理しようとする場合に
は、より多くの微生物を反応槽内に確保する必要がある
ため、脱窒槽、硝化槽等の生物反応槽の容量を増大させ
るか、生物反応槽内に保持する汚泥濃度を高める必要が
ある。この場合固液分離を膜分離で行うと、汚泥濃度の
高い場合でも固液分離が可能であり、装置を小形化する
ことができる。
The present invention is particularly effective when wastewater having a low BOD / N ratio of 4 or less in the raw water is subjected to nitrification and denitrification. In particular, after reducing and removing nitrogen components in the wastewater by microorganisms,
It is effective in a membrane separation type activated sludge treatment method in which solid-liquid separation of microorganisms and treated water is performed by membrane separation. This is because the apparatus that decomposes excess sludge that has been easily biodegraded as in the present invention in the same treatment system that treats raw water requires more load on the treatment system than a treatment system that simply treats raw water. Because you do. On the other hand, it is important for an apparatus that performs a nitrification reaction to ensure an SRT (sludge residence time) of a certain value or more in order to smoothly advance the nitrification reaction. In order to treat such a large load with the same SRT as before, it is necessary to secure more microorganisms in the reaction tank, so that the capacity of a biological reaction tank such as a denitrification tank or a nitrification tank is increased. Or increase the concentration of sludge held in the biological reaction tank. In this case, if the solid-liquid separation is performed by membrane separation, solid-liquid separation is possible even when the sludge concentration is high, and the apparatus can be downsized.

【0019】本発明では上記処理系において生成する生
物汚泥の一部を引き抜いて易生物分解性に改質処理し、
さらに酸発酵して脱窒槽へ導入する。このため窒素除去
装置としては、処理系から生物汚泥引抜用の引抜手段、
易生物分解性に改質用の改質処理槽、酸発酵用の酸発酵
槽および移送用の移送手段をそれぞれ設ける。
In the present invention, a part of the biological sludge generated in the above-mentioned treatment system is withdrawn and modified to be easily biodegradable.
Furthermore, it is acid fermented and introduced into a denitrification tank. For this reason, as a nitrogen removal device, extraction means for extracting biological sludge from the treatment system,
A reforming treatment tank for reforming, an acid fermentation tank for acid fermentation, and a transfer means for transfer are provided for easy biodegradability.

【0020】処理するために引き抜く生物汚泥として
は、有機物分解工程、硝化工程、脱窒工程、固液分離工
程、あるいはこれらに付随する任意の工程において発生
する汚泥があげられ、これらは濃縮された状態であって
もよく、また希薄な状態であってもよく、任意の位置か
ら引き抜くことができる。これらの引抜汚泥はそのまま
改質処理してもよく、遠心分離機などによりさらに高濃
度に濃縮してもよい。生物汚泥を引き抜く量は、基本的
には脱窒の際の有機物源として利用するのに必要な程度
でもよいが、余剰汚泥が大量に生成する系では余剰汚泥
として排出される量よりも多い汚泥量を引き抜いて改質
処理することにより、汚泥の減容化が可能であり、場合
によっては余剰汚泥量をゼロにすることができる。
Examples of the biological sludge to be drawn out for treatment include sludge generated in an organic matter decomposition step, a nitrification step, a denitrification step, a solid-liquid separation step, or an optional step associated therewith, and these are concentrated. It may be in a state or a sparse state, and can be pulled out from any position. These extracted sludges may be subjected to a reforming treatment as they are, or may be further concentrated to a higher concentration by a centrifuge. The amount of biological sludge to be withdrawn may be basically the amount necessary to use it as a source of organic matter during denitrification, but in systems where excess sludge is generated in large quantities, sludge is larger than the amount discharged as excess sludge. By extracting the amount and performing the reforming treatment, the volume of sludge can be reduced, and in some cases, the amount of excess sludge can be reduced to zero.

【0021】引抜汚泥を易生物分解性に改質する改質処
理方法としては、任意の方法を採用することができる。
例えば、オゾン処理による改質処理、酸処理による改質
処理、アルカリ処理による改質処理、加熱処理による改
質処理、高圧パルス放電処理、ボールミル、コロイドミ
ル等のミルによる磨砕処理、これらを組合せた改質処理
等を採用することができる。これらの中ではオゾン処理
による改質処理が、処理操作が簡単かつ処理効率が高い
ため好ましい。改質処理の程度は生物汚泥中の微生物を
死滅させ、細胞膜や細胞壁を破壊して溶菌させる程度で
よく、低分子化までは必要でない。
Any method can be adopted as a reforming treatment method for modifying the extracted sludge to be easily biodegradable.
For example, reforming treatment by ozone treatment, reforming treatment by acid treatment, reforming treatment by alkali treatment, reforming treatment by heat treatment, high-pressure pulse discharge treatment, grinding treatment by mill such as ball mill, colloid mill, etc. Modified treatment or the like can be employed. Among these, the reforming treatment by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high. The degree of the modification treatment may be such that microorganisms in the biological sludge are killed and cell membranes and cell walls are destroyed and lysed, and it is not necessary to reduce the molecular weight.

【0022】改質処理としてのオゾン処理は、好気性生
物処理系から引き抜いた引抜汚泥をオゾンと接触させれ
ばよく、オゾンの酸化作用により汚泥は易生物分解性に
改質される。オゾン処理はpH5以下の酸性領域で行う
と酸化分解効率が高くなる。このときのpHの調整は、
硫酸、塩酸または硝酸などの無機酸をpH調整剤として
生物汚泥に添加することもできるが、後工程の酸発酵汚
泥を添加して調整するのが好ましく、これらを組合せて
行ってもよい。pH調整剤を添加する場合、pHは3〜
4に調整するのが好ましく、酸発酵汚泥を返送する場合
は、引抜汚泥に対して0.5〜3倍量の酸発酵汚泥を返
送してpH4〜5となるように調整するのが好ましい。
In the ozone treatment as the reforming treatment, the extracted sludge extracted from the aerobic biological treatment system may be brought into contact with ozone, and the sludge is reformed to be easily biodegradable by the oxidizing action of ozone. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the efficiency of oxidative decomposition increases. The pH adjustment at this time is as follows:
An inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid can be added to the biological sludge as a pH adjuster. However, it is preferable to adjust by adding an acid fermentation sludge in a later step, and these may be used in combination. When adding a pH adjuster, the pH should be 3 ~
It is preferable to adjust the pH to 4, and in the case of returning the acid fermentation sludge, it is preferable to return the acid fermentation sludge in an amount of 0.5 to 3 times the amount of the extracted sludge to adjust the pH to 4 to 5.

【0023】オゾン処理は、引抜汚泥または酸発酵処理
液をそのまま、または必要により遠心分離機などで濃縮
した後望ましくはpH5以下に調整し、オゾンと接触さ
せることにより行うことができる。接触方法としては、
オゾン処理槽に汚泥を導入してオゾンを吹込む方法、機
械攪拌による方法、充填層を利用する方法などが採用で
きる。オゾンとしては、オゾンガスの他、オゾン含有空
気、オゾン化空気などのオゾン含有ガスが使用できる。
オゾンの使用量は0.002〜0.05g−O 3/g−
VSS、好ましくは0.005〜0.03g−O3/g
−VSSとするのが望ましい。オゾン処理により生物汚
泥は酸化分解されて、易生物分解性のBOD成分に変換
される。
[0023] Ozone treatment is performed by drawing sludge or acid fermentation.
Concentrate the liquid as it is or, if necessary, with a centrifuge
After adjusting the pH to 5 or less, contact with ozone
Can be performed. As a contact method,
A method and machine for introducing sludge into an ozone treatment tank and injecting ozone
Method using mechanical stirring, method using packed bed, etc. are adopted
Wear. Ozone includes ozone gas and ozone-containing air.
Ozone-containing gas such as air or ozonized air can be used.
The amount of ozone used is 0.002-0.05g-O Three/ G-
VSS, preferably 0.005 to 0.03 g-OThree/ G
-VSS is desirable. Biofouling due to ozone treatment
Mud is oxidatively decomposed and converted to easily biodegradable BOD components
Is done.

【0024】改質処理としての酸処理では、好気性生物
処理系から引き抜いた引抜汚泥を改質槽に導き、塩酸、
硫酸などの鉱酸を加え、pH2.5以下、好ましくはp
H1〜2の酸性条件下で所定時間滞留させればよい。滞
留時間としては、例えば5〜24時間とする。この際、
汚泥を加熱、例えば50〜100℃に加熱すると改質が
促進されるので好ましい。
In the acid treatment as the reforming treatment, the extracted sludge extracted from the aerobic biological treatment system is led to a reforming tank, and hydrochloric acid,
A mineral acid such as sulfuric acid is added, and pH 2.5 or less, preferably p
What is necessary is just to stay for a predetermined time under the acidic condition of H1-2. The residence time is, for example, 5 to 24 hours. On this occasion,
It is preferable to heat the sludge, for example, to 50 to 100 ° C., since reforming is promoted.

【0025】また、汚泥の改質処理としてのアルカリ処
理では、好気性生物処理系から引き抜いた引抜汚泥を改
質槽に導き、水酸化ナトリム、水酸化カリウム等のアル
カリを汚泥に対して0.1〜1重量%加え、所定時間滞
留させればよい。滞留時間は0.5〜2時間程度で汚泥
は易生物分解性に改質される。この際、汚泥を加熱し、
例えば5〜100℃に加熱すると改質が促進されるので
好ましい。
In the alkali treatment as the sludge reforming treatment, the extracted sludge drawn from the aerobic biological treatment system is led to a reforming tank, and alkali such as sodium hydroxide and potassium hydroxide is added to the sludge at 0.1%. What is necessary is just to add 1 to 1% by weight and to stay for a predetermined time. The residence time is about 0.5 to 2 hours, and the sludge is reformed to be easily biodegradable. At this time, heat the sludge,
For example, heating to 5 to 100 ° C. is preferable because reforming is promoted.

【0026】改質処理としての加熱処理は、加熱処理単
独で行うこともできるが、酸処理またはアルカリ処理と
組合せて行うのが好ましい。加熱処理単独で行う場合
は、例えば温度70〜100℃、滞留時間2〜3時間と
することができる。
The heat treatment as the reforming treatment can be performed alone, but is preferably performed in combination with an acid treatment or an alkali treatment. When heat treatment is performed alone, for example, the temperature may be 70 to 100 ° C., and the residence time may be 2 to 3 hours.

【0027】高電圧のパルス放電処理は、電極間隔3〜
10mm、好ましくは4〜8mmのタングステン/トリ
ウム合金等のプラス極と、ステンレス鋼等のマイナス極
間に汚泥を存在させ、印加電圧10〜50kV、好まし
くは20〜40kV、パルス間隔20〜80Hz、好ま
しくは40〜60Hzでパルス放電を行い、汚泥は順次
循環させながら処理を行うことができる。
The high-voltage pulse discharge process is performed with an electrode interval of 3 to
Sludge is present between a positive electrode of 10 mm, preferably 4 to 8 mm such as a tungsten / thorium alloy, and a negative electrode of stainless steel or the like, and an applied voltage of 10 to 50 kV, preferably 20 to 40 kV, and a pulse interval of 20 to 80 Hz, preferably Performs pulse discharge at 40 to 60 Hz, and can perform treatment while circulating sludge sequentially.

【0028】酸発酵は上記のようにして改質処理した改
質処理汚泥を、酸生成菌を含む汚泥の存在下に嫌気性処
理することにより行われる。この工程は酸発酵槽におい
て改質処理汚泥をpH3〜9、好ましくは4〜6の範囲
に保ち、酸素が供給されない条件下で2時間から10日
間、好ましくは0.5〜4日間滞留させることにより行
われる。酸発酵槽は完全混合形(単段、多段)でも、プ
ラグフロー形でも、その中間のものでもよいが、通常は
1段または2段の完全混合槽を用いることができる。処
理は連続的に行っても回分的に行ってもよいが、通常は
連続的に行うのが好ましい。また酸発酵槽はpHの過剰
な低下を防ぐため、pHコントローラにより水酸化ナト
リウム等のアルカリ物質を注入してpHコントロールす
るのが好ましい。酸発酵のスタートアップ時には易生物
分解化処理しない生物汚泥を種菌として導入することに
より迅速な立上が可能である。
The acid fermentation is carried out by subjecting the modified sludge modified as described above to anaerobic treatment in the presence of sludge containing acid-producing bacteria. In this step, the modified sludge is kept in the acid fermentation tank at a pH of 3 to 9, preferably 4 to 6, and kept for 2 hours to 10 days, preferably 0.5 to 4 days under a condition where oxygen is not supplied. It is performed by The acid fermentation tank may be a complete mixing type (single-stage, multi-stage), a plug flow type, or an intermediate type, but usually a one-stage or two-stage complete mixing tank can be used. Although the treatment may be carried out continuously or batchwise, it is usually preferred to carry out the treatment continuously. In addition, in order to prevent an excessive decrease in pH of the acid fermenter, it is preferable to control the pH by injecting an alkali substance such as sodium hydroxide by a pH controller. At the start-up of acid fermentation, quick start-up is possible by introducing bio-sludge, which is not biodegradable, as a seed fungus.

【0029】改質汚泥の酸発酵により、生物汚泥が分解
した高分子の易生物分解性汚泥は酸生成菌より分解さ
れ、酢酸、プロピオン酸、酪酸等の低分子の有機酸に変
換される。このような酸発酵汚泥を脱窒槽に導入する
と、低分子の有機酸は水素供与体として迅速に利用さ
れ、脱窒細菌の作用により硝酸または亜硝酸性窒素は窒
素ガスに還元されて除去され、低分子の有機酸は分解す
る。
[0029] By acid fermentation of the modified sludge, the high biodegradable sludge obtained by decomposing biological sludge is decomposed by acid-producing bacteria and converted into low molecular organic acids such as acetic acid, propionic acid and butyric acid. When such acid fermentation sludge is introduced into a denitrification tank, low-molecular-weight organic acids are rapidly used as hydrogen donors, and nitric acid or nitrite nitrogen is reduced to nitrogen gas and removed by the action of denitrifying bacteria. Low molecular organic acids decompose.

【0030】このように引抜汚泥中の微生物が死滅、破
壊された後の高分子有機物をあらかじめ酸発酵により、
加水分解し、低分子化すると、脱窒工程において迅速に
有効利用される基質に変換するため、脱窒工程における
易生物分解化汚泥中の有機物利用率は高くなり、80%
以上にすることも可能である。このため外部から添加す
るメタノール等の有機物添加量は少なくなる。そして引
抜汚泥の分解により余剰汚泥発生量は減少し、活性汚泥
は脱窒に利用されるため有機物分解工程の負荷となる量
は少なく、このため新たな汚泥の増殖量も少なくなる。
The high molecular organic matter after the microorganisms in the extracted sludge have been killed and destroyed is subjected to acid fermentation in advance.
When it is hydrolyzed and converted to low molecular weight, it is rapidly converted into a substrate that can be effectively used in the denitrification step. Therefore, the organic matter utilization rate in the easily biodegradable sludge in the denitrification step increases, and
The above is also possible. Therefore, the amount of organic substances such as methanol added from the outside is reduced. The amount of surplus sludge is reduced by the decomposition of the extracted sludge, and the activated sludge is used for denitrification, so that the load on the organic matter decomposition step is small, and therefore the amount of new sludge multiplied is also reduced.

【0031】すなわち原水中のBOD/N比が4以下、
特に2以下の排水を脱窒処理する場合には、脱窒反応の
水素供与体として、原水中のBODを有効利用するだけ
では不足するため、メタノール等を水素供与体として添
加しているが、本発明では水素供与体として、改質処理
および酸発酵により脱窒反応に極めて有効利用されやす
くなった生物汚泥を有効利用することができるため、水
素供与体としての薬剤添加量を大幅に削減することがで
きる。この場合、易生物分解化した生物汚泥による処理
系への負荷増大と、水素供与体としてのメタノール等の
薬剤低減による処理系への負荷減少とが相殺されるた
め、特にBOD/N比が1.5以下の排水に対しては従
来法よりも汚泥濃度を高濃度にしたり、反応槽を大きく
取ったりする必要が無くなり、低コストで効率のよい処
理を行うことができる。
That is, the BOD / N ratio in the raw water is 4 or less,
Particularly when denitrifying wastewater of 2 or less, methanol or the like is added as a hydrogen donor because it is not enough to simply use BOD in raw water as a hydrogen donor for the denitrification reaction. In the present invention, as the hydrogen donor, the biological sludge which has been very easily used for the denitrification reaction by the reforming treatment and the acid fermentation can be effectively used, so that the amount of the chemical added as the hydrogen donor is significantly reduced. be able to. In this case, an increase in the load on the treatment system due to the biodegradable biosludge and a decrease in the load on the treatment system due to a reduction in the amount of chemicals such as methanol as a hydrogen donor are offset. For wastewater of 0.5 or less, there is no need to increase the sludge concentration or increase the size of the reaction tank as compared with the conventional method, so that efficient treatment can be performed at low cost.

【0032】[0032]

【発明の効果】本発明によれば、改質汚泥を酸発酵して
脱窒工程へ導入するようにしたので、オゾン注入量の増
加など改質条件を強化することなく、簡易な改質処理に
より生物汚泥を易生物分解性に改質し、これを酸発酵と
いう簡単な操作により低分子化して水素供与体としての
利用効率を高めることができる。このため汚泥を減容化
できるとともに外部から添加する有機物量を少なくする
ことができ、新たに発生する汚泥の増殖量を少なくして
小型の装置で効率よく窒素除去を行うことが可能にな
る。
According to the present invention, the modified sludge is subjected to acid fermentation and introduced into the denitrification step. Therefore, a simple reforming treatment can be performed without strengthening the reforming conditions such as increasing the amount of injected ozone. Thus, the biological sludge can be easily biodegradable, and the biosludge can be reduced in molecular weight by a simple operation of acid fermentation to increase the utilization efficiency as a hydrogen donor. For this reason, the sludge can be reduced in volume and the amount of organic substances added from the outside can be reduced, so that the amount of newly generated sludge can be reduced and nitrogen can be efficiently removed with a small device.

【0033】[0033]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1ないし図3はそれぞれ別の実施形
態の生物学的窒素除去装置を示す系統図である。図1は
窒素除去率が比較的低くてもよい場合、図2および図3
は高い場合に適用される。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are system diagrams showing biological nitrogen removing apparatuses according to different embodiments. FIG. 1 shows that if the nitrogen removal rate can be relatively low, FIGS.
Applies when high.

【0034】図1において、1は脱窒槽、2は硝化兼固
液分離槽であって、両者は連絡路3および返送路4で連
絡され、脱窒槽1には原水路5が連絡し、硝化兼固液分
離槽2には処理水路6が連絡し、これらは処理系10を
構成している。脱窒槽1には攪拌機7があってモータM
1により駆動されるようになっている。硝化兼固液分離
槽2内に設けられたガイド筒8内には浸漬型膜分離装置
9が設けられ、その内部に設けられた透過膜11の透過
液室12に吸引ポンプP1を有する処理水路6が連絡し
ている。ガイド筒8の下部には曝気装置13が設けら
れ、空気路14が連絡している。汚泥返送路4にはポン
プP2が設けられている。
In FIG. 1, reference numeral 1 denotes a denitrification tank, 2 denotes a nitrification / solid-liquid separation tank, both of which are connected by a communication path 3 and a return path 4. A treatment water channel 6 is connected to the solid / liquid separation tank 2, and these constitute a treatment system 10. The denitrification tank 1 has a stirrer 7 and a motor M
It is driven by one . An immersion type membrane separation device 9 is provided in a guide cylinder 8 provided in the nitrification / solid-liquid separation tank 2, and a process having a suction pump P 1 in a permeate liquid chamber 12 of a permeable membrane 11 provided therein. Waterway 6 is in communication. An aeration device 13 is provided at a lower portion of the guide tube 8, and an air passage 14 communicates therewith. The sludge return path 4 pump P 2 is provided.

【0035】上記の処理系から生物汚泥を引き抜くため
に、引抜路15がポンプP3を介して改質処理槽16に
連絡し、これから連絡路17により連絡する酸発酵槽1
8から移送路19が脱窒槽1に連絡している。改質処理
槽16としてはオゾン処理槽が用いられており、オゾン
吹込装置21にオゾン供給路22が連絡している。酸発
酵槽18には攪拌機23が設けられモータM2により駆
動されるようになっている。24は必要により設けられ
る薬注路、25は返送路、26は排泥路である。
In order to extract the biological sludge from the treatment system, the extraction passage 15 communicates with the reforming treatment tank 16 via the pump P 3, and the acid fermentation tank 1 communicates with the reforming treatment tank 16 via the communication passage 17.
From 8, a transfer path 19 communicates with the denitrification tank 1. An ozone treatment tank is used as the reforming treatment tank 16, and an ozone supply path 22 is connected to the ozone blowing device 21. Agitator 23 is driven by the motor M 2 provided in the acid fermentation tank 18. Reference numeral 24 denotes a medicine injection path provided as necessary, reference numeral 25 denotes a return path, and reference numeral 26 denotes a drainage path.

【0036】上記の装置により処理は次のように行われ
る。まず脱窒槽1に原水路5から原水を導入し、返送路
4から硝化液および返送汚泥を返送し、攪拌機7により
緩やかに攪拌して嫌気状態で脱窒細菌と接触させ生物学
的脱窒を行う。これにより硝化液中の硝酸および亜硝酸
性窒素が窒素ガスに還元されて脱窒されるとともに、原
水中に含まれる低分子の有機物が分解される。ここで水
素供与体が不足する場合は薬注路24からメタノール等
の低分子の有機物を供給する。
The processing by the above-described device is performed as follows. First, raw water is introduced from the raw water channel 5 into the denitrification tank 1, the nitrification liquid and the returned sludge are returned from the return line 4, and the mixture is gently stirred by the stirrer 7 to come into contact with the denitrifying bacteria in an anaerobic state to perform biological denitrification. Do. As a result, nitric acid and nitrite nitrogen in the nitrification liquid are reduced to nitrogen gas and denitrified, and low-molecular organic substances contained in raw water are decomposed. If the hydrogen donor is insufficient, a low-molecular-weight organic substance such as methanol is supplied from the chemical injection path 24.

【0037】脱窒槽1の液の一部を連絡路3から硝化兼
固液分離槽2に移送し、ここで空気路14から空気を送
って曝気装置13により曝気して好気性生物処理を行う
ことにより、液中の有機物を分解するとともに、アンモ
ニア性および有機性窒素を硝酸および亜硝酸性窒素に硝
化する。そしてポンプP1により吸引することにより膜
分離装置9により固液分離を行い透過液を処理水として
処理水路6から排出する。硝化液および濃縮された汚泥
は返送路4からポンプP2により脱窒槽1に返送され脱
窒に供される。曝気装置13は空気流により透過膜11
の汚染防止手段としても機能する。
A part of the liquid in the denitrification tank 1 is transferred from the communication path 3 to the nitrification / solid-liquid separation tank 2, where air is sent from the air path 14 and aerated by the aeration device 13 to perform aerobic biological treatment. This decomposes organic substances in the liquid and nitrifies ammoniacal and organic nitrogen into nitric acid and nitrite nitrogen. Then, by suctioning with the pump P 1, solid-liquid separation is performed by the membrane separation device 9, and the permeate is discharged from the treatment water channel 6 as treatment water. Nitrifying solution and concentrated sludge is subjected to denitrification returned from return path 4 by a pump P 2 in the denitrification tank 1. The aeration device 13 uses the air flow to transmit the permeable membrane 11.
It also functions as a pollution prevention means.

【0038】上記の処理系10から生物汚泥を引き抜い
て改質処理するために硝化兼固液分離槽2からポンプP
3により引抜路15を通して濃縮生物汚泥を改質処理槽
16に導入し、オゾン供給路22からオゾンを供給し、
オゾン吹込装置21から吹き込むことによりオゾン処理
を行い、生物汚泥を易生物分解性に改質する。引抜汚泥
量は余剰汚泥の全量またはそれより多い量とすることが
できる。オゾン処理に際しては返送路25から酸発酵汚
泥を返送してpH調整することができる。
In order to extract the biological sludge from the treatment system 10 and perform the reforming treatment, a pump P is supplied from the nitrification / solid-liquid separation tank 2.
3, the concentrated biological sludge is introduced into the reforming treatment tank 16 through the extraction path 15, and ozone is supplied from the ozone supply path 22,
The ozone is blown from the ozone blowing device 21 to perform ozone treatment, thereby modifying the biological sludge to be easily biodegradable. The amount of drawn sludge can be the whole amount of excess sludge or more. During the ozone treatment, the pH can be adjusted by returning the acid fermentation sludge from the return path 25.

【0039】改質汚泥は連絡路17から酸発酵槽18に
導入し、攪拌機23により緩やかに攪拌して嫌気性下に
酸生成菌と接触させることにより酸発酵を行う。改質処
理を行わない生物汚泥を酸発酵しても汚泥の減容化効果
は小さく、大量の汚泥がそのまま循環し、その分有機酸
の生成量も少ないが、改質処理汚泥の場合はそのほとん
どが酸発酵により分解されて低分子化し、汚泥の減容化
効果が大きく、低分子の有機酸発生量も大きい。
The reformed sludge is introduced into the acid fermentation tank 18 through the communication line 17 and gently stirred by the stirrer 23 to make it contact with the acid-producing bacteria under anaerobic conditions to perform acid fermentation. Even if the bio-sludge not subjected to the reforming treatment is subjected to acid fermentation, the effect of reducing the volume of the sludge is small, a large amount of sludge circulates as it is, and the amount of organic acid generated is small by that amount. Most of them are decomposed by acid fermentation to lower molecular weight, the effect of volume reduction of sludge is large, and the amount of low molecular organic acid generated is also large.

【0040】こうして低分子化した有機酸を含む酸発酵
汚泥を移送路19から脱窒槽1に導入すると、低分子の
有機酸は水素供与体として利用される。このため薬注路
24から注入するメタノール等の有機物量を減少させ、
場合によってはゼロにすることができる。余剰汚泥が発
生する場合は排泥路26から排出する。
When the acid fermentation sludge containing the organic acid whose molecular weight has been reduced in this way is introduced into the denitrification tank 1 from the transfer path 19, the organic acid having a low molecular weight is used as a hydrogen donor. For this reason, the amount of organic substances such as methanol injected from the chemical injection path 24 is reduced,
In some cases, it can be zero. When excess sludge is generated, the sludge is discharged from the sludge passage 26.

【0041】改質汚泥を酸発酵することなく脱窒槽1に
返送する場合は、高分子の有機物は水素供与体として利
用されないため、有機物利用率は低い。また高分子の有
機物は硝化兼固液分離槽2の負荷となるため、ここでの
曝気量を大きくする必要があるとともに、分解の結果、
生じる汚泥の増殖量も大きいので汚泥減容化効果も小さ
い。これに対して酸発酵汚泥を返送すると、脱窒槽1で
の有機物利用率が高くなり、硝化兼固液分離槽2での負
荷になる量も少ないから、ここでの曝気量および汚泥増
殖量を少なくすることができる。
When the modified sludge is returned to the denitrification tank 1 without acid fermentation, the organic matter utilization rate is low because the high molecular organic matter is not used as a hydrogen donor. In addition, since high-molecular organic matter becomes a load on the nitrification / solid-liquid separation tank 2, it is necessary to increase the amount of aeration here, and as a result of decomposition,
The sludge volume-reducing effect is also small because the amount of generated sludge is large. On the other hand, when the acid fermented sludge is returned, the organic matter utilization rate in the denitrification tank 1 increases, and the amount of load in the nitrification and solid-liquid separation tank 2 is small. Can be reduced.

【0042】図2では図1の脱窒槽1および硝化兼固液
分離槽2の代りに、間欠曝気槽からなる脱窒兼硝化槽3
1および固液分離槽32が設けられている。脱窒兼硝化
槽31は攪拌機7の下に曝気装置33が設けられ空気路
34が連絡している。固液分離槽32は図1の硝化兼固
液分離槽2とほぼ同様の構成となっている。
In FIG. 2, a denitrification / nitrification tank 3 comprising an intermittent aeration tank is used instead of the denitrification tank 1 and the nitrification / solid-liquid separation tank 2 shown in FIG.
1 and a solid-liquid separation tank 32 are provided. The denitrification and nitrification tank 31 is provided with an aeration device 33 below the stirrer 7 and is connected to an air passage 34. The solid-liquid separation tank 32 has substantially the same configuration as the nitrification / solid-liquid separation tank 2 in FIG.

【0043】上記の装置による処理は、まず脱窒兼硝化
槽31に原水路5から原水を導入し、返送路4から汚泥
を返送し、空気路34から空気を送って曝気装置33に
より間欠曝気を行う。好気工程では原水中の有機物を分
解するとともにアンモニア性および有機性窒素を硝酸お
よび亜硝酸性窒素に硝化する。続いて曝気を停止して嫌
気工程に移ると、攪拌機で緩やかに攪拌して嫌気状態に
維持することにより脱窒を行う。
In the treatment by the above-described apparatus, first, raw water is introduced into the denitrification / nitrification tank 31 from the raw water channel 5, sludge is returned from the return line 4, air is sent from the air line 34, and intermittent aeration is performed by the aeration device 33. I do. In the aerobic process, the organic matter in the raw water is decomposed and the ammonia and organic nitrogen are nitrified into nitric acid and nitrite nitrogen. Subsequently, when the aeration is stopped and the process proceeds to the anaerobic step, denitrification is performed by maintaining the anaerobic state by gently stirring with a stirrer.

【0044】脱窒兼硝化槽31内の液は連続的または間
欠的に固液分離槽32に移送し膜分離装置9により固液
分離を行う。曝気装置13は透過膜11の洗浄用に設け
てもよいが、ここで有機物の分解および硝化を行うのが
好ましい。返送路4からの汚泥および硝化液の返送は連
続的でも間欠的でもよいが、返送量は原水量の3〜5倍
とするのが好ましい。
The liquid in the denitrification / nitrification tank 31 is transferred to the solid / liquid separation tank 32 continuously or intermittently, and is subjected to solid / liquid separation by the membrane separator 9. The aeration device 13 may be provided for cleaning the permeable membrane 11, but it is preferable to decompose and nitrify organic substances here. The return of the sludge and nitrification liquid from the return path 4 may be continuous or intermittent, but the return amount is preferably 3 to 5 times the raw water amount.

【0045】引抜路15からの生物汚泥の引き抜き、改
質処理槽16における改質処理、酸発酵槽18における
酸発酵は図1の場合とほぼ同様に行われる。酸発酵槽1
8から脱窒兼硝化槽31への酸発酵汚泥の導入は脱窒工
程(嫌気工程)のみ行うのが好ましい。汚泥の引き抜き
は脱窒兼硝化槽31から行ってもよい。間欠曝気式の脱
窒兼硝化槽31と固液分離槽32の間に、仕上げ用の脱
窒槽、または硝化槽と脱窒槽を設けることにより、高度
の処理水を得ることができる。
The extraction of the biological sludge from the extraction passage 15, the reforming treatment in the reforming treatment tank 16, and the acid fermentation in the acid fermentation tank 18 are performed in substantially the same manner as in FIG. Acid fermenter 1
It is preferable that only the denitrification step (anaerobic step) be performed for the introduction of the acid fermentation sludge from Step 8 into the denitrification and nitrification tank 31. Sludge may be extracted from the denitrification / nitrification tank 31. By providing a denitrification tank for finishing, or a nitrification tank and a denitrification tank between the intermittent aeration type denitrification and nitrification tank 31 and the solid-liquid separation tank 32, highly treated water can be obtained.

【0046】図3では脱窒槽1と固液分離槽32の間に
硝化槽35および第2脱窒槽36を設け、連絡路3a,
3b,3cで連絡した構成になっている。硝化槽35は
下部に曝気装置33が設けられ、返送路4により脱窒槽
1に連絡している。第2脱窒槽36はモータM3により
駆動される攪拌機7aを有している。固液分離槽32か
らポンプP4を有する返送路4a,4bが脱窒槽1およ
び硝化槽35に連絡している。酸発酵槽18から移送路
19および19aが脱窒槽1および第2脱窒槽36に連
絡している。
In FIG. 3, a nitrification tank 35 and a second denitrification tank 36 are provided between the denitrification tank 1 and the solid-liquid separation tank 32, and the communication paths 3a,
3b, 3c. The nitrification tank 35 is provided with an aeration device 33 at the lower part, and is connected to the denitrification tank 1 by a return path 4. Second denitrification tank 36 has a stirrer 7a driven by a motor M 3. Return paths 4 a and 4 b having a pump P 4 from the solid-liquid separation tank 32 communicate with the denitrification tank 1 and the nitrification tank 35. Transfer routes 19 and 19a are connected from the acid fermentation tank 18 to the denitrification tank 1 and the second denitrification tank 36.

【0047】上記の装置による処理は、図1の場合と同
様に脱窒槽1に原水路から原水を導入し、返送路4から
硝化液を導入して脱窒を行う。脱窒槽1内の液を連絡路
3aから硝化槽35に移送し、ここで曝気装置33によ
り曝気して有機物の分解と硝化を行う。硝化液は返送路
4から脱窒槽1に原水量の2〜10倍返送するととも
に、連絡路3bから第2脱窒槽36に移送し、ここで必
要により薬注路24aからメタノール等の有機物を注入
して脱窒を行う。
In the processing by the above-described apparatus, as in the case of FIG. 1, raw water is introduced into the denitrification tank 1 from the raw water channel, and nitrification liquid is introduced from the return line 4 to perform denitrification. The liquid in the denitrification tank 1 is transferred from the communication path 3a to the nitrification tank 35, where it is aerated by the aerator 33 to decompose and nitrate organic substances. The nitrification liquid is returned to the denitrification tank 1 from the return path 4 by 2 to 10 times the amount of raw water, and is transferred from the connection path 3b to the second denitrification tank 36, where organic substances such as methanol are injected from the chemical injection path 24a as necessary. And denitrification.

【0048】脱窒処理液は連絡路3cから固液分離槽3
2に移送し、曝気装置13で再曝気するとともに、膜分
離装置9で固液分離する。固液分離槽の汚泥は返送路4
a,4bより脱窒槽1および/または硝化槽35に返送
する。返送汚泥量は脱窒槽1には原水量の1〜2倍、硝
化槽35には原水量の2〜3倍量とするのが好ましい。
The denitrification treatment liquid is supplied to the solid-liquid separation tank 3 from the communication path 3c.
Then, the mixture is transferred to the aeration apparatus 2 and re-aerated by the aeration device 13 and solid-liquid separated by the membrane separation device 9. Sludge from solid-liquid separation tank returns
a and 4b return to the denitrification tank 1 and / or the nitrification tank 35. The amount of returned sludge is preferably 1-2 times the amount of raw water in the denitrification tank 1 and 2-3 times the amount of raw water in the nitrification tank 35.

【0049】上記の処理系10から生物汚泥を引き抜い
て改質するために、引抜路15から改質処理槽16に生
物汚泥を移送し、ここでオゾン処理により改質処理して
易生物分解性に改質する。改質汚泥は酸発酵槽18で酸
発酵して移送路19および19aから脱窒槽1および/
または第2脱窒槽36に導入し、水素供与体として脱窒
を行う。
In order to extract and reform the biological sludge from the treatment system 10, the biological sludge is transferred from the extraction passage 15 to the reforming treatment tank 16, where the sludge is reformed by ozone treatment to be easily biodegradable. To be reformed. The reformed sludge is subjected to acid fermentation in the acid fermentation tank 18 and the denitrification tank 1 and / or
Alternatively, it is introduced into the second denitrification tank 36 and denitrification is performed as a hydrogen donor.

【0050】[0050]

【実施例】以下本発明の実施例について説明する。例中
「L」はliterを意味する。
Embodiments of the present invention will be described below. In the examples, "L" means liter.

【0051】実施例1、比較例1 図1に示したフローにより、本発明の効果を実証する試
験を行った。試験に用いた装置は、脱窒槽40L、硝化
兼固液分離槽40Lとし、硝化兼固液分離槽には浸漬型
膜分離装置を浸漬して直接固液分離を行った。用いた浸
漬膜は親水化ポリエチレン性、中空糸浸漬膜で、中空糸
膜を平板状に張設したものである。膜面積は0.5m2
のものを用いた。この中空糸膜は公称孔径0.1μmの
MF膜で、外径410μm、内径270μmである。膜
分離装置の下部より曝気を行い、膜面へクロスフロー流
速を与えると共に硝化兼固液分離槽へ酸素供給を行っ
た。空気量は100L/minとした。
Example 1 and Comparative Example 1 A test was conducted according to the flow shown in FIG. 1 to prove the effect of the present invention. The apparatus used for the test was a denitrification tank 40L and a nitrification / solid-liquid separation tank 40L, and a solid-liquid separation was directly performed by immersing the immersion type membrane separator in the nitrification / solid-liquid separation tank. The immersion membrane used is a hydrophilic polyethylene-based hollow fiber immersion membrane, which is a hollow fiber membrane stretched in a flat plate shape. The film area is 0.5m 2
Was used. This hollow fiber membrane is an MF membrane having a nominal pore diameter of 0.1 μm, and has an outer diameter of 410 μm and an inner diameter of 270 μm. Aeration was performed from the lower part of the membrane separation device, a cross-flow flow rate was given to the membrane surface, and oxygen was supplied to the nitrification / solid-liquid separation tank. The air volume was 100 L / min.

【0052】試験に用いた原水は水道水にBOD源とし
て酢酸ナトリウム、窒素源として硫酸アンモニウムを加
えたものである。原水濃度はBOD300mg/L、N
4−N300mg/Lとなるように調整した。またリ
ン酸をPO4−P9mg/Lとなるように添加した。脱
窒槽にはORP計を取り付け、ORP値と連動してメタ
ノールを添加した。ORPが−100mV以上の時メタ
ノールが添加されるようにし、−50〜−100mVの
間は、(ORP値+100mV)の値に比例して、OR
P値が高いほどメタノールの添加量が多くなるように制
御した(比例制御)。ORP値が−50mV以上の時は
メタノール添加量を一定とした。最大メタノール添加量
は流入窒素負荷の3倍となるように設定した。
The raw water used in the test was tap water to which sodium acetate was added as a BOD source and ammonium sulfate as a nitrogen source. Raw water concentration is BOD300mg / L, N
It was adjusted to H 4 -N300mg / L. Phosphoric acid was added so that the concentration of PO 4 -P became 9 mg / L. An ORP meter was attached to the denitrification tank, and methanol was added in conjunction with the ORP value. Methanol is added when the ORP is -100 mV or more, and between -50 and -100 mV, the OR is increased in proportion to the value of (ORP value +100 mV).
Control was performed such that the higher the P value, the larger the amount of methanol added (proportional control). When the ORP value was -50 mV or more, the amount of methanol added was fixed. The maximum methanol addition was set to be three times the inflow nitrogen load.

【0053】原水の水量は50〜150L/dとし、本
装置の処理状況に応じて変化させ、限界処理性能を見極
めた。硝化兼固液分離槽にはpH計と連動して苛性ソー
ダを添加し、pHを7.2〜7.3の範囲に調整した。
硝化兼固液分離槽から脱窒槽への返送汚泥は原水量の1
0倍、すなわち500〜1500L/dとした。硝化兼
固液分離槽からは定量的に汚泥引抜きを行い、硝化兼固
液分離槽におけるSRTを15日に保った。すなわち、
2.67L/dの流量で汚泥を引き抜いた。引き抜いた
汚泥は改質処理槽においてオゾン処理により易生物分解
化した。オゾン注入率は0.03gO3/gVSSとし
た。
The raw water flow rate was set to 50 to 150 L / d, and was changed according to the processing conditions of the present apparatus to determine the limit processing performance. Caustic soda was added to the nitrification / solid-liquid separation tank in conjunction with a pH meter to adjust the pH to a range of 7.2 to 7.3.
Sludge returned from the nitrification / solid-liquid separation tank to the denitrification tank is 1% of raw water
0 times, that is, 500 to 1500 L / d. Sludge was quantitatively extracted from the nitrification and solid-liquid separation tank, and the SRT in the nitrification and solid-liquid separation tank was maintained on the 15th. That is,
Sludge was drawn out at a flow rate of 2.67 L / d. The extracted sludge was easily biodegraded by ozone treatment in a reforming treatment tank. The ozone injection rate was 0.03 gO 3 / g VSS.

【0054】比較例1では易生物分解化した汚泥はその
まま脱窒槽へ投入した。また本発明の効果を実証する実
施例1では酸発酵槽で酸発酵させた後、脱窒槽へ供給し
た。酸発酵槽は滞留時間1日となるよう、有効容積2.
67Lとし、空気に触れないよう密閉し、攪拌機で混合
した。また、水酸化ナトリウムを添加してpH5に調整
した。この条件で処理を行い、硝化槽MLSSが定常的
に10000mg/Lとなるよう、通水量を調整した。
In Comparative Example 1, the sludge decomposed by biodegradation was directly introduced into a denitrification tank. In Example 1, which demonstrates the effect of the present invention, acid fermentation was performed in an acid fermentation tank, and then supplied to a denitrification tank. The acid fermenter has an effective volume of 2. so that the residence time is one day.
The mixture was made 67 L, sealed without contact with air, and mixed with a stirrer. The pH was adjusted to 5 by adding sodium hydroxide. The treatment was performed under these conditions, and the flow rate was adjusted such that the nitrification tank MLSS was constantly at 10,000 mg / L.

【0055】この結果、比較例1の酸発酵を行わない系
では、通水量60L/dのとき硝化槽MLSS濃度が約
10000mg/Lで安定し、このときメタノール消費
量は原水に対して約400mg/Lとなった。一方、実
施例1の酸発酵を行う系では、通水量75L/dとした
とき、硝化槽MLSS濃度が約10000mg/Lで安
定し、メタノール消費量は原水に対して約300mg/
Lとなった。なお、いずれの系も通水量を一定にした後
は汚泥濃度は横ばいで推移し、増加係向を見せなかった
ため、廃棄物としての余剰汚泥は全く発生していない。
また、脱窒槽内における脱窒反応は良好に進行してお
り、槽内上澄液のNOx−N濃度はいずれも1mg/L
以下であった。
As a result, in the system in which the acid fermentation was not performed in Comparative Example 1, the nitrification tank MLSS concentration was stable at about 10,000 mg / L at a water flow rate of 60 L / d, and the methanol consumption was about 400 mg / l of the raw water. / L. On the other hand, in the system for performing the acid fermentation of Example 1, when the flow rate is 75 L / d, the nitrification tank MLSS concentration is stable at about 10,000 mg / L, and the methanol consumption is about 300 mg / L with respect to the raw water.
It became L. In all systems, the sludge concentration remained unchanged after the flow rate was fixed, and did not show any tendency to increase, so that no excess sludge as waste was generated.
In addition, the denitrification reaction in the denitrification tank proceeded favorably, and the concentration of NOx-N in the supernatant in the tank was 1 mg / L.
It was below.

【0056】以上の結果から、本発明の実施例は、従来
法としての比較例1に比べて25%多い負荷をかけて処
理することができ、同時にメタノール使用量を約25%
削減することができることがわかった。なお、このと
き、改質処理汚泥の脱窒反応への利用率は、従来法の比
較例1で約40%、本発明の実施例1では約80%と推
定される。但し、本発明の処理能力増大効果、メタノー
ル削減効果は主に原水のBOD/N比によって左右され
るため、これらの数値は対象とする排水によって異な
り、採用するフローにもよるが、一般にBOD/N比が
低い排水の方が効果は顕著に現れる。
From the above results, the embodiment of the present invention can be treated with a load 25% larger than that of the comparative example 1 as the conventional method, and at the same time, the amount of methanol used is reduced by about 25%.
It turns out that it can be reduced. At this time, the utilization rate of the reformed sludge for the denitrification reaction is estimated to be about 40% in Comparative Example 1 of the conventional method and about 80% in Example 1 of the present invention. However, since the effect of increasing the treatment capacity and the effect of reducing methanol in the present invention mainly depend on the BOD / N ratio of raw water, these values differ depending on the target wastewater, and generally depend on the adopted flow. The effect is more pronounced in drainage with a lower N ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の窒素除去装置を示す系統図である。FIG. 1 is a system diagram showing a nitrogen removing device according to an embodiment.

【図2】他の実施形態の窒素除去装置を示す系統図であ
る。
FIG. 2 is a system diagram showing a nitrogen removing device according to another embodiment.

【図3】さらに他の実施形態の窒素除去装置を示す系統
図である。
FIG. 3 is a system diagram showing a nitrogen removing apparatus according to still another embodiment.

【符号の説明】[Explanation of symbols]

1 脱窒槽 2 硝化兼固液分離槽 3、3a、3b、3c、17 連絡路 4、4a、4b、25 返送路 5 原水路 6 処理水路 7、7a、23 攪拌機 8 ガイド筒 9 膜分離装置 10 処理系 11 透過膜 12 透過液室 13、33 曝気装置 14、34 空気路 15 引抜路 16 改質処理槽 18 酸発酵槽 19、19a 移送路 21 オゾン吹込装置 22 オゾン供給路 24、24a 薬注路 26 排泥路 31 脱窒兼硝化槽 32 固液分離槽 35 硝化槽 36 第2脱窒槽 DESCRIPTION OF SYMBOLS 1 Denitrification tank 2 Nitrification and solid-liquid separation tank 3, 3a, 3b, 3c, 17 Connection path 4, 4a, 4b, 25 Return path 5 Raw water path 6 Treatment water path 7, 7a, 23 Stirrer 8 Guide cylinder 9 Membrane separation device 10 Treatment system 11 Permeable membrane 12 Permeate chamber 13, 33 Aerator 14, Air path 15 Extraction path 16 Reformer tank 18 Acid fermentation tank 19, 19a Transfer path 21 Ozone blower 22 Ozone supply path 24, 24a Chemical injection path 26 Drainage passage 31 Denitrification and nitrification tank 32 Solid-liquid separation tank 35 Nitrification tank 36 Second denitrification tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脱窒工程を含む排水の生物学的窒素除去
方法において、 処理系において生成する生物汚泥の一部を引き抜く工
程、 この引抜汚泥を易生物分解性に改質する改質処理工程、 改質処理汚泥を酸発酵させる酸発酵工程、および酸発酵
汚泥を脱窒工程に導入する移送工程を含む排水の生物学
的窒素除去方法。
1. A method for removing biological nitrogen from wastewater including a denitrification step, wherein a part of biological sludge generated in a treatment system is extracted, and a reforming treatment step of reforming the extracted sludge to be easily biodegradable. A method for removing biological nitrogen from wastewater, comprising an acid fermentation step of acid-fermenting the modified sludge, and a transfer step of introducing the acid-fermented sludge to the denitrification step.
【請求項2】 脱窒槽を含む生物学的窒素除去処理系、 処理系から生物汚泥の一部を引き抜く引抜手段、 引抜汚泥を易生物分解性に改質する改質処理槽、 改質処理汚泥を酸発酵させる酸発酵槽、および酸発酵汚
泥を脱窒槽に導入する移送手段を含む排水の生物学的窒
素除去装置。
2. A biological nitrogen removal treatment system including a denitrification tank, extraction means for extracting a part of biological sludge from the treatment system, a reforming treatment tank for reforming the extracted sludge to be easily biodegradable, a reformed sludge A biological nitrogen removing apparatus for wastewater, comprising an acid fermentation tank for acid fermentation of urea, and a transfer means for introducing acid fermentation sludge into a denitrification tank.
JP10148089A 1998-05-28 1998-05-28 Method and apparatus for biological dentrification of waste water Pending JPH11333494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10148089A JPH11333494A (en) 1998-05-28 1998-05-28 Method and apparatus for biological dentrification of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10148089A JPH11333494A (en) 1998-05-28 1998-05-28 Method and apparatus for biological dentrification of waste water

Publications (1)

Publication Number Publication Date
JPH11333494A true JPH11333494A (en) 1999-12-07

Family

ID=15445001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10148089A Pending JPH11333494A (en) 1998-05-28 1998-05-28 Method and apparatus for biological dentrification of waste water

Country Status (1)

Country Link
JP (1) JPH11333494A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177986A (en) * 2000-12-08 2002-06-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2002192189A (en) * 2000-12-26 2002-07-10 Nisshin Steel Co Ltd Method for treating nitrogen-containing wastewater
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Method for treating organic waste liquid
JP2007098275A (en) * 2005-10-04 2007-04-19 Sumitomo Heavy Ind Ltd Method and apparatus for producing organic acid
JP2008246484A (en) * 2008-06-09 2008-10-16 Ebara Corp Method and apparatus for treating organic waste water
JP2009505822A (en) * 2005-08-24 2009-02-12 パークソン コーポレーション Denitrification process and denitrification device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177986A (en) * 2000-12-08 2002-06-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2002192189A (en) * 2000-12-26 2002-07-10 Nisshin Steel Co Ltd Method for treating nitrogen-containing wastewater
JP4617572B2 (en) * 2000-12-26 2011-01-26 日新製鋼株式会社 Nitrogen-containing wastewater treatment method
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Method for treating organic waste liquid
JP2009505822A (en) * 2005-08-24 2009-02-12 パークソン コーポレーション Denitrification process and denitrification device
US8025796B2 (en) 2005-08-24 2011-09-27 Parkson Corporation Denitrification system
US8034243B2 (en) 2005-08-24 2011-10-11 Parkson Corporation Denitrification process
JP2007098275A (en) * 2005-10-04 2007-04-19 Sumitomo Heavy Ind Ltd Method and apparatus for producing organic acid
JP2008246484A (en) * 2008-06-09 2008-10-16 Ebara Corp Method and apparatus for treating organic waste water

Similar Documents

Publication Publication Date Title
US20190389756A1 (en) Apparatus and operating method for deep denitrification and toxicity reduction of wastewater
JP4632356B2 (en) Biological nitrogen removal method and system
JP2000015288A (en) Waste water treatment method and apparatus
US8323487B2 (en) Waste water treatment apparatus
JP4187303B2 (en) Biological treatment method for organic drainage
EP1346956A1 (en) Process for sludge treatment using sludge pretreatment and membrane bioreactor
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
EP1260486A1 (en) Method for treating organic wastewater
EP4159694A1 (en) Home toilet waste treatment system comprising bio-treatment device and combustion device, and method for treating toilet waste by using same
HU205330B (en) Process for purifying sewage containing organic material, by increased removal of phosphorus and nitrogen
JP2002136989A (en) Method and apparatus for treating organic waste liquid
JPS6222678B2 (en)
JP4862209B2 (en) Organic drainage treatment method and apparatus
JP4882181B2 (en) Denitrification method and apparatus
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
JP2004290826A (en) System and method for treating high concentration organic liquid
JPH0483594A (en) Biological treatment of organic sewage
JP2003010877A (en) Activated sludge treatment method for sewage and its apparatus
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP2007098279A (en) Apparatus and method for treating waste water by using microbe
JP4581174B2 (en) Biological treatment method
JP2005349337A (en) Method for treating sewage
JP4617572B2 (en) Nitrogen-containing wastewater treatment method
JP3271326B2 (en) Biological phosphorus removal method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212