JP2002177986A - Biological denitrification equipment - Google Patents

Biological denitrification equipment

Info

Publication number
JP2002177986A
JP2002177986A JP2000374655A JP2000374655A JP2002177986A JP 2002177986 A JP2002177986 A JP 2002177986A JP 2000374655 A JP2000374655 A JP 2000374655A JP 2000374655 A JP2000374655 A JP 2000374655A JP 2002177986 A JP2002177986 A JP 2002177986A
Authority
JP
Japan
Prior art keywords
denitrification
denitrification tank
tank
sludge
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000374655A
Other languages
Japanese (ja)
Other versions
JP4608771B2 (en
Inventor
Kazuya Komatsu
和也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000374655A priority Critical patent/JP4608771B2/en
Publication of JP2002177986A publication Critical patent/JP2002177986A/en
Application granted granted Critical
Publication of JP4608771B2 publication Critical patent/JP4608771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide biological denitrification equipment which enables stable nitrogen removal in a USB denitrification tank and suffices with a smaller reaction chamber capacity considered necessary in post denitrification and reaeration of post stages. SOLUTION: The raw water from raw water piping 1 is added with organic matter and a pH control agent respectively from piping 2 and 3 for addition and is then introduced from the lower part of a first denitrification tank 10 into a column from which the treated water is taken out through piping 12 for take-out. A granular sludge bed 11 is formed within the denitrification tank 10. The piping 12 is provided with a valve and a discharge variable pump capable regulating an opening degree, by which the amount of the organic matter to be added is controlled in such a manner that nitrate nitrogen and/or nitrite nitrogen remains in the outflow water flowing out to the piping 12. The treated water from the first denitrification tank 10 is subjected to addition of the organic matter from the piping 13 and is than introduced into a second denitrification tank 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は上向流汚泥床(US
B:Upflow Sludge Blanket)方
式の生物学的脱窒装置に係り、特に、脱窒反応塔内の脱
窒菌のグラニュール汚泥床を安定に維持し、これにより
安定した窒素除去を可能とし、且つ後段の後脱窒、再曝
気で必要とされる反応槽容積が小さくて足りる生物学的
脱窒装置に関する。
The present invention relates to an upward sludge bed (US
B: The present invention relates to a biological denitrification apparatus of the Upflow Sludge Blanket type, and in particular, stably maintains a granular sludge bed of denitrifying bacteria in a denitrification reaction tower, thereby enabling stable nitrogen removal and a subsequent stage. The present invention relates to a biological denitrification apparatus which requires a small reaction tank volume for post-denitrification and re-aeration.

【0002】[0002]

【従来の技術】反応塔内に脱窒菌を高濃度で保持するこ
とができ、これにより処理効率の向上、装置の小型化が
可能な生物学的脱窒装置として、グラニュールを利用し
たUSB方式の生物学的脱窒装置が提案されている。
2. Description of the Related Art As a biological denitrification apparatus capable of maintaining a high concentration of denitrifying bacteria in a reaction tower, thereby improving the treatment efficiency and miniaturizing the apparatus, a USB system using granules is used. Biological denitrification devices have been proposed.

【0003】USB方式の生物学的脱窒装置は、脱窒菌
の付着担体を用いることなく、反応塔内に脱窒菌を高濃
度の粒状に凝集させたグラニュールの汚泥床を形成し、
原水(硝酸性窒素及び/又は亜硝酸性窒素を含む排水)
を反応塔下部から導入してこのグラニュールと接触させ
て原水中の硝酸性窒素、亜硝酸性窒素を分解し、脱窒処
理水を反応塔上部の固気液分離部から取り出すものであ
る。
The USB type biological denitrification apparatus forms a granular sludge bed in which a high concentration of denitrifying bacteria is aggregated in a reaction tower without using a carrier for attaching denitrifying bacteria,
Raw water (effluent containing nitrate nitrogen and / or nitrite nitrogen)
Is introduced from the lower part of the reaction tower, is brought into contact with the granules to decompose nitrate nitrogen and nitrite nitrogen in the raw water, and the denitrification-treated water is taken out from the solid-gas-liquid separation part at the upper part of the reaction tower.

【0004】[0004]

【発明が解決しようとする課題】ところで、USB方式
に限らず、生物学的脱窒装置では、脱窒反応に必要な有
機物(通常メタノール)を原水に注入するが、脱窒反応
を速やかに完了させるためには、理論上必要な有機物量
よりも過剰に注入する必要があり、一般には理論量の約
1.2倍(N濃度の3倍強)程度の有機物量となるよう
に注入する。
In the biological denitrification apparatus, not only the USB system but also organic substances (usually methanol) necessary for the denitrification reaction are injected into the raw water, but the denitrification reaction is completed quickly. In order to achieve this, it is necessary to inject more than the theoretically necessary amount of organic matter, and generally, the amount of organic matter is about 1.2 times the theoretical amount (more than three times the N concentration).

【0005】一方でUSB方式の脱窒装置では、グラニ
ュールを形成した汚泥は著しく長い間反応塔内に滞留す
る。そのためグラニュール汚泥床の特に上部は、硝酸性
窒素及び/又は亜硝酸性窒素が除去されて酸素化合物の
存在しない絶対嫌気性雰囲気に永続的にさらされること
になり、通性嫌気性菌である脱窒菌は衰弱し、その結
果、グラニュール表面に粘性物質が生成し、グラニュー
ル同士が付着し易くなる。
On the other hand, in the USB type denitrification apparatus, the sludge having formed granules stays in the reaction tower for an extremely long time. Therefore, especially the upper part of the granular sludge bed is permanently exposed to an absolute anaerobic atmosphere in which nitrate nitrogen and / or nitrite nitrogen is removed and no oxygen compound is present, and is a facultative anaerobic bacterium. The denitrifying bacteria weaken, and as a result, a viscous substance is generated on the surface of the granules, and the granules easily adhere to each other.

【0006】USB方式の脱窒装置において高い窒素除
去効率を維持するうえで、グラニュールは適度に流動し
ている必要があるが、グラニュール同士が付着し合うよ
うになると汚泥床内で閉塞が生じ、被処理水とグラニュ
ール汚泥とを効率よく接触させることができなくなる。
また、本来はグラニュール間をすり抜けて系外に排出さ
れる生成ガスが、汚泥床から速やかに抜けず、付着し合
ったグラニュールの下部に溜まり、ついには汚泥床全体
を反応槽上部に押し上げ、グラニュールの著しい流出に
よる槽内汚泥保持量の減少を招くなど、窒素除去効率が
低下する問題がある。
[0006] In order to maintain a high nitrogen removal efficiency in a USB type denitrification apparatus, the granules need to flow appropriately, but when the granules adhere to each other, blockage occurs in the sludge bed. As a result, it becomes impossible to efficiently contact the water to be treated with the granular sludge.
In addition, the generated gas, which normally passes through the granules and is discharged outside the system, does not quickly escape from the sludge bed, but accumulates at the bottom of the attached granules, and eventually pushes up the entire sludge bed to the upper part of the reaction tank. In addition, there is a problem that the nitrogen removal efficiency is lowered, for example, the amount of sludge retained in the tank is reduced due to a remarkable outflow of granules.

【0007】本発明は上記従来の問題点を解決し、US
B脱窒槽でのグラニュールの付着を防止し、安定した窒
素除去を可能とし、また、後段の後脱窒、再曝気で必要
とされる反応槽容積が小さくて足りる生物学的脱窒装置
を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and
B. A biological denitrification device that prevents the adhesion of granules in the denitrification tank, enables stable nitrogen removal, and requires a small reaction tank volume for post-stage denitrification and re-aeration. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明の生物学的脱窒装
置は、脱窒菌が高濃度に凝集した粒状物の汚泥床を有し
た槽に、硝酸性窒素及び/又は亜硝酸性窒素を含む排水
を、有機物の存在下で、上向流にて通過させる脱窒槽を
有した生物学的脱窒装置において、該脱窒槽の流出水中
に硝酸性窒素及び/又は亜硝酸性窒素を残留させるよう
に該脱窒槽流入水への有機物添加量を調整する手段を設
けたことを特徴とするものである。
According to the biological denitrification apparatus of the present invention, nitrate nitrogen and / or nitrite nitrogen are supplied to a tank having a granular sludge bed in which denitrifying bacteria are aggregated at a high concentration. In a biological denitrification apparatus having a denitrification tank for passing wastewater containing water in an upward flow in the presence of organic matter, nitrate nitrogen and / or nitrite nitrogen remain in the effluent of the denitrification tank. In this way, means for adjusting the amount of organic matter added to the denitrification tank inflow water is provided.

【0009】かかる本発明の生物学的脱窒装置の脱窒槽
では、常に被処理水中に硝酸性窒素及び/又は亜硝酸性
窒素が残存しているため、脱窒槽内が絶対嫌気条件とな
ることがなく、その結果、粘性、付着性の低い堅固な脱
窒菌グラニュールが形成され、脱窒槽下部に安定した汚
泥床が形成される。グラニュール汚泥床を形成させてな
る脱窒層の汚泥濃度は20000〜100000mg/
Lとなり、効率の高い脱窒処理が可能となる。
In the denitrification tank of the biological denitrification apparatus of the present invention, since nitrate nitrogen and / or nitrite nitrogen always remain in the water to be treated, the inside of the denitrification tank is subjected to absolute anaerobic conditions. As a result, a solid denitrifying bacteria granule with low viscosity and low adhesion is formed, and a stable sludge bed is formed at the bottom of the denitrification tank. The sludge concentration of the denitrification layer formed by forming a granular sludge bed is 20,000 to 100,000 mg /
L, which enables highly efficient denitrification treatment.

【0010】本発明では、この脱窒槽(第1の脱窒槽)
の流出水を受け入れて脱窒処理する第2の脱窒槽を備え
てもよい。かかる第2の脱窒槽を設けることにより、十
分に脱窒処理された処理水が得られる。この第2の脱窒
槽は、浮遊汚泥と、脱窒菌が高濃度に凝集した粒状化汚
泥とを保持するものであることが好ましい。即ち、第2
脱窒槽も従来のUSB方式のものとしてしまうと、十分
に脱窒処理された処理水を得るには、前述の理由で該第
2脱窒槽内が絶対的嫌気状態となることによる汚泥床の
閉塞やグラニュールの著しい流出などを招くおそれがあ
る。また、浮遊汚泥のみでは、汚泥濃度は一般に200
0〜6000mg/L程度で、グラニュール汚泥床を形
成させてなる脱窒槽の汚泥濃度は20000〜1000
00mg/Lであるのと比較すると著しい差があり、第
2脱窒槽は大きなものとなる。そこで、この第2の脱窒
槽については、脱窒槽は、浮遊汚泥と、脱窒菌が高濃度
に凝集した粒状化汚泥とを保持するものとするのが好ま
しい。
In the present invention, the denitrification tank (first denitrification tank)
And a second denitrification tank for receiving the effluent from the tank and performing a denitrification treatment. By providing such a second denitrification tank, treated water sufficiently denitrified can be obtained. It is preferable that the second denitrification tank holds suspended sludge and granular sludge in which denitrifying bacteria are aggregated at a high concentration. That is, the second
If the denitrification tank is also of the conventional USB type, in order to obtain treated water that has been sufficiently denitrified, the sludge bed is blocked due to the absolute anaerobic state in the second denitrification tank for the above-mentioned reason. Or the outflow of granules may occur. In addition, only suspended sludge generally has a sludge concentration of 200
The concentration of sludge in a denitrification tank formed with a granular sludge bed is about 2,000 to 1,000 at about 0 to 6000 mg / L.
There is a remarkable difference as compared with the case of 00 mg / L, and the second denitrification tank is large. Therefore, as for the second denitrification tank, it is preferable that the denitrification tank holds suspended sludge and granular sludge in which denitrifying bacteria are aggregated at a high concentration.

【0011】また、この第2の脱窒槽の粒状化汚泥とし
ては、第1の脱窒槽の余剰汚泥が好適である。すなわ
ち、浮遊汚泥の沈降性は汚泥濃度が高くなるにつれて悪
化するが、第1の脱窒槽のグラニュール汚泥床から引き
抜く余剰汚泥を第2の脱窒槽に添加し、これにより第2
脱窒槽内汚泥を粒状化汚泥と浮遊汚泥の混合汚泥とした
場合には、汚泥の沈降性を悪化させることなく第2の脱
窒槽内の汚泥濃度を向上させることができる。
As the granular sludge in the second denitrification tank, surplus sludge in the first denitrification tank is suitable. That is, the sedimentability of the suspended sludge deteriorates as the sludge concentration increases, but the excess sludge withdrawn from the granular sludge bed of the first denitrification tank is added to the second denitrification tank, whereby the second denitrification tank is added.
When the sludge in the denitrification tank is a mixed sludge of granular sludge and suspended sludge, the sludge concentration in the second denitrification tank can be improved without deteriorating the sedimentation property of the sludge.

【0012】また、有機物の同化により増殖し、系外へ
排出する排出汚泥は第1脱窒槽や第2脱窒槽から引き抜
いて系外へ排出してもよいが、再曝気槽を経た沈殿池底
部から引き抜くことが好ましい。再曝気槽を経て沈殿池
から引き抜かれた排出汚泥は、粒状化汚泥と浮遊汚泥の
混合汚泥であり、浮遊汚泥のみの場合に比べ脱水が容易
である。また、沈殿池からの返送汚泥は第2の脱窒槽に
戻すのが好ましい。
The discharged sludge which is multiplied by assimilation of organic matter and discharged to the outside of the system may be drawn out of the first denitrification tank or the second denitrification tank and discharged to the outside of the system. It is preferable to extract from The discharged sludge extracted from the sedimentation basin via the re-aeration tank is a mixed sludge of granulated sludge and suspended sludge, and is easier to dewater than the case of only suspended sludge. Further, it is preferable that the returned sludge from the sedimentation tank is returned to the second denitrification tank.

【0013】[0013]

【発明の実施の形態】以下に図面を参照して本発明の生
物学的脱窒装置の実施の形態を詳細に説明する。図1は
本発明の生物学的脱窒装置の実施の形態を示す系統図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the biological denitrification apparatus of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of the biological denitrification apparatus of the present invention.

【0014】この生物学的脱窒装置は、第1脱窒槽1
0、第2脱窒槽20、曝気槽30及び沈殿池40を備え
ている。第1の脱窒槽10は、上下方向に長い反応塔よ
りなるものであり、下部は下方に縮径する円錐形状部と
なっており、その上部が円筒状となっている。原水配管
1からの原水(硝酸性窒素及び/又は亜硝酸性窒素を含
む排水)は添加用の配管2,3よりそれぞれ有機物(例
えばメタノール)及びpH調整剤が添加された後、第1
脱窒槽10の下部から塔内に導入されて塔内を上向流で
流れ、処理水は塔上部から取出用配管12を介して取り
出される。
This biological denitrification apparatus includes a first denitrification tank 1
0, a second denitrification tank 20, an aeration tank 30, and a sedimentation tank 40. The first denitrification tank 10 is made up of a reaction tower that is long in the vertical direction. The lower part has a conical portion whose diameter decreases downward, and the upper part has a cylindrical shape. Raw water (drainage containing nitrate nitrogen and / or nitrite nitrogen) from the raw water pipe 1 is added with an organic substance (for example, methanol) and a pH adjuster from the addition pipes 2 and 3 respectively, and then the first water is added.
The water is introduced into the tower from the lower part of the denitrification tank 10 and flows upward in the tower.

【0015】この第1の脱窒槽10の内部にはグラニュ
ールの汚泥床11が形成される。グラニュールの汚泥床
11は通常、反応塔容積の4〜6割を占める。
Inside the first denitrification tank 10, a granular sludge bed 11 is formed. The granular sludge bed 11 usually occupies 40 to 60% of the reactor volume.

【0016】配管2には開度調整可能なバルブや吐出量
可変ポンプ(いずれも図示略)が設けられおり、配管1
2へ流出する流出水中に硝酸性窒素及び/又は亜硝酸性
窒素が残留するようにメタノール等の有機物の添加量が
制御される。
The pipe 2 is provided with a valve whose opening is adjustable and a variable discharge rate pump (both not shown).
The amount of addition of an organic substance such as methanol is controlled so that nitrate nitrogen and / or nitrite nitrogen remain in the effluent flowing out to 2.

【0017】このメタノール等の有機物の添加量は、配
管12への流出水中の硝酸性窒素及び/又は亜硝酸性窒
素の濃度が10〜120mg−N/L特に20〜100
mg−N/L程度となるように調節されるのが好まし
い。
The amount of the organic substance such as methanol added is such that the concentration of nitrate nitrogen and / or nitrite nitrogen in the effluent to the pipe 12 is 10 to 120 mg-N / L, especially 20 to 100 mg / N.
It is preferably adjusted to be about mg-N / L.

【0018】この第1脱窒槽10からの処理水は、配管
13からメタノール等の有機物の添加を受けた後、第2
脱窒槽20へ導入されるが、一部を配管16を介して原
水配管1に戻してもよい。また、この第2脱窒槽20へ
は、第1脱窒槽のグラニュール汚泥床11から引き抜か
れた余剰汚泥が配管14を介して導入される。
The treated water from the first denitrification tank 10 is subjected to addition of an organic substance such as methanol through a pipe 13,
Although it is introduced into the denitrification tank 20, a part thereof may be returned to the raw water pipe 1 via the pipe 16. Excess sludge drawn from the granular sludge bed 11 of the first denitrification tank is introduced into the second denitrification tank 20 via the pipe 14.

【0019】このように第1脱窒槽10からグラニュー
ル汚泥を第2脱窒槽20に供給することにより、第2脱
窒槽20の槽内汚泥濃度を従来の浮遊式の脱窒槽に比べ
飛躍的に高く保持することができ、残留した硝酸性窒素
及び/又は亜硝酸性窒素の除去に必要な脱窒槽容量が小
型化される。なお、第1脱窒槽10の余剰汚泥の一部
は、必要に応じ引抜配管15から系外へ排出してもよい
が、前述した通り、第2脱窒槽20、さらに再曝気槽3
0を経て系外へ排出することが好ましい。
By supplying granulated sludge from the first denitrification tank 10 to the second denitrification tank 20 in this manner, the concentration of sludge in the second denitrification tank 20 is dramatically increased as compared with a conventional floating denitrification tank. It can be kept high and the capacity of the denitrification tank required for removing the remaining nitrate nitrogen and / or nitrite nitrogen is reduced. Note that a part of the excess sludge in the first denitrification tank 10 may be discharged out of the system from the extraction pipe 15 as necessary, but as described above, the second denitrification tank 20 and the re-aeration tank 3
It is preferable to discharge to outside of the system through 0.

【0020】第2脱窒槽20には、さらに、沈殿池40
で沈降した汚泥の一部が返送配管43を介して導入され
る。
The second denitrification tank 20 further includes a sedimentation tank 40
A part of the sludge settled in is introduced through the return pipe 43.

【0021】第2脱窒槽20内では、グラニュール汚泥
と、浮遊汚泥とが攪拌翼21によって攪拌され、残存し
た硝酸性窒素及び/又は亜硝酸性窒素が脱窒処理され
る。なお、配管13からの有機物添加量は、この第2脱
窒槽において硝酸性窒素及び/又は亜硝酸性窒素の全量
が脱窒処理されるように、第2脱窒槽での脱窒に必要な
理論量よりも十分に多い量とされる。なお、第2脱窒槽
20内のグラニュール汚泥は第2脱窒槽流出水とともに
曝気槽30に導入され、曝気されることにより永続的な
絶対嫌気条件下におかれることが避けられるため、粘性
物質の生成によるグラニュールの付着を抑制することが
できる。
In the second denitrification tank 20, the granular sludge and the suspended sludge are stirred by the stirring blade 21, and the remaining nitrate nitrogen and / or nitrite nitrogen are denitrified. The amount of the organic substance added from the pipe 13 is a theoretical value necessary for denitrification in the second denitrification tank so that the entire amount of nitrate nitrogen and / or nitrite nitrogen is denitrified in this second denitrification tank. It is assumed that the amount is much larger than the amount. Note that the granular sludge in the second denitrification tank 20 is introduced into the aeration tank 30 together with the effluent of the second denitrification tank, and is aerated so as to avoid being placed under permanent absolute anaerobic conditions. Can suppress the adhesion of granules due to the generation of slag.

【0022】第2脱窒槽20から配管22を介して取り
出される汚泥を含み且つ有機物が残存した処理水は、曝
気槽30に導入され、散気管31から吹き込まれた空気
によって曝気される。
The treated water containing the sludge taken out from the second denitrification tank 20 via the pipe 22 and remaining the organic matter is introduced into the aeration tank 30 and is aerated by the air blown from the diffusion pipe 31.

【0023】第2脱窒槽からの流出汚泥は、この曝気槽
30内において有機物を好気的に分解処理する。第2脱
窒槽20からの流出水中の汚泥は、第1脱窒槽10から
のグラニュール汚泥を含むものであり、第2脱窒槽20
内と同様に、この曝気槽30内の槽内汚泥濃度が高く保
持され、曝気槽30内において残存有機物が効率良く分
解処理される。従って、曝気槽30も容量が小さくて足
りる。
The sludge discharged from the second denitrification tank aerobically decomposes organic matter in the aeration tank 30. The sludge in the effluent from the second denitrification tank 20 includes the granular sludge from the first denitrification tank 10,
Similarly to the inside, the sludge concentration in the tank in the aeration tank 30 is kept high, and the remaining organic matter is efficiently decomposed in the aeration tank 30. Therefore, the capacity of the aeration tank 30 is also small.

【0024】この曝気槽30で有機物が分解処理された
水は、配管32から沈殿池40へ送られ、上澄水が配管
41から処理水として取り出され、沈降した汚泥は配管
42から引き抜かれる。そして、汚泥の一部は排出汚泥
として系外へ排出され、一部は返送配管43を介して第
2脱窒槽20へ返送される。前記のグラニュール汚泥は
沈降性が良く、また脱水性も非常に良好である。このた
め、沈殿池40内における汚泥の沈降分離も速やかに行
われる。そして、この沈殿池40の沈降汚泥は、グラニ
ュール汚泥を含むため、脱水性が良好であり、例えば高
分子凝集剤等の脱水助剤を加えることなく直接脱水する
ことも可能である。
The water from which organic matter has been decomposed in the aeration tank 30 is sent from a pipe 32 to a sedimentation tank 40, the supernatant water is taken out as treated water from a pipe 41, and the settled sludge is withdrawn from a pipe 42. Then, a part of the sludge is discharged out of the system as discharged sludge, and a part is returned to the second denitrification tank 20 via the return pipe 43. The above-mentioned granulated sludge has good sedimentation properties and very good dehydration properties. Therefore, the sedimentation and separation of the sludge in the sedimentation basin 40 are also performed promptly. Since the settled sludge in the settling tank 40 contains granular sludge, it has good dewatering properties, and can be directly dewatered without adding a dehydration aid such as a polymer flocculant.

【0025】このような本発明の生物学的脱窒装置にお
いて、脱窒処理される原水性状としては、硝酸性窒素及
び/又は亜硝酸性窒素濃度が50〜1000mg−N/
Lのものが好適である。
In such a biological denitrification apparatus of the present invention, the raw water to be denitrified may have a nitrate nitrogen and / or nitrite nitrogen concentration of 50 to 1000 mg-N /
L is preferred.

【0026】なお、原水に対してPO−P濃度が0.
5〜30mg−P/Lとなるように、必要に応じてPと
してメタノール添加量の0.5〜1%程度のリン酸、リ
ン酸塩等が添加される。
It should be noted that the PO 4 -P concentration is 0.1% with respect to the raw water.
If necessary, phosphoric acid, phosphate, or the like is added as P in an amount of about 0.5 to 1% of the added amount of methanol so that the concentration becomes 5 to 30 mg-P / L.

【0027】第1脱窒槽のN負荷は2〜15kg−N/
・d特に5〜10kg−N/m ・dが好ましい。
第1脱窒槽の塔内汚泥床比率は20〜70%特に40〜
60%が好ましい。この汚泥床内の汚泥濃度は2万〜1
0万mg/Lとくに2万〜6万mg/Lが好ましい。通
水条件は、HRTは1〜8hr特に1,5〜4hrが好
ましく、LV(循環流含む)は0.5〜10m/hr特
に2〜6m/hrが好ましい。pHは6.5〜9.0特
に6.5〜7.5が好ましく、水温は15〜35℃特に
20〜30℃が好ましい。
The N load of the first denitrification tank is 2 to 15 kg-N /
m3・ D especially 5 to 10 kg-N / m 3-D is preferred.
The sludge bed ratio in the tower of the first denitrification tank is 20-70%, especially 40-70%.
60% is preferred. The sludge concentration in this sludge bed is 20,000 to 1
It is preferable that the amount is from 10,000 to 60,000 mg / L. Through
As for the water conditions, the HRT is preferably 1 to 8 hr, particularly 1,5 to 4 hr.
Preferably, LV (including circulating flow) is 0.5 to 10 m / hr.
Is preferably 2 to 6 m / hr. pH is 6.5-9.0
Is preferably 6.5 to 7.5, and the water temperature is preferably 15 to 35 ° C.
20-30 ° C is preferred.

【0028】有機物は、配管2からではなく原水槽に添
加されてもよい。この原水への有機物添加量は、原水中
のNO−NのN量の1.5〜2.8倍量特に2.3〜
2.7倍量が好ましい。
The organic matter may be added not to the pipe 2 but to the raw water tank. The amount of organic matter added to the raw water is 1.5 to 2.8 times the N amount of NO X -N in the raw water, especially 2.3 to
A 2.7-fold amount is preferred.

【0029】第2脱窒槽20では、N負荷は0.2〜3
kg−N/m.dが好ましく、槽内汚泥濃度は300
0〜15000mg/L特に5000〜10000mg
/Lが好ましい。通水条件は、HRTは0.5〜2hr
が好ましく、pHは6.5〜9.0特に6.5〜7.5
が好ましく、水温は15〜35℃特に20〜30℃が好
ましい。
In the second denitrification tank 20, the N load is 0.2 to 3
kg-N / m 3 . d is preferable, and the sludge concentration in the tank is 300
0-15000mg / L, especially 5000-10000mg
/ L is preferred. The water flow condition is 0.5 to 2 hours for HRT.
Are preferred, and the pH is 6.5-9.0, especially 6.5-7.5.
The water temperature is preferably 15 to 35 ° C, particularly preferably 20 to 30 ° C.

【0030】配管13からの配管12へのメタノール等
の有機物の添加量は、配管12中の水中のNO−Nの
N量の2.8〜3.5倍量が好ましい。第2脱窒槽とし
ては完全混合型のものが好ましく、特に浮遊汚泥とグラ
ニュール汚泥の混合汚泥を攪拌羽根などで攪拌して流動
化させるものが最適である。
The amount of the organic substance such as methanol added from the pipe 13 to the pipe 12 is preferably 2.8 to 3.5 times the N amount of NO X -N in the water in the pipe 12. As the second denitrification tank, a completely mixed type is preferable, and particularly, a type in which mixed sludge of floating sludge and granular sludge is stirred and fluidized by a stirring blade or the like is optimal.

【0031】[0031]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0032】図1に示す装置を用いて、水道水にKNO
を500mg−N/L、HPO を10mg−P/
Lとなるように添加して調製した合成排水(30℃、p
H6.5)を原水として装置の立上運転を30日間行っ
た。透明塩化ビニル製円筒反応塔よりなる第1脱窒槽1
0は、直径12cm、直胴部の長さは85cm、反応塔
下部円錐部の高さは12cmであり、容量は10Lであ
る。
Using the apparatus shown in FIG. 1, KNO
3500 mg-N / L, H3PO 4To 10 mg-P /
L (30 ° C., p
H6.5) was used as raw water to start up the equipment for 30 days.
Was. First denitrification tank 1 consisting of a transparent vinyl chloride cylindrical reaction tower
0 is 12cm in diameter, 85cm in length of straight body, reaction tower
The height of the lower cone is 12 cm and the volume is 10 L
You.

【0033】第1脱窒槽10には、ステンレス鋼の酸洗
排水の脱窒処理槽から得られた浮遊性の脱窒汚泥を種汚
泥として投入し、上記原水により立ち上げ、グラニュー
ル汚泥床を形成させ、徐々に負荷を上げていって、30
日後に硝酸性窒素負荷0.5kgN/m・d(流量
0.42L/hr)から硝酸性窒素負荷5.0kgN/
・d(流量4.2L/hr)とし、以後、40日間
後述の表1の条件で連続処理を行った。この間、第1脱
窒槽からの処理水の循環量を適宜調整してLV=2m/
hrとした。
In the first denitrification tank 10, floating denitrification sludge obtained from a denitrification treatment tank for pickling effluent of stainless steel is charged as seed sludge, and the denitrification sludge is started up with the raw water. And gradually increase the load, 30
After a day, a nitrate nitrogen load of 0.5 kgN / m 3 · d (a flow rate of 0.42 L / hr) is changed to a nitrate nitrogen load of 5.0 kgN / m.
m 3 · d (flow rate 4.2 L / hr), and thereafter, continuous processing was performed for 40 days under the conditions shown in Table 1 described below. During this time, the circulation amount of the treated water from the first denitrification tank was adjusted as appropriate, and LV = 2 m /
hr.

【0034】また、この間、グラニュールが形成する汚
泥床11の界面が第1脱窒槽10の下部より塔高の65
%の高さを超えないように配管14から適宜汚泥の引抜
きを行った。汚泥床11内の汚泥濃度は45000mg
/Lであった。
During this time, the interface of the sludge bed 11 formed by the granules is located at a height of 65 from the lower part of the first denitrification tank 10.
% Of the sludge was extracted from the pipe 14 so as not to exceed the height in%. Sludge concentration in sludge bed 11 is 45000mg
/ L.

【0035】また、第2脱窒槽20(容量10L)には
上記と同じ浮遊性の脱窒汚泥を投入し、MLSS400
0mg/Lとした。HRTは2.4hrであった。
In the second denitrification tank 20 (capacity: 10 L), the same floating denitrification sludge as described above was charged, and the MLSS400
0 mg / L. HRT was 2.4 hr.

【0036】上記の立上げの30日の間、配管2からメ
タノールを添加後の水中におけるメタノール濃度が12
00mg/Lとなるように添加した。また、配管13か
らメタノールを添加後の水中におけるメタノール濃度が
250mg/Lとなるように添加した。
During the 30 days from the start-up, the methanol concentration in the water after the addition of methanol from the pipe 2 was 12%.
It was added so as to be 00 mg / L. Further, methanol was added from the pipe 13 so that the methanol concentration in the water after the addition was 250 mg / L.

【0037】上記の30日の経過の後、配管2からのメ
タノール添加量を表1の通りとした。また、配管12へ
の流出水中の硝酸性窒素及び亜硝酸性窒素濃度(NO
−N濃度)を測定し、配管13からはこのNO−N濃
度の3倍量のメタノールを添加した。
After the elapse of 30 days, the amount of methanol added from the pipe 2 was as shown in Table 1. The nitrate nitrogen and nitrite nitrogen concentrations (NO X
-N concentration), and methanol 3 times the NO X -N concentration was added from the pipe 13.

【0038】[0038]

【表1】 [Table 1]

【0039】表1の通り、第1脱窒槽でNO−Nをす
べて分解するようにメタノールを多量に添加したNO.
1では、0〜20日間はNO−Nを十分に分解でき
る。しかしながら、20日を経過するとグラニュール同
士が付着し合うようになり、生成した窒素ガスが汚泥床
下部に溜まって汚泥床を押し上げ、浮上する途中で一気
に気泡が抜ける際にグラニュールが著しく流出すること
がたびたびあった。そのため、脱窒槽内汚泥床比率が徐
々に減少し40日目には約30%になった(この間、引
き抜きはなし)。その結果、20日目以降、第1脱窒槽
10の処理水のNO−N濃度が増加し、40日目には
175mgN/Lに達し、第2脱窒槽20の処理水中に
もNO−Nが残留するようになった。
As shown in Table 1, NO. 1 containing a large amount of methanol was added in the first denitrification tank so as to decompose all NO X -N.
In 1, between 0-20 days can be sufficiently decompose NO X -N. However, after 20 days, the granules adhere to each other, and the generated nitrogen gas accumulates at the lower part of the sludge bed to push up the sludge bed. There were many times. Therefore, the sludge bed ratio in the denitrification tank gradually decreased to about 30% on the 40th day (during this period, no extraction was performed). As a result, 20 days after, NO X -N concentration in the treated water of the first denitrification tank 10 is increased, the 40 day reached 175mgN / L, even in the treated water of the second denitrification tank 20 NO x - N came to remain.

【0040】一方、第1脱窒槽10からの流出中にNO
−Nを残存させるようにしたNO.2〜4では、運転
期間を通じてグラニュール同士が付着することはなく、
グラニュール汚泥床は脱窒槽下部に安定して維持され
た。なお、汚泥床高さは塔高の50〜65%で推移した
が、65%を超えるときには汚泥を引き抜いて65%以
下に維持した。
On the other hand, during the outflow from the first denitrification tank 10, NO
X- N is allowed to remain. In 2-4, granules do not adhere to each other throughout the operation period,
The granule sludge bed was maintained stably below the denitrification tank. In addition, the sludge bed height changed in the range of 50 to 65% of the tower height, but when it exceeded 65%, the sludge was pulled out and maintained at 65% or less.

【0041】このように、No.2〜4のいずれについ
てもグラニュールの付着による処理効率の低下は防止さ
れ、安定した窒素除去効果が得られたが、第1脱窒槽処
理水のNO−Nは、NO.2,3では第1脱窒槽と同
容積の第2脱窒槽で完全に処理されたのに対し、NO.
4では処理しきれず12〜55mgN/L残留した。
As described above, no. Decrease in processing efficiency due to adhesion of granules for any 2-4 is prevented, were obtained stable nitrogen removal effect, NO X -N of the first denitrification tank treated water, NO. Nos. 2 and 3 were completely treated in the second denitrification tank having the same volume as the first denitrification tank, whereas NO.
In No. 4, the treatment was not completed and 12 to 55 mg N / L remained.

【0042】そこで、No.4において沈殿池40から
第2脱窒槽20へ返送する返送汚泥量を多くして第2脱
窒槽20の汚泥濃度を上げた運転を40日間行った(N
o.5)。その結果。第2脱窒槽流出水のNO−N濃
度は運転期間中、安定して10mg−N/L以下であっ
たが、運転開始から約5日程度経過して第2脱窒槽20
の汚泥濃度が5000mg/Lを超えると汚泥の沈降性
が悪化して沈殿池の汚泥界面が上昇し、沈殿池の分離水
中に汚泥が多く流出するようになった。
Therefore, No. 4, the operation of increasing the sludge concentration in the second denitrification tank 20 by increasing the amount of sludge returned from the sedimentation tank 40 to the second denitrification tank 20 was performed for 40 days (N
o. 5). as a result. During the second NO x -N concentration operation period of the denitrification tank effluent, stable but there was a 10 mg-N / L or less, the second denitrification tank 20 and passed about 5 days from the start of operation
If the sludge concentration exceeds 5000 mg / L, the sedimentation of the sludge deteriorates, the sludge interface of the sedimentation basin rises, and a large amount of sludge flows out into the separation water of the sedimentation basin.

【0043】このため、No.5において第1脱窒槽1
0から引き抜いた余剰グラニュールの一部を第2脱窒槽
20に送給するようにして40日間運転を行った(N
o.6)。その結果、第2脱窒槽流出水のNO−N濃
度は1mg−N/L以下で推移した。このときの第2脱
窒槽20の汚泥濃度は平均して8500mg/Lであっ
たが、運転期間中、沈殿池での固液分離は良好に行われ
た。
For this reason, no. 5 First denitrification tank 1
The operation was performed for 40 days by feeding a part of the surplus granules extracted from 0 to the second denitrification tank 20 (N
o. 6). As a result, NO x -N concentration of the second denitrification tank effluent water remained below 1mg-N / L. At this time, the sludge concentration in the second denitrification tank 20 was 8500 mg / L on average, but during the operation period, solid-liquid separation in the sedimentation basin was performed well.

【0044】[0044]

【発明の効果】以上の通り、本発明によると、USB脱
窒槽でのグラニュールの付着を防止し、安定した窒素除
去を可能とし、また後段の後脱窒、再曝気で必要とされ
る反応槽容積が小さくて足りる生物学的脱窒装置が提供
される。
As described above, according to the present invention, it is possible to prevent the adhesion of granules in a USB denitrification tank, to enable stable nitrogen removal, and to perform the reaction required in the subsequent post-denitrification and re-aeration. A biological denitrification device having a small tank volume is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態に係る生物学的脱窒装置の系統図で
ある。
FIG. 1 is a system diagram of a biological denitrification device according to an embodiment.

【符号の説明】[Explanation of symbols]

10 第1脱窒槽 20 第2脱窒槽 30 曝気槽 40 沈殿池 DESCRIPTION OF SYMBOLS 10 1st denitrification tank 20 2nd denitrification tank 30 Aeration tank 40 Sedimentation tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 脱窒菌が高濃度に凝集した粒状物の汚泥
床を有した槽に、硝酸性窒素及び/又は亜硝酸性窒素を
含む排水を、有機物の存在下で、上向流にて通過させる
脱窒槽を有した生物学的脱窒装置において、 該脱窒槽の流出水中に硝酸性窒素及び/又は亜硝酸性窒
素を残留させるように該脱窒槽流入水への有機物添加量
を調整する手段を設けたことを特徴とする生物学的脱窒
装置。
1. A wastewater containing nitrate nitrogen and / or nitrite nitrogen is fed to a tank having a sludge bed of granular matter in which denitrifying bacteria are aggregated at a high concentration in the upward flow in the presence of organic matter. In a biological denitrification apparatus having a denitrification tank through which an organic substance is added, the amount of organic substances added to the denitrification tank inflow water is adjusted so that nitrate nitrogen and / or nitrite nitrogen remain in the effluent of the denitrification tank. A biological denitrification apparatus characterized by comprising means.
【請求項2】 請求項1において、前記脱窒槽は第1の
脱窒槽であり、該第1の脱窒槽の流出水を受け入れて脱
窒処理するための第2の脱窒槽を備えたことを特徴とす
る生物学的脱窒装置。
2. The denitrification tank according to claim 1, wherein the denitrification tank is a first denitrification tank, and further comprises a second denitrification tank for receiving effluent from the first denitrification tank and performing a denitrification treatment. Characterized biological denitrification device.
【請求項3】 請求項2において、該第2の脱窒槽は、
浮遊汚泥と、脱窒菌が高濃度に凝集した粒状化汚泥とを
保持していることを特徴とする生物学的脱窒装置。
3. The denitrification tank according to claim 2, wherein
A biological denitrification apparatus characterized by holding suspended sludge and granular sludge in which denitrifying bacteria are aggregated at a high concentration.
【請求項4】 請求項3において、前記第1の脱窒槽内
の粒状化汚泥の一部を前記第2の脱窒槽へ供給する手段
を備えたことを特徴とする生物学的脱窒装置。
4. The biological denitrification apparatus according to claim 3, further comprising means for supplying a part of the granular sludge in the first denitrification tank to the second denitrification tank.
JP2000374655A 2000-12-08 2000-12-08 Biological denitrification equipment Expired - Fee Related JP4608771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000374655A JP4608771B2 (en) 2000-12-08 2000-12-08 Biological denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000374655A JP4608771B2 (en) 2000-12-08 2000-12-08 Biological denitrification equipment

Publications (2)

Publication Number Publication Date
JP2002177986A true JP2002177986A (en) 2002-06-25
JP4608771B2 JP4608771B2 (en) 2011-01-12

Family

ID=18843803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000374655A Expired - Fee Related JP4608771B2 (en) 2000-12-08 2000-12-08 Biological denitrification equipment

Country Status (1)

Country Link
JP (1) JP4608771B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066030A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Method and equipment for removing nitrogen compound from wastewater
CN101618908A (en) * 2008-07-03 2010-01-06 奥加诺株式会社 Denitrification processing method and denitrification processing device
CN101633532A (en) * 2008-07-25 2010-01-27 奥加诺株式会社 Nitrogen removal processing method and nitrogen removal processing apparatus
JP2010042363A (en) * 2008-08-13 2010-02-25 Japan Organo Co Ltd Denitrification method and denitrification apparatus
WO2010122898A1 (en) * 2009-04-22 2010-10-28 栗田工業株式会社 Denitrification method
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water
JP2014046257A (en) * 2012-08-31 2014-03-17 Jfe Steel Corp Biological treatment method of nitrogen-containing waste water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644097A (en) * 1979-09-14 1981-04-23 Ebara Infilco Co Ltd Biological denitrificating method of waste water
JPH09150143A (en) * 1995-11-28 1997-06-10 Ebara Corp Treatment of night soil system sewage
JPH1080696A (en) * 1996-09-06 1998-03-31 Shinko Pantec Co Ltd Denitrification treatment and denitrification treatment device
JPH10137787A (en) * 1996-11-08 1998-05-26 Shinko Pantec Co Ltd Denitrifying method and device therefor
JPH11333494A (en) * 1998-05-28 1999-12-07 Kurita Water Ind Ltd Method and apparatus for biological dentrification of waste water
JP2000070986A (en) * 1998-08-28 2000-03-07 Shinko Pantec Co Ltd Removing method of nitrogen oxides such as nitric acid and its device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644097A (en) * 1979-09-14 1981-04-23 Ebara Infilco Co Ltd Biological denitrificating method of waste water
JPH09150143A (en) * 1995-11-28 1997-06-10 Ebara Corp Treatment of night soil system sewage
JPH1080696A (en) * 1996-09-06 1998-03-31 Shinko Pantec Co Ltd Denitrification treatment and denitrification treatment device
JPH10137787A (en) * 1996-11-08 1998-05-26 Shinko Pantec Co Ltd Denitrifying method and device therefor
JPH11333494A (en) * 1998-05-28 1999-12-07 Kurita Water Ind Ltd Method and apparatus for biological dentrification of waste water
JP2000070986A (en) * 1998-08-28 2000-03-07 Shinko Pantec Co Ltd Removing method of nitrogen oxides such as nitric acid and its device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066030A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Method and equipment for removing nitrogen compound from wastewater
CN101618908A (en) * 2008-07-03 2010-01-06 奥加诺株式会社 Denitrification processing method and denitrification processing device
JP2010012404A (en) * 2008-07-03 2010-01-21 Japan Organo Co Ltd Denitrification method and denitrification device
CN101618908B (en) * 2008-07-03 2013-12-11 奥加诺株式会社 Denitrification processing method and denitrification processing device
CN101633532A (en) * 2008-07-25 2010-01-27 奥加诺株式会社 Nitrogen removal processing method and nitrogen removal processing apparatus
JP2010029749A (en) * 2008-07-25 2010-02-12 Japan Organo Co Ltd Denitrification method and denitrification apparatus
JP2010042363A (en) * 2008-08-13 2010-02-25 Japan Organo Co Ltd Denitrification method and denitrification apparatus
WO2010122898A1 (en) * 2009-04-22 2010-10-28 栗田工業株式会社 Denitrification method
JP2010253352A (en) * 2009-04-22 2010-11-11 Kurita Water Ind Ltd Denitrification method
CN102361827A (en) * 2009-04-22 2012-02-22 栗田工业株式会社 Denitrification method
JP2012066164A (en) * 2010-09-21 2012-04-05 Dowa Technology Kk Method and device for treating nitric acid containing water
JP2014046257A (en) * 2012-08-31 2014-03-17 Jfe Steel Corp Biological treatment method of nitrogen-containing waste water

Also Published As

Publication number Publication date
JP4608771B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4224951B2 (en) Denitrification method
EP1542932A1 (en) Method for the treatment of waste water with sludge granules
CN107108293A (en) The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
US4042494A (en) Pressure pipe treatment for sewage
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP2002529231A (en) Wastewater treatment apparatus including up-flow anaerobic reactor and wastewater treatment method using the same
US6261456B1 (en) Waste water treatment method and waste water treatment equipment capable of treating waste water containing fuluorine, nitrogen and organic matter
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4923348B2 (en) Biological denitrification method
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP2003033790A (en) Denitrification device and method therefor
JP2002177986A (en) Biological denitrification equipment
JP2002172399A (en) Denitrification treatment method
JP4581211B2 (en) Biological denitrification equipment
KR20000072808A (en) Waste Water Disposal System And Method
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JP2000093992A (en) Wastewater treatment system
WO2000061503A1 (en) Soil water activated sludge treating system and method therefor
JP2953835B2 (en) Biological nitrification and denitrification equipment
JP2000024687A (en) Treatment of waste nitric acid
KR20020075046A (en) The treating method of high concentration organic waste water
JPH08155482A (en) Aerobic treatment method for organic drainage
JP2011115689A (en) Nitrogen removal apparatus and method
JPH04341397A (en) Methane fermentation treatment apparatus and methane fermentation method
JP4747567B2 (en) Nitrogen-containing wastewater treatment method and treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees