JP2002316182A - Method for treating organic waste liquid - Google Patents

Method for treating organic waste liquid

Info

Publication number
JP2002316182A
JP2002316182A JP2001124696A JP2001124696A JP2002316182A JP 2002316182 A JP2002316182 A JP 2002316182A JP 2001124696 A JP2001124696 A JP 2001124696A JP 2001124696 A JP2001124696 A JP 2001124696A JP 2002316182 A JP2002316182 A JP 2002316182A
Authority
JP
Japan
Prior art keywords
sludge
treatment
amount
biological treatment
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001124696A
Other languages
Japanese (ja)
Inventor
Takaaki Tokutomi
孝明 徳富
Hidenari Yasui
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001124696A priority Critical patent/JP2002316182A/en
Publication of JP2002316182A publication Critical patent/JP2002316182A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method for treating organic wastewater which can treat the wastewater stably with the quality of treatment water and solid-liquid separation properties improved by keeping biological treatment efficiency high even when sludge in an amount larger than the amount of increased sludge is modified to be easily biodegradable and returned and can reduce the amounts of a chemical necessary for the modification, energy, etc., to be consumed by increasing the volume reduction ratio of the sludge. SOLUTION: In the treatment method in which organic waste liquid is subjected to aerobic biological treatment by a biological treatment system 1 including an aerator 2, and the sludge is modified to be easily biodegradable in a modification apparatus 11 and supplied to an aerator 1 to reduce the volume of the sludge, the amount of the sludge to be extracted including the amount of the sludge to be modified and the amount of the sludge to be discharged outside the system is adjusted to be 1/10 or below of the amount of the sludge in the biological treatment system so that the retention time of living bacteria sludge is made to be at least ten days for the treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排液を好気
性生物処理する方法、特に汚泥を易生物分解性に改質処
理して汚泥の減容化を行う処理方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an organic effluent with an aerobic biological treatment, and more particularly to a treatment method for reducing the volume of sludge by modifying the sludge to be easily biodegradable.

【0002】[0002]

【従来の技術】有機性排液を好気性生物処理する方法に
おいて、汚泥を生物処理系から引き抜いてオゾン処理等
により易生物分解性に改質処理し、改質汚泥を生物処理
系に供給して処理を行うことにより、汚泥を減容化する
処理方法が提案されている。(例えば特開平6−206
088号)。この方法は従来余剰汚泥として系外に排出
していた汚泥をBOD化し、負荷として処理系に戻し、
生物に同化させることにより、余剰汚泥として排出する
量を少なくする方法である。上記の方法では生物学的に
安定し、通常の生物処理では減容化に限界のある生物汚
泥をオゾン処理等の改質処理によって、易分解性に改質
処理することにより、生物に同化させることが可能にな
り、これにより生物処理による汚泥の減容化が可能にな
る。
2. Description of the Related Art In a method of aerobic biological treatment of an organic wastewater, sludge is extracted from a biological treatment system, and is subjected to a biodegradable treatment by ozone treatment or the like, and the modified sludge is supplied to the biological treatment system. A treatment method for reducing the volume of sludge by performing the treatment has been proposed. (For example, see JP-A-6-206)
No. 088). In this method, sludge that has been discharged outside the system as surplus sludge is converted to BOD and returned to the treatment system as a load.
This is a method to reduce the amount of sludge discharged as surplus sludge by assimilating it with living organisms. In the above method, biological sludge, which is biologically stable and has a limit in volume reduction in ordinary biological treatment, is easily assimilated into living organisms by reforming treatment such as ozone treatment to easily degrade it. This makes it possible to reduce the volume of sludge by biological treatment.

【0003】しかしながら、このような処理方法では、
余剰汚泥量より多い量の汚泥を改質処理することによ
り、汚泥中の菌体は死滅して返送されることになる。こ
の場合余剰汚泥として排棄される汚泥増殖分は本来処理
に不要なものであるから、改質処理しても問題はない
が、増殖分よりも多い汚泥は本来生物処理に必要な汚泥
であり、これを改質処理すると処理に必要な汚泥量が減
少するため、生物処理効率は低くなる。このように生物
処理に必要な汚泥量が少なくなるにも拘らず、改質汚泥
を負荷として曝気槽に供給するため負荷が増加し、さら
に改質汚泥には難分解性成分が含まれるため、処理効率
が低くなり、処理水質が悪化するという問題点がある。
However, in such a processing method,
By reforming a larger amount of sludge than the surplus sludge, the cells in the sludge are killed and returned. In this case, the sludge multiplication that is discarded as surplus sludge is unnecessary for the original treatment, so there is no problem with the reforming treatment, but the sludge that is larger than the multiplication is the sludge originally required for biological treatment. However, when this is modified, the amount of sludge required for the treatment is reduced, and the biological treatment efficiency is reduced. Although the amount of sludge required for biological treatment is reduced in this way, the load increases because the reformed sludge is supplied to the aeration tank as a load, and the reformed sludge contains a hardly decomposable component. There is a problem that the treatment efficiency is lowered and the quality of the treated water is deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、増殖
汚泥量より多い量の汚泥を易生物分解性に改質して返送
する場合でも生物処理効率を高く維持でき、これにより
処理水質および固液分離性を高くして安定した処理がで
きるとともに、汚泥の減容化率を高くし、改質に必要な
薬剤、エネルギー等の使用量を少なくすることが可能な
有機性排水の処理方法を得ることである。
SUMMARY OF THE INVENTION It is an object of the present invention to maintain a high biological treatment efficiency even when sludge of a quantity larger than the amount of multiplied sludge is returned to be easily biodegradable and returned. An organic wastewater treatment method that can perform stable treatment by increasing solid-liquid separation properties, increase sludge volume reduction rate, and reduce the amount of chemicals and energy required for reforming. It is to get.

【0005】[0005]

【課題を解決するための手段】本発明は次の有機性排水
の処理方法である。 (1) 曝気槽を含む生物処理系で有機性排液を好気性
生物処理し、汚泥を易生物分解性に改質処理して曝気槽
に供給し、汚泥を減容化する有機性排液の処理方法にお
いて、改質処理を行う汚泥量と系外に排出する汚泥量を
含む引抜汚泥量を生物処理系内の汚泥の1/10以下と
することにより、生菌汚泥の滞留時間を10日以上とし
て処理を行うことを特徴とする有機性排液の処理方法。 (2) 曝気槽のMLSSを1,000〜20,000
mg/Lで処理を行う上記(1)記載の方法。 (3) 引抜汚泥量中の改質処理を行う汚泥量を10〜
100%とする上記(1)または(2)記載の方法。
The present invention is the following method for treating organic waste water. (1) Organic wastewater that undergoes aerobic biological treatment of organic effluent in a biological treatment system including an aeration tank and sludge is reformed to be easily biodegradable and supplied to the aeration tank to reduce the volume of sludge. In the treatment method of (1), the amount of sludge to be subjected to the reforming treatment and the amount of the extracted sludge including the amount of the sludge discharged to the outside of the system are set at 1/10 or less of the sludge in the biological treatment system, so that the residence time of the viable bacterial sludge is 10 or less. A method for treating organic effluent, wherein the treatment is performed for at least one day. (2) Increase the MLSS of the aeration tank to 1,000 to 20,000.
The method according to the above (1), wherein the treatment is carried out at mg / L. (3) The amount of sludge to be reformed in the amount of drawn sludge is 10 to
The method according to the above (1) or (2), wherein the method is 100%.

【0006】本発明において処理の対象となる有機性排
液は、生物汚泥を利用する好気性生物処理により分解可
能な成分を含むものであればよく、下水、し尿、産業排
水等の有機物を含む排水のほか、余剰汚泥、消化汚泥等
の汚泥や生ごみ、家畜糞尿等もあげられる。有機性排液
は、有機物のみを含むものでもよく、また有機物のほか
窒素、リン等の無機物を含むものでもよい。
The organic effluent to be treated in the present invention may be any one containing a component that can be decomposed by aerobic biological treatment using biological sludge, and includes organic substances such as sewage, human waste, and industrial wastewater. In addition to wastewater, there are sludge such as surplus sludge and digested sludge, garbage, livestock manure and the like. The organic effluent may contain only organic substances, or may contain inorganic substances such as nitrogen and phosphorus in addition to organic substances.

【0007】本発明における生物処理は、曝気槽を含む
生物処理系において、上記の有機性排液を生物汚泥の存
在下に好気的に処理する好気性生物処理である。有機物
の分解は従属栄養微生物が有機物を同化することにより
分解する反応、アンモニアの場合はアンモニア酸化菌に
よる硝化反応、硝酸の場合は硝酸還元菌による脱窒化反
応などがあげられる。生物処理系に曝気槽のほかに固液
分離槽、その他を設けることができる。
The biological treatment in the present invention is an aerobic biological treatment in which a biological treatment system including an aeration tank is used to aerobically treat the above-mentioned organic effluent in the presence of biological sludge. The decomposition of organic substances includes a reaction in which heterotrophic microorganisms decompose organic substances by assimilation, a nitrification reaction by ammonia oxidizing bacteria in the case of ammonia, and a denitrification reaction by nitrate reducing bacteria in the case of nitric acid. The biological treatment system can be provided with a solid-liquid separation tank and the like in addition to the aeration tank.

【0008】本発明はこのような好気性生物的処理にお
ける生物処理系から生物汚泥の一部を引き抜き、生物処
理系における汚泥を易生物分解性に改質して改質汚泥を
生物処理系の曝気槽に供給する改質処理を行う。生物汚
泥を引き抜く場合、固液分離装置で分離された分離汚泥
の一部を引き抜くのが好ましいが、曝気槽から混合液を
引き抜いてもよい。分離汚泥から引き抜く場合、余剰汚
泥に加えて、返送汚泥として曝気槽に返送される返送汚
泥の一部をさらに引き抜いて改質処理することができ、
これにより系外に排出する余剰汚泥の発生量を少なく
し、場合によってはゼロにすることができる。
According to the present invention, a part of the biological sludge is extracted from the biological treatment system in such aerobic biological treatment, and the sludge in the biological treatment system is modified to be easily biodegradable to convert the modified sludge into the biological treatment system. Perform the reforming process to supply to the aeration tank. When extracting biological sludge, it is preferable to extract a part of the separated sludge separated by the solid-liquid separator, but the mixed solution may be extracted from the aeration tank. When extracting from the separated sludge, in addition to excess sludge, a part of the returned sludge returned to the aeration tank as returned sludge can be further extracted and reformed,
As a result, the amount of excess sludge discharged out of the system can be reduced, and in some cases, can be reduced to zero.

【0009】引抜汚泥を生物が分解し易い性状に改質す
る改質処理方法としては、引抜汚泥に薬剤および/また
はエネルギーを加えて易生物分解性に改質する方法であ
れば任意の方法を採用することができる。例えば、オゾ
ン処理による改質処理、過酸化水素処理による改質処
理、酸処理による改質処理、アルカリ処理による改質処
理、加熱処理による改質処理、高圧パルス放電処理、ボ
ールミル、コロイドミル等のミルによる磨砕処理、これ
らを組合せた改質処理等を採用することができる。これ
らの中ではオゾン処理による改質処理が、処理操作が簡
単かつ処理効率が高いため好ましい。
[0009] As a reforming treatment method for modifying the extracted sludge into a property easily decomposed by living organisms, any method can be used as long as it is a method for modifying the extracted sludge to be easily biodegradable by adding a chemical and / or energy. Can be adopted. For example, reforming treatment by ozone treatment, reforming treatment by hydrogen peroxide treatment, reforming treatment by acid treatment, reforming treatment by alkali treatment, reforming treatment by heat treatment, high pressure pulse discharge treatment, ball mill, colloid mill, etc. A grinding treatment by a mill, a modification treatment combining these, and the like can be employed. Among these, the reforming treatment by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high.

【0010】改質処理としてのオゾン処理は、生物処理
系から引き抜いた汚泥をオゾンと接触させればよく、オ
ゾンの酸化作用により汚泥は易生物分解性に改質され
る。オゾン処理はpH5以下の酸性領域で行うと酸化分
解効率が高くなる。このときのpHの調整は、硫酸、塩
酸または硝酸などの無機酸をpH調整剤として生物汚泥
に添加するか、生物汚泥を酸発酵処理して調整するか、
あるいはこれらを組合せて行うのが好ましい。pH調整
剤を添加する場合、pHは3〜4に調整するのが好まし
く、酸発酵処理を行う場合、pHは4〜5となるように
行うのが好ましい。
In the ozone treatment as the reforming treatment, the sludge extracted from the biological treatment system may be brought into contact with ozone, and the sludge is reformed to be easily biodegradable by the oxidizing action of ozone. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the efficiency of oxidative decomposition increases. At this time, the pH is adjusted by adding an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid to the biological sludge as a pH adjuster, or adjusting the biological sludge by acid fermentation,
Alternatively, it is preferable to carry out the treatment in combination. When a pH adjuster is added, the pH is preferably adjusted to 3 to 4, and when an acid fermentation treatment is performed, the pH is preferably adjusted to 4 to 5.

【0011】オゾン処理は、引抜汚泥または酸発酵処理
液をそのまま、または必要により遠心分離機などで濃縮
した後pH5以下に調整し、オゾンと接触させることに
より行うことができる。接触方法としては、オゾン処理
槽に汚泥を導入してオゾンを吹込む方法、機械攪拌によ
る方法、充填層を利用する方法などが採用できる。オゾ
ンガスとしてはオゾン化酸素、オゾン化空気などのオゾ
ン含有ガスが使用できる。オゾンの使用は被処理汚泥固
形物あたり0.1〜10重量%、好ましくは1.5〜5
重量%とするのが望ましい。オゾン処理により生物汚泥
は酸化分解されて、BOD成分に変換される。
The ozone treatment can be carried out by adjusting the pH of the extracted sludge or acid fermentation treatment solution to pH 5 or less as it is or by concentrating it with a centrifugal separator or the like, if necessary, and bringing it into contact with ozone. As a contact method, a method of introducing sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, and the like can be adopted. As the ozone gas, an ozone-containing gas such as ozonized oxygen and ozonized air can be used. Ozone is used in an amount of 0.1 to 10% by weight, preferably 1.5 to 5% by weight, based on the sludge solid to be treated.
It is desirable that the content be% by weight. The biological sludge is oxidatively decomposed and converted into a BOD component by the ozone treatment.

【0012】改質処理としての過酸化水素処理は生物処
理系から引き抜いた引抜汚泥を改質槽に導き、過酸化水
素を混合する。過酸化水素の使用量は0.001〜0.
2g−H22/g−SSとする。このとき引抜汚泥に塩
酸などの酸を添加してpH3〜5とすることが好まし
く、この場合、過酸化水素の使用量は0.001〜0.
07g−H22/g−SSとするのが好ましい。反応を
促進するために、加温したり第1鉄イオンなどの触媒を
添加してもよい。
In the hydrogen peroxide treatment as the reforming treatment, the extracted sludge extracted from the biological treatment system is led to a reforming tank and mixed with the hydrogen peroxide. The amount of hydrogen peroxide used is 0.001-0.
And 2g-H 2 O 2 / g -SS. At this time, it is preferable to add an acid such as hydrochloric acid to the extracted sludge to adjust the pH to 3 to 5. In this case, the amount of hydrogen peroxide used is 0.001 to 0.
Preferably between 07g-H 2 O 2 / g -SS. To promote the reaction, heating or addition of a catalyst such as ferrous ion may be performed.

【0013】改質方法としての酸処理では、生物処理系
から引き抜いた引抜汚泥を改質槽に導き、塩酸、硫酸な
どの鉱酸を加え、pH2.5以下、好ましくはpH1〜
2の酸性条件下で所定時間滞留させればよい。滞留時間
としては、例えば5〜24時間とする。この際、汚泥を
加熱、例えば50〜100℃に加熱すると改質が促進さ
れるので好ましい。このような酸による処理により汚泥
は易生物分解性となり、生物反応槽に戻すことにより容
易に分解除去できるようになる。
In the acid treatment as a reforming method, the extracted sludge extracted from the biological treatment system is led to a reforming tank, and a mineral acid such as hydrochloric acid or sulfuric acid is added thereto.
What is necessary is just to keep for a predetermined time under acidic conditions of 2. The residence time is, for example, 5 to 24 hours. At this time, it is preferable to heat the sludge, for example, to 50 to 100 ° C., since the reforming is promoted. The sludge becomes easily biodegradable by the treatment with the acid, and can be easily decomposed and removed by returning the sludge to the biological reaction tank.

【0014】また、汚泥の改質方法としてのアルカリ処
理では、生物処理系から引き抜いた引抜汚泥を改質槽に
導き、水酸化ナトリウム、水酸化カリウム等のアルカリ
を汚泥に対して0.1〜1重量%加え、所定時間滞留さ
せればよい。滞留時間は0.5〜2時間程度で汚泥は易
生物分解性に改質される。この際、汚泥を加熱し、例え
ば5〜100℃に加熱すると改質が促進されるので好ま
しい。
In the alkali treatment as a sludge reforming method, the extracted sludge extracted from the biological treatment system is led to a reforming tank, and alkali such as sodium hydroxide and potassium hydroxide is added to the sludge by 0.1 to 0.1%. What is necessary is just to add 1% by weight and to stay for a predetermined time. The residence time is about 0.5 to 2 hours, and the sludge is reformed to be easily biodegradable. At this time, it is preferable to heat the sludge, for example, to 5 to 100 ° C. because the reforming is promoted.

【0015】改質方法としての加熱処理は、加熱処理単
独で行うこともできるが、酸処理またはアルカリ処理と
組合せて行うのが好ましい。加熱処理単独で行う場合
は、例えば温度70〜100℃、滞留時間2〜3時間と
することができる。
The heat treatment as a reforming method can be performed alone, but is preferably performed in combination with an acid treatment or an alkali treatment. When heat treatment is performed alone, for example, the temperature may be 70 to 100 ° C. and the residence time may be 2 to 3 hours.

【0016】高電圧のパルス放電処理は、電極間隔3〜
10mm、好ましくは4〜8mmのタングステン/トリ
ウム合金等の+極と、ステンレス鋼等の−極間に汚泥を
存在させ、印加電気10〜50kV、好ましくは20〜
40kV、パルス間隔20〜80Hz、好ましくは40
〜60Hzでパルス放電を行い、汚泥は順次循環させな
がら処理を行うことができる。
The high-voltage pulse discharge process is performed with an electrode interval of 3 to
Sludge is present between a positive electrode of 10 mm, preferably 4 to 8 mm such as a tungsten / thorium alloy, and a negative electrode of stainless steel or the like, and the applied electricity is 10 to 50 kV, preferably 20 to 50 kV.
40 kV, pulse interval 20-80 Hz, preferably 40
Pulse discharge is performed at 〜60 Hz, and the treatment can be performed while the sludge is circulated sequentially.

【0017】このようにして易生物分解性に改質した改
質汚泥は、生物処理系の曝気槽に導入して好気性生物処
理を行い、微生物に同化させて分解する。前述のように
汚泥を改質処理して曝気槽に返送すると、処理に必要な
汚泥量が減少すること、負荷が増加すること、改質汚泥
が難分解性であることなどの理由により、処理水が悪化
するので、本発明では改質を行う汚泥量および系外に排
出する汚泥量を含む引抜汚泥量を生物処理系内の汚泥の
1/10以下、好ましくは1/10〜1/30とするこ
とにより、生菌汚泥の滞留時間(以下、LSRTとい
う。)を10日以上、好ましくは10〜30日間として
処理を行う。このようにLSRTを長くすることによ
り、生物処理系内に保持される汚泥量が多くなり、これ
により処理効率が高くなって、処理水質が高くなるとと
もに、汚泥減容化率も高くなる。なお、生菌汚泥の滞留
時間は、生物処理系内の汚泥量に対する、改質を行う汚
泥量および系外に排出する汚泥量を含む引抜汚泥量の割
合で定まるが、曝気槽容量が沈澱槽容量に比べて比較的
大きい場合には、沈澱槽内の保有汚泥および配管中の汚
泥を無視して便宜的に生物処理系内の汚泥量を曝気槽内
の保有汚泥量とすることができる。
The sludge thus modified to be easily biodegradable is introduced into an aeration tank of a biological treatment system, subjected to aerobic biological treatment, and assimilated by microorganisms to be decomposed. When the sludge is reformed and returned to the aeration tank as described above, the sludge volume required for the treatment decreases, the load increases, and the reformed sludge is hardly degradable. Since the water deteriorates, in the present invention, the amount of the extracted sludge including the amount of the sludge to be reformed and the amount of the sludge discharged outside the system is 1/10 or less of the sludge in the biological treatment system, preferably 1/10 to 1/30. The treatment is performed with the residence time (hereinafter, referred to as LSRT) of the viable sludge being 10 days or more, preferably 10 to 30 days. By increasing the LSRT in this way, the amount of sludge retained in the biological treatment system increases, thereby increasing the treatment efficiency, increasing the quality of treated water, and increasing the sludge volume reduction rate. The residence time of viable sludge is determined by the ratio of the amount of sludge to be reformed and the amount of withdrawn sludge including the amount of sludge discharged outside the system to the amount of sludge in the biological treatment system. If the capacity is relatively large compared to the capacity, the amount of sludge in the biological treatment system can be conveniently set as the amount of sludge in the aeration tank, ignoring the sludge held in the settling tank and the sludge in the piping.

【0018】一般に好気性生物処理では汚泥の滞留時間
(SRT)は5〜7日間程度とされている。SRTが長
くなると汚泥濃度が高くなって処理水質は向上するとと
もに、汚泥の自己消化率も高くなって余剰汚泥発生量も
減少することは知られている。しかし汚泥濃度が高くな
ることにより、固液分離性は悪くなり、通常の沈殿分離
では分離できなくなるため、通常の負荷範囲の好気性処
理ではSRTを10日以上にすることは行われていな
い。オゾン処理等の改質処理を行う場合も同様の考え方
からSRTは、5〜7日間程度とされている。
In general, in aerobic biological treatment, the sludge retention time (SRT) is about 5 to 7 days. It is known that the longer the SRT, the higher the sludge concentration and the quality of the treated water, as well as the higher the self-digestion rate of the sludge and the lower the amount of excess sludge generated. However, as the sludge concentration increases, the solid-liquid separation property deteriorates, and separation cannot be performed by ordinary sedimentation. Therefore, the SRT is not set to 10 days or more in aerobic treatment in a normal load range. In the case of performing a reforming treatment such as an ozone treatment, the SRT is set to about 5 to 7 days from the same concept.

【0019】ところがオゾン処理等の改質処理を行う
と、LSRTを長くする場合の汚泥濃度が増加する割合
は、改質処理を行わない通常の処理の場合に比べて小さ
くなり、LSRTを10日以上、好ましくは10〜30
日間にしても、通常の固液分離手段で十分分離できるこ
とがわかった。これは通常の処理では汚泥に含まれる難
生物分解性成分が蓄積するため汚泥濃度の増加割合が大
きいのに対し、改質処理を行う場合は難生物分離性成分
が易生物分解性成分に改質されて同化されるため汚泥濃
度の増加割合が小さくなるためであると推測される。こ
のため引抜汚泥量を全汚泥量の1/10以下として、L
SRTを10日以上、好ましくは10〜30日間として
も汚泥濃度の上昇は引抜のみの場合よりも少なく、通常
の装置による生物処理が可能である。
However, when a reforming treatment such as an ozone treatment is performed, the rate of increase in the sludge concentration when the LSRT is lengthened is smaller than in the case of a normal treatment without the reforming treatment, and the LSRT is reduced by 10 days. Above, preferably 10 to 30
Even for days, it was found that the separation can be sufficiently performed by ordinary solid-liquid separation means. This is because, in ordinary treatment, the rate of increase in the sludge concentration is large due to accumulation of the hardly biodegradable components contained in the sludge, whereas when the reforming treatment is performed, the hardly bioseparable components are converted to easily biodegradable components. This is presumed to be due to the fact that the rate of increase in the sludge concentration is reduced due to the assimilation and assimilation. Therefore, the amount of extracted sludge is set to 1/10 or less of the total amount of sludge, and L
Even when the SRT is set to 10 days or more, preferably 10 to 30 days, the increase in the sludge concentration is smaller than that in the case of only pulling out, and biological treatment can be performed by a usual apparatus.

【0020】またLSRTを長くすることは処理系から
引き抜く汚泥量を少なくすることであり、このため改質
処理を行う汚泥量は少なくなる。これにより負荷として
曝気槽に返送される改質汚泥の量は少なくなり、負荷が
小さくなる。さらにLSRTが長くなることにより汚泥
の自己消化率も高くなるから、増殖汚泥量も小さくなり
改質汚泥として負荷も小さくなる。一方処理等の汚泥濃
度は高くなるから処理効率は高くなり、処理水質は良く
なる。
Further, increasing the LSRT means reducing the amount of sludge withdrawn from the treatment system, and thus reducing the amount of sludge to be reformed. As a result, the amount of the reformed sludge returned to the aeration tank as a load decreases, and the load decreases. Further, the longer the LSRT, the higher the self-digestion rate of the sludge. Therefore, the amount of the proliferating sludge is reduced, and the load as the modified sludge is also reduced. On the other hand, the sludge concentration in the treatment and the like increases, so that the treatment efficiency increases and the treated water quality improves.

【0021】さらにLSRTを長くすることにより、自
己消化が多くなるため見かけの汚泥増殖量が減少し、改
質処理すべき汚泥量が減少する。この少なくなった増殖
汚泥を改質して曝気槽に返送すると負荷が小さくなるこ
とにより、改質汚泥に起因する増殖汚泥量も少なくな
る。このためLSRTが短い場合に比べて汚泥の減容化
率は高くなる。また改質処理を行う汚泥量も少なくなる
ので、改質に必要なオゾン等の薬剤またはエネルギーは
少なくてよくなる。
Further, by making the LSRT longer, the amount of sludge to be reformed is reduced due to an increase in self-digestion, and the amount of sludge to be reformed is reduced. When the reduced sludge is reformed and returned to the aeration tank, the load is reduced, and the amount of the sludge caused by the reformed sludge is also reduced. Therefore, the sludge volume reduction rate is higher than when the LSRT is short. In addition, since the amount of sludge to be subjected to the reforming treatment is reduced, the amount of chemicals such as ozone or energy required for the reforming can be reduced.

【0022】上記の生物処理系において曝気槽は従来の
ものと同様の装置を用いることができる。曝気槽内汚泥
濃度MLSSは被処理水の性状等により異なるが、一般
的には、1,000〜20,000mg/l、好ましく
は4,000〜6,000mg/l程度とすることがで
きる。曝気槽のほかに固液分離槽のような固液分離手段
を設けることができる。固液分離槽は汚泥濃度が高くな
る分、大容量のものが必要になるが、通常の沈殿分離に
よる汚泥の分離が可能である。固液分離槽において、あ
るいは固液分離槽の代りに膜分離装置を設けて処理水を
分離することも可能である。
In the above biological treatment system, the same device as the conventional one can be used for the aeration tank. The sludge concentration MLSS in the aeration tank varies depending on the properties of the water to be treated and the like, but can be generally 1,000 to 20,000 mg / l, preferably about 4,000 to 6,000 mg / l. Solid-liquid separation means such as a solid-liquid separation tank can be provided in addition to the aeration tank. The solid-liquid separation tank requires a large capacity as the sludge concentration increases, but sludge can be separated by ordinary sedimentation. In the solid-liquid separation tank, or in place of the solid-liquid separation tank, a membrane separation device may be provided to separate the treated water.

【0023】本発明では生物処理系からの引抜汚泥を全
量改質処理してもよいが、一部を改質処理し、一部を余
剰汚泥として系外に排出してもよい。一部を改質処理す
る場合でも、汚泥の減容化が可能になる。引抜汚泥全体
に対する改質処理する汚泥の一般的には10〜100
%、好ましくは50〜95%とすることができる。
In the present invention, the whole amount of the sludge extracted from the biological treatment system may be reformed. Alternatively, a part of the sludge may be reformed and a part of the sludge may be discharged out of the system as surplus sludge. Even when a part is reformed, the volume of sludge can be reduced. Generally, sludge to be reformed for the entire drawn sludge is 10 to 100.
%, Preferably 50 to 95%.

【0024】[0024]

【発明の効果】本発明によれば、LSRTを10日以上
として引抜汚泥を改質して曝気槽に返送することによ
り、増殖汚泥量より多い量の汚泥を易生物分解性に改質
して返送する場合でも生物処理効率を高く維持でき、こ
れにより処理水質および固液分離性を高くして安定した
処理ができるとともに、汚泥の減容化率を高くし、改質
に必要な薬剤、エネルギー等の使用量を少なくすること
が可能である。
According to the present invention, the sludge having a larger amount than the propagation sludge is reformed to be easily biodegradable by reforming the extracted sludge and returning the sludge to the aeration tank with the LSRT being 10 days or more. Even when returned, the biological treatment efficiency can be maintained at a high level, thereby improving the quality of treated water and solid-liquid separation for stable treatment, increasing the sludge volume reduction rate, and improving the chemicals and energy required for reforming. Etc. can be reduced.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態と図面
により説明する。図1は実施形態の有機性排液の処理方
法を示すフロー図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing a method for treating an organic waste liquid according to the embodiment.

【0026】図1において、1は生物処理系であって、
曝気槽2および固液分離槽3を含んでいる。生物処理系
1では被処理液路4から被処理液を導入し、返送汚泥路
5から返送汚泥を導入して混合し、散気装置6から空気
を供給し、曝気して好気性生物処理を行い、曝気液を移
送路7から固液分離槽3に導入して固液分離し、分離液
を処理液として処理液路8から排出し、分離汚泥は汚泥
取出路9から取り出し、一部を返送汚泥路5を通して曝
気槽2に返送する。
In FIG. 1, 1 is a biological treatment system,
An aeration tank 2 and a solid-liquid separation tank 3 are included. In the biological treatment system 1, the liquid to be treated is introduced from the liquid passage 4 to be treated, the returned sludge is introduced and mixed from the returned sludge passage 5, air is supplied from the diffuser 6, and aeration is performed to perform aerobic biological treatment. Then, the aeration liquid is introduced into the solid-liquid separation tank 3 from the transfer path 7 to perform solid-liquid separation, the separated liquid is discharged from the processing liquid path 8 as a processing liquid, and the separated sludge is taken out from the sludge take-out path 9 and a part thereof is removed. The water is returned to the aeration tank 2 through the return sludge passage 5.

【0027】11は改質装置であって、引抜汚泥路12
から引抜いた引抜汚泥の少なくとも一部を被改質汚泥路
13から導入して、オゾン処理等の改質処理により易生
物分解性に改質し、改質汚泥を改質汚泥路14から曝気
槽2に供給するように構成されている。引抜汚泥は全量
を改質処理してもよいが、一部を余剰汚泥路15から系
外に排出することもできる。改質処理を行っても易生物
分解性と改質できない無機汚泥等の難分解性の汚泥が蓄
積するのを防止するため、一部を排出するのが好まし
い。
Reference numeral 11 denotes a reformer, which is a drawn sludge passage 12
At least a part of the extracted sludge from the sludge is introduced from the reformed sludge passage 13 and is reformed to be easily biodegradable by a reforming treatment such as ozone treatment. 2 is provided. The entire amount of the drawn sludge may be subjected to the reforming treatment, but a part of the drawn sludge may be discharged from the surplus sludge passage 15 outside the system. In order to prevent the accumulation of hardly degradable sludge such as inorganic sludge which cannot be reformed because it is easily biodegradable even when the reforming treatment is performed, it is preferable to partially discharge the sludge.

【0028】上記の処理方法において、生物処理系1か
ら引抜汚泥路12を通して引抜く引抜汚泥の量を、生物
処理系1に保持される全汚泥量の1/10以下とするこ
とにより、生物処理系1のLSRTを10日以上とす
る。そして引抜汚泥の少なくとも一部であって、生物処
理系1の非改質汚泥を改質装置11で曝気槽1に供給
し、生物汚泥に同化させる。
In the above treatment method, the amount of the extracted sludge to be withdrawn from the biological treatment system 1 through the extraction sludge passage 12 is set to be 1/10 or less of the total amount of sludge retained in the biological treatment system 1 so that the biological treatment can be carried out. The LSRT of system 1 is 10 days or more. Then, the non-reformed sludge of the biological treatment system 1, which is at least a part of the extracted sludge, is supplied to the aeration tank 1 by the reformer 11, and assimilated into the biological sludge.

【0029】LSRTを10日以上とすることにより、
従来のLSRT5〜7日の場合よりも大量の汚泥が生物
処理系に保持されることになり、これにより処理が効率
化し、処理水質が高水質で安定するとともに、汚泥の自
己消化および易生物分解性に改質された改質汚泥の生物
分解等により増殖汚泥量も大幅に少なくなる。このため
生物処理系1における汚泥濃度が高くなっても固液分離
槽3における固液分離は容易であり、処理水への汚泥の
流出は少なくなる。また改質処理する汚泥量も少なくな
り、使用オゾン量等の改質のための薬剤、エネルギー等
も少なくなる。
By setting the LSRT to 10 days or more,
A larger amount of sludge will be retained in the biological treatment system than in the case of the conventional LSRT for 5 to 7 days, thereby improving the efficiency of treatment, stabilizing the treated water quality with high water quality, and self-digestion and easy biodegradation of sludge. The biodegradation of the modified sludge that has been modified to a low level greatly reduces the amount of multiplication sludge. Therefore, even if the sludge concentration in the biological treatment system 1 becomes high, the solid-liquid separation in the solid-liquid separation tank 3 is easy, and the outflow of sludge into the treated water is reduced. In addition, the amount of sludge to be reformed is reduced, and the amount of chemicals, energy, and the like for reforming the amount of ozone used is also reduced.

【0030】上記処理方法において、曝気槽2としては
標準的な曝気槽でも、変形された曝気槽でもよい。また
固液分離槽3に、またはその代りに膜分離装置等の他の
固液分離手段を設けてもよい。また改質装置11として
はオゾン処理装置の他に、加熱装置等の他の改質装置を
用いることもできる。
In the above processing method, the aeration tank 2 may be a standard aeration tank or a modified aeration tank. Further, other solid-liquid separation means such as a membrane separation device may be provided in the solid-liquid separation tank 3 or instead. As the reforming device 11, other reforming devices such as a heating device can be used in addition to the ozone treatment device.

【0031】[0031]

【実施例】以下、本発明の実施例について説明する。各
例中、%は重量%である。
Embodiments of the present invention will be described below. In each case,% is% by weight.

【0032】比較例1〜4、実施例1〜2 図1の方法において、改質処理を行わずに単なる引き抜
きを行って運転した系(比較例1〜3)と、改質装置と
してオゾン処理装置を用い、引抜汚泥を全量改質処理し
て生物処理を行った系(比較例4、実施例1、2)につ
いて運転を行った。被処理液として、ペプトンと酵母エ
キスを主成分とする合成排水を使用し、COD濃度を約
340mg/Lに調整した。2Lの曝気槽に対してこの
排水を槽負荷1.0kg/m3/dで通水した。引き抜
きを行った系では所定のSRT(比較例1:5日、比較
例2:10日、比較例3:10日)になるように連続的
に汚泥を引き抜き、改質処理を行った系では所定のLS
RT(比較例4:5日、実施例1:10日、実施例2:
30日)の汚泥を連続的に引き抜き、オゾン反応前にp
Hを3まで低下させ、汚泥中の固形物に対して1.5〜
2.0重量%のオゾンと反応させ、連続的に曝気槽に返
送した。なお、汚泥の系外への引き抜きは全く行わなか
った。pHの下がったオゾン処理後の汚泥はそのまま曝
気槽に戻したが、曝気槽にはアルカリを用いたpH調整
装置があり、ここで曝気槽内のpHは約7.0に保たれ
ていた。比較例1〜3の結果を表1に、比較例4および
実施例1〜2の結果を表2〜4及び図2に示した。
Comparative Examples 1-4, Examples 1-2 In the method shown in FIG. 1, a system was operated by simply pulling out without performing the reforming treatment (Comparative Examples 1-3), and an ozone treatment was performed as a reforming apparatus. Using the apparatus, the system was operated for a system (Comparative Example 4, Examples 1 and 2) in which the entire amount of the extracted sludge was subjected to a biological treatment by a reforming treatment. As a liquid to be treated, synthetic wastewater containing peptone and yeast extract as main components was used, and the COD concentration was adjusted to about 340 mg / L. This wastewater was passed through a 2 L aeration tank at a tank load of 1.0 kg / m 3 / d. In the system where the extraction was performed, the sludge was continuously extracted so as to have a predetermined SRT (Comparative Example 1: 5 days, Comparative Example 2: 10 days, Comparative Example 3: 10 days), and in the system where the reforming treatment was performed, Predetermined LS
RT (Comparative Example 4: 5 days, Example 1: 10 days, Example 2:
30 days) continuously withdraw sludge, p before the ozone reaction
H to 3 and 1.5 to
It was reacted with 2.0% by weight of ozone and continuously returned to the aeration tank. The sludge was not pulled out of the system at all. The pH-reduced sludge after the ozone treatment was returned to the aeration tank as it was, but the aeration tank had a pH controller using an alkali, and the pH in the aeration tank was maintained at about 7.0. The results of Comparative Examples 1 to 3 are shown in Table 1, and the results of Comparative Example 4 and Examples 1 and 2 are shown in Tables 2 to 4 and FIG.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】表1および表2より実施例1,2の改質系
では汚泥処理も曝気槽内で行っているため、汚泥濃度は
比較例1〜3の引抜運転に比べて高くなるが、SRTま
たはLSRTを変化させた場合に増加する汚泥濃度には
差が見られた。また、曝気槽内の汚泥濃度は高くなるた
め、図2のように処理水の水質(溶解性COD)を向上
させることが可能であった。さらに、表3のように、処
理水SS濃度は余り変動しなかった。
Tables 1 and 2 show that in the reforming systems of Examples 1 and 2, sludge treatment is also carried out in the aeration tank, so that the sludge concentration is higher than in the pull-out operation of Comparative Examples 1 to 3. Alternatively, there was a difference in the sludge concentration that increased when the LSRT was changed. Further, since the sludge concentration in the aeration tank increases, the quality of the treated water (soluble COD) can be improved as shown in FIG. Further, as shown in Table 3, the SS concentration of the treated water did not fluctuate much.

【0036】[0036]

【表3】 さらに、改質処理を行う汚泥量も少なくなるので、表4
に示すように改質に必要なオゾンは少なくて良くなっ
た。
[Table 3] In addition, the amount of sludge to be reformed is also reduced.
As shown in the figure, the amount of ozone required for reforming was small and good.

【0037】[0037]

【表4】 [Table 4]

【0038】以上の結果より、LSRTを大きくすると
処理水質が向上し、汚泥の減量に必要なオゾン量も大幅
に削減できることがわかる。さらに、処理水水質の結果
より、LSRTが少なくとも10日以上であれば余剰汚
泥を大幅に減少させながら処理水水質の悪化を最低限に
抑えられることがわかる。
From the above results, it can be seen that when the LSRT is increased, the quality of the treated water is improved, and the amount of ozone required for reducing the amount of sludge can be significantly reduced. Further, the results of the treated water quality show that if the LSRT is at least 10 days or more, the deterioration of the treated water quality can be minimized while the excess sludge is significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の有機性排液の処理方法を示すフロー
図である。
FIG. 1 is a flowchart showing a method for treating an organic wastewater according to an embodiment.

【図2】実施例および比較例における処理水の水質を示
すグラフである。
FIG. 2 is a graph showing the quality of treated water in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 生物処理系 2 曝気槽 3 固液分離槽 4 被処理液路 5 返送汚泥路 6 散気装置 7 移送路 8 処理液路 9 汚泥取出路 11 改質装置 12 引抜汚泥路 13 被改質汚泥路 14 改質汚泥路 15 余剰汚泥路 Reference Signs List 1 biological treatment system 2 aeration tank 3 solid-liquid separation tank 4 liquid path to be treated 5 return sludge path 6 diffuser 7 transfer path 8 treatment liquid path 9 sludge take-out path 11 reformer 12 pull-out sludge path 13 reformed sludge path 14 Reformed sludge path 15 Excess sludge path

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D028 BD00 BD11 CA05 CA12 CB02 CB03 CD02 4D059 AA01 AA05 AA07 AA23 BC02 BF02 BF12 BF14 BK11 BK12 CA28 DA01 DA32 DA33 DA43 DA44 EB02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D028 BD00 BD11 CA05 CA12 CB02 CB03 CD02 4D059 AA01 AA05 AA07 AA23 BC02 BF02 BF12 BF14 BK11 BK12 CA28 DA01 DA32 DA33 DA43 DA44 EB02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 曝気槽を含む生物処理系で有機性排液を
好気性生物処理し、汚泥を易生物分解性に改質処理して
曝気槽に供給し、汚泥を減容化する有機性排液の処理方
法において、改質処理を行う汚泥量と系外に排出する汚
泥量を含む引抜汚泥量を生物処理系内の汚泥の1/10
以下とすることにより、生菌汚泥の滞留時間を10日以
上として処理を行うことを特徴とする有機性排液の処理
方法。
1. An organic wastewater treatment system comprising an aerobic biological treatment of an organic effluent in a biological treatment system including an aeration tank, a sludge reforming treatment for easy biodegradability, and a supply of the sludge to the aeration tank to reduce the sludge volume. In the wastewater treatment method, the amount of the extracted sludge including the amount of the sludge to be reformed and the amount of the sludge discharged outside the system is reduced to 1/10 of the amount of the sludge in the biological treatment system.
A method for treating organic effluent, wherein the treatment is performed with the residence time of viable sludge being 10 days or more by the following.
【請求項2】 曝気槽のMLSSを1,000〜20,
000mg/Lで処理を行う請求項1記載の方法。
2. The aeration tank has an MLSS of 1,000 to 20,
The method according to claim 1, wherein the treatment is performed at 000 mg / L.
【請求項3】 引抜汚泥量中の改質処理を行う汚泥量を
10〜100%とする請求項1または2記載の方法。
3. The method according to claim 1, wherein the amount of sludge to be subjected to the reforming treatment in the amount of the extracted sludge is 10 to 100%.
JP2001124696A 2001-04-23 2001-04-23 Method for treating organic waste liquid Pending JP2002316182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001124696A JP2002316182A (en) 2001-04-23 2001-04-23 Method for treating organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124696A JP2002316182A (en) 2001-04-23 2001-04-23 Method for treating organic waste liquid

Publications (1)

Publication Number Publication Date
JP2002316182A true JP2002316182A (en) 2002-10-29

Family

ID=18974040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124696A Pending JP2002316182A (en) 2001-04-23 2001-04-23 Method for treating organic waste liquid

Country Status (1)

Country Link
JP (1) JP2002316182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086848A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Apparatus and method for treating organic liquid waste

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206088A (en) * 1993-01-11 1994-07-26 Kurita Water Ind Ltd Aerobic treatment of organic waste liquid
JPH08276197A (en) * 1995-04-05 1996-10-22 Kurita Water Ind Ltd Treatment of organic waste fluid
JPH09117800A (en) * 1995-10-25 1997-05-06 Kurita Water Ind Ltd Biological treatment of organic waste water
JPH09239391A (en) * 1996-03-05 1997-09-16 Ebara Corp Treatment of organic sewage water
JPH09253684A (en) * 1996-03-25 1997-09-30 Ebara Corp Treatment method for organic waste water
WO1998003437A1 (en) * 1996-07-19 1998-01-29 Kurita Water Industries Ltd. Method and apparatus for biological treatment of waste organic liquid
JPH1110185A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Aerobic treatment method of organic waste liquid
JPH11333494A (en) * 1998-05-28 1999-12-07 Kurita Water Ind Ltd Method and apparatus for biological dentrification of waste water
JP2000354887A (en) * 1999-06-14 2000-12-26 Unitika Ltd Treatment method of organic wastewater
JP2001087789A (en) * 1999-09-22 2001-04-03 Ebara Corp Method and apparatus for treating organic waste water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206088A (en) * 1993-01-11 1994-07-26 Kurita Water Ind Ltd Aerobic treatment of organic waste liquid
JPH08276197A (en) * 1995-04-05 1996-10-22 Kurita Water Ind Ltd Treatment of organic waste fluid
JPH09117800A (en) * 1995-10-25 1997-05-06 Kurita Water Ind Ltd Biological treatment of organic waste water
JPH09239391A (en) * 1996-03-05 1997-09-16 Ebara Corp Treatment of organic sewage water
JPH09253684A (en) * 1996-03-25 1997-09-30 Ebara Corp Treatment method for organic waste water
WO1998003437A1 (en) * 1996-07-19 1998-01-29 Kurita Water Industries Ltd. Method and apparatus for biological treatment of waste organic liquid
JPH1110185A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Aerobic treatment method of organic waste liquid
JPH11333494A (en) * 1998-05-28 1999-12-07 Kurita Water Ind Ltd Method and apparatus for biological dentrification of waste water
JP2000354887A (en) * 1999-06-14 2000-12-26 Unitika Ltd Treatment method of organic wastewater
JP2001087789A (en) * 1999-09-22 2001-04-03 Ebara Corp Method and apparatus for treating organic waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086848A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Apparatus and method for treating organic liquid waste

Similar Documents

Publication Publication Date Title
Cui et al. Nitrogen control in AO process with recirculation of solubilized excess sludge
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
JP2007105631A (en) Method and device for treating organic waste water
JP2000233198A (en) Treatment of organic waste water
JP2007105630A (en) Method for treating organic waste water
JP2006305488A (en) Method of treating organic sludge
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP3591086B2 (en) Biological treatment of organic wastewater
JP4631162B2 (en) Organic waste treatment methods
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
JP3959843B2 (en) Biological treatment method for organic drainage
JP3493769B2 (en) Aerobic treatment of organic wastewater
JP2002361292A (en) Anaerobic digesting apparatus
JP2002316182A (en) Method for treating organic waste liquid
JP2002136989A (en) Method and apparatus for treating organic waste liquid
JP2001269697A (en) Nitrogen-containing drainage treating method
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JP2003010877A (en) Activated sludge treatment method for sewage and its apparatus
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP4882181B2 (en) Denitrification method and apparatus
JP4617572B2 (en) Nitrogen-containing wastewater treatment method
JPH0788495A (en) Method for aerobic treatment of organic drainage
JP2001058197A (en) Treatment of wastewater
JP2001259679A (en) Biological treating method
JP3493783B2 (en) Aerobic treatment of organic wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018