JP2008086848A - Apparatus and method for treating organic liquid waste - Google Patents

Apparatus and method for treating organic liquid waste Download PDF

Info

Publication number
JP2008086848A
JP2008086848A JP2006267393A JP2006267393A JP2008086848A JP 2008086848 A JP2008086848 A JP 2008086848A JP 2006267393 A JP2006267393 A JP 2006267393A JP 2006267393 A JP2006267393 A JP 2006267393A JP 2008086848 A JP2008086848 A JP 2008086848A
Authority
JP
Japan
Prior art keywords
sludge
biological treatment
treatment
polymer flocculant
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267393A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
和夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006267393A priority Critical patent/JP2008086848A/en
Publication of JP2008086848A publication Critical patent/JP2008086848A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for treating organic liquid waste by which the deterioration of the degree of see-through of the treated water is prevented by a simple constitution while solving the problem that the degree of see-through of the treated water is deteriorated since a minute turbid medium to be produced at a modification step leaks in the treated water in a method and an apparatus for treating organic waste water, in each of which the sludge withdrawn from a biological treatment tank is modified by ozone or the like and the modified sludge is returned to a biological treatment step to volume-reduce the returned sludge. <P>SOLUTION: In the apparatus and the method for treating organic liquid waste, the sludge withdrawn from the biological treatment tank is modified by ozone or the like and the modified sludge is returned to the biological treatment step to volume-reduce the returned sludge, are characterized in that a polymer flocculant is added to a liquid mixture from the biological treatment tank and the flocculant-added liquid mixture is subjected to solid-liquid separation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機性排液を微生物で生物処理する処理装置および処理方法、特に生物処理で発生する汚泥を易生物分解性に改質処理して処理を行うようにした有機性排液の処理方法および処理装置に関する。   The present invention relates to a treatment apparatus and treatment method for biologically treating organic wastewater with microorganisms, and in particular, treatment of organic wastewater in which sludge generated by biological treatment is modified to be readily biodegradable for treatment. The present invention relates to a method and a processing apparatus.

活性汚泥処理法などのように、微生物を利用して有機性排液を生物学的に処理する方法は、他の処理方法に比べ処理コストが安く、処理性能が優れているが、難脱水性の多量の余剰汚泥が生成する。このような処理方法において、汚泥の減容化のために、生物処理工程から引き抜いた汚泥をオゾン等の酸化剤、酸・アルカリ、ミルなどの物理的手段或いは高熱細菌などで処理することで、汚泥を易生物分解性に改質した後、改質汚泥を生物処理工程に返送して生物処理する有機性排液の処理方法が提案されている(例えば特許文献1など)。   Biological treatment of organic effluent using microorganisms, such as activated sludge treatment, is cheaper than other treatment methods and has superior treatment performance, but it is difficult to dehydrate. A large amount of excess sludge is generated. In such a treatment method, in order to reduce the volume of sludge, the sludge extracted from the biological treatment process is treated with an oxidizing agent such as ozone, a physical means such as an acid / alkali, a mill, or a high heat bacterium. An organic drainage treatment method has been proposed in which sludge is modified to be readily biodegradable and then the modified sludge is returned to the biological treatment process for biological treatment (for example, Patent Document 1).

このような処理法では、汚泥の発生量を低減することでき、改質汚泥の量を調整することで系外へ排出する汚泥の量をほとんどゼロにすることが可能となる。しかし、生物処理的に安定化した汚泥を易生物分解性に改質して生物処理工程に返送することに伴い、汚泥に取り込まれていた溶解性CODが可溶化し、生物処理工程に流入する溶解性CODが増加する。このため、生物処理が不十分な場合には、処理水中に溶解性CODが流出する場合があり、処理水中のCOD成分の流出を防止するために生物処理槽に鉄やアルミニウムなどの水酸化物を存在させる方法が提案されている(特許文献2)。
特開平6−206088号公報 特開2004−25093号公報
In such a treatment method, the amount of sludge generated can be reduced, and the amount of sludge discharged outside the system can be made almost zero by adjusting the amount of reformed sludge. However, as the sludge stabilized in biological treatment is modified to be readily biodegradable and returned to the biological treatment process, the soluble COD incorporated in the sludge is solubilized and flows into the biological treatment process. Solubility COD increases. For this reason, when biological treatment is insufficient, soluble COD may flow out into the treated water, and hydroxides such as iron and aluminum are added to the biological treatment tank in order to prevent outflow of COD components in the treated water. Has been proposed (Patent Document 2).
Japanese Patent Laid-Open No. 6-206088 JP 2004-25093 A

生物処理工程から引き抜いた汚泥をオゾン等で改質処理し、改質汚泥を生物処理工程に返送することで汚泥を減量する有機性排水の処理方法および処理装置においては、改質処理において微生物の細胞壁などが破壊されるため、微細濁質が発生しやすい。したがって、溶解性CODやBODなどが充分に除去されていても、処理水中に前記微細濁質がリークし、処理水の透視度が悪化する場合があった。また、鉄やアルミニウムを添加では、CODの除去効果はあっても、微細濁質の除去効果は十分ではなく、更に、多量の無機汚泥が発生するという問題があった。   In organic wastewater treatment methods and treatment equipment, sludge extracted from the biological treatment process is reformed with ozone, etc., and sludge is reduced by returning the modified sludge to the biological treatment process. Since cell walls are destroyed, fine turbidity is likely to occur. Therefore, even if soluble COD, BOD, and the like are sufficiently removed, the fine turbidity may leak in the treated water and the transparency of the treated water may deteriorate. Further, when iron or aluminum is added, there is a problem that even if there is a COD removal effect, the fine turbidity removal effect is not sufficient, and a large amount of inorganic sludge is generated.

本発明は、次の有機性排液の処理装置および有機性排液の処理方法である。
(1) 有機性排液を微生物で処理する生物処理槽と、生物処理槽からの混合液に高分子凝集剤を添加する高分子凝集剤添加手段と、高分子凝集剤が添加された混合液を汚泥と処理液とに分離する固液分離手段と、固液分離手段で分離された汚泥の少なくとも一部および/または生物処理槽からの引抜き汚泥を易生物分解性に改質する改質手段と、改質汚泥を生物処理槽に返送する改質汚泥返送手段とを有することを特徴とする有機性排液の処理装置。
(2) 上記(1)において、高分子凝集剤は、下記式[1]で表されるカチオン性単量体20〜50mol%と、非イオン性単量体50〜80mol%との共重合物であることを特徴とする有機性排液の処理装置。
The present invention provides the following organic drainage treatment apparatus and organic drainage treatment method.
(1) A biological treatment tank for treating organic drainage with microorganisms, a polymer flocculant addition means for adding a polymer flocculant to a liquid mixture from the biological treatment tank, and a liquid mixture to which the polymer flocculant is added Solid-liquid separation means for separating the sludge and the treatment liquid, and at least a part of the sludge separated by the solid-liquid separation means and / or reforming means for modifying the drawn sludge from the biological treatment tank to be easily biodegradable And a modified sludge returning means for returning the modified sludge to the biological treatment tank.
(2) In the above (1), the polymer flocculant is a copolymer of 20 to 50 mol% of a cationic monomer represented by the following formula [1] and 50 to 80 mol% of a nonionic monomer. An organic drainage treatment apparatus characterized by the above.

Figure 2008086848
(式[1]中、Rは水素原子またはメチル基、RおよびRはそれぞれ独立にメチル基またはエチル基、Rは水素原子、メチル基、エチル基またはベンジル基、Xは酸素原子またはNH、Yは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基、Zは対アニオンである。)
(3) 有機性排液を微生物で処理する生物処理工程と、生物処理工程からの混合液に高分子凝集剤を添加する高分子凝集剤添加工程と、高分子凝集剤が添加された混合液を汚泥と処理液とに分離する固液分離工程と、固液分離された汚泥の少なくとも一部および/または生物処理工程からの引抜き汚泥を易生物分解性に改質する改質工程と、改質汚泥を生物処理工程に返送する改質汚泥返送工程とを有することを特徴とする有機性排液の処理方法。
(4) 上記(3)において、高分子凝集剤は、下記式[1]で表されるカチオン性単量体20〜50mol%と、非イオン性単量体50〜80mol%との共重合物であることを特徴とする有機性排液の処理方法。
Figure 2008086848
(In the formula [1], R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently a methyl group or an ethyl group, R 4 is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and X is an oxygen atom. NH or Y is an alkylene group or hydroxyalkylene group having 2 to 4 carbon atoms, and Z is a counter anion.)
(3) A biological treatment process for treating organic drainage with microorganisms, a polymer flocculant addition process for adding a polymer flocculant to a mixed liquid from the biological treatment process, and a mixed liquid in which the polymer flocculant is added A solid-liquid separation process that separates the sludge into a sludge and a treatment liquid; a reforming process that modifies at least a part of the solid-liquid separated sludge and / or a sludge extracted from the biological treatment process to be easily biodegradable; An organic wastewater treatment method comprising: a modified sludge return step for returning quality sludge to a biological treatment step.
(4) In the above (3), the polymer flocculant is a copolymer of 20 to 50 mol% of a cationic monomer represented by the following formula [1] and 50 to 80 mol% of a nonionic monomer. A method for treating organic drainage, wherein

Figure 2008086848
(式[1]中、Rは水素原子またはメチル基、RおよびRはそれぞれ独立にメチル基またはエチル基、Rは水素原子、メチル基、エチル基またはベンジル基、Xは酸素原子またはNH、Yは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基、Zは対アニオンである。)
本発明において処理の対象となる有機性排液は、生物処理によって処理される有機物、アンモニア性窒素化合物、有機性窒素化合物、硝酸性窒素、亜硝酸性窒素などを含有する排液であるが、難生物分解性の有機物または無機物が含有されていてもよい。このような有機性排液としては下水、し尿、埋立浸出水、食品工場排水、化学工場排水、その他の産業排液などがあげられる。
Figure 2008086848
(In the formula [1], R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently a methyl group or an ethyl group, R 4 is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and X is an oxygen atom. NH or Y is an alkylene group or hydroxyalkylene group having 2 to 4 carbon atoms, and Z is a counter anion.)
The organic drainage to be treated in the present invention is a drainage containing organic matter, ammoniacal nitrogen compound, organic nitrogen compound, nitrate nitrogen, nitrite nitrogen, etc. that are treated by biological treatment. A non-biodegradable organic substance or inorganic substance may be contained. Such organic effluents include sewage, human waste, landfill leachate, food factory effluent, chemical factory effluent, and other industrial effluents.

本発明で採用される生物処理としては、好気性生物処理、嫌気性生物処理またはこれらを組み合せた生物処理である。好気性生物処理としては、活性汚泥法、生物膜法などがあげられる。活性汚泥法は有機性排液を活性汚泥の存在下に好気性生物処理する処理法であり、有機性排液を生物処理槽(曝気槽)で活性汚泥と混合して曝気し、混合液を固液分離装置で固液分離し、分離汚泥の一部を曝気槽に返送する標準活性汚泥法が一般的であるが、これを変形した他の処理法でもよい。また生物膜法は担体に生物膜を形成して好気性下に排液と接触させる処理である。また嫌気性処理としては、嫌気性消化法、高負荷嫌気性処理法などがあげられる。更に、一般的な好気性処理および/または嫌気性処理からなるもののほか、アンモニア性窒素を硝化細菌により好気性下に硝酸または亜硝酸性窒素に硝化(酸化)する硝化工程と、硝酸または亜硝酸性窒素を脱窒細菌により嫌気性下に還元する脱窒工程とを含む生物処理があげられる。   The biological treatment employed in the present invention is an aerobic biological treatment, an anaerobic biological treatment, or a biological treatment combining these. Examples of the aerobic biological treatment include an activated sludge method and a biofilm method. The activated sludge method is an aerobic biological treatment method for treating organic wastewater in the presence of activated sludge. Organic wastewater is mixed with activated sludge in a biological treatment tank (aeration tank) and aerated. A standard activated sludge method is generally used in which solid-liquid separation is performed with a solid-liquid separator and a part of the separated sludge is returned to the aeration tank. However, other treatment methods obtained by modifying this method may be used. The biofilm method is a treatment in which a biofilm is formed on a carrier and contacted with drainage under aerobic conditions. Examples of the anaerobic treatment include an anaerobic digestion method and a high-load anaerobic treatment method. Furthermore, in addition to a general aerobic treatment and / or anaerobic treatment, a nitrification step of nitrifying (oxidizing) ammoniacal nitrogen to nitric acid or nitrite nitrogen under aerobic conditions with nitrifying bacteria, and nitric acid or nitrous acid Biological treatment including a denitrification step of reducing anaerobic nitrogen under anaerobic conditions by denitrifying bacteria.

本発明では、生物処理装置からの混合液は高分子凝集剤が添加される。本発明で使用される高分子凝集剤としては、一般に凝集沈殿、汚泥脱水等に使用されているものが使用でき、カチオン性のものが好ましいが、ノニオン性またはアニオン性のものでもよい。カチオン性のものとしては、(メタ)アクリレート系カチオン性単量体の単独重合物又は非イオン性単量体との共重合物、ポリアクリルアミドのマンニッヒ変性物、ポリ(ジメチルジアリルアンモニウムクロライド)、ジアルキルアミン−エピクロルヒドリン縮合物、アルキレンジクロライド−ポリアルキレンポリアミン縮合物、ポリエチレンイミン、ジシアンジアミド−ホルマリン縮合物、ポリビニルアミジン、キトサンなどのカチオン性高分子凝集剤を用いることができる。特に、下記式[1]で表される(メタ)アクリル系カチオン性単量体20〜50mol%と、非イオン性単量体50〜80mol%との共重合物を好適に用いることができ、前記非イオン性単量体としてはアクリルアミドやメタクリルアミドなどがあげられる。   In the present invention, a polymer flocculant is added to the mixed solution from the biological treatment apparatus. As the polymer flocculant used in the present invention, those generally used for coagulation sedimentation, sludge dehydration and the like can be used, and cationic ones are preferable, but nonionic or anionic ones may also be used. Cationic ones include homopolymers of (meth) acrylate cationic monomers or copolymers with nonionic monomers, Mannich modified products of polyacrylamide, poly (dimethyldiallylammonium chloride), dialkyl Cationic polymer flocculants such as amine-epichlorohydrin condensate, alkylene dichloride-polyalkylene polyamine condensate, polyethyleneimine, dicyandiamide-formalin condensate, polyvinylamidine and chitosan can be used. In particular, a copolymer of (meth) acrylic cationic monomer 20 to 50 mol% represented by the following formula [1] and nonionic monomer 50 to 80 mol% can be suitably used. Examples of the nonionic monomer include acrylamide and methacrylamide.

Figure 2008086848
(式[1]中、Rは水素原子またはメチル基、RおよびRはそれぞれ独立にメチル基またはエチル基、Rは水素原子、メチル基、エチル基またはベンジル基、Xは酸素原子またはNH、Yは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基、Zは対アニオンである。)
(メタ)アクリル系カチオン性単量体との含有量がこの範囲をはずれると凝集汚泥の沈降速度を充分に高めることができず、また、微細な濁質を十分に除去することができない。
Figure 2008086848
(In the formula [1], R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently a methyl group or an ethyl group, R 4 is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and X is an oxygen atom. NH or Y is an alkylene group or hydroxyalkylene group having 2 to 4 carbon atoms, and Z is a counter anion.)
If the content of the (meth) acrylic cationic monomer is outside this range, the sedimentation rate of the coagulated sludge cannot be sufficiently increased, and the fine turbidity cannot be sufficiently removed.

本発明で使用できる特に好ましいカチオン性高分子凝集剤は、下記式[2]で表される(メタ)アクリル系カチオン性単量体20〜50mol%と、アクリルアミド50〜80mol%との共重合物である。    A particularly preferred cationic polymer flocculant that can be used in the present invention is a copolymer of 20 to 50 mol% of a (meth) acrylic cationic monomer represented by the following formula [2] and 50 to 80 mol% of acrylamide. It is.

Figure 2008086848
本発明で使用される高分子凝集剤は固有粘度(1N NaNO水溶液の30℃での測定値)が1〜15dL/g、好ましくは3〜10dL/g、より好ましくは5〜8dL/gのものを好適に用いることができる。固有粘度が低すぎると凝集汚泥の沈降速度が十分に速くならなく、また、固有粘度が高すぎると微細な濁質を十分に除去する事が出来ず、十分に透視度を改善することができなくなる。
Figure 2008086848
The polymer flocculant used in the present invention has an intrinsic viscosity (measured value of a 1N NaNO 3 aqueous solution at 30 ° C.) of 1 to 15 dL / g, preferably 3 to 10 dL / g, more preferably 5 to 8 dL / g. A thing can be used suitably. If the intrinsic viscosity is too low, the sedimentation rate of the coagulated sludge will not be sufficiently high, and if the intrinsic viscosity is too high, the fine turbidity cannot be removed sufficiently and the transparency can be improved sufficiently. Disappear.

高分子凝集剤の添加量は、生物処理槽内の混合液中の汚泥濃度や処理水量や汚泥の滞留時間などの運転条件で変動するが、通常添加する混合液に対して0.1〜20mg/L、好ましくは1〜10mg/L程度である。   The amount of the polymer flocculant added varies depending on the operating conditions such as sludge concentration, amount of treated water and sludge residence time in the mixed solution in the biological treatment tank, but is usually 0.1 to 20 mg based on the mixed solution to be added. / L, preferably about 1 to 10 mg / L.

高分子凝集剤は通常水溶液の状態で添加され、この水溶液中の高分子の濃度は、通常0.02〜2重量%、好ましくは0.1〜0.6重量%であるのが望ましい。なお、高分子凝集剤が水性懸濁液またはW/O型エマルションである場合には、水性懸濁液またはW/O型エマルションの状態で直接混合液に添加することができる。   The polymer flocculant is usually added in the form of an aqueous solution, and the concentration of the polymer in the aqueous solution is usually 0.02 to 2% by weight, preferably 0.1 to 0.6% by weight. When the polymer flocculant is an aqueous suspension or a W / O emulsion, it can be added directly to the mixed solution in the state of an aqueous suspension or a W / O emulsion.

高分子凝集剤の添加位置は生物処理槽から固液分離手段に至る経路であれば特に限定されず、例えば生物処理槽;生物処理槽から固液分離手段までの間の連絡路;固液分離手段内などで添加することができる。また、生物処理槽から固液分離手段までの間に凝集槽を設けて添加することができ、例えば、生物処理槽の出口部を隔壁などで仕切ることで凝集槽とすることができる。   The addition position of the polymer flocculant is not particularly limited as long as it is a route from the biological treatment tank to the solid-liquid separation means. For example, a biological treatment tank; a communication path from the biological treatment tank to the solid-liquid separation means; It can be added within the means. Moreover, a coagulation tank can be provided and added between the biological treatment tank and the solid-liquid separation means. For example, the coagulation tank can be formed by partitioning the outlet of the biological treatment tank with a partition wall or the like.

高分子凝集剤の添加は連続的に行うこともできるし、間欠的に行うこともできる。また、濁質の分離性が悪化した場合(透視度が悪化した場合)、または悪化が予想される場合に添加することができる。   The addition of the polymer flocculant can be performed continuously or intermittently. Moreover, it can add when the separability of turbidity deteriorates (when a transparency degree deteriorates), or when deterioration is anticipated.

本発明では、高分子凝集剤が添加された混合液は固液分離手段によって処理液である分離液と分離汚泥とに分離される。このような固液分離手段としては、例えば沈殿槽、浮上分離槽、遠心分離装置または膜分離装置などによる固液分離装置が使用できる。膜分離装置を用いる場合には、従来公知の膜分離装置を用いることができ、混合液をポンプなどの送液手段を用いて膜面の片側に高流速で循環させ、もう片側からろ液を取り出す、ポンプ循環式クロスフロー濾過型の膜分離装置や、散気装置により引き起こされる曝気による循環水流を膜面に当てることにより、膜面への懸濁物質の濃縮を防止しながらろ過を行う、浸漬型膜分離装置を用いることができる。   In the present invention, the mixed liquid to which the polymer flocculant has been added is separated into a separation liquid as a treatment liquid and separated sludge by a solid-liquid separation means. As such solid-liquid separation means, for example, a solid-liquid separation device such as a sedimentation tank, a flotation separation tank, a centrifugal separator or a membrane separator can be used. In the case of using a membrane separator, a conventionally known membrane separator can be used, and the mixed liquid is circulated at a high flow rate on one side of the membrane surface using a liquid feeding means such as a pump, and the filtrate is supplied from the other side. Take out the circulating water flow caused by aeration caused by the pump circulation type cross-flow filtration type aeration device and the membrane surface, and perform filtration while preventing the concentration of suspended substances on the membrane surface. An immersion membrane separator can be used.

本発明では、このような生物処理における処理系から生物汚泥の一部を引抜き、この引抜汚泥を改質処理槽において易生物分解性に改質するための改質処理を行う。改質処理を行う汚泥は、上述した固液分離手段によって分離された分離汚泥の少なくとも一部を引抜くのが好ましいが、生物処理槽から混合液の状態で引抜いた汚泥でもよい。これら引抜き汚泥はそのまま改質処理工程に導入されても良いが、別途用意した濃縮手段で濃縮した後に、改質処理工程に導入しても良い。濃縮手段としては遠心濃縮、重力濃縮、浮上濃縮、膜分離などの汚泥の濃縮に使用される濃縮手段を適宜用いることができる。   In the present invention, a part of the biological sludge is extracted from the treatment system in such a biological treatment, and a reforming process is performed for reforming the extracted sludge to be easily biodegradable in the reforming treatment tank. The sludge subjected to the reforming treatment is preferably drawn out of at least a part of the separated sludge separated by the solid-liquid separation means described above, but may be sludge drawn out in a mixed liquid state from the biological treatment tank. These drawn sludges may be introduced directly into the reforming treatment step, or may be introduced into the reforming treatment step after being concentrated by a separately prepared concentration means. As the concentration means, a concentration means used for concentration of sludge such as centrifugal concentration, gravity concentration, flotation concentration and membrane separation can be appropriately used.

分離汚泥から引抜く場合、余剰汚泥として排出される部分の一部または全部を引抜汚泥として引抜くことができるが、排出される余剰汚泥に加えて、返送汚泥として生物処理工程に返送される汚泥の一部を過剰に引抜いて改質処理することもでき、これにより余剰汚泥の発生量をより少なくすることができる。この場合生物処理工程における見かけの増殖量に対応する量を引抜いて改質処理すると、余剰汚泥発生量をゼロにすることができる。   When extracting from separated sludge, part or all of the part discharged as excess sludge can be extracted as extracted sludge, but in addition to the discharged excess sludge, sludge returned to the biological treatment process as return sludge. It is also possible to carry out a reforming treatment by drawing a part of the excess, whereby the generation amount of excess sludge can be further reduced. In this case, if the amount corresponding to the apparent amount of growth in the biological treatment process is extracted and reformed, the amount of excess sludge generated can be reduced to zero.

引抜汚泥を生物が分解し易い性状に改質する改質処理方法としては、任意の方法を採用することができる。例えば、オゾン処理による改質処理、酸処理による改質処理、アルカリ処理による改質処理、高熱細菌による改質処理、ミル、ディスク、超音波などの物理的処理による改質処理、加熱処理による改質処理、これらを組合せた改質処理等を採用することができる。これらの中ではオゾン処理による改質処理が、処理操作が簡単かつ処理効率が高いため好ましい。   Any method can be adopted as a reforming treatment method for reforming the extracted sludge so as to be easily decomposed by organisms. For example, modification treatment by ozone treatment, modification treatment by acid treatment, modification treatment by alkali treatment, modification treatment by high-heat bacteria, modification treatment by physical treatment such as mill, disk, ultrasonic, etc., modification by heat treatment Quality treatment, reforming treatment combining these, and the like can be employed. Among these, the modification treatment by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high.

このような改質処理のうち、まずオゾン処理について説明する。改質処理としてのオゾン処理は、生物処理系から引抜いた汚泥をオゾン処理槽に導いてオゾンと接触させればよく、オゾンの酸化作用により汚泥は易生物分解性に改質される。オゾン処理はpH5以下の酸性領域で行うと酸化分解効率が高くなる。このときのpHの調整は、硫酸、塩酸または硝酸などの無機酸をpH調整剤として生物汚泥に添加するか、生物汚泥を酸発酵処理して調整するか、あるいはこれらを組合せて行うのが好ましい。pH調整剤を添加する場合、pHは3〜4に調整するのが好ましく、酸発酵処理を行う場合、pHは4〜5となるように行うのが好ましい。   Among such reforming processes, the ozone process will be described first. In the ozone treatment as the reforming treatment, the sludge extracted from the biological treatment system may be introduced into the ozone treatment tank and brought into contact with ozone, and the sludge is easily biodegradable by the oxidizing action of ozone. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the oxidative decomposition efficiency is increased. The pH adjustment at this time is preferably performed by adding an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid to the biological sludge as a pH adjusting agent, adjusting the biological sludge by an acid fermentation treatment, or a combination thereof. . When adding a pH adjuster, it is preferable to adjust pH to 3-4, and when performing an acid fermentation process, it is preferable to carry out so that pH may become 4-5.

オゾン処理は、引抜汚泥または酸発酵処理液をそのまま、または必要により遠心分離機などで濃縮した後pH5以下に調整し、オゾンと接触させることにより行うことができる。接触方法としては、オゾン処理槽に汚泥を導入してオゾンを吹込む方法、機械攪拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾンガスの他、オゾン含有空気、オゾン化空気などのオゾン含有ガスが使用できる。オゾンの使用量は0.002〜0.05g−O3/g−VSS、好ましくは0.005〜0.03g−O3/g−VSSとするのが望ましい。オゾン処理により生物汚泥は酸化分解されて、BOD成分に変換される。    The ozone treatment can be performed by adjusting the drawn sludge or the acid fermentation treatment solution as it is, or if necessary by concentrating it with a centrifuge, etc., and then adjusting the pH to 5 or less and bringing it into contact with ozone. As a contact method, a method of introducing sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, or the like can be employed. In addition to ozone gas, ozone-containing gas such as ozone-containing air or ozonized air can be used as ozone. The amount of ozone used is 0.002 to 0.05 g-O3 / g-VSS, preferably 0.005 to 0.03 g-O3 / g-VSS. Biological sludge is oxidized and decomposed by ozone treatment and converted into BOD components.

次に引抜汚泥を易生物分解性に改質する他の方法としての酸処理について説明すると、酸処理では、生物処理系から引抜いた引抜汚泥を改質槽に導き、塩酸、硫酸などの鉱酸を加え、pH2.5以下、好ましくはpH1〜2の酸性条件下で所定時間滞留させればよい。滞留時間としては、例えば5〜24時間とする。この際、汚泥を加熱、例えば50〜100℃に加熱すると改質が促進されるので好ましい。このような酸による処理により汚泥は易生物分解性となり、生物処理系に戻すことにより容易に分解除去できるようになる。   Next, the acid treatment as another method for modifying the extracted sludge to be easily biodegradable will be described. In the acid treatment, the extracted sludge extracted from the biological treatment system is guided to the reforming tank, and mineral acids such as hydrochloric acid and sulfuric acid are introduced. And is retained for a predetermined time under acidic conditions of pH 2.5 or less, preferably pH 1-2. The residence time is, for example, 5 to 24 hours. At this time, it is preferable to heat the sludge, for example, to 50 to 100 ° C., because the reforming is promoted. By treatment with such an acid, the sludge becomes readily biodegradable and can be easily decomposed and removed by returning it to the biological treatment system.

また、汚泥の改質処理としてのアルカリ処理について説明すると、アルカリ処理では、生物処理系から引抜いた引抜汚泥を改質槽に導き、水酸化ナトリウム、水酸化カリウム等のアルカリを汚泥に対して0.1〜1重量%加え、所定時間滞留させればよい。滞留時間は0.5〜2時間程度で汚泥は易生物分解性に改質される。この際、汚泥を加熱し、例えば50〜100℃に加熱すると改質が促進されるので好ましい。   Further, the alkali treatment as the sludge reforming treatment will be described. In the alkali treatment, the extracted sludge drawn from the biological treatment system is guided to the reforming tank, and the alkali such as sodium hydroxide and potassium hydroxide is reduced to 0. .1 to 1% by weight may be added and retained for a predetermined time. The residence time is about 0.5 to 2 hours, and the sludge is easily biodegradable. At this time, it is preferable to heat the sludge, for example, to 50 to 100 ° C., because the reforming is promoted.

改質処理としての加熱処理は、加熱処理単独で行うこともできるが、酸処理またはアルカリ処理と組合せて行うのが好ましい。加熱処理単独で行う場合は、例えば温度70〜100℃、滞留時間2〜3時間とすることができる。   The heat treatment as the reforming treatment can be performed by heat treatment alone, but is preferably performed in combination with acid treatment or alkali treatment. In the case of performing the heat treatment alone, for example, the temperature can be set to 70 to 100 ° C. and the residence time can be set to 2 to 3 hours.

このようにして易生物分解性に改質した改質汚泥を生物処理槽に導入して生物処理を行うことにより、改質処理によって易生物分解性になった汚泥は、BOD成分として生物処理槽内の微生物により分解され、汚泥発生量が減量される。   The sludge that has become biodegradable by the reforming treatment by introducing the modified sludge thus modified to be easily biodegradable into the biological treatment tank is used as the BOD component in the biological treatment tank. It is decomposed by the microorganisms inside and the amount of sludge generated is reduced.

汚泥の改質処理では、汚泥を構成する微生物の細胞壁などが破壊され、微細濁質が発生する。また、生物処理で使用される微生物(菌体)は、細胞の外側に多糖類などからなる粘着物があり、これにより菌体同士が付着しあって大きなフロックを形成し、固液分離しやすい汚泥が形成されている。一方、改質処理汚泥を生物処理槽に導入する汚泥減容方法では、余剰汚泥を全くまたはほとんど系外へ引抜かない運転となり、汚泥の平均滞留時間(SRT)が長いものとなる。この場合、上記の粘着物は微生物の自己分解で少なくり、大きなフロックを形成し難くなり、固液分離でピンフロックとして流出しやすくなる。   In the sludge reforming treatment, the cell walls of microorganisms constituting the sludge are destroyed and fine turbidity is generated. In addition, microorganisms (bacteria) used in biological treatment have a sticky substance made of polysaccharides or the like on the outside of the cells, so that the bacteria adhere to each other to form a large flock and are easily separated into solid and liquid. Sludge is formed. On the other hand, in the sludge volume reduction method in which the reformed sludge is introduced into the biological treatment tank, the operation is such that excessive or little excess sludge is not extracted outside the system, and the average sludge residence time (SRT) becomes long. In this case, the above-mentioned adhesive is reduced by the self-decomposition of microorganisms, it becomes difficult to form a large floc, and it tends to flow out as a pin floc by solid-liquid separation.

本発明では上述した通り、生物処理工程での混合液に高分子凝集剤を添加して固液分離を行うため、粘着物の低下を補い、菌体をフロック化して生物汚泥の固液分離を促進する。更に、高分子凝集剤の凝集作用により微細濁質を取り込んで汚泥をフロックさせることができ、固液分離手段として沈殿槽や遠心分離機を採用した場合には処理水への微細懸濁物質の流出を防止して処理水透視度の向上をはかり、固液分離手段として濾過器や膜分離装置などを採用した場合にはこれら固液分離手段の目詰まりを抑制することができる。   In the present invention, as described above, in order to perform solid-liquid separation by adding a polymer flocculant to the mixed liquid in the biological treatment process, it compensates for the reduction of the sticky substance, flocks the bacterial cells, and solid-liquid separation of the biological sludge. Facilitate. Furthermore, fine turbidity can be taken in by the flocculating action of the polymer flocculant and the sludge can be flocked. When a sedimentation tank or centrifuge is used as the solid-liquid separation means, the fine suspended substance in the treated water When the treated water transparency is improved by preventing the outflow and a filter or a membrane separator is employed as the solid-liquid separation means, clogging of these solid-liquid separation means can be suppressed.

本発明によれば、生物処理工程から引き抜いた汚泥をオゾン等で改質処理し、改質汚泥を生物処理工程に返送することで汚泥を減量する有機性排水の処理方法および処理装置において、処理水の透視度が悪化する場合でも、簡単な装置および方法で処理水透視度の改善を図ることが可能となる。   According to the present invention, in an organic wastewater treatment method and treatment apparatus for reducing sludge by reforming sludge extracted from a biological treatment process with ozone or the like and returning the modified sludge to the biological treatment process, Even when the water transparency deteriorates, the treated water transparency can be improved with a simple device and method.

以下、本発明の実施の形態を図面により説明する。図1は実施の一形態による有機性排液の処理方法を示す系統図であり、生物処理として標準活性汚泥法を、改質処理としてオゾン法を採用している。図1において1は曝気槽、2は沈殿槽、3は改質槽である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a method for treating organic effluent according to one embodiment, and adopts a standard activated sludge method as a biological treatment and an ozone method as a reforming treatment. In FIG. 1, 1 is an aeration tank, 2 is a precipitation tank, and 3 is a reforming tank.

処理方法は被処理液路5から被処理液である有機性排液を曝気槽1に導入するとともに、汚泥返送路12および改質汚泥返送路14からそれぞれ返送汚泥と改質汚泥とを導入し、散気装置7から空気を散気して曝気し、好気性微生物の存在下に好気性処理を行う。曝気条件等の具体的な処理条件は通常の好気性処理と同様である。   In the treatment method, the organic waste liquid as the treatment liquid is introduced into the aeration tank 1 from the treatment liquid passage 5 and the return sludge and the modified sludge are introduced from the sludge return passage 12 and the modified sludge return passage 14, respectively. Then, aeration is performed by aeration of air from the aeration device 7, and aerobic treatment is performed in the presence of aerobic microorganisms. Specific processing conditions such as aeration conditions are the same as those for normal aerobic processing.

曝気槽1内の混合液は移送路8を経由して沈殿槽2に導入されるが、移送路8の途中で高分子凝集剤4が連続的に添加される。そして、高分子凝集剤が添加された混合液は移送路8内を通って移送される途中で高分子凝集剤によって凝集し、沈殿槽2で分離汚泥と分離液に固液分離し、分離液は処理液路9から処理液として排出する。分離汚泥は汚泥取出路10から取出し、一部は汚泥引抜路11から改質槽3に導入し、残部は汚泥返送路12から曝気槽1に返送される。改質槽3では散気装置13からオゾンを散気してオゾン処理による改質処理を行い、生物汚泥の一部を易生物分解性に改質処理する。改質汚泥は改質汚泥返送路14から曝気槽1に返送される。   The liquid mixture in the aeration tank 1 is introduced into the sedimentation tank 2 via the transfer path 8, and the polymer flocculant 4 is continuously added along the transfer path 8. The mixed liquid to which the polymer flocculant has been added is agglomerated by the polymer flocculant while being transferred through the transfer path 8, and is solid-liquid separated into the separated sludge and the separated liquid in the precipitation tank 2. Is discharged from the processing liquid passage 9 as a processing liquid. The separated sludge is taken out from the sludge take-out path 10, a part is introduced into the reforming tank 3 from the sludge extraction path 11, and the remaining part is returned from the sludge return path 12 to the aeration tank 1. In the reforming tank 3, ozone is diffused from the air diffuser 13 to perform reforming treatment by ozone treatment, and a part of the biological sludge is reformed to be easily biodegradable. The modified sludge is returned to the aeration tank 1 from the modified sludge return path 14.

上記実施の形態では、沈殿槽2で分離された分離汚泥の一部が改質槽3に導入されているが、曝気槽1から混合液取出路15を経由して改質槽3に導入するようにしてもよい。   In the above embodiment, a part of the separated sludge separated in the sedimentation tank 2 is introduced into the reforming tank 3, but is introduced into the reforming tank 3 from the aeration tank 1 via the mixed liquid extraction path 15. You may do it.

また、上記実施の形態では、高分子凝集剤4は、曝気槽1と沈澱槽2とを結ぶ移送路8で混合液に添加されているが、図2のように別途凝集槽6を設けてここに高分子凝集剤4を添加するようにしてもよい。このように凝集槽6を設けることで、高分子凝集剤の拡散やフロック化が効果的に行われるので効率的に高分子凝集剤を利用することができる。   Moreover, in the said embodiment, although the polymer flocculent 4 is added to the liquid mixture by the transfer path 8 which connects the aeration tank 1 and the precipitation tank 2, the coagulation tank 6 is provided separately like FIG. Here, the polymer flocculant 4 may be added. By providing the agglomeration tank 6 in this manner, the polymer flocculant can be effectively diffused and flocked, so that the polymer flocculant can be used efficiently.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

実施例および比較例で使用した高分子凝集剤は表1の通りである。なお、A−1〜A−4、B及びEは、モノマーを純水に溶解し、窒素雰囲気下、開始剤として2,2'−アゾビス(2−アミジノプロパン)二塩酸塩を添加し加熱することで溶液重合し、得られた重合体溶液を乾燥・粉砕して得たものを使用した。また、Cは、モノマーを20重量%濃度の硫酸アンモニウム水溶液中でシード重合することで得たものであり、ポリマー濃度20重量%の水性のポリマー分散液(ディスパージョン)として得られたものを使用した。そして、Dは、モノマーを純水に溶解し、窒素雰囲気下、開始剤として2,2'−アゾビス(2−アミジノプロパン)二塩酸塩を添加し加熱することで重合し、水中に重合体が析出した懸濁液に塩酸を加えアミジン化したものを乾燥したものを使用した。なお、いずれの高分子凝集剤も純分換算で0.1重量%ととなるように溶解してから以下実験に使用した。   Table 1 shows polymer flocculants used in Examples and Comparative Examples. A-1 to A-4, B and E are prepared by dissolving the monomer in pure water, adding 2,2′-azobis (2-amidinopropane) dihydrochloride as an initiator and heating in a nitrogen atmosphere. Then, solution polymerization was performed, and the polymer solution obtained was dried and pulverized. C was obtained by seed polymerization of a monomer in an aqueous solution of ammonium sulfate having a concentration of 20% by weight, and was obtained as an aqueous polymer dispersion (dispersion) having a polymer concentration of 20% by weight. . Then, D is polymerized by dissolving the monomer in pure water, adding 2,2′-azobis (2-amidinopropane) dihydrochloride as an initiator and heating in a nitrogen atmosphere. A suspension obtained by adding hydrochloric acid to the precipitated suspension and amidating it was used. In addition, after melt | dissolving all the polymer flocculants so that it might become 0.1 weight% in conversion of a pure part, it used for experiment below.

Figure 2008086848
注)1)DAA:アクリロイルオキシエチルトリメチルアンモニウムクロリド(前記式[1]において、Rが水素、R〜Rがメチル基、Xが酸素、YがCHCH、Zが塩素のアクリル系カチオン単量体)
2)AAm:アクリルアミド
3)DAM:メタクリロイルオキシエチルトリメチルアンモニウムクロリド(前記式[1]において、Rがメチル基、R〜Rがメチル基、Xが酸素、YがCHCH、Zが塩素のメタクリル系カチオン単量体)
4)DAABz:アクリロイルオキシエチルジメチルベンジルアンモニウムクロリド(前記式[1]において、Rが水素、RおよびRがメチル基、Rがベンジル基、Xが酸素、YがCHCH、Zが塩素のアクリル系カチオン単量体)
5)ポリアミジン:アクリルニトリル50mol%とN−ビニルホルムアミド50mol%との共重合物を塩酸で変性したもの。コロイド当量値は4.8meq./g
6)DADMAC:ジアリルジメチルアンモニウムクロリド
7)[η]:A−1〜A−4、BおよびEは30℃、1N−NaNOで測定した固有粘度であり、Cは30℃、0.1N−NaNOで測定した固有粘度で、Dは30℃、1N−NaClで測定した固有粘度である。
〔実験例1〕
Figure 2008086848
Note) 1) DAA: acryloyloxyethyltrimethylammonium chloride (in the above formula [1], R 1 is hydrogen, R 2 to R 4 are methyl groups, X is oxygen, Y is CH 2 CH 2 , and Z is chlorine) Cationic monomer)
2) AAm: Acrylamide 3) DAM: Methacryloyloxyethyltrimethylammonium chloride (in the above formula [1], R 1 is a methyl group, R 2 to R 4 are methyl groups, X is oxygen, Y is CH 2 CH 2 , Z Is a methacrylic cationic monomer of chlorine)
4) DAABz: acryloyloxyethyldimethylbenzylammonium chloride (in the above formula [1], R 1 is hydrogen, R 2 and R 3 are methyl groups, R 4 is a benzyl group, X is oxygen, Y is CH 2 CH 2 , Acrylic cationic monomer with Z as chlorine)
5) Polyamidine: a product obtained by modifying a copolymer of 50 mol% acrylonitrile and 50 mol% N-vinylformamide with hydrochloric acid. The colloid equivalent value is 4.8 meq. / G
6) DADMAC: diallyldimethylammonium chloride 7) [η]: A-1 to A-4, B and E are intrinsic viscosities measured at 30 ° C. and 1N—NaNO 3 , C is 30 ° C., 0.1 N— It is an intrinsic viscosity measured with NaNO 3 , and D is an intrinsic viscosity measured at 30 ° C. and 1N-NaCl.
[Experimental Example 1]

図1記載のフロー(ただし、高分子凝集剤の添加はおこなっていない)を採用しているA下水処理場の曝気槽汚泥100mLに高分子凝集剤を所定量添加し、水道水で10倍に希釈して1Lのメスシリンダー(直径65mm、高さ300mm)に移し、緩やかに混合攪拌し、静置後ただちに凝集フロックの沈降速度を測定するとともに、30分経過後に水面下100mmより採取した試料の濁度を測定した。結果を表2に示す。   A predetermined amount of polymer flocculant is added to 100 mL of aeration tank sludge at the A sewage treatment plant that employs the flow shown in FIG. Dilute and transfer to a 1 L graduated cylinder (65 mm in diameter, 300 mm in height), gently mix and agitate, immediately after standing, measure the sedimentation rate of the aggregated flocs, and after 30 minutes have passed, Turbidity was measured. The results are shown in Table 2.

Figure 2008086848
以上の結果より、高分子凝集剤を添加することで上澄濁度は改善されることがわかる。特に、(メタ)アクリロイルオキシエチレントリメチルアンモニウムクロリド20〜50mol%とアクリルアミド50〜80mol%との共重合物であるA−2、A−3およびBの上澄濁度改善効果が高いことがわかる。なお、上澄濁度は、沈降分離し難い微小懸濁物の濃度と相関があり、上澄濁度の高い改善効果は、微小懸濁物質の高い凝集性を示している。
〔実験例2〕
Figure 2008086848
From the above results, it is understood that the supernatant turbidity is improved by adding the polymer flocculant. In particular, it can be seen that the effect of improving the turbidity of supernatants of A-2, A-3 and B, which are copolymers of 20 to 50 mol% of (meth) acryloyloxyethylenetrimethylammonium chloride and 50 to 80 mol% of acrylamide, is high. The supernatant turbidity correlates with the concentration of a microsuspension that is difficult to settle and separate, and the effect of improving the supernatant turbidity indicates a high cohesiveness of the microsuspended material.
[Experiment 2]

実験例1で汚泥を採取したA下水処理場において、図1のように曝気槽1から沈殿槽2を連結する移送路8において、曝気槽からの混合液に高分子凝集剤A−2を1.5mg/Lとなるよう連続して添加して1年間運転した。高分子凝集剤を添加する前は処理水の透視度は20〜30cmであったものが、添加後は50〜80cmとなり、高分子凝集剤の添加により処理水の透視度が長期間安定して改善されることがわかった。   In the A sewage treatment plant where sludge was collected in Experimental Example 1, the polymer flocculant A-2 was added to the mixed solution from the aeration tank in the transfer path 8 connecting the aeration tank 1 to the settling tank 2 as shown in FIG. It was continuously added to 5 mg / L and operated for 1 year. Before the addition of the polymer flocculant, the transparency of the treated water was 20 to 30 cm, but after the addition, the transparency of the treated water was 50 to 80 cm. I found it improved.

本発明の有機性排液の処理方法および処理装置は、下水、し尿、埋立浸出水、食品工場排水、化学工場排水といった有機性排液の生物処理において、処理水の透視度などの水質を高く維持しつつ、汚泥発生量を低減することができる。   The organic wastewater treatment method and treatment apparatus according to the present invention has high water quality such as transparency of treated water in biological treatment of organic wastewater such as sewage, human waste, landfill leachate, food factory wastewater, and chemical factory wastewater. The amount of sludge generation can be reduced while maintaining.

本発明の実施形態における有機性排液の処理装置Organic drainage treatment apparatus in an embodiment of the present invention 本発明の別の実施形態における有機性排液の処理装置Organic drainage treatment apparatus in another embodiment of the present invention

符号の説明Explanation of symbols

1 曝気槽
2 沈殿槽
3 改質槽
6 凝集槽
1 Aeration tank 2 Settling tank 3 Reforming tank 6 Coagulation tank

Claims (4)

有機性排液を微生物で処理する生物処理槽と、生物処理槽からの混合液に高分子凝集剤を添加する高分子凝集剤添加手段と、高分子凝集剤が添加された混合液を汚泥と処理液とに分離する固液分離手段と、固液分離手段で分離された汚泥の少なくとも一部および/又は生物処理槽からの引抜き汚泥を易生物分解性に改質する改質手段と、改質汚泥を生物処理槽に返送する改質汚泥返送手段とを有することを特徴とする有機性排液の処理装置。 A biological treatment tank for treating organic wastewater with microorganisms, a polymer flocculant addition means for adding a polymer flocculant to the liquid mixture from the biological treatment tank, and a liquid mixture to which the polymer flocculant has been added as sludge. A solid-liquid separation unit that separates into a treatment liquid, a reforming unit that modifies at least a part of the sludge separated by the solid-liquid separation unit and / or a sludge drawn from the biological treatment tank to be easily biodegradable; An organic wastewater treatment apparatus comprising a modified sludge return means for returning quality sludge to a biological treatment tank. 請求項1において、前記高分子凝集剤は、下記式[1]で表される(メタ)アクリル系カチオン性単量体20〜50mol%と、非イオン性単量体50〜80mol%との共重合物であることを特徴とする有機性排液の処理装置。
Figure 2008086848
(式[1]中、Rは水素原子またはメチル基、RおよびRはそれぞれ独立にメチル基またはエチル基、Rは水素原子、メチル基、エチル基またはベンジル基、Xは酸素原子またはNH、Yは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基、Zは対アニオンである。)
2. The polymer flocculant according to claim 1, wherein the polymer flocculant is composed of 20-50 mol% of a (meth) acrylic cationic monomer represented by the following formula [1] and 50-80 mol% of a nonionic monomer. An organic drainage treatment apparatus characterized by being a polymer.
Figure 2008086848
(In the formula [1], R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently a methyl group or an ethyl group, R 4 is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and X is an oxygen atom. NH or Y is an alkylene group or hydroxyalkylene group having 2 to 4 carbon atoms, and Z is a counter anion.)
有機性排液を微生物で処理する生物処理工程と、生物処理工程からの混合液に高分子凝集剤を添加する高分子凝集剤添加工程と、高分子凝集剤が添加された混合液を汚泥と処理液とに分離する固液分離工程と、固液分離された汚泥の少なくとも一部および/又は生物処理工程からの引抜き汚泥を易生物分解性に改質する改質工程と、改質汚泥を生物処理工程に返送する改質汚泥返送工程とを有することを特徴とする有機性排液の処理方法。 A biological treatment process for treating organic wastewater with microorganisms, a polymer flocculant addition process for adding a polymer flocculant to the mixed liquid from the biological treatment process, and a liquid mixture to which the polymer flocculant is added as sludge A solid-liquid separation step for separating into a treatment liquid, a reforming step for reforming at least a part of the sludge separated into solid and liquid and / or a sludge extracted from a biological treatment step to biodegradability, and a modified sludge An organic drainage treatment method comprising a modified sludge return step for returning to a biological treatment step. 請求項3において、前記高分子凝集剤は、下記式[1]で表される(メタ)アクリル系カチオン性単量体20〜50mol%と、非イオン性単量体50〜80mol%との共重合物であることを特徴とする有機性排液の処理方法。
Figure 2008086848
(式[1]中、Rは水素原子またはメチル基、RおよびRはそれぞれ独立にメチル基またはエチル基、Rは水素原子、メチル基、エチル基またはベンジル基、Xは酸素原子またはNH、Yは炭素数2〜4のアルキレン基またはヒドロキシアルキレン基、Zは対アニオンである。)
4. The polymer flocculant according to claim 3, wherein the polymer flocculant is composed of 20-50 mol% of a (meth) acrylic cationic monomer represented by the following formula [1] and 50-80 mol% of a nonionic monomer. An organic drainage treatment method, which is a polymer.
Figure 2008086848
(In the formula [1], R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently a methyl group or an ethyl group, R 4 is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and X is an oxygen atom. NH or Y is an alkylene group or hydroxyalkylene group having 2 to 4 carbon atoms, and Z is a counter anion.)
JP2006267393A 2006-09-29 2006-09-29 Apparatus and method for treating organic liquid waste Pending JP2008086848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267393A JP2008086848A (en) 2006-09-29 2006-09-29 Apparatus and method for treating organic liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267393A JP2008086848A (en) 2006-09-29 2006-09-29 Apparatus and method for treating organic liquid waste

Publications (1)

Publication Number Publication Date
JP2008086848A true JP2008086848A (en) 2008-04-17

Family

ID=39371566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267393A Pending JP2008086848A (en) 2006-09-29 2006-09-29 Apparatus and method for treating organic liquid waste

Country Status (1)

Country Link
JP (1) JP2008086848A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617004A (en) * 2012-04-19 2012-08-01 天津凯英科技发展有限公司 Sewage treatment system for developing and applying carbon source by using authigenic sludge
CN103043859A (en) * 2012-12-24 2013-04-17 中国市政工程华北设计研究总院 Method for treating landfill leachate
JP2014161791A (en) * 2013-02-25 2014-09-08 Mitsubishi Rayon Co Ltd Nitrate-nitrogen and nitrite-nitrogen reducing agent, and treatment method of drainage water using the same
JP2015009168A (en) * 2013-06-26 2015-01-19 住友重機械エンバイロメント株式会社 Flocculation sedimentation active sludge treatment system, and method for operating the same
WO2016017613A1 (en) * 2014-07-29 2016-02-04 日之出産業株式会社 Biological treatment method and biological treatment device
CN111517565A (en) * 2020-04-16 2020-08-11 北京博泰至淳生物科技有限公司 Sewage treatment control method and system for realizing in-situ improvement of treatment scale

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858195A (en) * 1981-10-05 1983-04-06 Akira Nishikawara Treatment with active sludge
JPS5895593A (en) * 1981-12-01 1983-06-07 Mitsubishi Heavy Ind Ltd Solid-liquid separation in activated sludge treating method
JPH0671289A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Biological treatment of waste water containing reducing sulfur compound
JPH06206088A (en) * 1993-01-11 1994-07-26 Kurita Water Ind Ltd Aerobic treatment of organic waste liquid
JPH0810785A (en) * 1994-06-27 1996-01-16 Sumitomo Heavy Ind Ltd Activated sludge device
JPH09141006A (en) * 1995-11-21 1997-06-03 Kurita Water Ind Ltd Flocculating and settling device
JPH10249376A (en) * 1997-03-14 1998-09-22 Ebara Corp Treatment of organic waste water such as sewage
JPH1110185A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Aerobic treatment method of organic waste liquid
JP2001276873A (en) * 2000-03-29 2001-10-09 Kurita Water Ind Ltd Waste liquor treating method
JP2001300575A (en) * 2000-04-21 2001-10-30 Kurita Water Ind Ltd Sludge outflow preventive device
JP2002263676A (en) * 2001-03-09 2002-09-17 Sumitomo Heavy Ind Ltd Waste water treatment method and facility
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Method for treating organic waste liquid
JP2004025094A (en) * 2002-06-27 2004-01-29 Hymo Corp Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use
JP2004141746A (en) * 2002-10-23 2004-05-20 Kurita Water Ind Ltd Method and apparatus for aerobic treatment
JP2006272138A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Organic waste treatment method
JP2007196137A (en) * 2006-01-26 2007-08-09 Kurita Water Ind Ltd Treatment method and apparatus for biologically treated water

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858195A (en) * 1981-10-05 1983-04-06 Akira Nishikawara Treatment with active sludge
JPS5895593A (en) * 1981-12-01 1983-06-07 Mitsubishi Heavy Ind Ltd Solid-liquid separation in activated sludge treating method
JPH0671289A (en) * 1992-08-28 1994-03-15 Nippon Steel Corp Biological treatment of waste water containing reducing sulfur compound
JPH06206088A (en) * 1993-01-11 1994-07-26 Kurita Water Ind Ltd Aerobic treatment of organic waste liquid
JPH0810785A (en) * 1994-06-27 1996-01-16 Sumitomo Heavy Ind Ltd Activated sludge device
JPH09141006A (en) * 1995-11-21 1997-06-03 Kurita Water Ind Ltd Flocculating and settling device
JPH10249376A (en) * 1997-03-14 1998-09-22 Ebara Corp Treatment of organic waste water such as sewage
JPH1110185A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Aerobic treatment method of organic waste liquid
JP2001276873A (en) * 2000-03-29 2001-10-09 Kurita Water Ind Ltd Waste liquor treating method
JP2001300575A (en) * 2000-04-21 2001-10-30 Kurita Water Ind Ltd Sludge outflow preventive device
JP2002263676A (en) * 2001-03-09 2002-09-17 Sumitomo Heavy Ind Ltd Waste water treatment method and facility
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Method for treating organic waste liquid
JP2004025094A (en) * 2002-06-27 2004-01-29 Hymo Corp Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use
JP2004141746A (en) * 2002-10-23 2004-05-20 Kurita Water Ind Ltd Method and apparatus for aerobic treatment
JP2006272138A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Organic waste treatment method
JP2007196137A (en) * 2006-01-26 2007-08-09 Kurita Water Ind Ltd Treatment method and apparatus for biologically treated water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617004A (en) * 2012-04-19 2012-08-01 天津凯英科技发展有限公司 Sewage treatment system for developing and applying carbon source by using authigenic sludge
CN103043859A (en) * 2012-12-24 2013-04-17 中国市政工程华北设计研究总院 Method for treating landfill leachate
JP2014161791A (en) * 2013-02-25 2014-09-08 Mitsubishi Rayon Co Ltd Nitrate-nitrogen and nitrite-nitrogen reducing agent, and treatment method of drainage water using the same
JP2015009168A (en) * 2013-06-26 2015-01-19 住友重機械エンバイロメント株式会社 Flocculation sedimentation active sludge treatment system, and method for operating the same
WO2016017613A1 (en) * 2014-07-29 2016-02-04 日之出産業株式会社 Biological treatment method and biological treatment device
JPWO2016017613A1 (en) * 2014-07-29 2017-04-27 日之出産業株式会社 Biological treatment method and biological treatment apparatus
CN111517565A (en) * 2020-04-16 2020-08-11 北京博泰至淳生物科技有限公司 Sewage treatment control method and system for realizing in-situ improvement of treatment scale

Similar Documents

Publication Publication Date Title
KR101335186B1 (en) Wastewater treatment device and wastewater treatment method
JP5951986B2 (en) Biological treatment method of organic wastewater
JP2007175582A (en) Treatment apparatus and method of organic matter-containing waste water
JP5017854B2 (en) Apparatus and method for treating wastewater containing organic matter
TW201221478A (en) Treatment for molasses spent wash and other wastewaters
JP3434438B2 (en) Wastewater treatment method and wastewater treatment device
JP4997724B2 (en) Organic wastewater treatment method
JP2008086848A (en) Apparatus and method for treating organic liquid waste
KR101099869B1 (en) Method and apparatus for treating anaerobic digestive fluid
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
CN113277677B (en) Treatment method and reuse water treatment process for production wastewater of disposable nitrile gloves
JP2018176131A (en) Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
JPH05345195A (en) Method for treating waste water
JP6186944B2 (en) Papermaking wastewater treatment method
JP5951984B2 (en) Biological treatment method of organic wastewater
JPH0137196B2 (en)
JP4595230B2 (en) Anaerobic digestion apparatus and anaerobic digestion method
JPH07171600A (en) Washing concentration of digested sludge and washing concentration agent
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
CN107381971A (en) A kind of collaboration processing high chemical oxygen demand, high ammonia nitrogen, the technique of high phosphorus waste water
CN105314788B (en) Integrated multi-zone wastewater treatment system and process
JPH0230320B2 (en)
JP2005007246A (en) Treatment method for organic waste water
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JP3400622B2 (en) Method and apparatus for treating organic sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011