JPH10249376A - Treatment of organic waste water such as sewage - Google Patents

Treatment of organic waste water such as sewage

Info

Publication number
JPH10249376A
JPH10249376A JP6124697A JP6124697A JPH10249376A JP H10249376 A JPH10249376 A JP H10249376A JP 6124697 A JP6124697 A JP 6124697A JP 6124697 A JP6124697 A JP 6124697A JP H10249376 A JPH10249376 A JP H10249376A
Authority
JP
Japan
Prior art keywords
sludge
sewage
tank
biological treatment
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6124697A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Murakami
文祥 村上
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP6124697A priority Critical patent/JPH10249376A/en
Publication of JPH10249376A publication Critical patent/JPH10249376A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a new technique by which the amts. of both the green sludge and excess sludge generated from the equipment for treating an org. waste water such as sewage are remarkably and rationally decreased. SOLUTION: The org. sewage is separated into solid and liq., the SS is removed as separated sludge, and then the separated water is aerobically treated by this method. The separated sludge is anaerobically digested, the residue 12 from an anaerobic digestion tank 5, etc., is supplied to an aerobic treating tank 2, etc. and a part of the sludge from the aerobic treating tank 2, etc. is extracted and supplied to an ozonization tank 6. The ozonized sludge is preferably supplied to the aeration tank 2 using an oxygen-contg. gas. Meanwhile, a high molecular flocculant 8 is added to the org. sewage in the solid liq. separation to conduct flocculation and separation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水などの有機性
汚水処理施設における汚泥の排出をほぼゼロにでき、汚
泥処理処分を著しく合理化できる技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique capable of substantially eliminating sludge discharge in an organic sewage treatment facility for sewage or the like, and remarkably streamlining sludge treatment and disposal.

【0002】[0002]

【従来の技術】下水などの有機性汚水については、種々
の処理を行って放流できる程度の水質の処理水とされて
いるが、その処理法としては、好気性生物処理法が最も
広く採用されている。その有機性汚水の好気性生物処理
法に関して、代表的な有機性汚水である下水処理を例に
挙げて説明する。下水処理施設からは毎日、最初沈殿池
から排出される汚泥である生汚泥、好気性生物処理工程
で増殖する汚泥である余剰生物汚泥などが大量に発生し
ている。従来、これらの汚泥はポリマなどの汚泥脱水助
剤を添加して機械脱水機で脱水し、そこで分離された脱
水ケーキを焼却処分しているが、汚泥が大量な場合、脱
水助剤コスト、汚泥脱水機設備費、焼却用補助燃料コス
ト、焼却炉設備費等が膨大になり、大きな負担になって
いる。また焼却灰の処分にも苦慮しており、最近は焼却
灰を溶融する技術が検討されているが、溶融炉の設備、
維持管理コストが大きいものとなるなどの問題がある。
2. Description of the Related Art Organic sewage such as sewage is treated as water of such a quality that it can be discharged after being subjected to various treatments. As a treatment method, an aerobic biological treatment method is most widely used. ing. The aerobic biological treatment method of the organic sewage will be described by taking sewage treatment, which is a typical organic sewage, as an example. From the sewage treatment facilities, a large amount of raw sludge discharged from the sedimentation basin and surplus biological sludge that is proliferated in the aerobic biological treatment process are generated in large quantities every day. Conventionally, these sludges are dewatered with a mechanical dehydrator by adding a sludge dewatering aid such as a polymer, and the separated dewatered cake is incinerated there. Dewatering equipment costs, auxiliary fuel costs for incineration, incinerator equipment costs, etc., have become enormous and are a great burden. In addition, the company is also struggling with the disposal of incinerated ash.
There are problems, such as high maintenance costs.

【0003】従来より、汚泥減量化法の一方法として、
嫌気性消化法が公知であるが、長時間嫌気性消化して
も、どうしても分解できない消化残物が多量に残ってし
まい、この処分が難題である。また、余剰生物汚泥をオ
ゾン酸化して汚泥の生物分解性を高めた後、活性汚泥法
の曝気層などの好気性生物処理槽に返送する汚泥減量化
技術が特開平7−116685号公報に記載されており
公知であるが、前記公知技術は最初沈殿池を設けずに、
直接好気性生物処理することを基本にしているため、下
水処理において余剰生物汚泥以上に大量に発生する最初
沈殿池からの生汚泥の処理処分法については何ら開示さ
れていない。つまり、前記公知技術は余剰生物汚泥の減
量化には効果があっても、生汚泥をいかにして合理的に
処理処分法するかについての考え方、具体的手段が開示
されていなかった。
[0003] Conventionally, as one method of sludge reduction method,
Although the anaerobic digestion method is known, even if the anaerobic digestion is performed for a long time, a large amount of digestion residue that cannot be decomposed remains, and this disposal is a difficult task. Japanese Patent Application Laid-Open No. Hei 7-116865 discloses a technology for reducing the amount of sludge in which excess biological sludge is oxidized with ozone to increase the biodegradability of the sludge and then returned to an aerobic biological treatment tank such as an aeration layer of the activated sludge method. Although it is known and known, the above-mentioned known technique does not initially provide a sedimentation tank,
Since it is based on direct aerobic biological treatment, there is no disclosure of a method for treating and disposing of raw sludge from a primary sedimentation basin generated in a larger amount than excess biological sludge in sewage treatment. In other words, even though the above-mentioned known technology is effective in reducing the amount of excess biological sludge, no idea or specific means for how to rationally treat and dispose of raw sludge has been disclosed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、嫌気性消化
法とオゾンによる汚泥減量化技術を新規な態様で結合
し、生汚泥、余剰生物汚泥の両方を著しく合理的に減量
化できる新技術を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention combines a anaerobic digestion method and a sludge reduction technique using ozone in a novel manner, thereby enabling a new technique capable of remarkably reducing both raw sludge and excess biological sludge. The task is to provide

【0005】[0005]

【課題を解決するための手段】前記課題は、本発明の好
気性生物処理法、嫌気性消化法とオゾンによる汚泥減量
化技術を新規な態様で結合した汚水の処理方法によって
達成される。すなわち、 (1)有機性汚水を固液分離してSSを分離汚泥として
除去した後、前記固液分離からの分離水を好気性生物処
理する方法において、前記分離汚泥を嫌気性消化した
後、前記嫌気性消化工程からの消化残物を前記好気性生
物処理工程に供給するとともに、前記好気性生物処理工
程からの汚泥の一部を引き抜いて、オゾン処理工程に供
給することを特徴とする有機性汚水の処理方法。 (2)前記オゾン処理工程から出た汚泥をさらに酸素含
有ガスによる曝気工程に供給することを特徴とする前記
(1)記載の有機性汚水の処理方法。 (3)前記有機性汚水の固液分離として、前記有機性汚
水に高分子凝集剤を添加して凝集分離を行うことを特徴
とする前記(1)記載の有機性汚水の処理方法。 (4)前記好気性生物処理工程から排出される浄化処理
水に無機凝集剤を添加して凝集分離することを特徴とす
る前記(1)記載の有機性汚水の処理方法。 本発明にいう好気性生物処理工程とは、活性汚泥法、嫌
気好気活性汚泥法、生物学的硝化脱窒素法、担体添加活
性汚泥法、生物膜法等の少なくとも工程内に好気性曝気
槽を持つ生物処理法の総称を意味する。
The above object is achieved by a method for treating sewage in which the aerobic biological treatment method, anaerobic digestion method and sludge reduction technology using ozone according to the present invention are combined in a novel manner. That is, (1) after the organic sludge is subjected to solid-liquid separation to remove SS as separated sludge, and then the separated water from the solid-liquid separation is subjected to aerobic biological treatment. Organic, wherein the digestion residue from the anaerobic digestion step is supplied to the aerobic biological treatment step, and a part of the sludge from the aerobic biological treatment step is withdrawn and supplied to the ozone treatment step. Of wastewater treatment. (2) The method for treating organic sewage according to (1), wherein the sludge discharged from the ozone treatment step is further supplied to an aeration step using an oxygen-containing gas. (3) The method for treating organic sewage according to (1), wherein the organic sewage is subjected to coagulation separation by adding a polymer coagulant to the organic sewage as solid-liquid separation. (4) The method for treating organic sewage according to (1), wherein an inorganic flocculant is added to the purified effluent discharged from the aerobic biological treatment step to perform flocculation and separation. The aerobic biological treatment step referred to in the present invention is an activated aerobic aeration tank at least in the steps of activated sludge method, anaerobic aerobic activated sludge method, biological nitrification denitrification method, carrier-added activated sludge method, biofilm method, etc. Means a general term for biological treatment methods.

【0006】[0006]

【発明の実施の形態】本発明を図面を参照することによ
り具体的に説明するが、図1により本発明の一実施態様
を説明する。図1において、下水7は最初沈殿池1に流
入させ、下水中のSSを沈降分離する。分離した汚泥を
生汚泥9という。この際下水7に高分子凝集剤8(カチ
オンポリマーが好適)を添加してSS性有機物を高度に
凝集分離除去すると、後続する好気性生物処理工程から
の余剰生物汚泥発生量が大きく減少するので、後記する
オゾン酸化工程のオゾン所要量が著しく減少するので非
常に好ましい。最初沈殿池1からの沈殿分離水は好気性
生物処理工程(活性汚泥処理の曝気槽2など)に供給
し、BODを除去する。曝気槽2(活性汚泥法などの好
気性生物処理を行う槽)からの流出スラリーは固液分離
するため最終沈殿池3において沈殿分離され、浄化され
た処理水17が得られる。また、最終沈殿池3において
沈殿した汚泥は、その大部分は返送汚泥16として曝気
槽2に返送され曝気槽2内のMLSSの濃度の調整に寄
与する。最終沈殿池3からの沈殿汚泥の一部は引き抜き
汚泥15としてオゾン酸化槽6に移送され、そこでオゾ
ン酸化し、汚泥の生物分解性が向上する。オゾン酸化汚
泥は曝気槽2に返送され好気性生物処理により炭酸ガ
ス、水に分解され消滅する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described with reference to the drawings. One embodiment of the present invention will be described with reference to FIG. In FIG. 1, sewage 7 first flows into the sedimentation basin 1, and SS in the sewage is settled and separated. The separated sludge is referred to as raw sludge 9. At this time, when a high-molecular flocculant 8 (preferably a cationic polymer) is added to the sewage 7 to flocculate and remove SS organic substances to a high degree, the amount of excess biological sludge generated from the subsequent aerobic biological treatment step is greatly reduced. This is very preferable since the required amount of ozone in the ozone oxidation step described later is significantly reduced. The sediment separation water from the first sedimentation basin 1 is supplied to an aerobic biological treatment step (such as an aeration tank 2 for activated sludge treatment) to remove BOD. The slurry discharged from the aeration tank 2 (a tank for performing an aerobic biological treatment such as an activated sludge process) is separated and separated in the final sedimentation basin 3 for solid-liquid separation, and purified treated water 17 is obtained. Most of the sludge settled in the final sedimentation basin 3 is returned to the aeration tank 2 as returned sludge 16 and contributes to the adjustment of the concentration of MLSS in the aeration tank 2. Part of the settled sludge from the final settling tank 3 is transferred to the ozone oxidation tank 6 as drawn sludge 15, where it is oxidized with ozone and the biodegradability of the sludge is improved. The ozone oxidized sludge is returned to the aeration tank 2 and is decomposed into carbon dioxide and water by the aerobic biological treatment and disappears.

【0007】一方、最初沈殿池1において沈殿した生汚
泥9は汚泥濃縮工程4において濃縮汚泥10と分離水1
1に固液分離される。汚泥濃縮工程4には遠心濃縮機、
浮上濃縮、沈殿濃縮などの手段が用いられる。汚泥濃縮
工程4において固形物濃度を高めた濃縮汚泥10は、嫌
気性消化槽5に供給し、有機物をメタン醗酵させ汚泥を
減量化する。しかし、この嫌気性消化では供給された濃
縮汚泥10のSS重量の約30%程度が消化残物(消化
できない汚泥と嫌気性微生物菌体の合計)として残って
しまう。本発明では、この消化残物12を下水処理工程
の活性汚泥曝気槽2に供給し、前記沈殿分離水とともに
活性汚泥法などの好気性生物処理を行う。嫌気性消化残
物12は活性汚泥曝気槽内で嫌気性から好気性状態に転
換され、一部は好気性微生物によって分解され減量す
る。
On the other hand, the raw sludge 9 precipitated in the first settling tank 1 is separated from the concentrated sludge 10 and the separated water 1 in the sludge concentration step 4.
1 is subjected to solid-liquid separation. In the sludge concentration step 4, a centrifugal concentrator,
Means such as flotation concentration and precipitation concentration are used. The concentrated sludge 10 whose solid matter concentration has been increased in the sludge concentration step 4 is supplied to the anaerobic digestion tank 5, where methane fermentation of organic matter is performed to reduce sludge. However, in this anaerobic digestion, about 30% of the SS weight of the supplied concentrated sludge 10 remains as digestion residue (total of indigestible sludge and anaerobic microbial cells). In the present invention, this digest residue 12 is supplied to the activated sludge aeration tank 2 in the sewage treatment step, and an aerobic biological treatment such as an activated sludge method is performed together with the sediment separation water. The anaerobic digestion residue 12 is converted from an anaerobic state to an aerobic state in an activated sludge aeration tank, and a part thereof is decomposed and reduced by aerobic microorganisms.

【0008】前記曝気槽2内における活性汚泥による好
気性生物処理では、BOD除去が行われるが、最初沈殿
池1からの分離水及び嫌気性消化槽5からの消化残物1
2の流入に伴い、SSが流入し、系内に汚泥量が増加す
るので、次のような手段で汚泥の増加を抑制する。すな
わち、好気性生物処理工程(曝気槽2)からの汚泥の一
部を引き抜き、この引き抜き汚泥15をオゾン酸化し汚
泥の生物分解性を向上させた上で再び曝気槽2に戻す。
オゾン酸化処理すると、オゾンは強力な酸化作用があ
り、汚泥を構成する微生物菌体の菌体外高分子が酸化分
解し低分子化する。また微生物細胞壁の強度も弱くな
り、汚泥が好気性微生物の食料に変化するものと思われ
る。この結果、嫌気性消化からの消化残物及び余剰生物
汚泥の両者がほぼ完全に分解消滅し、系外に排出すべき
汚泥は実質的になくなる。
In the aerobic biological treatment using activated sludge in the aeration tank 2, BOD is removed. First, water separated from the sedimentation tank 1 and digestion residue 1 from the anaerobic digestion tank 5 are removed.
With the inflow of 2, SS flows in and the amount of sludge increases in the system. Therefore, the increase in sludge is suppressed by the following means. That is, a part of the sludge from the aerobic biological treatment step (aeration tank 2) is withdrawn, the extracted sludge 15 is oxidized with ozone to improve the biodegradability of the sludge, and then returned to the aeration tank 2.
When subjected to ozone oxidation, ozone has a strong oxidizing effect, and extracellular macromolecules of microbial cells constituting sludge are oxidized and decomposed to low molecular weight. In addition, the strength of the microbial cell wall is also weakened, and it is considered that the sludge turns into food for aerobic microorganisms. As a result, both digestion residue and excess biological sludge from anaerobic digestion are almost completely eliminated and eliminated, and sludge to be discharged out of the system is substantially eliminated.

【0009】本発明においては、オゾン酸化した汚泥を
供給する好気性生物処理槽としては、下水浄化のための
活性汚泥曝気槽(図1の曝気槽2)を利用する方法の他
に、図2に示すように下水の好気性生物処理とは別個に
曝気槽Aを設けて好気性生物処理を行い、処理した汚泥
の一部である曝気汚泥18は系外の下水浄化のための活
性汚泥曝気槽2などに移送し、他の一部である循環汚泥
19はオゾン酸化槽Bに移送し、オゾン酸化槽Bでオゾ
ン酸化した汚泥を曝気槽Aに還流する処理を繰り返す方
法でも良い。オゾン酸化汚泥を好気性生物処理すると汚
泥の分解減量化に平行してかなり多量に難分解性COD
が生成するが、図2の方法では、汚泥が曝気槽Aとオゾ
ン酸化槽Bとに多数回循環して処理するため、難分解性
CODの生成が抑制されることが認められた。なお、好
気性生物処理工程から引き抜いた好気性汚泥を生汚泥と
ともに嫌気性消化し、生物汚泥を嫌気性微生物により分
解してから、消化残物を好気性生物処理工程に流入させ
るようにすると、オゾン処理すべき汚泥量が減少し、オ
ゾン処理コストが低減するので好ましい。
In the present invention, as the aerobic biological treatment tank for supplying the ozone-oxidized sludge, besides the method using an activated sludge aeration tank (aeration tank 2 in FIG. 1) for sewage purification, FIG. As shown in the figure, an aerobic biological treatment is performed by providing an aeration tank A separately from the sewage aerobic biological treatment, and the aerated sludge 18, which is a part of the treated sludge, is activated sludge aeration for sewage purification outside the system. A method may be adopted in which the processing is transferred to the tank 2 and the like, and the circulating sludge 19 as another part is transferred to the ozone oxidation tank B and the sludge oxidized in the ozone oxidation tank B is returned to the aeration tank A. Aerobic biological treatment of ozone oxidized sludge produces a considerable amount of non-degradable COD in parallel with sludge decomposition and reduction.
However, in the method of FIG. 2, since the sludge is circulated and processed many times in the aeration tank A and the ozone oxidation tank B, it is recognized that the generation of persistent COD is suppressed. The aerobic sludge extracted from the aerobic biological treatment step is anaerobically digested together with the raw sludge, the biological sludge is decomposed by the anaerobic microorganisms, and the digested residue is allowed to flow into the aerobic biological treatment step. This is preferable because the amount of sludge to be ozonated is reduced and the cost of ozonation is reduced.

【0010】下水中のリン酸イオンは、従来の標準的な
好気性生物処理法では、リン酸イオンの一部が活性汚泥
に吸収されて除去され、余剰汚泥として系外に除去され
るため、処理された下水のリンは原水よりもかなり低下
するが、汚泥を減量化する本発明では、余剰生物汚泥が
系外に排出されなくなるので原理的にリン酸イオンの除
去率はゼロになる。従って、リンの除去が望まれる場
合、本発明では処理された下水(最終沈殿池流出水)に
硫酸アルミニウム、PAC、ポリ鉄、塩化鉄等の無機凝
集剤を添加し、凝集分離することによってこの矛盾を解
決できた。また、一般に嫌気性消化工程では、図3のよ
うに嫌気性消化槽Cで処理した嫌気性消化汚泥を膜分
離、または遠心分離のような固液分離装置Dによって固
液分離し、高濃度の嫌気性菌を消化槽内に維持させるよ
うにすることが生汚泥の嫌気分解率を向上する上で好ま
しい。
In the conventional standard aerobic biological treatment method, phosphate ions in sewage are partly absorbed and removed by activated sludge, and are removed outside the system as excess sludge. Although the phosphorus of the treated sewage is considerably lower than that of the raw water, in the present invention in which the sludge is reduced, excess biological sludge is not discharged out of the system, so that the phosphate ion removal rate becomes zero in principle. Therefore, when the removal of phosphorus is desired, the present invention adds an inorganic coagulant such as aluminum sulfate, PAC, polyiron, iron chloride, etc. to the treated sewage (final sedimentation tank effluent) and performs coagulation separation. The inconsistency was resolved. In general, in the anaerobic digestion step, as shown in FIG. 3, the anaerobic digestion sludge treated in the anaerobic digestion tank C is subjected to solid-liquid separation by a solid-liquid separation device D such as membrane separation or centrifugation. It is preferable to maintain anaerobic bacteria in the digestion tank in order to improve the anaerobic decomposition rate of raw sludge.

【0011】次にオゾン酸化工程について補足説明す
る。オゾン酸化槽に供給する汚泥量は、本発明における
好気性生物処理工程の余剰生物汚泥発生量の3〜4倍を
供給すると汚泥はほぼ完全に分解消滅できる。オゾンの
添加量は、オゾン処理工程に供給する汚泥の固形物あた
り、30〜80g・オゾン/kg・SS程度に設定する
と、汚泥の生物分解性が充分向上する。オゾン接触槽を
採用できるが、汚泥がオゾン酸化されると激しく発泡す
るので消泡機、または消泡剤の添加設備を設ける。
Next, the ozone oxidation step will be supplementarily described. If the amount of sludge supplied to the ozone oxidation tank is 3 to 4 times the amount of surplus biological sludge generated in the aerobic biological treatment step in the present invention, the sludge can be almost completely eliminated. When the amount of added ozone is set to about 30 to 80 g · ozone / kg · SS per solid of sludge supplied to the ozone treatment step, the biodegradability of the sludge is sufficiently improved. Although an ozone contact tank can be adopted, sludge foams violently when it is oxidized with ozone, so a defoaming machine or equipment for adding a defoaming agent is provided.

【0012】以上説明したように、本発明は以下の〜
に記載するような新規な思想を適用したので、有機性
汚水の処理施設の生汚泥及び余剰生物処理汚泥をきわめ
て合理的に分解消滅でき、汚泥脱水、焼却、焼却灰の溶
融等が不要になる。すなわち、 生汚泥を嫌気性消化して、先ず一部分を分解減量化し
てから、消化残物を好気性生物処理工程に有機性汚水と
ともに供給し、好気性微生物によってさらに消化残物を
分解する。この過程で消化残物に含まれる還元性物質
(硫化水素、硫化物等)を好気性菌によって酸化し、オ
ゾン消費量を削減させる。 有機性汚水及び嫌気性消化残物を供給する好気性生物
処理工程から、汚泥の一部を引き抜き、オゾン酸化して
好気性生物処理する。または引き抜き汚泥を好気性生物
処理した後、曝気する。 有機性汚水に高分子凝集剤を添加して高度にSSを凝
集除去してから好気性生物処理することにより、余剰生
物汚泥の発生量を減少させ、オゾン所要量を削減する。
As described above, the present invention provides the following:
Applying the new concept described in (1), raw sludge and excess biologically treated sludge in the treatment facility for organic wastewater can be eliminated very rationally, eliminating the need for sludge dewatering, incineration, and melting of incinerated ash. . That is, raw sludge is anaerobically digested, a part of the sludge is first decomposed and reduced, and then the digested residue is supplied to an aerobic biological treatment step together with organic sewage, and the digested residue is further decomposed by aerobic microorganisms. In this process, reducing substances (hydrogen sulfide, sulfide, etc.) contained in digestion residue are oxidized by aerobic bacteria to reduce ozone consumption. A part of the sludge is withdrawn from an aerobic biological treatment step that supplies organic sewage and anaerobic digestion residue, and is subjected to aerobic biological treatment by ozone oxidation. Alternatively, the extracted sludge is aerated after aerobic biological treatment. By adding a polymer flocculant to organic wastewater and flocculating and removing SS to a high degree, and then performing aerobic biological treatment, the generation amount of excess biological sludge is reduced and the required amount of ozone is reduced.

【0013】[0013]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこれらの実施例のみに限定される
ものではない。 実施例1 下水を対象として、図1に示す工程に基づいて、本発明
の実証試験を行った。処理に使用した下水の水質を第1
表に示す。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to only these examples. Example 1 A proof test of the present invention was performed on sewage based on the process shown in FIG. The quality of sewage used for treatment is the first
It is shown in the table.

【0014】[0014]

【表1】 [Table 1]

【0015】本発明の処理方法における試験条件を第2
表、第3表及び第4表に示す。第2表には、下水に高分
子凝集剤を添加し、最初沈澱池で沈殿した下水の凝集物
(生汚泥)を濃縮した濃縮汚泥を好気性生物処理し、最
終沈澱池で固液分離し処理水を得る活性汚泥処理の条件
を示す。第3表では濃縮生汚泥の一部の嫌気性消化槽で
嫌気性する条件を示し、また第4表では好気性生物処理
からの引き抜き汚泥(余剰生物汚泥)と嫌気性消化槽か
らの消化残物の一部をオゾン酸化処理する汚泥減容化バ
イパス工程の処理条件を示す。
[0015] The test conditions in the processing method of the present invention are the following.
The results are shown in Tables, Tables 3 and 4. Table 2 shows that a polymer flocculant was added to sewage, a concentrated sludge obtained by concentrating sewage agglomerate (raw sludge) precipitated in a sedimentation tank was subjected to aerobic biological treatment, and solid-liquid separation was performed in a final sedimentation tank. The conditions of the activated sludge treatment for obtaining the treated water are shown. Table 3 shows the conditions for anaerobic digestion of concentrated raw sludge in some anaerobic digesters, and Table 4 shows sludge extracted from aerobic biological treatment (excess biological sludge) and digestion residue from the anaerobic digester. The processing conditions of the sludge volume reduction bypass step in which a part of the material is subjected to the ozone oxidation treatment are shown.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】以上の条件で8ヶ月間、系外に汚泥を引き
抜いて廃棄処理することなく下水を浄化する試験を行っ
た結果、8ヶ月経過後も活性汚泥の曝気槽中のMLSS
の量は3000〜3500mg/リットルの条件を維持
した。従って本発明によれば生汚泥、余剰生物汚泥の両
者がほぼ完全に分解したことが認められた。最初沈澱池
でのSS除去率は高分子凝集剤の効果により約80%と
高いものであった。本発明の処理水(最終沈澱池流出
水)は、第5表に示すようにすぐれた水質のものであ
る。
Under the above conditions, a test was conducted to purify the sewage without pulling out sludge for 8 months without disposing the sludge for 8 months. As a result, the MLSS in the aeration tank for activated sludge was maintained after 8 months.
Maintained the condition of 3000-3500 mg / liter. Therefore, according to the present invention, it was recognized that both the raw sludge and the surplus biological sludge were almost completely decomposed. The SS removal rate in the first settling basin was as high as about 80% due to the effect of the polymer flocculant. The treated water (final sedimentation basin effluent) of the present invention has excellent water quality as shown in Table 5.

【0020】[0020]

【表5】 [Table 5]

【0021】実施例2 実施例1の最終沈澱池流出水(第5表の水質のもの)に
硫酸アルミニウムを120mg/リットルを添加した
後、アニオンポリマ(エバグロースA153)を1mg
/リットル添加してジャーテスターにより凝集沈澱処理
したところ、上澄み水の水質はSS 2mg/リット
ル、BOD 3mg/リットル、COD 5.2mg/
リットル、リン 0.14mg/リットルとなり、CO
D、リンが著しく減少でき、汚泥減容化にともなう処理
水質の悪化の問題を解決することができた。
Example 2 After adding 120 mg / l of aluminum sulfate to the final sedimentation basin effluent of Example 1 (water quality shown in Table 5), 1 mg of an anionic polymer (Ebagrose A153) was added.
Per liter and coagulated and precipitated by a jar tester, the quality of the supernatant water was 2 mg / L for SS, 3 mg / L for BOD, and 5.2 mg / L for COD.
Liter, phosphorus 0.14mg / liter, CO
D and phosphorus could be remarkably reduced, and the problem of deterioration of treated water quality due to sludge volume reduction could be solved.

【0022】比較例1 図1の工程から最初沈澱池、嫌気性消化槽を除去し、公
知技術(特開平7−116685号公報に記載されてい
る技術。)に示されているように、下水を直接活性汚泥
処理し、オゾンによる汚泥減量化処理を試みたところ、
汚泥の発生量はほぼ完全に抑制されたが、オゾン所要量
が本発明の3.7倍に増加し、オゾンコストが高額すぎ
実用的ではなかった。しかも処理水のCODが18.3
mg/リットルとなり、本発明の実施例1の処理水のC
ODの値よりも悪化した。この原因はオゾン酸化される
汚泥量が増加し、それに伴って難分解性CODの生成量
が増加したためである。
Comparative Example 1 First, the sedimentation basin and the anaerobic digestion tank were removed from the process of FIG. 1, and the sewage was discharged as shown in the known art (the technology described in Japanese Patent Application Laid-Open No. Hei 7-116865). Was directly treated with activated sludge, and the sludge reduction treatment with ozone was attempted.
Although the amount of generated sludge was almost completely suppressed, the required amount of ozone increased 3.7 times that of the present invention, and the ozone cost was too high to be practical. Moreover, the COD of the treated water is 18.3.
mg / liter, and the C of the treated water of Example 1 of the present invention.
It became worse than the value of OD. This is because the amount of sludge to be oxidized by ozone increases, and the amount of persistent COD produced increases accordingly.

【0023】[0023]

【発明の効果】本発明によれば次の効果が得られる。 (1)有機性汚水の浄化処理施設から発生する生汚泥
は、嫌気性消化することにより減量化し、生物処理から
の汚泥のみをオゾン処理して生物処理工程を含めて減量
化できるようにしているので、生汚泥、余剰生物汚泥の
両方を合理的に分解消滅でき、オゾン所要量が大幅に減
少する。 (2)有機性汚水中のSSを高分子凝集剤により高度に
除去してから、好気性生物処理処理することによって生
物処理工程での余剰生物汚泥の発生量が減少し、それに
伴ってオゾン所要量も減少できる。 (3)余剰生物汚泥がほとんど排出されないので、汚泥
脱水機、汚泥脱水助剤、汚泥焼却炉、汚泥焼却灰溶融炉
が不要になる。 (4)最終沈殿池からの処理水に無機凝集剤を添加する
ことにより、汚泥減量化に伴う処理水におけるリンの悪
化問題を矛盾なく解決できる。
According to the present invention, the following effects can be obtained. (1) Raw sludge generated from an organic wastewater purification treatment facility is reduced by anaerobic digestion, and only sludge from biological treatment is subjected to ozone treatment so that the amount can be reduced including the biological treatment process. Therefore, both raw sludge and surplus biological sludge can be rationally eliminated and eliminated, and the required amount of ozone is greatly reduced. (2) After removing SS in organic sewage to a high degree with a polymer flocculant, aerobic biological treatment reduces the amount of excess biological sludge generated in the biological treatment process, and thus requires ozone. The amount can also be reduced. (3) Since almost no excess biological sludge is discharged, a sludge dewatering machine, a sludge dewatering aid, a sludge incinerator, and a sludge incineration ash melting furnace become unnecessary. (4) By adding an inorganic coagulant to the treated water from the final sedimentation basin, the problem of deterioration of phosphorus in the treated water due to sludge reduction can be solved without contradiction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性汚水の処理方法フローの1例を
示す説明図である。
FIG. 1 is an explanatory diagram showing one example of a flow of an organic wastewater treatment method of the present invention.

【図2】下水の好気性生物処理と別工程で行うオゾン酸
化処理例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of ozone oxidation treatment performed in a separate step from aerobic biological treatment of sewage.

【図3】効率的な嫌気性消化処理のフローの1例を示す
説明図である。
FIG. 3 is an explanatory diagram showing an example of a flow of an efficient anaerobic digestion process.

【符号の説明】[Explanation of symbols]

1 最初沈殿池 2 曝気槽 3 最終沈殿池 4 汚泥濃縮 5 嫌気性消化槽 6 オゾン酸化槽 7 下水 8 高分子凝集剤 9 生汚泥 10 濃縮汚泥 11 分離水 12 消化残物 13 消化ガス 14 オゾン 15 引き抜き汚泥 16 返送汚泥 17 処理水 18 曝気汚泥 19 循環汚泥 20 分離水 A 曝気槽 B オゾン酸化槽 C 嫌気性消化槽 D 固液分離装置 DESCRIPTION OF SYMBOLS 1 First sedimentation tank 2 Aeration tank 3 Final sedimentation tank 4 Sludge concentration 5 Anaerobic digestion tank 6 Ozone oxidation tank 7 Sewage 8 Polymer flocculant 9 Raw sludge 10 Condensed sludge 11 Separated water 12 Digestation residue 13 Digestion gas 14 Ozone 15 Withdrawal Sludge 16 Returned sludge 17 Treated water 18 Aerated sludge 19 Circulated sludge 20 Separated water A Aeration tank B Ozone oxidation tank C Anaerobic digestion tank D Solid-liquid separation device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 11/06 C02F 11/06 A 11/08 11/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 11/06 C02F 11/06 A 11/08 11/08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚水を固液分離してSSを分離汚
泥として除去した後、前記固液分離からの分離水を好気
性生物処理する方法において、前記分離汚泥を嫌気性消
化した後、前記嫌気性消化工程からの消化残物を前記好
気性生物処理工程に供給するとともに、前記好気性生物
処理工程からの汚泥の一部を引き抜いて、オゾン処理工
程に供給することを特徴とする有機性汚水の処理方法。
Claims: 1. A method of solid-liquid separating organic wastewater to remove SS as separated sludge, and then subjecting the separated water from the solid-liquid separation to aerobic biological treatment. Organic, wherein the digestion residue from the anaerobic digestion step is supplied to the aerobic biological treatment step, and a part of the sludge from the aerobic biological treatment step is withdrawn and supplied to the ozone treatment step. Of wastewater treatment.
【請求項2】 前記オゾン処理工程から出た汚泥をさら
に酸素含有ガスによる曝気工程に供給することを特徴と
する請求項1記載の有機性汚水の処理方法。
2. The method for treating organic wastewater according to claim 1, wherein the sludge discharged from the ozone treatment step is further supplied to an aeration step using an oxygen-containing gas.
【請求項3】 前記有機性汚水の固液分離として、前記
有機性汚水に高分子凝集剤を添加して凝集分離を行うこ
とを特徴とする請求項1記載の有機性汚水の処理方法。
3. The method for treating organic sewage according to claim 1, wherein the organic sewage is subjected to coagulation separation by adding a polymer coagulant to the organic sewage.
【請求項4】 前記好気性生物処理工程から排出される
浄化処理水に無機凝集剤を添加して凝集分離することを
特徴とする請求項1記載の有機性汚水の処理方法。
4. The method for treating organic sewage according to claim 1, wherein an inorganic coagulant is added to the purified water discharged from the aerobic biological treatment step to perform coagulation separation.
JP6124697A 1997-03-14 1997-03-14 Treatment of organic waste water such as sewage Pending JPH10249376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6124697A JPH10249376A (en) 1997-03-14 1997-03-14 Treatment of organic waste water such as sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6124697A JPH10249376A (en) 1997-03-14 1997-03-14 Treatment of organic waste water such as sewage

Publications (1)

Publication Number Publication Date
JPH10249376A true JPH10249376A (en) 1998-09-22

Family

ID=13165693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6124697A Pending JPH10249376A (en) 1997-03-14 1997-03-14 Treatment of organic waste water such as sewage

Country Status (1)

Country Link
JP (1) JPH10249376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397168B1 (en) * 2001-02-02 2003-09-06 (주)범한엔지니어링 종합건축사 사무소 Apparatus and Method For Animal Waste water Treatment
JP2008086848A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Apparatus and method for treating organic liquid waste
CN109264950A (en) * 2018-11-28 2019-01-25 吴锋 The non-dewatered sludge biological decomposition processing system of one kind and method
US11685675B2 (en) 2013-10-22 2023-06-27 Nuvoda Llc Reduction of substances in contaminated fluids using a naturally occurring biological growth media

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397168B1 (en) * 2001-02-02 2003-09-06 (주)범한엔지니어링 종합건축사 사무소 Apparatus and Method For Animal Waste water Treatment
JP2008086848A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Apparatus and method for treating organic liquid waste
US11685675B2 (en) 2013-10-22 2023-06-27 Nuvoda Llc Reduction of substances in contaminated fluids using a naturally occurring biological growth media
CN109264950A (en) * 2018-11-28 2019-01-25 吴锋 The non-dewatered sludge biological decomposition processing system of one kind and method

Similar Documents

Publication Publication Date Title
US7101482B2 (en) Method and facility for treatment of sludge derive from biological water purification facilities
JP5951986B2 (en) Biological treatment method of organic wastewater
JP3172965B2 (en) Sewage treatment method
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
KR100479649B1 (en) The procces and apparatus of Livestock wastewater treatment.
JP2007061773A (en) Organic sludge treatment method and apparatus
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
JP3887581B2 (en) Sewage treatment equipment
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
JPH10249376A (en) Treatment of organic waste water such as sewage
JPH0698360B2 (en) Method and apparatus for treating night soil wastewater
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
KR20020075635A (en) Process and apparatus for treating sewage or waste water without emitting excess sludge
JPH04131199A (en) Concurrent disposal of night soil and septic tank sludge
JP5951984B2 (en) Biological treatment method of organic wastewater
JPH1052697A (en) Method for reduction of organic sludge
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP3449864B2 (en) Method and apparatus for reducing organic sludge
KR910004127B1 (en) Concentrated organic waste water treating method
JP3526141B2 (en) Method and apparatus for reducing organic sludge and recovering phosphorus resources
US3300401A (en) Process for dewatering organic sludge which has been separated during treatment of waste water
JP2002316191A (en) Method and apparatus for treating organic foul water
JP3308788B2 (en) Organic wastewater treatment method
JP3916697B2 (en) Wastewater treatment method
JPH1133598A (en) Method for biological treatment of organic wastewater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040922