JP3887581B2 - Sewage treatment equipment - Google Patents

Sewage treatment equipment Download PDF

Info

Publication number
JP3887581B2
JP3887581B2 JP2002177121A JP2002177121A JP3887581B2 JP 3887581 B2 JP3887581 B2 JP 3887581B2 JP 2002177121 A JP2002177121 A JP 2002177121A JP 2002177121 A JP2002177121 A JP 2002177121A JP 3887581 B2 JP3887581 B2 JP 3887581B2
Authority
JP
Japan
Prior art keywords
treatment
tank
liquid
sludge
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002177121A
Other languages
Japanese (ja)
Other versions
JP2004016969A (en
Inventor
雅彦 三浦
彰 斉藤
浩二 村越
浩 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2002177121A priority Critical patent/JP3887581B2/en
Publication of JP2004016969A publication Critical patent/JP2004016969A/en
Application granted granted Critical
Publication of JP3887581B2 publication Critical patent/JP3887581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は汚水を清浄化するのに有用な汚水処理設備に関するものである。
【0002】
【従来の技術】
汚水処理設備として、例えば、図4に示す設備が知られている。この設備では、最初沈殿池1に汚水を導入して砂や大ききな懸濁物質[浮遊物質(SS)]を沈殿除去し、上澄み(初沈液)を曝気槽(生物反応槽)2に移液して活性汚泥処理し、得られた活性汚泥処理液を最終沈殿池3に移液して上澄み液と沈殿汚泥に分離し、上澄み液は放水することによって環境へ戻している。
【0003】
このような処理設備には前記沈殿汚泥の処理装置も併設されていることが多い。すなわち最終沈殿池3からの汚泥は、最初沈殿池1からのSSと共にシックナーなどの濃縮装置4に送られ、この濃縮装置4で液体(濃縮分離液)を分離除去することにより、濃縮されている。そして得られた濃縮汚泥を分解槽6において嫌気消化することによって有機成分を消化ガス(メタンなど)として除去し、汚泥をさらに減容化している。この減容化物(分解処理物)は、プレス機などの汎用の脱水装置7で脱水した後、焼却装置8で焼却し、この焼却物が無害であれば肥料や骨材などとして有効利用しており、有害であればコンクリート固化などの不溶化処理によって無害化した後、埋立て等により処分している。
【0004】
一方、前記濃縮装置4からの濃縮分離液、及び前記脱水装置7からの脱水分離液(脱水液)は、返送ライン11を通じて前記最初沈殿池3に返送され、この最初沈殿池3の下流側に設けられた前記曝気槽2で無害化処理することにより、環境へ放水される。
【0005】
近年、前記嫌気消化の効率を高め、メタン発生量を増大したり汚泥の減容度を高めることを目的として、嫌気消化に先だって前処理を施す技術が提案されている。前処理としては、例えば、熱処理(特公平7−32917号公報参照)、超音波処理(特開昭58−76200号公報、特公平4−38478号公報、特公平4−50079号公報参照)、高電圧パルス印加処理(特開平1−210100号公報参照)、高圧気体処理(特公平4−38479号公報参照)、オゾン処理(特開昭59−105897号公報参照)、ミル処理、酸処理、アルカリ処理、酵素処理(特公平7−73719号公報)などの物理的、化学的、又は生物学的処理が提案されている。図5は、前記前処理を施す場合について説明するための設備概略図である。この図5の設備は、嫌気消化を行うための分解槽6の上流側に前記前処理を行うための前処理槽5が設置されている点で、図4の設備と異なる。
【0006】
ところが嫌気消化に先立って前処理5を施すと、嫌気消化6の後に脱水7した時の液(脱水液)のCOD(化学的酸素要求量)や色度が上昇してしまう。そしてこの脱水液は、最初沈殿池1を介して曝気槽2に供給され、活性汚泥処理されるにも拘わらず、十分に浄化されないために放流水の水質が悪化する。
【0007】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、嫌気消化に先立って前処理を施しても、放流水の水質を高く維持できる汚水処理設備を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意研究を重ねる過程において、前処理を施したときの脱水液の特性を詳しく調べた。その結果、脱水液のCODが上昇するときには難分解性有機物の割合が高くなっており(全CODの約75%程度)、曝気槽2の分解処理では不十分であることを突き止めた。また浮遊性有機物の割合も大きくなっていることを突き止めた(全CODの約25%程度)。そしてこれら原因究明検討の結果を受けて、曝気槽で脱水液を活性汚泥処理するのではなく、曝気槽に移液するまえの脱水液が高濃度である段階で活性汚泥処理すれば、難分解性有機物の分解効率を高めることができることを見出し、加えて膜分離を併用して浮遊性有機物を除去しておけば放流水の水質を確実に高く維持できることを見出し、本発明を完成した。
【0009】
すなわち本発明に係る汚水処理設備は、汚水を導入するための沈殿池と、汚水を活性汚泥処理するための曝気槽と、この曝気処理液から活性汚泥を分離するための沈殿池と、この沈殿池から分離除去された汚泥を消化しやすくするための前処理槽(熱処理、超音波処理、高電圧パルス印加処理、高圧気体導入処理、オゾン酸化処理、粉砕処理、酸処理、アルカリ処理、酵素処理などをする槽)と、前処理した汚泥を嫌気消化するための分解槽と、前記分解槽の処理物を脱水するための脱水装置と、この脱水装置からの脱水液を、前記汚水を導入するための沈殿池に戻すための返送ラインとを備えており、
しかも前記脱水液を活性汚泥処理するための曝気手段と、曝気処理した液から活性汚泥を分離除去するための膜分離手段とを備えた浄化装置が、前記脱水装置と返送ラインとの間に挿設されている点に要旨を有するものである。
【0010】
【発明の実施の形態】
以下、添付図面を参照しながら本発明を詳細に説明する。なお各図面において同じ構成部分については同一の符号を付して重複説明を避ける。
【0011】
図1は本発明の汚水処理設備の一例を説明するための概略図であり、図2は図1の汚水処理設備で使用する浄化装置の一例を説明するための概略図である。
【0012】
図1の汚水処理設備は、最初沈殿池1、曝気槽2、最終沈殿池3、濃縮装置4、分解槽6、脱水装置7、焼却装置8、及び返送ライン11で構成されている点で上記図4の例と共通する。しかも図1の汚水処理設備は、前処理槽5が設置されている点で上記図5の例と共通する。そのため分解槽6における嫌気消化の効率が高められており、メタン発生量を増大でき、汚泥の減容度を高めることができる。しかし、嫌気消化・脱水後の脱水液のCOD(化学的酸素要求量)や色度が上昇している。なお前処理槽5には、加熱手段、超音波発生手段、高電圧パルス印加手段、高圧気体導入手段、オゾン供給手段、粉砕手段、酸添加手段、アルカリ添加手段、又は酵素添加手段が単独で或いは組み合わせて設置されており、熱処理、超音波処理、高電圧パルス印加処理、高圧気体処理、オゾン処理、ミル処理、酸処理、アルカリ処理、又は酵素処理を単独で或いは組み合わせて行うことができる。
【0013】
そして図1の例は、脱水装置7と返送ライン11との間に特定の浄化装置9が挿設されている点で上記図5の例と異なる。すなわち水質の悪い脱水液を曝気槽2で処理するのではなく、予め特定の浄化装置9で処理している。そのため放流水の水質を高く維持することができる。
【0014】
前記浄化装置9は、詳細には図2に示されるものである。この装置9は、主として脱水液を活性汚泥処理するための曝気部31と、曝気処理した液から活性汚泥を分離するための濾過部32とを有する浄化槽30で構成されており、前記曝気部31には曝気用気体供給口(曝気手段)33が槽底付近に設置されており、前記濾過部32には膜分離のためのユニット(膜分離手段)34が槽の中程度の高さに設置されている。なお前記膜分離手段は、表面に小孔を有する膜が張られた中空状のユニットであり、膜を透過した液は前記中空部に接続する返送ライン11を介して最初沈殿池1に返送されるようになっている。
【0015】
このような処理装置9を用いると、曝気手段33から空気を吹き込むことにより脱水液を活性汚泥処理できると共に、活性汚泥処理物を膜分離手段34で分離することによって清浄化された浄化液を取り出すことができる。そしてこの浄化液を最初沈殿池1に返送することにより、放流水の水質を高く維持することができる。すなわち脱水液のCODが高いのは、難分解性有機物量と浮遊性有機物が増大しているためである。従って高濃度時に活性汚泥処理して難分解性有機物を効率よく分解し、しかも膜分離によって浮遊性有機物を除去することによって初めて放流水の水質を高く維持することができる。
【0016】
なお処理装置9としては、フェントン酸化処理装置(鉄系触媒、過酸化水素、及び熱処理による有機物酸化処理装置)、蒸発濃縮装置(熱や減圧処理によって水を蒸発回収する装置)なども採用できるが、これら装置ではエネルギー消費が大きく高コストとなるため、実用的でない。
【0017】
前記処理装置9においては、膜分離手段34の下側に気体供給口35も設けられている。さらに膜分離手段34から延出する返送ライン11には逆洗ライン12が接続しており、この逆洗ライン12の他端には洗浄液タンク40が接続している。これら気体供給口35及び洗浄液タンク40を設けておけば、気体供給口35から適宜気体を供給して膜分離手段34の膜面を洗浄することができ、また洗浄液タンク40から膜分離手段40に向けて洗浄液を供給することによって膜面(特に膜に形成された孔)を洗浄することができるため、膜分離手段34の膜面に活性汚泥が堆積して膜分離効率が低下するのを防止できる。なお前記気体供給口35及び洗浄液タンク40の両方(又は一方)は、必ずしも必要ではない。
【0018】
さらに前記処理装置9においては、浄化槽30の底側(特に濾過部32の底側)に取入口を有する汚泥返送ライン13が設けられており、膜分離手段34の膜面を透過しなかった汚泥はこの汚泥返送ライン13を通じて分解槽6に返送される。このため浄化槽30の処理を継続しても、浄化槽30が汚泥で一杯になることを防止でき、しかもこれら汚泥は分解槽6に簡便に移送することができ嫌気消化することができる。なお汚泥返送ライン13は必ずしも必要ではない。
【0019】
また前記処理装置9においては、前記脱水装置7からの脱水液を一旦貯留しておくための脱水液タンク20が設けられており、この脱水液タンク20に貯留した脱水液を前記浄化槽30に移液している。脱水液タンク20を設けておけば、脱水液の流量が変化しても浄化槽30の処理速度を一定に保つことができるため、浄化槽30から排出される液(浄化液)の水質をより確実に高く維持することができ、有利である。さらに脱水液タンク20の入り口側には、スクリーン21が設けられており、このスクリーン21を通して脱水液が脱水液タンク20に入るようになっている。スクリーン21を通すことにより、大きな不溶物を除去することができる。なおこれら脱水液タンク20及び/又はスクリーン21は必ずしも必要ではない。
【0020】
上記処理装置9では、浄化槽30の下流側(膜分離手段34の下流側)に、さらに他の浄化装置を設けてもよい。他の浄化装置としては、オゾン酸化処理装置、促進酸化装置(AOP)、凝集沈殿処理装置、ウルトラフィルター膜分離装置などが挙げられる。
【0021】
上記汚水処理設備は、嫌気消化に先立って前処理を施しながらも、放流水の水質を高く維持することができるため、汚水(下水など)の処理に極めて有用である。なお上記汚水処理設備の好ましい態様及び運転条件は、例えば、以下の通りである。
【0022】
[最初沈殿池1、曝気槽2、最終沈殿池3、濃縮装置4]
最初沈殿池1、曝気槽2、最終沈殿池3及び濃縮装置4で構成される水処理系(活性汚泥処理系)では、公知の運転条件を採用できる。例えば、水処理系への流入液の貯留、水処理系におけるBOD汚泥負荷、曝気量、引き抜き汚泥量の管理などは、公知の条件に従う。
【0023】
[前処理装置5]
前処理装置としては、熱処理装置、超音波処理装置、高電圧パルス印加処理装置、高圧気体処理装置、オゾン処理装置、ミル処理装置、酸処理装置、アルカリ処理装置、酵素処理装置などの種々の装置を使用することができ、運転条件は特に限定されず、公知の条件を採用できる。熱処理装置を使用する場合、例えば、以下のようにして行うことができる。
【0024】
加熱手段:ジャケットに熱水を供給することにより加熱してもよいが、水蒸気を吹き込むことによって加熱するのが望ましい。
加熱温度:通常、120〜220℃程度(好ましくは150〜180℃程度)
加熱時間:通常、0.1〜6時間程度(好ましくは0.2〜2時間程度)
流入蒸気及び流入水(加温用)量:前記温度に達するのに必要な量。
濃縮汚泥の流入量管理:濃縮装置4からの全量。なお必要に応じて、クッションタンクを設け、流入速度を制御してもよい。
熱処理汚泥の流出量管理:成り行き
[分解槽6]
流入する汚泥量管理:全量。なお必要に応じて、クッションタンクを設け、流入速度を制御してもよい。
【0025】
分解槽6では、汚泥の嫌気消化に使用する汎用の菌(嫌気性細菌、メタン生成菌など)を使用して汚泥を分解する。分解時間は、使用する菌の種類等に応じて適宜設定できるが、通常、10〜50日程度、好ましくは15〜30日程度である。
【0026】
[脱水装置7]
脱水装置7としては特に限定されず、プレス式脱水機、遠心分離機などの慣用の脱水装置を含め種々の装置が使用できる。
【0027】
[浄化装置9]
浄化装置9は、上述したように曝気部31と濾過部32とで構成されているため、各部に分けて説明する。
【0028】
−曝気部31−
脱水液の流入量管理:脱水装置7からの全量。なお上述したように必要に応じて、クッションタンク20を設け、流入速度を制御してもよい。
活性汚泥の濃度:通常、5,000〜20,000mg/L程度、好ましくは8,000〜12,000mg/L程度
曝気量:流入液中のBODを除去するために必要とされる酸素を供給可能な程度
滞留時間:約5〜48時間(好ましくは24〜36時間)
【0029】
−濾過部32−
濾過方式:通常、クロスフロー方式を採用できる。
膜孔径:通常、0.05〜0.8μm程度(好ましくは0.2〜0.4μm程度)
BOD・SS除去速度(BOD/SS負荷):0.05〜1kgBOD/MLSS・day程度(好ましくは0.1〜0.2kgBOD/MLSS・day程度)
膜透過フラックス(透水速度):0.05〜0.6m3/m2・day程度(好ましくは0.1〜0.2m3/m2・day程度)
吸引側圧力(絶対圧):上記BOD・SS除去速度及び膜透過フラックスを達成できる程度。通常、0〜50kPa(好ましくは0〜30kPa)。
【0030】
また上述したように浄化装置9では、活性汚泥・膜分離処理の後処理として、オゾン酸化処理装置、凝集沈殿処理装置、ウルトラフィルター膜分離装置などを取り付けてもよい。例えば、オゾン酸化処理装置を取り付ける場合、以下の条件で運転することができる。
オゾン注入量:約0.1〜1.0kg/kgCOD(特に約0.3kg/kgCOD)
【0031】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0032】
なお実施例及び比較例では、下記表1に示す水質の下水を処理した。また各処理装置(最初沈殿池1、曝気槽2、最終沈殿地3、濃縮装置4、熱処理装置5、分解槽6、脱水装置7、浄化装置9)では、下記に示す条件で処理した。
【0033】
[最初沈殿池1]
流入下水量:19,500トン/day
流入返送液量:全量(より詳細には、比較例1及び2では濃縮分離装置4及び脱水装置7からの全量;実施例1及び2では濃縮分離装置1及び浄化装置9からの全量)
滞留時間:約4時間
[曝気槽2]
活性汚泥濃度:2,500mg/L
曝気量:除去すべきBOD量に応じて調整
滞留時間:約8時間
[最終沈殿地3]
滞留時間:約4時間
[濃縮装置4]
装置:シックナー
濃縮度:濃縮物中の固形分含有量が約3質量%となる程度(比較例1)、又は10〜15質量%となる程度(比較例2,実施例1〜2)
[熱処理装置5]
手段:水蒸気加熱
加熱温度:165℃
加熱時間:20分間
流入蒸気及び流入水(加温用)量:12t/day
[分解槽6]
分解時間:20日
[脱水装置7]
手段:ベルトプレス
[浄化装置9]
−曝気部31−
活性汚泥濃度:10,000mg/L
曝気量:除去すべきBOD量に応じて調整
滞留時間:36時間
−濾過部32−
濾過方式:クロスフロー
膜材質:有機膜
膜孔径:0.2〜0.4μm
BOD・SS除去速度:0.2kgBOD/MLSS・day
膜透過フラックス(透水速度):0.2m3/m2・day
吸引側圧力(絶対圧):5〜20kPa(20kPaを超える場合は、逆洗浄を行う)
−オゾン酸化処理−
なお実施例2では、濾過部32での膜分離後、オゾン酸化処理を行っている。オゾン酸化は以下の条件で行う。
オゾン注入量:0.3kg/kgCOD
【0034】
比較例1
図4に示す装置を用い、上記運転条件で下水を処理した。なおこの例では、分解槽6で嫌気消化する前の処理(熱処理)を行っておらず、脱水装置7で得られた脱水液は浄化することなくそのまま最初沈殿池1に返送し、次いで曝気槽2で活性汚泥処理している。
【0035】
比較例2
図5に示す装置を用い、上記運転条件で下水を処理した。なおこの例では、分解槽6で嫌気消化する前の処理(熱処理)を行っているが、脱水装置7で得られた脱水液は浄化することなくそのまま最初沈殿池1に返送し、次いで曝気槽2で活性汚泥処理している。
【0036】
実施例1
図1に示す装置を用い、上記運転条件で下水を処理した。なおこの例では、分解槽6で嫌気消化する前の処理(熱処理)を行っており、脱水装置7で得られた脱水液は浄化装置9で浄化(活性汚泥処理及び膜分離処理)した後で最初沈殿池1に返送した。
【0037】
実施例2
浄化装置9において膜分離処理した液をさらにオゾン分解処理する以外は、実施例1と同様にした。
【0038】
各比較例及び実施例で下水を処理した時の物質収支を図3に示すと共に、下水(A)、初沈液(B)、返送液(C)、濃縮分離液(D)、脱水液又は浄化液(E)、及び放流水(F)の水質(下水道試験法に準拠して測定)を表1〜6に示す。
【0039】
【表1】

Figure 0003887581
【0040】
【表2】
Figure 0003887581
【0041】
【表3】
Figure 0003887581
【0042】
【表4】
Figure 0003887581
【0043】
【表5】
Figure 0003887581
【0044】
【表6】
Figure 0003887581
【0045】
図3より明らかなように、嫌気消化6の前に熱処理5を組み込むと(比較例2,実施例1〜2)、熱処理5がない場合(比較例1)に比べて、消化ガスの発生量を約2倍(=2トン/1トン)にすることができ、しかも脱水ケーキ量を42%(=5トン/12トン)に減らすことができる。
【0046】
ところが表6より明らかなように、単に熱処理5を組み込んだ場合には(比較例2)、熱処理を組み込まない場合(比較例1)に比べて、放流水(F)のCODが16mg/Lと悪化している。
【0047】
そして表6より明らかなように、熱処理5に加えて浄化処理9をも組み込んだ場合には(実施例1〜2)、放流水(F)のCODを12〜13mg/Lにすることができ、比較例1に示す元のレベル(13mg/L)又はそれ以上にまで水質を改善することができる。
【0048】
【発明の効果】
本発明によれば、嫌気消化に先立って前処理を施しているにも拘わらず、嫌気消化後に得られる脱水液を活性汚泥処理及び膜分離処理しているため、前記脱水液を再度曝気槽で処理した後の放流水の水質を高く維持することができる。
【図面の簡単な説明】
【図1】図1は本発明の汚水処理設備の一例を示す概略図である。
【図2】図2は本発明で使用する浄化装置の一例を示す概略図である。
【図3】図3は実施例及び比較例における物質収支を示す図である。
【図4】図4は従来の汚水処理設備の一例を示す概略図である。
【図5】図5は従来の汚水処理設備の一例を示す概略図である。
【符号の説明】
1 最初沈殿池
2 曝気槽
3 最終沈殿池
4 濃縮装置
5 前処理槽
6 分解槽
7 脱水装置
9 浄化装置
11 返送ライン
33 曝気手段
34 膜分離手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sewage treatment facility useful for cleaning sewage.
[0002]
[Prior art]
As a sewage treatment facility, for example, the facility shown in FIG. 4 is known. In this facility, sewage is first introduced into the sedimentation basin 1 to precipitate and remove sand and large suspended solids [suspended material (SS)], and the supernatant (primary sediment) is transferred to the aeration tank (biological reaction tank) 2. The transferred activated sludge is transferred and the obtained activated sludge treated liquid is transferred to the final sedimentation basin 3 and separated into a supernatant liquid and a precipitated sludge, and the supernatant liquid is returned to the environment by discharging water.
[0003]
In many cases, such a treatment facility is also provided with a treatment device for the precipitated sludge. That is, the sludge from the final sedimentation basin 3 is sent to a concentration device 4 such as a thickener together with the SS from the first sedimentation basin 1, and is concentrated by separating and removing the liquid (concentrated separation liquid) with this concentration device 4. . And the organic component is removed as digestion gas (methane etc.) by anaerobically digesting the obtained concentrated sludge in the decomposition tank 6, and the volume of sludge is further reduced. This volume-reduced product (decomposed product) is dehydrated by a general-purpose dehydrator 7 such as a press, and then incinerated by an incinerator 8, and if the incinerated product is harmless, it can be effectively used as fertilizer, aggregate, etc. If it is harmful, it is detoxified by insolubilization such as concrete solidification and then disposed of by landfill.
[0004]
On the other hand, the concentrated separation liquid from the concentration apparatus 4 and the dehydrated separation liquid (dehydration liquid) from the dehydration apparatus 7 are returned to the first settling basin 3 through the return line 11, and downstream of the first settling basin 3. By detoxifying the aeration tank 2 provided, water is discharged into the environment.
[0005]
In recent years, a technique for performing pretreatment prior to anaerobic digestion has been proposed for the purpose of increasing the efficiency of the anaerobic digestion, increasing the amount of methane generated, and increasing the volume of sludge. Examples of the pretreatment include heat treatment (see Japanese Patent Publication No. 7-32917), ultrasonic treatment (Japanese Patent Laid-Open No. 58-76200, Japanese Patent Publication No. 4-38478, Japanese Patent Publication No. 4-50079), High voltage pulse application treatment (see JP-A-1-210100), high-pressure gas treatment (see JP-B-4-38479), ozone treatment (see JP-A-59-105897), mill treatment, acid treatment, Physical, chemical, or biological treatments such as alkali treatment and enzyme treatment (Japanese Patent Publication No. 7-73719) have been proposed. FIG. 5 is an equipment schematic diagram for explaining a case where the pretreatment is performed. The equipment of FIG. 5 is different from the equipment of FIG. 4 in that a pretreatment tank 5 for performing the pretreatment is installed upstream of the decomposition tank 6 for performing anaerobic digestion.
[0006]
However, if pretreatment 5 is performed prior to anaerobic digestion, the COD (chemical oxygen demand) and chromaticity of the liquid (dehydrated liquid) when dehydrated 7 after anaerobic digestion 6 will increase. And although this dehydrating liquid is first supplied to the aeration tank 2 through the sedimentation basin 1 and is treated with activated sludge, it is not sufficiently purified, so the quality of the discharged water is deteriorated.
[0007]
[Problems to be solved by the invention]
The present invention has been made paying attention to the circumstances as described above, and its purpose is to provide a sewage treatment facility that can maintain the quality of discharged water at a high level even if pretreatment is performed prior to anaerobic digestion. It is in.
[0008]
[Means for Solving the Problems]
In the process of intensive studies to solve the above-mentioned problems, the present inventors have examined in detail the characteristics of the dehydrating liquid when pretreatment is performed. As a result, when the COD of the dehydrating liquid increased, the ratio of the hardly decomposable organic matter was high (about 75% of the total COD), and it was found that the decomposition treatment of the aeration tank 2 is insufficient. It was also found that the proportion of floating organic substances was increasing (about 25% of the total COD). Based on the results of these investigations, if the activated sludge is treated at a high concentration of the dehydrated liquid before it is transferred to the aerated tank, the activated sludge is not decomposed. The present inventors have found that the decomposition efficiency of water-soluble organic substances can be increased, and that the quality of the discharged water can be reliably maintained high by removing the floating organic substances in combination with membrane separation.
[0009]
That is, the sewage treatment facility according to the present invention includes a sedimentation basin for introducing sewage, an aeration tank for treating activated sewage, a sedimentation basin for separating activated sludge from the aeration treatment liquid, and this precipitation Pretreatment tank for easy digestion of sludge separated and removed from the pond (heat treatment, ultrasonic treatment, high voltage pulse application treatment, high pressure gas introduction treatment, ozone oxidation treatment, pulverization treatment, acid treatment, alkali treatment, enzyme treatment) Etc.), a decomposition tank for anaerobically digesting the pretreated sludge, a dehydrator for dehydrating the processed material in the decomposition tank, and a dehydrating liquid from the dehydrator to introduce the sewage And a return line for returning to the settling basin for
In addition, a purification device comprising aeration means for treating the dehydrated liquid with activated sludge and a membrane separation means for separating and removing activated sludge from the aerated liquid is inserted between the dehydrator and the return line. It has a gist in the points that are provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In addition, in each drawing, about the same component, the same code | symbol is attached | subjected and duplication description is avoided.
[0011]
FIG. 1 is a schematic diagram for explaining an example of the sewage treatment facility of the present invention, and FIG. 2 is a schematic diagram for explaining an example of a purification apparatus used in the sewage treatment facility of FIG.
[0012]
The sewage treatment facility shown in FIG. 1 includes the first sedimentation tank 1, the aeration tank 2, the final sedimentation tank 3, the concentration apparatus 4, the decomposition tank 6, the dehydration apparatus 7, the incineration apparatus 8, and the return line 11. Common to the example of FIG. Moreover, the sewage treatment facility of FIG. 1 is common to the example of FIG. 5 in that a pretreatment tank 5 is installed. Therefore, the efficiency of anaerobic digestion in the decomposition tank 6 is increased, the amount of methane generated can be increased, and the volume reduction of sludge can be increased. However, the COD (chemical oxygen demand) and chromaticity of the dehydrated liquid after anaerobic digestion and dehydration are increasing. In the pretreatment tank 5, heating means, ultrasonic generation means, high voltage pulse application means, high pressure gas introduction means, ozone supply means, pulverization means, acid addition means, alkali addition means, or enzyme addition means are used alone or They are installed in combination, and heat treatment, ultrasonic treatment, high voltage pulse application treatment, high pressure gas treatment, ozone treatment, mill treatment, acid treatment, alkali treatment, or enzyme treatment can be performed alone or in combination.
[0013]
The example of FIG. 1 is different from the example of FIG. 5 in that a specific purification device 9 is inserted between the dehydrating device 7 and the return line 11. That is, the dehydrated liquid having poor water quality is not processed in the aeration tank 2 but is processed in advance by a specific purification device 9. Therefore, the quality of the discharged water can be maintained high.
[0014]
The purification device 9 is shown in detail in FIG. This device 9 is mainly composed of a septic tank 30 having an aeration unit 31 for treating the dehydrated liquid with activated sludge and a filtration unit 32 for separating the activated sludge from the aerated liquid. A gas supply port (aeration means) 33 for aeration is installed near the bottom of the tank, and a unit (membrane separation means) 34 for membrane separation is installed at a medium height in the filtration section 32. Has been. The membrane separation means is a hollow unit with a membrane having small pores on the surface, and the liquid that has permeated the membrane is first returned to the settling basin 1 via a return line 11 connected to the hollow portion. It has become so.
[0015]
When such a treatment apparatus 9 is used, the dehydrated liquid can be treated by activated sludge by blowing air from the aeration means 33, and the purified purification liquid removed by separating the activated sludge treated product by the membrane separation means 34 is taken out. be able to. And by returning this purification | cleaning liquid to the sedimentation tank 1 initially, the quality of discharged water can be maintained high. That is, the reason why the COD of the dehydrating liquid is high is that the amount of hardly decomposable organic substances and floating organic substances are increasing. Therefore, the quality of the discharged water can be maintained high only by treating activated sludge at a high concentration to efficiently decompose hardly decomposable organic substances and removing floating organic substances by membrane separation.
[0016]
As the treatment device 9, a Fenton oxidation treatment device (an iron-based catalyst, hydrogen peroxide, and an organic matter oxidation treatment device by heat treatment), an evaporation concentration device (a device that evaporates and recovers water by heat or reduced pressure treatment), and the like can be adopted. These devices are not practical because they consume large energy and are expensive.
[0017]
In the processing apparatus 9, a gas supply port 35 is also provided below the membrane separation means 34. Further, a backwash line 12 is connected to the return line 11 extending from the membrane separation means 34, and a cleaning liquid tank 40 is connected to the other end of the backwash line 12. If the gas supply port 35 and the cleaning liquid tank 40 are provided, gas can be appropriately supplied from the gas supply port 35 to clean the membrane surface of the membrane separation means 34, and from the cleaning liquid tank 40 to the membrane separation means 40. Since the membrane surface (especially the holes formed in the membrane) can be cleaned by supplying the cleaning solution toward the membrane, it prevents activated sludge from accumulating on the membrane surface of the membrane separation means 34 and reducing the membrane separation efficiency. it can. Both (or one) of the gas supply port 35 and the cleaning liquid tank 40 are not necessarily required.
[0018]
Further, in the treatment apparatus 9, the sludge return line 13 having an intake port is provided on the bottom side of the septic tank 30 (particularly the bottom side of the filtration unit 32), and the sludge that has not permeated the membrane surface of the membrane separation means 34. Is returned to the decomposition tank 6 through the sludge return line 13. Therefore, even if the treatment of the septic tank 30 is continued, the septic tank 30 can be prevented from being filled with sludge, and these sludge can be easily transferred to the decomposition tank 6 and can be anaerobically digested. The sludge return line 13 is not always necessary.
[0019]
The processing apparatus 9 is provided with a dehydrating liquid tank 20 for temporarily storing the dehydrating liquid from the dehydrating apparatus 7. The dehydrating liquid stored in the dehydrating liquid tank 20 is transferred to the septic tank 30. It ’s liquid. If the dehydrating liquid tank 20 is provided, the processing speed of the septic tank 30 can be kept constant even if the flow rate of the dehydrating liquid changes, so that the water quality of the liquid (purified liquid) discharged from the septic tank 30 can be ensured. It can be kept high and is advantageous. Further, a screen 21 is provided on the entrance side of the dehydrating liquid tank 20, and the dehydrating liquid enters the dehydrating liquid tank 20 through the screen 21. By passing the screen 21, large insoluble matters can be removed. The dehydrating liquid tank 20 and / or the screen 21 are not always necessary.
[0020]
In the processing device 9, another purification device may be provided on the downstream side of the purification tank 30 (downstream side of the membrane separation means 34). Examples of other purification apparatuses include an ozone oxidation treatment apparatus, an accelerated oxidation apparatus (AOP), a coagulation sedimentation treatment apparatus, and an ultrafilter membrane separation apparatus.
[0021]
The sewage treatment facility is extremely useful for the treatment of sewage (such as sewage) because the effluent water quality can be kept high while pretreatment is performed prior to anaerobic digestion. In addition, the preferable aspect and operating conditions of the said waste water treatment facility are as follows, for example.
[0022]
[First sedimentation tank 1, aeration tank 2, final sedimentation tank 3, concentration device 4]
In the water treatment system (activated sludge treatment system) composed of the first sedimentation tank 1, the aeration tank 2, the final sedimentation tank 3, and the concentration device 4, known operation conditions can be adopted. For example, the storage of the influent into the water treatment system, the BOD sludge load, the aeration amount, and the extracted sludge amount in the water treatment system are in accordance with known conditions.
[0023]
[Pretreatment device 5]
As pretreatment devices, various devices such as heat treatment devices, ultrasonic treatment devices, high voltage pulse application treatment devices, high pressure gas treatment devices, ozone treatment devices, mill treatment devices, acid treatment devices, alkali treatment devices, enzyme treatment devices, etc. The operating conditions are not particularly limited, and known conditions can be employed. When using the heat processing apparatus, it can carry out as follows, for example.
[0024]
Heating means: Heating may be performed by supplying hot water to the jacket, but it is desirable to heat by blowing water vapor.
Heating temperature: Usually about 120 to 220 ° C (preferably about 150 to 180 ° C)
Heating time: Usually about 0.1 to 6 hours (preferably about 0.2 to 2 hours)
Inflow steam and inflow water (for heating) amount: The amount necessary to reach the temperature.
Concentrated sludge inflow management: Total amount from the concentrator 4. If necessary, a cushion tank may be provided to control the inflow speed.
Heat treatment sludge outflow management: Result [decomposition tank 6]
Inflow sludge management: Total amount. If necessary, a cushion tank may be provided to control the inflow speed.
[0025]
In the decomposition tank 6, sludge is decomposed using general-purpose bacteria (anaerobic bacteria, methanogens, etc.) used for anaerobic digestion of sludge. The degradation time can be appropriately set according to the type of bacteria used, but is usually about 10 to 50 days, preferably about 15 to 30 days.
[0026]
[Dehydration device 7]
The dehydrating apparatus 7 is not particularly limited, and various apparatuses including a conventional dehydrating apparatus such as a press-type dehydrator or a centrifugal separator can be used.
[0027]
[Purification device 9]
Since the purification device 9 includes the aeration unit 31 and the filtering unit 32 as described above, the purification device 9 will be described separately for each unit.
[0028]
-Aeration unit 31-
Dehydration liquid inflow control: Total amount from the dehydrator 7. As described above, the cushion tank 20 may be provided as needed to control the inflow speed.
Concentration of activated sludge: Usually about 5,000 to 20,000 mg / L, preferably about 8,000 to 12,000 mg / L Aeration amount: Supplying oxygen necessary for removing BOD in the influent Possible residence time: about 5 to 48 hours (preferably 24 to 36 hours)
[0029]
-Filtration part 32-
Filtration method: Usually, a cross flow method can be adopted.
Membrane pore size: Usually about 0.05 to 0.8 μm (preferably about 0.2 to 0.4 μm)
BOD / SS removal rate (BOD / SS load): about 0.05 to 1 kg BOD / MLSS · day (preferably about 0.1 to 0.2 kg BOD / MLSS · day)
Membrane permeation flux (water transmission rate): about 0.05 to 0.6 m 3 / m 2 · day (preferably about 0.1 to 0.2 m 3 / m 2 · day)
Suction side pressure (absolute pressure): To the extent that the above BOD / SS removal rate and membrane permeation flux can be achieved. Usually, 0 to 50 kPa (preferably 0 to 30 kPa).
[0030]
Further, as described above, in the purification device 9, an ozone oxidation treatment device, a coagulation sedimentation treatment device, an ultrafilter membrane separation device, or the like may be attached as a post-treatment of the activated sludge / membrane separation treatment. For example, when an ozone oxidation treatment apparatus is attached, it can be operated under the following conditions.
Ozone injection amount: about 0.1 to 1.0 kg / kg COD (particularly about 0.3 kg / kg COD)
[0031]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
[0032]
In Examples and Comparative Examples, sewage with water quality shown in Table 1 below was treated. Moreover, in each processing apparatus (the first sedimentation tank 1, the aeration tank 2, the final sedimentation place 3, the concentration apparatus 4, the heat processing apparatus 5, the decomposition tank 6, the dehydration apparatus 7, and the purification apparatus 9), it processed on the conditions shown below.
[0033]
[First sedimentation basin 1]
Inflow sewage volume: 19,500 tons / day
Inflow / return liquid amount: total amount (more specifically, in Comparative Examples 1 and 2, the total amount from concentration / separation device 4 and dehydration device 7; in Examples 1 and 2, the total amount from concentration / separation device 1 and purification device 9)
Residence time: About 4 hours [Aeration tank 2]
Activated sludge concentration: 2,500 mg / L
Aeration amount: Adjusted residence time according to the BOD amount to be removed: about 8 hours [final sedimentation site 3]
Residence time: about 4 hours [concentrator 4]
Apparatus: Thickener Concentration: About a solid content in the concentrate is about 3% by mass (Comparative Example 1), or about 10-15% by mass (Comparative Example 2, Examples 1-2)
[Heat treatment apparatus 5]
Means: Steam heating temperature: 165 ° C
Heating time: 20 minutes Inflowing steam and inflowing water (for heating): 12 t / day
[Decomposition tank 6]
Decomposition time: 20 days [Dehydration device 7]
Means: Belt press [Purification device 9]
-Aeration unit 31-
Activated sludge concentration: 10,000 mg / L
Aeration amount: Adjusted residence time according to the BOD amount to be removed: 36 hours-Filtration unit 32-
Filtration method: Cross flow membrane Material: Organic membrane pore size: 0.2-0.4 μm
BOD / SS removal rate: 0.2kg BOD / MLSS / day
Membrane permeation flux (water permeation rate): 0.2 m 3 / m 2 · day
Suction side pressure (absolute pressure): 5 to 20 kPa (If over 20 kPa, reverse cleaning is performed)
-Ozone oxidation treatment-
In Example 2, ozone separation treatment is performed after membrane separation in the filtration unit 32. Ozone oxidation is performed under the following conditions.
Ozone injection amount: 0.3 kg / kg COD
[0034]
Comparative Example 1
Sewage was treated under the above operating conditions using the apparatus shown in FIG. In this example, the treatment (heat treatment) prior to anaerobic digestion in the decomposition tank 6 is not performed, and the dehydrated liquid obtained in the dehydrator 7 is first returned to the sedimentation tank 1 without purification, and then the aeration tank. 2 is activated sludge treatment.
[0035]
Comparative Example 2
Sewage was treated under the above operating conditions using the apparatus shown in FIG. In this example, the treatment (heat treatment) before anaerobic digestion is performed in the decomposition tank 6, but the dehydrated liquid obtained in the dehydrator 7 is first returned to the settling tank 1 without purification, and then the aeration tank. 2 is activated sludge treatment.
[0036]
Example 1
Sewage was treated under the above operating conditions using the apparatus shown in FIG. In this example, the treatment (heat treatment) before anaerobic digestion is performed in the decomposition tank 6, and the dehydrated liquid obtained by the dehydrator 7 is purified (activated sludge treatment and membrane separation treatment) by the purification device 9. First returned to sedimentation basin 1.
[0037]
Example 2
The same procedure as in Example 1 was performed except that the liquid subjected to membrane separation treatment in the purification device 9 was further subjected to ozonolysis treatment.
[0038]
The material balance when sewage is treated in each comparative example and example is shown in FIG. 3, and sewage (A), initial sediment (B), return liquid (C), concentrated separation liquid (D), dehydrated liquid or Tables 1-6 show the water quality (measured according to the sewer test method) of the purified liquid (E) and the discharged water (F).
[0039]
[Table 1]
Figure 0003887581
[0040]
[Table 2]
Figure 0003887581
[0041]
[Table 3]
Figure 0003887581
[0042]
[Table 4]
Figure 0003887581
[0043]
[Table 5]
Figure 0003887581
[0044]
[Table 6]
Figure 0003887581
[0045]
As is clear from FIG. 3, when heat treatment 5 is incorporated before anaerobic digestion 6 (Comparative Example 2, Examples 1 and 2), the amount of digestion gas generated is larger than that when there is no heat treatment 5 (Comparative Example 1). Can be doubled (= 2 tons / 1 ton), and the amount of dehydrated cake can be reduced to 42% (= 5 tons / 12 tons).
[0046]
However, as is apparent from Table 6, when the heat treatment 5 was simply incorporated (Comparative Example 2), the COD of the effluent water (F) was 16 mg / L compared to the case where the heat treatment was not incorporated (Comparative Example 1). It is getting worse.
[0047]
As is apparent from Table 6, when the purification treatment 9 is incorporated in addition to the heat treatment 5 (Examples 1 and 2), the COD of the discharged water (F) can be 12 to 13 mg / L. The water quality can be improved to the original level (13 mg / L) shown in Comparative Example 1 or higher.
[0048]
【The invention's effect】
According to the present invention, the dehydrated liquid obtained after the anaerobic digestion is subjected to the activated sludge treatment and the membrane separation process in spite of the pretreatment prior to the anaerobic digestion. The quality of the discharged water after the treatment can be kept high.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a sewage treatment facility according to the present invention.
FIG. 2 is a schematic view showing an example of a purification device used in the present invention.
FIG. 3 is a diagram showing mass balance in Examples and Comparative Examples.
FIG. 4 is a schematic view showing an example of a conventional sewage treatment facility.
FIG. 5 is a schematic view showing an example of a conventional sewage treatment facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 First sedimentation tank 2 Aeration tank 3 Final sedimentation tank 4 Concentration apparatus 5 Pretreatment tank 6 Decomposition tank 7 Dehydration apparatus 9 Purification apparatus 11 Return line 33 Aeration means 34 Membrane separation means

Claims (2)

汚水を導入するための沈殿池と、汚水を活性汚泥処理するための曝気槽と、この曝気処理液から活性汚泥を分離するための沈殿池と、この沈殿池から分離除去された汚泥を消化しやすくするための前処理槽と、前処理した汚泥を嫌気消化するための分解槽と、前記分解槽の処理物を脱水するための脱水装置と、この脱水装置からの脱水液を前記汚水を導入するための沈殿池に戻すための返送ラインとを備えた設備において、
前記脱水液を活性汚泥処理するための曝気手段と、曝気処理した液から活性汚泥を分離除去するための膜分離手段とを備えた浄化装置が、前記脱水装置と返送ラインとの間に挿設されている汚水処理設備。
Digesting the sedimentation basin for introducing the sewage, the aeration tank for treating the sewage with the activated sludge, the sedimentation basin for separating the activated sludge from the aeration treatment liquid, and the sludge separated and removed from the sedimentation basin a pretreatment reservoir for facilitating the pretreated sludge anaerobic digestion decomposing tank for a dewatering device for dewatering the treated product of the decomposition bath, dehydration liquid from the dewatering device, the wastewater In equipment equipped with a return line for returning to the settling basin for introduction ,
A purification device comprising aeration means for treating the dehydrated liquid with activated sludge and a membrane separation means for separating and removing activated sludge from the aerated liquid is inserted between the dehydrator and the return line. Sewage treatment equipment.
前記前処理槽が、加熱手段、超音波発生手段、高電圧パルス印加手段、高圧気体導入手段、オゾン供給手段、粉砕手段、酸添加手段、アルカリ添加手段、又は酵素添加手段のいずれか或いはそれらを組み合わせた手段を備えている請求項1記載の汚水処理設備。  The pretreatment tank is a heating means, ultrasonic generation means, high voltage pulse application means, high pressure gas introduction means, ozone supply means, pulverization means, acid addition means, alkali addition means, enzyme addition means or any of them. The sewage treatment facility according to claim 1, comprising a combined means.
JP2002177121A 2002-06-18 2002-06-18 Sewage treatment equipment Expired - Fee Related JP3887581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177121A JP3887581B2 (en) 2002-06-18 2002-06-18 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177121A JP3887581B2 (en) 2002-06-18 2002-06-18 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JP2004016969A JP2004016969A (en) 2004-01-22
JP3887581B2 true JP3887581B2 (en) 2007-02-28

Family

ID=31175230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177121A Expired - Fee Related JP3887581B2 (en) 2002-06-18 2002-06-18 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP3887581B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537282B2 (en) * 2005-07-19 2010-09-01 株式会社神鋼環境ソリューション Sludge treatment equipment and sludge treatment method
JP2007038043A (en) * 2005-07-29 2007-02-15 Kobelco Eco-Solutions Co Ltd Apparatus and method for treating organic sludge
JP2007061710A (en) * 2005-08-30 2007-03-15 Kobelco Eco-Solutions Co Ltd Organic sludge treatment method and apparatus
JP2007061773A (en) * 2005-09-01 2007-03-15 Kobelco Eco-Solutions Co Ltd Organic sludge treatment method and apparatus
JP5020490B2 (en) * 2005-09-02 2012-09-05 株式会社神鋼環境ソリューション Organic sludge treatment method and organic sludge treatment equipment
JP5063975B2 (en) * 2006-10-13 2012-10-31 株式会社神鋼環境ソリューション Organic wastewater treatment method and treatment apparatus
JP5250284B2 (en) * 2008-03-26 2013-07-31 シャープ株式会社 Water treatment apparatus and water treatment method
SG11201602931VA (en) * 2013-11-06 2016-05-30 Arc Aroma Pure Ab Method comprising separation and high voltage pulse treatment before digestion or further purification

Also Published As

Publication number Publication date
JP2004016969A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4489589B2 (en) Method and equipment for treating sludge from biological water treatment equipment
US20070003370A1 (en) A method for treating landfill leachate
CN102040294B (en) Treatment method for circulating water sewerage and reverse osmosis concentrated water
KR20150120512A (en) Wastewater treatment with membrane aerated biofilm and anaerobic digester
JP2009507625A (en) Wastewater purification method by adding oxidizer
JP3887581B2 (en) Sewage treatment equipment
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
KR200450243Y1 (en) Excess sludge decrement equipment of a wastewater treatment facility
JP2008018378A (en) Organic sludge treatment method and equipment
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP4199369B2 (en) Sludge volume reduction method
JP2007061773A (en) Organic sludge treatment method and apparatus
KR0168827B1 (en) Method for purifying organic waste water
JP2003260449A (en) Method for treating high concentration organic waste
JPH04131197A (en) Disposal of night soil type sewage and apparatus therefor
KR102208641B1 (en) Treatment system of waste water using oxidation preprocess
KR100911443B1 (en) System for treatment of wastewater and method for treatment of wastewater using the same
JP2004041953A (en) Method and equipment for treating organic waste water
JPH04131199A (en) Concurrent disposal of night soil and septic tank sludge
JP3672091B2 (en) Organic wastewater treatment method and equipment
CN215480394U (en) Pharmaceutical wastewater treatment system
CN220887233U (en) Micro-polluted water source life drinking water treatment device
JPH10249376A (en) Treatment of organic waste water such as sewage
CN214167703U (en) Petrochemical industry effluent disposal system
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3887581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees