JP5020490B2 - Organic sludge treatment method and organic sludge treatment equipment - Google Patents

Organic sludge treatment method and organic sludge treatment equipment Download PDF

Info

Publication number
JP5020490B2
JP5020490B2 JP2005255463A JP2005255463A JP5020490B2 JP 5020490 B2 JP5020490 B2 JP 5020490B2 JP 2005255463 A JP2005255463 A JP 2005255463A JP 2005255463 A JP2005255463 A JP 2005255463A JP 5020490 B2 JP5020490 B2 JP 5020490B2
Authority
JP
Japan
Prior art keywords
treatment
sludge
wet oxidation
organic sludge
solubilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005255463A
Other languages
Japanese (ja)
Other versions
JP2007069053A (en
Inventor
伸行 立光
彰 斉藤
浩二 村越
朋弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005255463A priority Critical patent/JP5020490B2/en
Publication of JP2007069053A publication Critical patent/JP2007069053A/en
Application granted granted Critical
Publication of JP5020490B2 publication Critical patent/JP5020490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は下水処理等の廃水処理設備から発生した有機汚泥の処理技術に関するものである。   The present invention relates to a technique for treating organic sludge generated from wastewater treatment facilities such as sewage treatment.

一般に、この種の有機汚泥の処理方法としては、有機物質を含む下水等の廃水(原水)は最初沈殿池(最初沈殿槽)、生物処理槽及び最終沈殿池(最終沈殿槽)からなる廃水処理設備により処理し、最終沈殿池で発生した余剰汚泥、及び最初沈殿池で発生した生汚泥を嫌気性消化処理して、そしてこの汚泥消化液を脱水処理して分離した脱水分離液(以下、脱離液ということがある)をさらに生物学的処理して前記廃水処理設備の入り側に戻す処理方法が採用されている。   In general, this type of organic sludge treatment method includes wastewater (raw water) such as sewage containing organic substances, consisting of a first sedimentation tank (first sedimentation tank), a biological treatment tank, and a final sedimentation tank (final sedimentation tank). The excess sludge generated in the final settling basin and the raw sludge generated in the first settling basin are anaerobically digested, and the sludge digested liquid is dehydrated and separated (hereinafter referred to as `` dewatered ''). A treatment method that further biologically treats (sometimes referred to as liquid separation) and returns it to the entry side of the wastewater treatment facility is employed.

この脱離液の生物学的処理方法として、最初沈殿池での汚泥濃縮分離液の処理槽と前記脱離液の処理槽とを別個に設けて、それぞれ好気性生物処理を行うことによりCOD成分等を除去した後、その処理水を最初沈殿池に返流する処理方法が提案(特許文献1参照)されている。   As a biological treatment method of the desorption liquid, a COD component is obtained by separately providing a treatment tank for the sludge concentrated separation liquid in the first sedimentation basin and a treatment tank for the desorption liquid, and performing aerobic biological treatment respectively. A treatment method has been proposed in which the treated water is first returned to the settling basin after removing the water (see Patent Document 1).

しかし、この方法では、脱離液に生物難分解性物質が含まれているため、この脱離液を生物学的処理した場合においても上記生物難分解性物質は残存することになる。従って、脱離液に生物学的処理を施した分離水を廃水処理設備に返流すると、廃水処理設備の最終沈殿池から放流される処理水の水質を良好に維持できない恐れがある。特に嫌気性消化処理の前に熱処理等の可溶化処理を行った場合には、生物難分解性物質の量が増加するため、良好な処理水を確保することが困難となる。
特開平2004−97903号公報
However, in this method, since the biologically degradable substance is contained in the detachment liquid, the biologically degradable substance remains even when the detachment liquid is biologically treated. Therefore, if the separated water obtained by subjecting the effluent to biological treatment is returned to the wastewater treatment facility, the quality of the treated water discharged from the final sedimentation basin of the wastewater treatment facility may not be maintained well. In particular, when a solubilization treatment such as a heat treatment is performed before the anaerobic digestion treatment, the amount of the hardly biodegradable substance increases, and it becomes difficult to secure good treated water.
Japanese Patent Laid-Open No. 2004-97903

本発明は、このような従来の問題点を解消し、廃水処理設備からの有機汚泥を消化処理した後の脱水分離液中に残存する生物難分解性物質等の汚濁物質を効率的に低減し、廃水処理系から放出される処理水の良好な水質を安定して維持することが可能な有機汚泥の処理方法及び処理設備を提供することを課題としたものである。   The present invention eliminates such conventional problems and efficiently reduces pollutants such as biodegradable substances remaining in the dehydrated separation liquid after digesting organic sludge from wastewater treatment facilities. It is an object of the present invention to provide an organic sludge treatment method and treatment equipment capable of stably maintaining a good quality of treated water discharged from a wastewater treatment system.

そして、上記課題の達成のために完成された本発明の要旨とする構成は以下の通りである。   And the structure made into the summary of this invention completed in order to achieve the said subject is as follows.

(1)有機汚泥を可溶化処理し、前記可溶化処理により得られた可溶化汚泥を嫌気性消化処理し、次いで前記嫌気性消化処理により得られた汚泥消化液を脱水処理し、さらに前記脱水処理により得られた脱水分離液を触媒湿式酸化処理しており、前記可溶化処理が熱処理であって、当該熱処理の温度が120〜200℃であることを特徴とする有機汚泥の処理方法(請求項1)。 (1) Solubilization treatment of organic sludge, anaerobic digestion of the solubilized sludge obtained by the solubilization treatment , dehydration treatment of the sludge digestion liquid obtained by the anaerobic digestion treatment, and further the dehydration dehydration separation liquid obtained by the process are treated catalytic wet oxidation, a the solubilization treatment is a heat treatment method for treating organic sludge temperature of the heat treatment, characterized in 120 to 200 [° C. der Rukoto ( Claim 1).

)前記触媒湿式酸化処理の温度が200〜300℃であることを特徴とする上記(1)に記載の有機汚泥の処理方法(請求項)。 (2) the method of treating organic sludge according to the above (1), wherein the temperature of the catalytic wet oxidation treatment is 200 to 300 [° C. (Claim 2).

)前記可溶化処理における熱源として、前記触媒湿式酸化処理で発生した廃熱を利用することを特徴とする上記(又は)に記載の有機汚泥の処理方法(請求項)。 ( 3 ) The method for treating organic sludge according to ( 1 ) or ( 2 ) above, wherein waste heat generated in the catalytic wet oxidation treatment is used as a heat source in the solubilization treatment (Claim 3 ). .

)前記触媒湿式酸化処理の前にリン成分、金属成分、懸濁物質の少なくともいずれか一つを除去することを特徴とする上記(1)〜()に記載の有機汚泥の処理方法(請求項)。 ( 4 ) The organic sludge treatment method according to any one of (1) to ( 3 ), wherein at least one of a phosphorus component, a metal component, and a suspended substance is removed before the catalyst wet oxidation treatment. (Claim 4 ).

)前記触媒湿式酸化処理の前にリン成分、金属成分及び懸濁物質を除去することを特徴とする上記(1)〜()に記載の有機汚泥の処理方法(請求項)。 ( 5 ) The method for treating organic sludge according to any one of (1) to ( 3 ) above, wherein a phosphorus component, a metal component, and a suspended substance are removed before the catalyst wet oxidation treatment (Claim 5 ).

)有機汚泥を可溶化処理する可溶化処理槽と、前記可溶化処理により得られた可溶化汚泥を嫌気性消化処理する消化槽と、前記嫌気性消化処理により得られた汚泥消化液を脱水処理する脱水装置と、前記脱水処理により得られた脱水分離液を触媒湿式酸化処理する触媒湿式酸化装置とを含み、前記可溶化処理槽が熱処理によるものであって、当該熱処理の温度が120〜200℃であることを特徴とする有機汚泥処理設備(請求項)。 ( 6 ) A solubilization treatment tank for solubilizing organic sludge, a digestion tank for anaerobic digestion treatment of the solubilized sludge obtained by the solubilization treatment, and a sludge digestion liquid obtained by the anaerobic digestion treatment. a dewatering device for dewatering process, the dehydration process by resulting dehydrated separated liquid look containing a catalytic wet oxidation apparatus for treating catalytic wet oxidation, the solubilization treatment tank be by heat treatment, the temperature of the heat treatment An organic sludge treatment facility having a temperature of 120 to 200 ° C. (Claim 6 ).

)前記触媒湿式酸化装置における処理温度が200〜300℃であることを特徴とする上記()に記載の有機汚泥処理設備(請求項)。 (7) Organic sludge treatment installation according to the above (6) the process temperature in the catalytic wet oxidation apparatus is characterized in that it is a 200 to 300 [° C. (Claim 7).

)脱水装置と触媒湿式酸化装置との間に、リン成分除去装置、金属成分除去装置または懸濁物質除去装置の少なくともいずれか一つを設けたことを特徴とする上記(又は)記載の有機汚泥処理設備(請求項)。 ( 8 ) The above ( 6 ) or ( 6 ), wherein at least one of a phosphorus component removing device, a metal component removing device, and a suspended substance removing device is provided between the dehydrating device and the catalytic wet oxidation device. 7 ) The organic sludge treatment facility described in (Claim 8 ).

)脱水装置と触媒湿式酸化装置との間に、リン成分除去装置、金属成分除去装置及び懸濁物質除去装置を順次設けたことを特徴とする上記(又は)記載の有機汚泥処理設備(請求項)。 ( 9 ) The organic as described in ( 6 ) or ( 7 ) above, wherein a phosphorus component removing device, a metal component removing device and a suspended substance removing device are sequentially provided between the dehydrating device and the catalytic wet oxidation device. Sludge treatment equipment (Claim 9 ).

このような本発明によれば、有機汚泥の処理プロセスに触媒湿式酸化処理を有効に組み込むことによって、廃水処理設備からの有機汚泥を消化処理した後の脱水分離液中に残存する生物難分解性物質等の汚濁物質を効率的に低減することができ、この清浄化された処理液を廃水処理設備に返流させることにより廃水処理系から放出される処理水の良好な水質を安定して維持することが可能となり、さらに設備的にもその設置面積を小さくできるなどの優れた効果が得られる。   According to the present invention, the biodegradability remaining in the dehydrated separation liquid after digesting the organic sludge from the wastewater treatment facility by effectively incorporating the catalytic wet oxidation treatment into the organic sludge treatment process. Pollutants such as substances can be efficiently reduced, and the quality of the treated water released from the wastewater treatment system can be stably maintained by returning the purified treatment liquid to the wastewater treatment facility. In addition, it is possible to obtain an excellent effect such that the installation area can be reduced in terms of equipment.

また、可溶化処理を熱で行う場合は、脱水分離液に含まれる生物難分解性物質等の量が増加するが、特に問題なく分解処理されるとともに、触媒湿式酸化により発生した熱を回収して、その回収熱の一部を可溶化処理の一部に用いることができ、プロセス全体のエネルギー効率を高めることができる。   In addition, when the solubilization treatment is performed with heat, the amount of biologically degradable substances contained in the dehydrated separation liquid increases, but the decomposition treatment is not particularly problematic, and the heat generated by the catalytic wet oxidation is recovered. Thus, a part of the recovered heat can be used for a part of the solubilization process, and the energy efficiency of the entire process can be improved.

さらに、脱水分離液に含まれるリン成分、金属成分及び/または懸濁物質を触媒湿式酸化処理の前に除去することにより、触媒酸化の効率や触媒の寿命を向上させることができ、安定且つ経済的に生物難分解性物質等を低減できる。   Furthermore, by removing the phosphorus component, metal component and / or suspended substance contained in the dehydrated separation liquid before the catalytic wet oxidation treatment, the efficiency of catalytic oxidation and the life of the catalyst can be improved, and it is stable and economical. In addition, biodegradable substances can be reduced.

以下、本発明についてその実施形態を中心に図面を参照しながら説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings focusing on its embodiments.

図1は、本発明の実施形態を示した処理フロー図である、同図において、各種有機物を含む下水等の廃水は原水Aとして、最初沈殿槽1、生物処理槽2及び最終沈殿槽3からなる廃水処理設備に導入、処理され、浄化された処理水Bとして放出される。   FIG. 1 is a process flow diagram showing an embodiment of the present invention. In FIG. 1, wastewater such as sewage containing various organic substances is used as raw water A from the first sedimentation tank 1, the biological treatment tank 2, and the final sedimentation tank 3. The waste water treatment facility is introduced, treated, and discharged as purified treated water B.

一方、最終沈殿槽3で処理水Bと固液分離された汚泥は、その一部が生物処理槽2の微生物濃度を所定範囲に維持するために返送汚泥Cとして生物処理槽2に戻される。そして、他の一部は、余剰汚泥Dとして濃縮装置4に送られ所定の濃度(固形濃度で2〜5重量%)に濃縮処理される。また、最初沈殿槽1から排出された初沈汚泥(生汚泥)Eは濃縮装置5に送られ、やはり所定濃度(固形濃度で2〜5重量%)に濃縮処理される。濃縮装置4、5としては重力式沈降濃縮装置、浮上濃縮装置、膜分離装置等が用いられる。   On the other hand, the sludge that has been solid-liquid separated from the treated water B in the final sedimentation tank 3 is returned to the biological treatment tank 2 as a return sludge C in order to maintain the microorganism concentration in the biological treatment tank 2 within a predetermined range. And another part is sent to the concentration apparatus 4 as the excess sludge D, and is concentrated to a predetermined concentration (2 to 5% by weight in solid concentration). The first settling sludge (raw sludge) E discharged from the first settling tank 1 is sent to the concentrating device 5, where it is also concentrated to a predetermined concentration (2 to 5% by weight in solid concentration). As the concentrating devices 4 and 5, a gravity sedimentation concentrating device, a flotation concentrating device, a membrane separation device or the like is used.

濃縮装置4及び5によりそれぞれ濃縮、減容化された汚泥は、混合された濃縮汚泥Fとして消化槽6に送られ、嫌気条件下で消化処理が施され、さらに減容化されると共にメタンガスを主成分とする消化ガスに転化される。発生した消化ガスGは消化槽6の頂部より回収され、ボイラー用の燃料等に利用される。   The sludge concentrated and reduced in volume by the concentrators 4 and 5, respectively, is sent to the digester 6 as the mixed concentrated sludge F, digested under anaerobic conditions, further reduced in volume, and methane gas is removed. Converted to digestion gas as the main component. The generated digestion gas G is recovered from the top of the digestion tank 6 and used as boiler fuel or the like.

次いで、消化槽6で処理された汚泥消化液Hは、ベルトプレス、スクリュープレス等の脱水装置7に送られ、ここで脱水汚泥(ケーキ)Iと脱離液(脱水分離液)Jに固液分離される。脱水装置7としてはベルトプレス、フィルタープレス、スクリュープレス、遠心脱水機、回転式加圧脱水機等が用いられる。   Next, the sludge digestion liquid H treated in the digestion tank 6 is sent to a dehydration device 7 such as a belt press or a screw press, where the dewatered sludge (cake) I and the desorption liquid (dehydration separation liquid) J are solid-liquid. To be separated. As the dehydrator 7, a belt press, a filter press, a screw press, a centrifugal dehydrator, a rotary pressure dehydrator, or the like is used.

そして、脱水装置7から排出されたこの脱離液Jは、通常はそのまま廃水処理設備の最初沈殿槽1に戻され、原水Aと共に処理されるが、本発明においては直接返流させず、触媒湿式酸化装置8に供給され、さらに処理がなされる。   The desorbed liquid J discharged from the dehydrator 7 is usually returned to the initial settling tank 1 of the wastewater treatment facility as it is and treated together with the raw water A. However, in the present invention, the catalyst is not directly returned to the catalyst. It is supplied to the wet oxidizer 8 for further processing.

この触媒湿式酸化装置8による脱離液Jの具体的な処理について、その装置一例を示した図3に基づいて説明する。     A specific treatment of the desorbed liquid J by the catalytic wet oxidation apparatus 8 will be described with reference to FIG. 3 showing an example of the apparatus.

脱離液Jは昇圧ポンプ11により昇圧されて、脱離液配管12により熱交換器17を通して加熱された後、配管13によって触媒反応器14の下部に供給される。また、同時にコンプレッサー15によって昇圧された空気が空気配管16により脱離液配管12に導入されて、脱離液Jと共に同触媒反応器14に供給され、反応器の中を酸化雰囲気に維持する。     The desorbed liquid J is pressurized by the booster pump 11, heated through the heat exchanger 17 by the desorbed liquid pipe 12, and then supplied to the lower part of the catalytic reactor 14 by the pipe 13. At the same time, the air pressurized by the compressor 15 is introduced into the desorbed liquid pipe 12 through the air pipe 16 and supplied to the catalyst reactor 14 together with the desorbed liquid J, thereby maintaining the inside of the reactor in an oxidizing atmosphere.

触媒反応器14の内部には固体の酸化触媒が充填され、高温、高圧条件で運転される。脱離液Jは反応器14内を上向きに通流して、充填された触媒層を通過する過程で、液中に含まれる通常の生物的処理では分解が困難なCODや窒素化合物等の生物難分解性物質が酸化分解され、浄化処理される。   The catalytic reactor 14 is filled with a solid oxidation catalyst and is operated under high temperature and high pressure conditions. The desorbed liquid J flows upward through the reactor 14 and passes through the packed catalyst layer. In the process, the desorbed liquid J is difficult to be decomposed by normal biological treatment contained in the liquid, such as COD and nitrogen compounds. Degradable substances are oxidatively decomposed and purified.

浄化処理された気液混合物は触媒反応器14の上部より排出され、気液配管18により熱交換器17に戻されて常温に冷却された後、配管19により気液分離器20に送られる。そして、気液分離器20においては気液混合物を一定量貯留させながら液面制御及び気体の圧力制御を行い、気体と処理液を順次分離排出させる。   The purified gas-liquid mixture is discharged from the upper part of the catalyst reactor 14, returned to the heat exchanger 17 through the gas-liquid pipe 18, cooled to room temperature, and then sent to the gas-liquid separator 20 through the pipe 19. The gas-liquid separator 20 performs liquid level control and gas pressure control while storing a certain amount of the gas-liquid mixture, and sequentially separates and discharges the gas and the processing liquid.

上記酸化触媒としては、鉄、マンガン、ニッケル、コバルト、銅、白金、ロジウム、ルテニウムあるいはこれら金属の酸化物等が好ましく、勿論これ以外の周知の酸化触媒も使用することができる。   The oxidation catalyst is preferably iron, manganese, nickel, cobalt, copper, platinum, rhodium, ruthenium, or an oxide of these metals, and other well-known oxidation catalysts can be used as a matter of course.

触媒反応器における反応温度は高温で運転することが脱離液の生物難分解性物質を効率的に分解、低減させる上で重要であり、具体的には200〜300℃で実施することが好ましい。200℃未満では上記難分解性物質の酸化分解が不十分となり処理液の清浄度が低下するし、一方、300℃を超える高温ではエネルギー効率の低下や酸化処理装置系に対する熱負荷の増大等実施上の不利を伴う。また、反応圧力は1.5〜10MPaの高圧で実施することが好ましい。1.5MPa未満の低圧では反応器内の液相維持が困難となるし、逆に10MPaを超える高圧では運転コストが嵩むと共に耐圧強度が著しく高い反応器が必要となり装置コストも高くなる。   It is important to operate at a high reaction temperature in the catalytic reactor in order to efficiently decompose and reduce the biodegradable substance of the desorbed liquid. Specifically, the reaction is preferably performed at 200 to 300 ° C. . If the temperature is lower than 200 ° C., the oxidative decomposition of the hardly decomposable substance is insufficient and the cleanliness of the treatment liquid is lowered. On the other hand, if the temperature is higher than 300 ° C., the energy efficiency is lowered and the heat load on the oxidation treatment apparatus is increased. With the above disadvantages. The reaction pressure is preferably 1.5 to 10 MPa. If the pressure is less than 1.5 MPa, it is difficult to maintain the liquid phase in the reactor. Conversely, if the pressure exceeds 10 MPa, the operating cost increases and a reactor with extremely high pressure strength is required, resulting in high equipment costs.

このようにして脱離液Jを触媒湿式酸化装置8により酸化処理して得られた処理液Kは廃水処理設備の最初沈殿槽1の入り側に返流され、原水Aと同様に、最初沈殿槽1、生物処理槽2及び最終沈殿槽3の順番に処理され、沈降した有機汚泥と上澄水に分離されながら、最後に最終沈殿槽3より浄化された処理水Bとして放出される。   The treatment liquid K obtained by oxidizing the desorption liquid J with the catalytic wet oxidation device 8 in this way is returned to the inlet side of the first settling tank 1 of the wastewater treatment facility, and the first settling is performed similarly to the raw water A. The tank 1, the biological treatment tank 2 and the final sedimentation tank 3 are processed in this order and separated into the settled organic sludge and the supernatant water, and finally discharged as treated water B purified from the final sedimentation tank 3.

この実施形態によれば、最初沈殿槽1、生物処理槽2及び最終沈殿槽3からなる廃水処理設備において発生する余剰汚泥D及び初沈汚泥E等の有機汚泥は濃縮装置4及び5より濃縮された後、消化槽6により嫌気性消化処理がなされ、次いで嫌気性消化処理により得られた汚泥消化液Hは脱水装置7により脱水処理され、さらに前記脱水処理により得られた脱離液Jは触媒湿式酸化装置8により酸化処理され、そして酸化処理された処理液Kは最初沈殿槽1に返流される。   According to this embodiment, organic sludge such as excess sludge D and primary sedimentation sludge E generated in the wastewater treatment facility comprising the first sedimentation tank 1, the biological treatment tank 2 and the final sedimentation tank 3 is concentrated by the concentration devices 4 and 5. After that, the anaerobic digestion treatment is performed in the digestion tank 6, and then the sludge digestion liquid H obtained by the anaerobic digestion treatment is dehydrated by the dehydrator 7, and the desorbed liquid J obtained by the dehydration treatment is the catalyst. The treatment liquid K which has been oxidized by the wet oxidation apparatus 8 and oxidized is first returned to the settling tank 1.

従って、前記消化処理により得られた汚泥消化液Hの脱水処理後の脱離液Jは、触媒湿式酸化処理によってこの液中に残存する生物難分解性物質等の汚濁物質を効率的に分解、除去され、浄化された処理液Kとして廃水処理設備に戻されることになる。このため廃水処理設備から放出される処理水Bは良好な水質を安定して維持することが可能となる。   Therefore, the desorption liquid J after the dewatering treatment of the sludge digestive liquid H obtained by the digestion process efficiently decomposes pollutants such as biologically indegradable substances remaining in the liquid by catalytic wet oxidation. The treated liquid K that has been removed and purified is returned to the wastewater treatment facility. For this reason, the treated water B discharged from the wastewater treatment facility can stably maintain a good water quality.

次に、図2は本発明の他の実施形態を示した処理フロー図である。同図におい図1と共通する符号及びその名称は同じであり、本実施形態の以下の説明に当っては図1のものと異なった部分を中心として重複する部分は割愛する。   Next, FIG. 2 is a process flow diagram showing another embodiment of the present invention. In this figure, the same reference numerals and names as those in FIG. 1 are the same, and in the following description of the present embodiment, the overlapping parts centering on the parts different from those in FIG. 1 are omitted.

この実施形態においては、濃縮装置4、5によって濃縮され、混合された濃縮汚泥Fは、前記実施形態の如く、消化槽6に直接送られるのではなく、さらに濃縮され、可溶化処理がなされた後に送られる。すなわち、まず、濃縮汚泥Fは高濃度濃縮装置9に送られ、一層高濃度(固形分で8〜15重量%)に濃縮され且つ減容化されて、高濃縮汚泥Lとなる。高濃度濃縮装置9としては遠心分離機,スクリュープレス濃縮機,ベルトプレス濃縮機、回転式加圧濃縮機等が用いられる。   In this embodiment, the concentrated sludge F concentrated and mixed by the concentration apparatuses 4 and 5 is not directly sent to the digestion tank 6 as in the above embodiment, but is further concentrated and solubilized. Sent later. That is, first, the concentrated sludge F is sent to the high-concentration concentrator 9, concentrated to a higher concentration (8 to 15 wt% in solid content) and reduced in volume, and becomes highly concentrated sludge L. As the high concentration concentrator 9, a centrifuge, a screw press concentrator, a belt press concentrator, a rotary pressure concentrator, or the like is used.

そして、同濃縮装置9によってさらに濃縮処理がなされて得られた高濃縮汚泥Lは次に可溶化槽10に送られ、ここで可溶化処理が施される。   Then, the highly concentrated sludge L obtained by further concentration processing by the concentration device 9 is then sent to the solubilization tank 10 where the solubilization processing is performed.

一方、高濃度濃縮装置9による固液分離によって発生した分離液Mも処理液Kと合流して最初沈殿槽1に返流される。   On the other hand, the separation liquid M generated by the solid-liquid separation by the high concentration concentrator 9 is also combined with the processing liquid K and returned to the precipitation tank 1 first.

ところで、上記可溶化処理としては種々の方法があるが、本発明では熱処理による方法が推奨される。熱処理タイプの可溶化槽10としては例えば、高温・高圧用の円筒状反応容器が用いられる。   By the way, although there are various methods as the solubilization treatment, a method by heat treatment is recommended in the present invention. As the heat treatment type solubilization tank 10, for example, a cylindrical reaction vessel for high temperature and high pressure is used.

この熱処理による可溶化の条件としては、供給される高濃縮汚泥Lの濃度、温度、圧力及び処理時間等が重要となる。   As conditions for solubilization by this heat treatment, the concentration, temperature, pressure, treatment time and the like of the highly concentrated sludge L to be supplied are important.

汚泥の濃度は8〜15%の範囲とすることが好ましい。この濃度が8%未満では、可溶化槽10が大型化し、装置コストが嵩むこと、また15%を超えると次工程の消化槽6でのアンモニア濃度が高くなるため、同工程における消化槽6による消化機能を阻害する恐れがある。     The concentration of sludge is preferably in the range of 8 to 15%. If the concentration is less than 8%, the solubilization tank 10 is enlarged and the cost of the apparatus is increased, and if it exceeds 15%, the ammonia concentration in the digestion tank 6 in the next process is increased. May inhibit digestive function.

また、可溶化槽10における汚泥の熱処理温度すなわち加熱温度は120から200℃の範囲とすることが好ましい。この加熱温度が120℃未満では汚泥中の有機物の可溶化のが不足し、十分な有機物分解率が得られなくなったり、次工程の消化処理におけるメタン発生量が少なくなるし、また後工程での脱水汚泥の量が増大し、その含水率を効果的に減少させることが困難となる場合が生じる。逆に、200℃を超える高温では可溶化率の増加の割合に比べて全体のエネルギー効率が低くなり、また可溶化装置の熱負荷も大きくなる。   The sludge heat treatment temperature, that is, the heating temperature in the solubilization tank 10 is preferably in the range of 120 to 200 ° C. If the heating temperature is less than 120 ° C, the organic matter in the sludge is insufficiently solubilized, and a sufficient organic matter decomposition rate cannot be obtained, or the amount of methane generated in the digestion process in the next step is reduced. The amount of dewatered sludge increases, and it may be difficult to effectively reduce the moisture content. On the other hand, at a high temperature exceeding 200 ° C., the overall energy efficiency becomes lower than the rate of increase in the solubilization rate, and the heat load of the solubilizer increases.

可溶化槽10における圧力は0.2〜1.5MPaの範囲とすることが好ましい。この圧力が0.2MPa未満では汚泥中の有機物の分解が不足し、十分な可溶化率が得られなくなり、従ってメタン発生量が減少し、また脱水汚泥の含水率を効果的に減少させることができなくなる。逆に、1.5MPaを超える高圧では可溶化率の増加の割合に比べて全体のエネルギー効率が悪くなり、また可溶化装置本体を頑強にしなければならないほか、精密なシール構造を必要とし装置コストが嵩み、さらに頻繁な装置点検、メンテナンスを要する等の不利を伴う。   The pressure in the solubilization tank 10 is preferably in the range of 0.2 to 1.5 MPa. If this pressure is less than 0.2 MPa, the organic matter in the sludge is not sufficiently decomposed, and a sufficient solubilization rate cannot be obtained. Therefore, the amount of methane generated is reduced, and the water content of the dewatered sludge can be effectively reduced. become unable. Conversely, at high pressures exceeding 1.5 MPa, the overall energy efficiency becomes worse compared to the rate of increase in solubilization rate, the solubilizing device body must be made robust, and a precise sealing structure is required, resulting in device costs. However, it is disadvantageous in that it requires more frequent equipment inspection and maintenance.

可溶化槽10における可溶化処理時間は30から90分の範囲とするこが望ましい。30分未満では十分な可溶化が促進されず、消化工程でのメタンの発生量が不足し、脱水汚泥の含水率も不十分となる。一方、90分を越える長時間では、生産性が低下する割に可溶化率の増加も殆ど望めない。   The solubilization time in the solubilization tank 10 is preferably in the range of 30 to 90 minutes. If it is less than 30 minutes, sufficient solubilization is not promoted, the amount of methane generated in the digestion process is insufficient, and the water content of the dewatered sludge becomes insufficient. On the other hand, in a long time exceeding 90 minutes, an increase in the solubilization rate can hardly be expected although the productivity is lowered.

可溶化槽10によって上記の如き好ましい条件で可溶化処理された高濃縮汚泥Lは可溶化汚泥Nとなって同可溶化槽10から排出される。   The highly concentrated sludge L solubilized by the solubilization tank 10 under the preferable conditions as described above becomes the solubilized sludge N and is discharged from the solubilization tank 10.

この可溶化汚泥Nは、消化槽6に送られて、嫌気条件下で消化処理がなされ、さらに減容化されると共にメタンガスを主成分とする消化ガスGに転化される。ここにおける消化ガスGの生成は、前記のような可溶化処理が施された汚泥Nを消化対象としているため、活発にその反応が進行し、この結果、多量のメタンガスを回収することか可能となる。   This solubilized sludge N is sent to the digestion tank 6 and subjected to digestion treatment under anaerobic conditions. Further, the solubilized sludge N is reduced in volume and converted into digestion gas G containing methane gas as a main component. The generation of digestion gas G here is intended for digestion of sludge N that has been solubilized as described above, so that the reaction proceeds actively, and as a result, a large amount of methane gas can be recovered. Become.

そして、消化槽6で回収されたメタンガスはボイラーを介して高温の水蒸気に転換され、可溶化処理に必要な熱源Q1として可溶化槽10に供給される。   And the methane gas collect | recovered with the digestion tank 6 is converted into high temperature water vapor | steam through a boiler, and is supplied to the solubilization tank 10 as heat source Q1 required for a solubilization process.

なお、消化処理後の汚泥消化液Hの脱水装置7による脱水処理、脱離液Jの触媒湿式酸化装置8による酸化処理および酸化処理後の処理液Kの最初沈殿槽1への返流等の処理については前記実施形態と同様である。   In addition, the dehydration process of the sludge digestive liquid H after the digestion process by the dehydrator 7, the oxidation process of the desorbed liquid J by the catalyst wet oxidation apparatus 8, the return of the process liquid K after the oxidation process to the first sedimentation tank 1, etc. The processing is the same as in the above embodiment.

この実施形態によれば、最初沈殿槽1、生物処理槽2及び最終沈殿槽3からなる廃水処理設備において発生する余剰汚泥D及び初沈汚泥E等の有機汚泥は濃縮装置4及び5により濃縮された後、消化槽6により嫌気性消化処理がなされ、次いで嫌気性消化処理により得られた汚泥消化液Hは脱水装置7により脱水処理され、さらに前記脱水処理により得られた脱離液Jは触媒湿式酸化装置8により酸化処理され、そして酸化処理された処理液Kは最初沈殿槽1に返流される。また、高濃度濃縮装置9より濃縮された分離液Mの一部は、最初沈殿槽1に返流される上記酸化処理された処理液Kと合流される。なお、触媒湿式酸化処理を可溶化処理の温度より高い温度とした場合、酸化反応により発熱するため、熱交換器17により熱を回収し、その回収熱の一部Q2を可溶化処理の加熱源の一部に利用することができるので好ましい。   According to this embodiment, organic sludges such as excess sludge D and initial settling sludge E generated in the wastewater treatment facility comprising the first settling tank 1, the biological treatment tank 2 and the final settling tank 3 are concentrated by the concentration devices 4 and 5. After that, the anaerobic digestion treatment is performed in the digestion tank 6, and then the sludge digestion liquid H obtained by the anaerobic digestion treatment is dehydrated by the dehydrator 7, and the desorbed liquid J obtained by the dehydration treatment is the catalyst. The treatment liquid K which has been oxidized by the wet oxidation apparatus 8 and oxidized is first returned to the settling tank 1. Further, a part of the separation liquid M concentrated by the high concentration concentrator 9 is joined with the oxidized treatment liquid K that is first returned to the settling tank 1. When the catalyst wet oxidation treatment is performed at a temperature higher than the temperature of the solubilization treatment, heat is generated by the oxidation reaction. Therefore, heat is recovered by the heat exchanger 17, and a part of the recovered heat Q2 is used as a heating source for the solubilization treatment. It is preferable because it can be used for a part of the above.

従って、本発明実施形態によると、前述の実施形態の作用効果、すなわち廃水処理設備から放出される処理水Bを良好な水質を安定して維持できる点、に加えて、有機汚泥の消化効率、減容化率、脱水性を一層高めることができ、さらに大量のメタンガスを効率的に回収することができるため触媒湿式酸化装置8等の系内に必要な熱源として有効利用することが可能となり、全体のエネルギー効率を良くすることができる。また、高濃度濃縮装置9より濃縮された分離液Mの一部は、最初沈殿槽1に返流される上記酸化処理された処理液Kと合流される。なお、実施形態にあっては、可溶化槽10による汚泥の可溶化によって生物難分解性物質がより多く脱離液Jに移行することになるが、触媒湿式酸化処理8によってこれを有効に分解、除去できるので処理水Bの良好な水質を十分に確保できる。   Therefore, according to the embodiment of the present invention, in addition to the operational effects of the above-described embodiment, that is, the point that the treated water B discharged from the wastewater treatment facility can stably maintain good water quality, the digestion efficiency of organic sludge, Since the volume reduction rate and dehydration can be further increased, and a large amount of methane gas can be efficiently recovered, it can be effectively used as a necessary heat source in the system such as the catalytic wet oxidation apparatus 8, Overall energy efficiency can be improved. Further, a part of the separation liquid M concentrated by the high concentration concentrator 9 is joined with the oxidized treatment liquid K that is first returned to the settling tank 1. In the embodiment, more biologically degradable substances are transferred to the desorbed liquid J by solubilization of sludge in the solubilization tank 10, but this is effectively decomposed by the catalytic wet oxidation treatment 8. Therefore, it is possible to sufficiently secure a good quality of the treated water B.

他の実施形態としては、脱水装置7と触媒湿式酸化処理8の間に、図示しないが、リン成分除去装置、金属成分除去装置及び懸濁物質除去装置を順次設け、脱離液(脱水分離液)Jに含まれるリン成分、金属成分及び懸濁物質を触媒湿式酸化に先立って除去することが好ましい。ここで、リン成分除去装置としてはMAP法やアルミニウム、鉄を用いた凝集沈殿法等によってリン成分の除去を行う装置等が、また金属成分除去装置としてはキレート剤やイオン交換膜等を用いて各種金属成分の除去を行う装置等が、さらに懸濁物質除去装置としてはUF、MF等の膜を用いて懸濁物質の除去を行う装置等を挙げることができる。勿論、この場合、脱離液Jに含まれる成分によってはこれらの各装置を全て設ける必要は必ずしもなく、除去する成分に応じて必要な除去装置を選択的に設置しても良いものである。   As another embodiment, although not shown, a phosphorus component removing device, a metal component removing device, and a suspended material removing device are sequentially provided between the dehydrating device 7 and the catalyst wet oxidation treatment 8, and a desorbed solution (dehydrated separating solution) is provided. ) It is preferable to remove the phosphorus component, metal component and suspended substance contained in J prior to catalytic wet oxidation. Here, as a phosphorus component removing device, a device that removes a phosphorus component by a MAP method or a coagulation precipitation method using aluminum or iron, etc., and as a metal component removing device, a chelating agent or an ion exchange membrane is used. Examples of the apparatus for removing various metal components, and examples of the suspended substance removing apparatus include an apparatus for removing suspended substances using a membrane such as UF and MF. Of course, in this case, it is not always necessary to provide all of these devices depending on the components contained in the desorbing liquid J, and a necessary removing device may be selectively installed according to the component to be removed.

かかる実施形態の採用によって、脱離液Jに含まれるリン成分、金属成分及び/または懸濁物質を触媒湿式酸化処理の前に除去することにより、触媒酸化の効率や触媒の寿命を向上させることができ、安定且つ経済的に生物難分解性物質等を低減できる。   By adopting such an embodiment, the phosphorus component, metal component and / or suspended substance contained in the desorbing liquid J are removed before the catalytic wet oxidation treatment, thereby improving the efficiency of catalytic oxidation and the life of the catalyst. It is possible to reduce biodegradable substances and the like stably and economically.

なお、生物処理槽2における処理には通常の活性汚泥法、AO法(嫌気-好気法)A2O法(嫌気-無酸素-好気法)採用されるが、脱離液にはアンモニアが含まれ、触媒湿式酸化により硝酸や亜硝酸まで酸化される場合があるので、脱窒処理できるAO法やA2O法等の嫌気(無酸素系)と好気を組み合わせた方法を採用するのが好ましい。   In the biological treatment tank 2, the normal activated sludge method, the AO method (anaerobic-aerobic method) and the A2O method (anaerobic-anoxic-aerobic method) are employed, but the desorbed solution contains ammonia. In addition, since nitric acid and nitrous acid may be oxidized by catalytic wet oxidation, it is preferable to employ a method combining anaerobic (anoxic) and aerobic such as AO method and A2O method that can be denitrified.

本発明の実施形態を説明するフロー図である。It is a flowchart explaining embodiment of this invention. 本発明の他の実施形態を説明するフロー図である。It is a flowchart explaining other embodiment of this invention. 本発明に適用される触媒湿式酸化装置の一例を示した説明図である。It is explanatory drawing which showed an example of the catalyst wet oxidation apparatus applied to this invention.

符号の説明Explanation of symbols

1:最初沈殿槽 2:生物処理槽 3:最終沈殿槽 4,5:濃縮装置
6:消化槽 7:脱水装置 8:触媒湿式酸化装置 9:高濃度濃縮装置
10:可溶化槽
11:昇圧ポンプ 12、13:脱離液配管 14:触媒反応器
15:コンプレッサ− 16:空気配管 17:熱交換器
18、19:気液配管 20:気液分離器
A:原水(有機性廃水) B:処理水 C:返送汚泥 D:余剰汚泥
E:初沈汚泥 F;濃縮汚泥 G:消化ガス H:汚泥消化液 I:脱水汚泥
J:脱水分離液(脱離液) K:処理液 L:高濃縮汚泥 M;分離液
Q1、Q2、:熱源
1: First sedimentation tank 2: Biological treatment tank 3: Final sedimentation tank 4, 5: Concentrator
6: Digestion tank 7: Dehydration device 8: Catalyst wet oxidation device 9: High concentration concentration device 10: Solubilization tank
11: Booster pump 12, 13: Desorbed liquid piping 14: Catalytic reactor
15: Compressor 16: Air piping 17: Heat exchanger
18, 19: Gas-liquid piping 20: Gas-liquid separator A: Raw water (organic wastewater) B: Treated water C: Return sludge D: Surplus sludge E: Initial sludge F: Concentrated sludge G: Digestion gas H: Sludge digestion Liquid I: Dehydrated sludge J: Dehydrated separation liquid (desorption liquid) K: Treatment liquid L: Highly concentrated sludge M; Separation liquid Q1, Q2: Heat source

Claims (9)

有機汚泥を可溶化処理し、前記可溶化処理により得られた可溶化汚泥を嫌気性消化処理し、次いで前記嫌気性消化処理により得られた汚泥消化液を脱水処理し、さらに前記脱水処理により得られた脱水分離液を触媒湿式酸化処理しており、
前記可溶化処理が熱処理であって、当該熱処理の温度が120〜200℃であることを特徴とする有機汚泥の処理方法。
Organic sludge is solubilized, solubilized sludge obtained by the solubilization treatment is subjected to anaerobic digestion treatment, and then the sludge digestion liquid obtained by the anaerobic digestion treatment is dehydrated, and further obtained by the dehydration treatment. The resulting dehydrated separation liquid is subjected to catalytic wet oxidation treatment ,
A the solubilization treatment is a heat treatment method for treating organic sludge temperature of the heat treatment, characterized in 120 to 200 [° C. der Rukoto.
前記触媒湿式酸化処理の温度が200〜300℃であることを特徴とする請求項1に記載の有機汚泥の処理方法。 The method for treating organic sludge according to claim 1, wherein the temperature of the catalyst wet oxidation treatment is 200 to 300 ° C. 前記可溶化処理における熱源として、前記触媒湿式酸化処理で発生した廃熱を利用することを特徴とする請求項1又は2に記載の有機汚泥の処理方法。 The method for treating organic sludge according to claim 1 or 2 , wherein waste heat generated in the catalytic wet oxidation treatment is used as a heat source in the solubilization treatment. 前記触媒湿式酸化処理の前にリン成分、金属成分、懸濁物質の少なくともいずれか一つを除去することを特徴とする請求項1〜3のいずれか1項に記載の有機汚泥の処理方法。 The organic sludge treatment method according to any one of claims 1 to 3, wherein at least one of a phosphorus component, a metal component, and a suspended substance is removed before the catalyst wet oxidation treatment. 前記触媒湿式酸化処理の前にリン成分、金属成分及び懸濁物質を除去することを特徴とする請求項1〜3のいずれか1項に記載の有機汚泥の処理方法。 The organic sludge treatment method according to any one of claims 1 to 3, wherein a phosphorus component, a metal component, and a suspended substance are removed before the catalyst wet oxidation treatment. 有機汚泥を可溶化処理する可溶化処理槽と、前記可溶化処理により得られた可溶化汚泥を嫌気性消化処理する消化槽と、前記嫌気性消化処理により得られた汚泥消化液を脱水処理する脱水装置と、前記脱水処理により得られた脱水分離液を触媒湿式酸化処理する触媒湿式酸化装置とを含み、
前記可溶化処理槽が熱処理によるものであって、当該熱処理の温度が120〜200℃であることを特徴とする有機汚泥処理設備。
A solubilization treatment tank for solubilizing organic sludge, a digestion tank for anaerobic digestion of the solubilized sludge obtained by the solubilization treatment, and a sludge digestion liquid obtained by the anaerobic digestion treatment are dehydrated. and dehydrating apparatus, a dehydration separated liquid obtained by the dehydration treatment and a catalytic wet oxidation apparatus for catalytic wet oxidation treatment seen including,
An organic sludge treatment facility, wherein the solubilization treatment tank is by heat treatment, and the temperature of the heat treatment is 120 to 200 ° C.
前記触媒湿式酸化装置における処理温度が200〜300℃であることを特徴とする請求項に記載の有機汚泥処理設備。 The organic sludge treatment facility according to claim 6 , wherein a treatment temperature in the catalytic wet oxidation apparatus is 200 to 300 ° C. 脱水装置と触媒湿式酸化装置との間に、リン成分除去装置、金属成分除去装置または懸濁物質除去装置の少なくともいずれか一つを設けたことを特徴とする請求項6又は7に記載の有機汚泥処理設備。 The organic material according to claim 6 or 7 , wherein at least one of a phosphorus component removing device, a metal component removing device, and a suspended substance removing device is provided between the dehydrating device and the catalytic wet oxidation device. Sludge treatment equipment. 脱水装置と触媒湿式酸化装置との間に、リン成分除去装置、金属成分除去装置及び懸濁物質除去装置を順次設けたことを特徴とする請求項6又は7に記載の有機汚泥処理設備。 The organic sludge treatment facility according to claim 6 or 7 , wherein a phosphorus component removal device, a metal component removal device, and a suspended substance removal device are sequentially provided between the dehydration device and the catalytic wet oxidation device.
JP2005255463A 2005-09-02 2005-09-02 Organic sludge treatment method and organic sludge treatment equipment Active JP5020490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255463A JP5020490B2 (en) 2005-09-02 2005-09-02 Organic sludge treatment method and organic sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255463A JP5020490B2 (en) 2005-09-02 2005-09-02 Organic sludge treatment method and organic sludge treatment equipment

Publications (2)

Publication Number Publication Date
JP2007069053A JP2007069053A (en) 2007-03-22
JP5020490B2 true JP5020490B2 (en) 2012-09-05

Family

ID=37930975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255463A Active JP5020490B2 (en) 2005-09-02 2005-09-02 Organic sludge treatment method and organic sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP5020490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867428A (en) * 2019-03-22 2019-06-11 清华大学深圳研究生院 A kind of method of sludge dual treatment disposition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174360B2 (en) * 2007-02-23 2013-04-03 一般財団法人石油エネルギー技術センター Organic wastewater treatment method
JP2011139985A (en) * 2010-01-06 2011-07-21 Chugoku Electric Power Co Inc:The Sludge dehydration system
JP6806332B2 (en) * 2017-03-27 2021-01-06 メタウォーター株式会社 Water treatment equipment and water treatment method
CN110204165A (en) * 2019-04-23 2019-09-06 浙江程润环保工程有限公司 The anhydration system and drying method of a kind of sludge and breeding waste
WO2021131169A1 (en) * 2019-12-23 2021-07-01 株式会社 東芝 Wastewater treatment system and wastewater treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655007B2 (en) * 1990-08-06 1997-09-17 大阪瓦斯株式会社 Wastewater and sludge treatment methods
JPH06296978A (en) * 1993-04-20 1994-10-25 Meidensha Corp Device for removing phosphorus from digested sludge dehydration filtrate
JPH0739889A (en) * 1993-07-29 1995-02-10 Meidensha Corp Treatment of high concentration ammonia waste liquid
JPH11197636A (en) * 1998-01-13 1999-07-27 Kubota Corp Method for treatment of organic waste
JP2003001299A (en) * 2001-06-18 2003-01-07 Kenji Kida Method for treating excess sludge
JP2003260449A (en) * 2002-03-12 2003-09-16 Kubota Corp Method for treating high concentration organic waste
JP4007584B2 (en) * 2002-06-07 2007-11-14 株式会社荏原製作所 Method and apparatus for recovering phosphorus and nitrogen
JP3887581B2 (en) * 2002-06-18 2007-02-28 株式会社神鋼環境ソリューション Sewage treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867428A (en) * 2019-03-22 2019-06-11 清华大学深圳研究生院 A kind of method of sludge dual treatment disposition
CN109867428B (en) * 2019-03-22 2022-10-18 清华大学深圳研究生院 Method for treating sludge according to quality

Also Published As

Publication number Publication date
JP2007069053A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4489589B2 (en) Method and equipment for treating sludge from biological water treatment equipment
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
JPH0377691A (en) Treatment of waste water
JP2007160147A (en) Advanced sewage treatment method and system
JP2006081963A (en) Method and apparatus for treating sludge-containing returned water
JP2007061710A (en) Organic sludge treatment method and apparatus
JP6749313B2 (en) Water treatment method and water treatment device
JP2005058854A (en) Method and apparatus for waste water treatment
JP2002273494A (en) Method of treating organic solid containing inorganic salt, particularly sewer sludge
JP4542764B2 (en) Organic wastewater treatment equipment
KR200450243Y1 (en) Excess sludge decrement equipment of a wastewater treatment facility
JP2006281074A (en) Organic sludge treatment method
JP2001524866A (en) Method for recovering exhaust gas from ozonation reactor
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JP3887581B2 (en) Sewage treatment equipment
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP6113611B2 (en) Organic wastewater treatment system
JP4655618B2 (en) Sewage treatment apparatus and method
JP4004766B2 (en) Excess sludge biological treatment method using hydrothermal reaction
JPH0975910A (en) Recovering and regenerating method of waste water
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2005246347A (en) Method and apparatus for treating sewage
JPH1190495A (en) Method for supercritical hydroxylation of organic sludge
JPH04215899A (en) Treatment of waste water ane sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Ref document number: 5020490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250