JP2005058854A - Method and apparatus for waste water treatment - Google Patents

Method and apparatus for waste water treatment Download PDF

Info

Publication number
JP2005058854A
JP2005058854A JP2003289959A JP2003289959A JP2005058854A JP 2005058854 A JP2005058854 A JP 2005058854A JP 2003289959 A JP2003289959 A JP 2003289959A JP 2003289959 A JP2003289959 A JP 2003289959A JP 2005058854 A JP2005058854 A JP 2005058854A
Authority
JP
Japan
Prior art keywords
dioxane
wastewater
decomposition
oxidation method
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003289959A
Other languages
Japanese (ja)
Inventor
Kazuichi Isaka
和一 井坂
Hironori Nakamura
裕紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003289959A priority Critical patent/JP2005058854A/en
Publication of JP2005058854A publication Critical patent/JP2005058854A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently decompose 1,4-dioxane and remove it from real waste water, such as sewage waste water and leachate waste water, containing the 1,4-dioxane. <P>SOLUTION: Before the 1,4-dioxane contained in the waste water is decomposed and removed by dioxane decomposing devices 20, 54 using an advanced oxidation method or a Fenton oxidation method, decomposition and removal of organic substances coexisting in the waste water in a biological treatment tank 12 and solid-liquid separation of the waste water are carried out as pretreatments before dioxane decomposition. Then the separated water generated by the solid-liquid separation is treated by the dioxane decomposing devices 20, 54. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、廃水処理方法及び装置に係り、特に廃水中に含有される1,4-ジオキサンを促進酸化法又はフェントン酸化法によって分解除去する廃水処理方法及び装置に関する。   The present invention relates to a wastewater treatment method and apparatus, and more particularly to a wastewater treatment method and apparatus for decomposing and removing 1,4-dioxane contained in wastewater by an accelerated oxidation method or a Fenton oxidation method.

1,4-ジオキサンは一般的に溶剤等として使用されており、市販のポリオキシアルキルエーテルのような洗剤中にも含まれている。この為、1,4-ジオキサンを製造する工程からの廃水中、或いはポリエチレン系の製品を製造する工程や使用する工程からの廃水中に1,4-ジオキサンが含まれるが、1,4-ジオキサンは難分解性物質であるため下水処理場における生物処理では殆ど分解除去できず、水環境汚染が指摘されている。   1,4-Dioxane is generally used as a solvent and is also contained in detergents such as commercially available polyoxyalkyl ethers. For this reason, 1,4-dioxane is contained in wastewater from the process of producing 1,4-dioxane, or wastewater from the process of producing and using polyethylene-based products. Since it is a hardly degradable substance, it can hardly be decomposed and removed by biological treatment at a sewage treatment plant, and water pollution has been pointed out.

このような難分解性物質を分解除去する方法としては、従来からオゾン酸化法、活性炭吸着法、凝集沈澱法、促進酸化法(特許文献1、特許文献2、特許文献3参照)、及びフェント酸化法がある。   As a method for decomposing and removing such a hardly decomposable substance, conventionally, an ozone oxidation method, an activated carbon adsorption method, a coagulation precipitation method, an accelerated oxidation method (see Patent Document 1, Patent Document 2, and Patent Document 3), and Fent oxidation There is a law.

しかし、1,4-ジオキサンはオゾン酸化法により若干の分解は期待できるが反応効率が悪いという欠点がある。また、1,4-ジオキサンは活性炭吸着性が悪いために吸着法での除去は難しく、更には水溶性が高いために凝集沈澱でも除去されない。一方、1,4-ジオキサンは促進酸化法又はフェントン酸化法で分解処理が可能であるとの報告がなされており、1,4-ジオキサンを含む合成廃水を促進酸化法又はフェントン酸化法で処理することが可能である。
特開2001−029966号公報 特開2001−121163号公報 特開2000−202466号公報
However, although 1,4-dioxane can be expected to be slightly decomposed by the ozone oxidation method, it has a drawback of poor reaction efficiency. In addition, 1,4-dioxane is difficult to remove by the adsorption method because of its poor activated carbon adsorption property, and furthermore, since it is highly water soluble, it cannot be removed by coagulation precipitation. On the other hand, it has been reported that 1,4-dioxane can be decomposed by the accelerated oxidation method or the Fenton oxidation method, and synthetic wastewater containing 1,4-dioxane is treated by the accelerated oxidation method or the Fenton oxidation method. It is possible.
JP 2001-029966 A JP 2001-121163 A JP 2000-202466 A

しかしながら、合成廃水ではなく下水処理場や埋め立て地の浸出水廃水等の実廃水から採取した1,4-ジオキサンを含む廃水について、促進酸化法やフェントン酸化法を適用しても1,4-ジオキサンを十分に分解除去できないという問題があり、促進酸化法やフェントン酸化法による実効を上げるには、更なる改良が必要となっている。   However, wastewater containing 1,4-dioxane collected from actual wastewater such as leachate wastewater from sewage treatment plants and landfills, not synthetic wastewater, is not subject to 1,4-dioxane even when the accelerated oxidation method or Fenton oxidation method is applied. Cannot be sufficiently decomposed and removed, and further improvement is necessary to increase the effectiveness of the accelerated oxidation method and the Fenton oxidation method.

本発明はこのような事情に鑑みてなされたもので、1,4-ジオキサンを含む下水廃水や浸出水廃水等の実廃水から効率的に1,4-ジオキサンを分解除去することができる廃水処理方法及び装置を提供することを目的とする。   The present invention was made in view of such circumstances, and wastewater treatment capable of efficiently decomposing and removing 1,4-dioxane from actual wastewater such as sewage wastewater and leachate wastewater containing 1,4-dioxane. It is an object to provide a method and apparatus.

本発明の請求項1は前記目的を達成するために、廃水中に含有される1,4-ジオキサンを促進酸化法又はフェントン酸化法によるジオキサン分解工程で分解除去する廃水処理方法において、前記ジオキサン分解工程の前処理として、前記廃水に共存する有機物を生物反応槽で分解除去する有機物除去工程と、前記有機物除去工程で処理された廃水を固液分離する固液分離工程とを設け、前記固液分離工程で分離された分離水を前記ジオキサン分解工程で処理することを特徴とする。   In order to achieve the above object, claim 1 of the present invention is a wastewater treatment method in which 1,4-dioxane contained in wastewater is decomposed and removed in a dioxane decomposition step by an accelerated oxidation method or a Fenton oxidation method. As a pretreatment of the process, an organic substance removal process for decomposing and removing organic substances coexisting in the wastewater in a biological reaction tank, and a solid-liquid separation process for solid-liquid separation of the wastewater treated in the organic substance removal process are provided. The separated water separated in the separation step is treated in the dioxane decomposition step.

ここで、促進酸化法とは、オゾン処理を主として、これに過酸化水素処理及び紫外線処理の少なくとも一方を併用することによって酸化を促進する方法である。また、フェントン酸化法とは、金属触媒の下で過酸化水素を添加することにより生成するOHラジカルによる酸化法である。   Here, the accelerated oxidation method is a method of promoting oxidation mainly by ozone treatment and using at least one of hydrogen peroxide treatment and ultraviolet treatment in combination. The Fenton oxidation method is an oxidation method using OH radicals generated by adding hydrogen peroxide under a metal catalyst.

本発明の請求項1によれば、促進酸化法又はフェントン酸化法によるジオキサン分解工程で分解除去する前処理として、廃水中の有機物を分解除去し、更には固液分離により廃水中のSS成分の除去を行い、これらの前処理を行った分離水に対して促進酸化法又はフェントン酸化法による1,4-ジオキサンの分解除去を行うようにしたので、1,4-ジオキサンの分解性能を向上させることができる。   According to claim 1 of the present invention, as a pretreatment for decomposition and removal in the dioxane decomposition step by the accelerated oxidation method or the Fenton oxidation method, organic substances in the wastewater are decomposed and removed, and further, SS components in the wastewater are separated by solid-liquid separation. The 1,4-dioxane was decomposed and removed by the accelerated oxidation method or the Fenton oxidation method for the separated water that had been pretreated, and the 1,4-dioxane decomposition performance was improved. be able to.

生物反応槽での有機物処理の場合、有機物がSS成分に転換することによる余剰汚泥の増加が懸念されるが、1,4-ジオキサンを含有する廃水の特性として、ポリエチレングリコール系の有機物、例えばエチレングリコールが多く共存しているので、余剰汚泥の増加も殆どない。即ち、ポリエチレングリコール系の有機物は、活性汚泥等による生物学的な処理で分解され易く、しかも有機物(BOD)から固形物質(SS)への転換率(汚泥転換率)が小さい。従って、ジオキサン分解工程の有機物分解除去に下水処理場等における生物処理槽をそのまま使用しても、生物反応槽での余剰汚泥を殆ど増加させることなく、ジオキサン分解工程で1,4-ジオキサンを効率的に分解除去できる。   In the case of organic matter treatment in a biological reaction tank, there is concern about an increase in excess sludge due to the conversion of organic matter to SS components. However, as a characteristic of wastewater containing 1,4-dioxane, polyethylene glycol-based organic matter such as ethylene Since a large amount of glycol coexists, there is almost no increase in excess sludge. That is, polyethylene glycol-based organic matter is easily decomposed by biological treatment with activated sludge and the like, and the conversion rate from organic matter (BOD) to solid substance (SS) (sludge conversion rate) is small. Therefore, even if the biological treatment tank in the sewage treatment plant is used as it is for the organic substance decomposition removal in the dioxane decomposition process, 1,4-dioxane is efficiently used in the dioxane decomposition process with almost no excess sludge in the biological reaction tank. Can be decomposed and removed.

次に、有機物除去工程で処理された廃水を固液分離する固液分離工程を行い、固液分離工程で分離された分離水をジオキサン分解工程で処理する。これにより、促進酸化法又はフェントン酸化法、特に紫外線照射を伴う場合の促進酸化法での1,4-ジオキサンの分解性能の低下要因であるSS成分を除去することができるので、促進酸化法又はフェントン酸化法による1,4-ジオキサンの分解性能を更に向上させることができる。   Next, a solid-liquid separation step is performed for solid-liquid separation of the wastewater treated in the organic matter removal step, and the separated water separated in the solid-liquid separation step is treated in the dioxane decomposition step. As a result, the SS component, which is a factor that lowers the decomposition performance of 1,4-dioxane, in the accelerated oxidation method or the Fenton oxidation method, particularly in the accelerated oxidation method when accompanied by ultraviolet irradiation, can be removed. The decomposition performance of 1,4-dioxane by the Fenton oxidation method can be further improved.

請求項2は請求項1において、前記廃水中に含有される前記1,4-ジオキサン濃度(mg/L)に対する前記有機物濃度(mg/L)の比率が1.5以下になるように、前記有機物除去工程で廃水中の有機物を分解除去することを特徴とする。これは、廃水中における1,4-ジオキサン濃度に対する有機物濃度と、促進酸化法又はフェントン酸化法の分解速度との間には密接な関係があり、1,4-ジオキサン濃度に対する有機物濃度が1.5以下になると急激に分解速度が上昇するためである。1,4-ジオキサン濃度に対する有機物濃度の特に好ましい数値は1以下である。   Claim 2 is the method of claim 1, wherein the ratio of the organic matter concentration (mg / L) to the 1,4-dioxane concentration (mg / L) contained in the wastewater is 1.5 or less. It is characterized by decomposing and removing organic matter in wastewater in the organic matter removing step. This is closely related to the organic matter concentration relative to the 1,4-dioxane concentration in the wastewater and the decomposition rate of the accelerated oxidation method or the Fenton oxidation method. This is because when the ratio is 5 or less, the decomposition rate increases rapidly. A particularly preferable value of the organic substance concentration relative to the 1,4-dioxane concentration is 1 or less.

請求項3は請求項1又は2において、前記廃水中には1,4-ジオキサン濃度が10mg/L以上含まれていることを特徴とする。これは、廃水中の1,4-ジオキサンの濃度が10mg/L以上ある場合に、促進酸化法又はフェントン酸化法において有機物の共存が1,4-ジオキサンの分解性能に与える影響が特に大きくなり、本発明が有効だからである。   A third aspect of the present invention is characterized in that, in the first or second aspect, the wastewater contains a 1,4-dioxane concentration of 10 mg / L or more. This is particularly significant when the concentration of 1,4-dioxane in the wastewater is 10 mg / L or more, and the coexistence of organic substances in the accelerated oxidation method or the Fenton oxidation method has a significant impact on 1,4-dioxane decomposition performance. This is because the present invention is effective.

請求項4は請求項1〜3の何れか1において、前記ジオキサン分解工程を前記促進酸化法で行う場合には、発生する廃オゾンガスを前記生物反応槽に吹き込むことを特徴とする。これにより、生物反応槽の汚泥を廃オゾンガスで分解して余剰汚泥発生量を低減でき、固液分離工程での負担を軽減できる。また、廃オゾンガスを生物反応槽に吹き込むことで、有機物のSSへの転換率である汚泥転換率を低減でき、これによる余剰汚泥発生量低減も期待できる。   A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, when the dioxane decomposition step is performed by the accelerated oxidation method, the generated waste ozone gas is blown into the biological reaction tank. Thereby, the sludge of a biological reaction tank can be decomposed | disassembled with waste ozone gas, the excess sludge generation amount can be reduced, and the burden in a solid-liquid separation process can be reduced. Further, by blowing waste ozone gas into the biological reaction tank, the sludge conversion rate, which is the conversion rate of organic matter to SS, can be reduced, and a reduction in the amount of excess sludge generated can be expected.

請求項5は請求項1〜3の何れか1において、前記ジオキサン分解工程を前記フェントン酸化法で行う場合には、金属触媒下金属触媒と過酸化水素の添加を複数段に分けて行うことを特徴とする。このように、金属触媒と過酸化水素の添加を複数段に分けて行うことにより、フェントン酸化法による1,4-ジオキサンの分解性能を向上できる。これは、過酸化水素自体がOHラジカルと反応する性質を有することから、金属触媒の下で高濃度の過酸化水素を一度に添加すると、OHラジカルが1,4-ジオキサンと反応する前に過酸化水素自体と反応してしまい、1,4-ジオキサンの分解効率が低減するからである。   A fifth aspect according to any one of the first to third aspects, wherein when the dioxane decomposition step is performed by the Fenton oxidation method, the addition of the metal catalyst under metal catalyst and hydrogen peroxide is performed in a plurality of stages. Features. Thus, by performing the addition of the metal catalyst and hydrogen peroxide in a plurality of stages, it is possible to improve the decomposition performance of 1,4-dioxane by the Fenton oxidation method. This is because hydrogen peroxide itself has the property of reacting with OH radicals. Therefore, when high concentration of hydrogen peroxide is added at a time under a metal catalyst, excess hydrogen peroxide reacts with 1,4-dioxane. This is because it reacts with hydrogen oxide itself and the decomposition efficiency of 1,4-dioxane is reduced.

本発明の請求項6は前記目的を達成するために、廃水中に含有される1,4-ジオキサンを分解除去する廃水処理装置において、前記廃水に共存する有機物を分解除去する生物反応槽と、前記生物反応槽で処理された廃水を固液分離する固液分離装置と、前記固液分離装置で分離された分離水に含有される1,4-ジオキサンを促進酸化法又はフェントン酸化法によって分解除去するジオキサン分解装置と、を備えたことを特徴とする。   In order to achieve the object, claim 6 of the present invention is a wastewater treatment apparatus for decomposing and removing 1,4-dioxane contained in wastewater, a biological reaction tank for decomposing and removing organic substances coexisting in the wastewater, Solid-liquid separation device for solid-liquid separation of wastewater treated in the biological reaction tank, and 1,4-dioxane contained in the separated water separated by the solid-liquid separation device is decomposed by an accelerated oxidation method or a Fenton oxidation method And a dioxane decomposition device for removal.

請求項6は、請求項1の方法発明を装置発明として構成したものである。   Claim 6 constitutes the method invention of claim 1 as an apparatus invention.

請求項7は請求項6において、前記固液分離装置は膜分離装置であることを特徴とする。これは、生物反応槽での有機物除去後の固液分離装置として膜分離装置を用いることにより、生物反応槽内の活性汚泥濃度を10000mg/L〜30000mg/Lの高濃度に維持でき、これにより上記した汚泥転換率を更に低減できると共に、ジオキサン分解装置にSS成分がいかないように膜分離装置で確実にSS成分を除去できるからである。   A seventh aspect of the present invention according to the sixth aspect is characterized in that the solid-liquid separation device is a membrane separation device. This is because the activated sludge concentration in the biological reaction tank can be maintained at a high concentration of 10000 mg / L to 30000 mg / L by using a membrane separation apparatus as a solid-liquid separation apparatus after organic matter removal in the biological reaction tank. This is because the above-mentioned sludge conversion rate can be further reduced and the SS component can be reliably removed by the membrane separation device so that the SS component does not go into the dioxane decomposition apparatus.

以上説明したように本発明に係る廃水処理方法及び装置において、1,4-ジオキサンを含む下水廃水や浸出水廃水等の実廃水から効率的に1,4-ジオキサンを分解除去することができる。   As described above, in the wastewater treatment method and apparatus according to the present invention, 1,4-dioxane can be efficiently decomposed and removed from actual wastewater such as sewage wastewater or leachate wastewater containing 1,4-dioxane.

以下添付図面に従って本発明に係る廃水処理方法及び装置における好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a wastewater treatment method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の第1の実施の形態の廃水処理装置の概略構成図であり、促進酸化法によるジオキサン分解装置を設けた例である。   FIG. 1 is a schematic configuration diagram of a wastewater treatment apparatus according to a first embodiment of the present invention, which is an example provided with a dioxane decomposition apparatus by an accelerated oxidation method.

図1に示すように、廃水処理装置10は、主に、生物反応槽12と、沈殿槽14と、砂濾過槽16と、調整槽18と、促進酸化法によるジオキサン分解装置20とで構成される。   As shown in FIG. 1, the wastewater treatment apparatus 10 is mainly composed of a biological reaction tank 12, a sedimentation tank 14, a sand filtration tank 16, a conditioning tank 18, and a dioxane decomposition apparatus 20 using an accelerated oxidation method. The

生物反応槽12には、下水処理廃水或いは埋め立て地の浸出水等の1,4-ジオキサンを含む実廃水(以下「廃水」という)の原水が原水管22から流入する。生物反応槽12の底部には散気管24が設けられ、ブロアー26からエアーが供給されて生物反応槽12内の廃水中に曝気される。これにより、廃水中に含まれる有機物等の生物学的に処理可能な成分が活性汚泥により好気性条件下で生物処理される。   Raw water of actual waste water containing 1,4-dioxane (hereinafter referred to as “waste water”) such as sewage treatment waste water or leachate from a landfill site flows into the biological reaction tank 12 from the raw water pipe 22. A diffuser tube 24 is provided at the bottom of the biological reaction tank 12, and air is supplied from the blower 26 and aerated into the wastewater in the biological reaction tank 12. Thereby, biologically treatable components such as organic matter contained in the wastewater are biologically treated with activated sludge under aerobic conditions.

生物反応槽12で処理された廃水は、送水管28を流れて沈殿槽14と砂濾過槽16に順次送水されると共に、沈殿槽14と砂濾過槽16において廃水に同伴して流出した活性汚泥等のSS成分が固液分離される。また、沈殿槽14で沈降した活性汚泥等のSS成分の一部が汚泥返送管30を介して生物反応槽12に戻されると共に、残りのSS成分は余剰汚泥として引き抜き管32から引き抜かれる。一方、砂濾過槽16での砂濾過により微細なSSが分離された分離水は送水管28を流れて調整槽18に送水される。調整槽18では例えば分離水のPH等が調整された後、送水管28を流れて促進酸化法のジオキサン分解装置20に送水される。   The wastewater treated in the biological reaction tank 12 flows through the water supply pipe 28 and is sequentially sent to the precipitation tank 14 and the sand filtration tank 16, and the activated sludge that flows along with the wastewater in the precipitation tank 14 and the sand filtration tank 16. The SS component such as is solid-liquid separated. A part of the SS component such as activated sludge settled in the settling tank 14 is returned to the biological reaction tank 12 through the sludge return pipe 30, and the remaining SS component is extracted from the extraction pipe 32 as surplus sludge. On the other hand, the separated water from which fine SS has been separated by sand filtration in the sand filtration tank 16 flows through the water supply pipe 28 and is sent to the adjustment tank 18. In the adjustment tank 18, for example, the pH of the separated water is adjusted, and then flows through the water supply pipe 28 and is supplied to the dioxane decomposition apparatus 20 of the accelerated oxidation method.

促進酸化法のジオキサン分解装置20は、主として、促進酸化槽34と、促進酸化槽34内へオゾンガスを注入するオゾンガス注入管36と、促進酸化槽34内に設けられた紫外線ランプ38とで構成される。そして、調整槽18からジオキサン分解装置20に送水された分離水中の1,4-ジオキサンは、オゾンガスと紫外線照射を併用した促進酸化法により酸化分解される。この1,4-ジオキサンの分解は、オゾンによる直接的な分解ではなく、オゾンの自己分解過程で生じるOHラジカルにより1,4-ジオキサンが分解される。酸化分解に使用された廃オゾンガスは廃オゾン戻し管40を介して生物反応槽12に戻される。尚、促進酸化法は、オゾンガスと紫外線照射の組み合わせの他に、オゾンガスと過酸化水素の組み合わせ、或いはオゾンガスと紫外線照射と過酸化水素との組み合わせも使用することができる。   The dioxane decomposition apparatus 20 of the accelerated oxidation method is mainly composed of an accelerated oxidation tank 34, an ozone gas injection pipe 36 that injects ozone gas into the accelerated oxidation tank 34, and an ultraviolet lamp 38 provided in the accelerated oxidation tank 34. The Then, 1,4-dioxane in the separated water sent from the adjustment tank 18 to the dioxane decomposition apparatus 20 is oxidatively decomposed by an accelerated oxidation method using both ozone gas and ultraviolet irradiation. This decomposition of 1,4-dioxane is not a direct decomposition by ozone, but 1,4-dioxane is decomposed by OH radicals generated during the self-decomposition process of ozone. Waste ozone gas used for oxidative decomposition is returned to the biological reaction tank 12 through a waste ozone return pipe 40. In the accelerated oxidation method, in addition to the combination of ozone gas and ultraviolet irradiation, a combination of ozone gas and hydrogen peroxide, or a combination of ozone gas, ultraviolet irradiation and hydrogen peroxide can be used.

次に上記の如く形成された本発明の第1の実施の形態の廃水処理装置10の作用を説明する。   Next, the operation of the wastewater treatment apparatus 10 according to the first embodiment of the present invention formed as described above will be described.

原水管22から生物反応槽12に流入した廃水は、先ず廃水に共存する有機物を生物反応槽12の活性汚泥により分解除去する。これにより、促進酸化法による1,4-ジオキサンの分解性能を向上させることができる。これは、廃水中に共存する有機物濃度が高いと、促進酸化法で1,4-ジオキサンを分解する性能が極端に悪くなるためである。この理由として、促進酸化法による1,4-ジオキサンの分解は、OHラジカルによって主として分解されると考えられるが、共存する有機物濃度が高いとOHラジカルが有機物の分解に消費されて1,4-ジオキサンの分解が十分に進まないためと考察される。   The waste water that has flowed into the biological reaction tank 12 from the raw water pipe 22 is first decomposed and removed by using the activated sludge in the biological reaction tank 12 for organic substances that coexist in the waste water. Thereby, the decomposition performance of 1,4-dioxane by the accelerated oxidation method can be improved. This is because if the concentration of organic substances coexisting in the wastewater is high, the ability to decompose 1,4-dioxane by the accelerated oxidation method becomes extremely poor. The reason for this is that the decomposition of 1,4-dioxane by the accelerated oxidation method is considered to be mainly decomposed by OH radicals. However, if the concentration of coexisting organic substances is high, OH radicals are consumed for the decomposition of organic substances. It is considered that the decomposition of dioxane does not proceed sufficiently.

図2は、廃水中の1,4-ジオキサン濃度(mg/L)に対する有機物濃度(mg/L)と、1,4-ジオキサンの分解速度との関係を示したもので、図2では有機物濃度としてTOC濃度(全有機炭素量)で示す。尚、図2の分解速度は、1,4-ジオキサン濃度をYとし、処理時間をXとしたときに、T=A×X+Bの式に近似したときのAの値(1/min)を示す。   Fig. 2 shows the relationship between the organic matter concentration (mg / L) relative to the 1,4-dioxane concentration (mg / L) in the wastewater and the decomposition rate of 1,4-dioxane. As the TOC concentration (total organic carbon content). The decomposition rate in FIG. 2 shows the value of A (1 / min) when approximating the equation of T = A × X + B, where Y is the 1,4-dioxane concentration and X is the treatment time. .

図2から分かるように、1,4-ジオキサン濃度に対するTOC濃度が2以上になると、殆ど1,4-ジオキサンを分解しない。1,4-ジオキサン濃度に対するTOC濃度を2から次第に小さくしていくと分解速度は大きくなり、1.5付近から分解速度が急激に上昇する。このことから、1,4-ジオキサン濃度に対するTOC濃度が1.5以下になるまで、廃水中の有機物を生物反応槽12で分解除去することが好ましい。1,4-ジオキサン濃度に対するTOC濃度を1まで小さくすると、分解速度は1.0程度まで大きくなるので、1,4-ジオキサン濃度に対するTOC濃度が1以下になるまで有機物を生物反応槽12で分解除去するのが更に好ましい。   As can be seen from FIG. 2, when the TOC concentration with respect to the 1,4-dioxane concentration is 2 or more, 1,4-dioxane is hardly decomposed. When the TOC concentration relative to the 1,4-dioxane concentration is gradually decreased from 2, the decomposition rate increases, and the decomposition rate increases rapidly from around 1.5. Therefore, it is preferable to decompose and remove organic substances in the wastewater in the biological reaction tank 12 until the TOC concentration relative to the 1,4-dioxane concentration becomes 1.5 or less. Decreasing the TOC concentration to 1,4-dioxane concentration to 1 increases the decomposition rate to about 1.0, so organic substances are decomposed in the biological reaction tank 12 until the TOC concentration to 1,4-dioxane concentration becomes 1 or less. More preferably, it is removed.

また、1,4-ジオキサンを含有する廃水の特性として、ポリエチレングリコール系の有機物が多く共存している。これは、1,4-ジオキサンの製造がエチレングリコールを原料としていること、或いは洗剤などにはポリエチレングリコール基を持つことが多く、ポリエチレングリコールの反応工程で副生成物として1,4-ジオキサンが生成されるためである。   In addition, as a characteristic of wastewater containing 1,4-dioxane, a large amount of polyethylene glycol-based organic substances coexist. This is because 1,4-dioxane is produced using ethylene glycol as a raw material, or detergents often have polyethylene glycol groups, and 1,4-dioxane is produced as a by-product in the polyethylene glycol reaction process. It is to be done.

このポリエチレングリコール系の有機物は、活性汚泥による生物学的な処理で分解され易く、しかも有機物(BOD)から懸濁物質(SS)への転換率(汚泥転換率)が10%以下と小さくメリットがある。   This polyethylene glycol-based organic matter is easily decomposed by biological treatment with activated sludge, and the conversion rate from organic matter (BOD) to suspended solids (SS) (sludge conversion rate) is less than 10% and has a merit. is there.

従って、ジオキサン分解装置20で分解除去する前処理として、先ず廃水に共存する有機物を分解除去することが重要であるが、有機物の分解除去方法としては生物反応槽12による生物処理が好適である。これは、廃水中の有機物がエチレングリコールではない下水廃水の場合には、生物処理による汚泥転換率が70%と高いが、1,4-ジオキサンを含む廃水のように廃水中の有機物がエチレングリコールを主とした廃水の場合には、生物処理により容易に分解除去でき、しかも汚泥転換率は10%以下と低く、余剰汚泥の発生を著しく低減できるからである。ここで、汚泥転換率10%とは、有機物が100mg/Lから10mg/LのSSが発生することをいう。   Therefore, it is important to first decompose and remove the organic substances coexisting in the waste water as a pretreatment for decomposing and removing with the dioxane decomposing apparatus 20, but as a method for decomposing and removing the organic substances, biological treatment using the biological reaction tank 12 is suitable. This is because when the organic matter in the wastewater is not ethylene glycol, the sludge conversion rate by biological treatment is as high as 70%, but the organic matter in the wastewater is ethylene glycol like wastewater containing 1,4-dioxane. In the case of wastewater mainly composed of water, it can be easily decomposed and removed by biological treatment, and the sludge conversion rate is as low as 10% or less, and the generation of excess sludge can be remarkably reduced. Here, the sludge conversion rate of 10% means that SS of organic matter is generated from 100 mg / L to 10 mg / L.

次に、生物反応槽12で処理された廃水を沈殿槽14と砂濾過槽16とで固液分離し、固液分離された分離水をジオキサン分解装置20で処理する。これは、生物反応槽12での活性汚泥等のSS成分が促進酸化法の処理時に存在すると分解性能が低下するためであり、特に紫外線照射への悪影響により1,4-ジオキサンの分解性能が低下する。そこで、本発明では、1,4-ジオキサンが水溶性の高い物質であることを利用して、生物反応槽12で処理された廃水を固液分離することで1,4-ジオキサンを分離水に抽出でき、しかもジオキサン分解装置20での分解阻害物であるSS成分も除去できる。これにより、1,4-ジオキサンを含む下水廃水や浸出水廃水等の実廃水から効率的に1,4-ジオキサンを分解除去することができる。   Next, the wastewater treated in the biological reaction tank 12 is solid-liquid separated in the precipitation tank 14 and the sand filtration tank 16, and the separated water separated in the solid-liquid separation is treated in the dioxane decomposition apparatus 20. This is because the degradation performance decreases when SS components such as activated sludge in the biological reaction tank 12 are present during the accelerated oxidation method, and the degradation performance of 1,4-dioxane decreases due to the adverse effect on ultraviolet irradiation. To do. Therefore, in the present invention, by utilizing the fact that 1,4-dioxane is a substance having high water solubility, 1,4-dioxane is converted into separated water by solid-liquid separation of the wastewater treated in the biological reaction tank 12. In addition, SS components that are decomposition inhibitors in the dioxane decomposition apparatus 20 can be removed. Thereby, 1,4-dioxane can be efficiently decomposed and removed from actual wastewater such as sewage wastewater or leachate wastewater containing 1,4-dioxane.

また、促進酸化槽34から排出される廃オゾンガスを生物反応槽12に吹き込むようにしたので、生物反応槽12の汚泥を廃オゾンガスで分解して余剰汚泥発生量を低減でき、固液分離の負担も軽減できる。また、廃オゾンガスを生物反応槽12に吹き込むことで、有機物のSSへの転換率である汚泥転換率を更に低減できる。   Moreover, since waste ozone gas discharged from the accelerated oxidation tank 34 is blown into the biological reaction tank 12, sludge in the biological reaction tank 12 can be decomposed with waste ozone gas to reduce the amount of excess sludge generated, and the burden of solid-liquid separation. Can also be reduced. Moreover, the sludge conversion rate which is the conversion rate of organic substance to SS can be further reduced by blowing waste ozone gas into the biological reaction tank 12.

図3は、本発明の第2の実施の形態の廃水処理装置50の概略構成図であり、促進酸化法によるジオキサン分解装置20を設けた点は第1の実施の形態と同様であるが、固液分離手段として沈殿槽14と砂濾過槽16の代わりに膜分離装置42を設けたものである。膜分離装置42で固液分離された汚泥の一部は汚泥返送管30を介して生物反応槽12に戻され、残りの汚泥が引き抜き管32から余剰汚泥として引き抜かれる。   FIG. 3 is a schematic configuration diagram of the wastewater treatment apparatus 50 according to the second embodiment of the present invention, which is the same as the first embodiment in that the dioxane decomposition apparatus 20 by the accelerated oxidation method is provided. A membrane separation device 42 is provided instead of the precipitation tank 14 and the sand filtration tank 16 as a solid-liquid separation means. Part of the sludge separated into solid and liquid by the membrane separator 42 is returned to the biological reaction tank 12 through the sludge return pipe 30, and the remaining sludge is extracted from the extraction pipe 32 as excess sludge.

尚、第1の実施の形態と同じ部材、装置には同符号を付して説明すると共に、説明は省略する。以下、第3から第4の実施の形態の説明も同様である。   The same members and devices as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The same applies to the description of the third to fourth embodiments.

本発明の第2の実施の廃水処理装置50形態によれば、生物反応槽12での有機物除去後の固液分離に膜分離装置42を用いることにより、生物反応槽12内の活性汚泥濃度を10000mg/L〜30000mg/Lの高濃度に維持できる。これにより、生物反応槽12での有機物分解効率が大きくなるので、前述した汚泥転換率を更に向上でき、汚泥転換率を7%以下まで低減可能である。また、膜分離装置42で固液分離することで、ジオキサン分解装置20にSS成分が確実にいかないようにできるので、ジオキサン分解装置20での1,4-ジオキサンの分解性能を向上できる。膜分離装置42の膜としては、精密濾過膜や限外濾過膜を好適に使用することができると共に、浸漬平膜型の膜分離装置や回転平膜型の膜分離装置を使用することができる。   According to the embodiment of the wastewater treatment apparatus 50 of the second embodiment of the present invention, the activated sludge concentration in the biological reaction tank 12 can be reduced by using the membrane separation apparatus 42 for solid-liquid separation after organic matter removal in the biological reaction tank 12. It can be maintained at a high concentration of 10,000 mg / L to 30000 mg / L. Thereby, since the organic substance decomposition | disassembly efficiency in the biological reaction tank 12 becomes large, the sludge conversion rate mentioned above can be improved further, and a sludge conversion rate can be reduced to 7% or less. Further, by performing solid-liquid separation with the membrane separation device 42, it is possible to ensure that the SS component does not go to the dioxane decomposition device 20, so that the decomposition performance of 1,4-dioxane in the dioxane decomposition device 20 can be improved. As the membrane of the membrane separation device 42, a microfiltration membrane or an ultrafiltration membrane can be suitably used, and an immersion flat membrane type membrane separation device or a rotary flat membrane type membrane separation device can be used. .

図4は、本発明の第2の実施の形態の廃水処理装置50の変形例であり、生物反応槽12と膜分離装置42とを同一槽で構成した一体型の廃水処理装置60である。   FIG. 4 is a modification of the wastewater treatment apparatus 50 according to the second embodiment of the present invention, and is an integrated wastewater treatment apparatus 60 in which the biological reaction tank 12 and the membrane separation apparatus 42 are configured in the same tank.

図4に示すように、一体型の廃水処理装置60は、膜分離活性汚泥処理装置44と、調整槽18と、促進酸化法によるジオキサン分解装置20とで構成される。膜分離活性汚泥処理装置44は、膜分離槽46内に浸漬型の膜モジュール48が設けられ、膜モジュール48の下方にはブロアー26に連結されたエア散気管24が設けられる。これにより、原水管22から膜分離槽46内に流入した廃水中に含まれる有機物等の生物学的に処理可能な成分が活性汚泥により好気性条件下で生物処理された後、膜モジュール48で固液分離され、固液分離された分離水が送水管28を流れて調整槽18に送水される。そして、調整槽18からジオキサン分解装置20に送水された廃水中の1,4-ジオキサンは上記したと同様に促進酸化法により分解除去される。また、廃オゾンガスは、廃オゾン戻し管40を介して生物反応槽12のエア散気管24に戻される。   As shown in FIG. 4, the integrated wastewater treatment apparatus 60 includes a membrane separation activated sludge treatment apparatus 44, a regulation tank 18, and a dioxane decomposition apparatus 20 using an accelerated oxidation method. In the membrane separation activated sludge treatment apparatus 44, an immersion type membrane module 48 is provided in a membrane separation tank 46, and an air diffusing pipe 24 connected to the blower 26 is provided below the membrane module 48. As a result, biologically treatable components such as organic substances contained in the wastewater flowing into the membrane separation tank 46 from the raw water pipe 22 are biologically treated under activated aerobic conditions with activated sludge, and then the membrane module 48 The separated and solid-liquid separated water flows through the water supply pipe 28 and is supplied to the adjustment tank 18. Then, 1,4-dioxane in the wastewater sent from the adjustment tank 18 to the dioxane decomposition apparatus 20 is decomposed and removed by the accelerated oxidation method as described above. Further, the waste ozone gas is returned to the air diffusing pipe 24 of the biological reaction tank 12 through the waste ozone return pipe 40.

このように、生物反応槽12と膜分離装置42とを同一槽で構成することにより、1,4-ジオキサンを含む下水廃水や浸出水廃水等の実廃水から効率的に1,4-ジオキサンを分解除去することができるだけでなく、装置の省スペース化を図ることができる。   In this way, by configuring the biological reaction tank 12 and the membrane separator 42 in the same tank, 1,4-dioxane can be efficiently removed from actual wastewater such as sewage wastewater or leachate wastewater containing 1,4-dioxane. In addition to being able to be disassembled and removed, the space of the apparatus can be saved.

図5は、本発明の第3の実施の形態の廃水処理装置70の概略構成図であり、第1の実施の形態における促進酸化法のジオキサン分解装置20に代えてフェントン酸化法によるジオキサン分解装置54を設けたものである。フェントン酸化法の場合、微少なSS成分がジオキサン分解装置54に流入しても悪影響が少ないので、図1の砂濾過槽16は設けなかったが、勿論設けるようにしてもよい。砂濾過槽16を設けない場合には、ジオキサン分解装置54の後に、固液分離のための沈殿槽66を設けるとよい。他の構成は第1の実施の形態と同様である。   FIG. 5 is a schematic configuration diagram of a wastewater treatment apparatus 70 according to the third embodiment of the present invention, and a dioxane decomposition apparatus using the Fenton oxidation method instead of the dioxane decomposition apparatus 20 of the accelerated oxidation method in the first embodiment. 54 is provided. In the case of the Fenton oxidation method, even if a small SS component flows into the dioxane decomposition apparatus 54, there is little adverse effect. Therefore, the sand filtration tank 16 of FIG. 1 is not provided, but may be provided. When the sand filtration tank 16 is not provided, a precipitation tank 66 for solid-liquid separation may be provided after the dioxane decomposition apparatus 54. Other configurations are the same as those of the first embodiment.

フェントン酸化法のジオキサン分解装置54は、上流側から順に、PH調整槽56、金属触媒添加槽58、金属触媒・過酸化水素添加槽62の3つの室に区画された酸化分解槽64で構成される。フェントン酸化法は、金属触媒下で過酸化水素を添加することにより、1,4-ジオキサンを酸化分解する方法であり、PH調整槽56で分離水のPHを酸性にした後、金属触媒添加槽58で金属触媒が添加される。更に、金属触媒・過酸化水素添加槽62で金属触媒と過酸化水素とが添加される。この金属触媒と過酸化水素との接触によりフェントン反応が生じ、OHラジカルを発生させて1,4-ジオキサンの酸化分解を行う。分離水のPHを酸性にする条件としては、反応中の分離水のPHが2〜4の範囲であることが好ましい。金属触媒としては鉄(Fe2+)を用いることが好ましいが、特に限定されるものではない。金属触媒と過酸化水素の添加方法としては、一度に必要量全てを添加するのではなく、分割して段階的に添加することが好ましい。これは、過酸化水素自体がOHラジカルと反応する性質を有することから、金属触媒下で高濃度の過酸化水素を一度に添加すると、OHラジカルが1,4-ジオキサンと反応する前に過酸化水素自体と反応してしまい、1,4-ジオキサンの分解効率が低減するからである。 The dioxane decomposition apparatus 54 of the Fenton oxidation method includes an oxidative decomposition tank 64 that is partitioned into three chambers, a PH adjustment tank 56, a metal catalyst addition tank 58, and a metal catalyst / hydrogen peroxide addition tank 62 in order from the upstream side. The The Fenton oxidation method is a method of oxidizing and decomposing 1,4-dioxane by adding hydrogen peroxide in the presence of a metal catalyst. After acidifying the pH of the separated water in the PH adjustment tank 56, the metal catalyst addition tank At 58, a metal catalyst is added. Further, the metal catalyst and hydrogen peroxide are added in the metal catalyst / hydrogen peroxide addition tank 62. The Fenton reaction is caused by the contact between the metal catalyst and hydrogen peroxide, and OH radicals are generated to oxidatively decompose 1,4-dioxane. As conditions for making the pH of the separated water acidic, the pH of the separated water during the reaction is preferably in the range of 2 to 4. As the metal catalyst, iron (Fe 2+ ) is preferably used, but is not particularly limited. As a method for adding the metal catalyst and hydrogen peroxide, it is preferable not to add all the necessary amounts at once, but to add them in stages in a divided manner. This is because hydrogen peroxide itself has the property of reacting with OH radicals, so if high-concentration hydrogen peroxide is added all at once in the presence of a metal catalyst, it will be peroxidized before it reacts with 1,4-dioxane. This is because it reacts with hydrogen itself and the decomposition efficiency of 1,4-dioxane is reduced.

また、このフェントン酸化法の場合にも図2の結果は同様であり、廃水中に含有される1,4-ジオキサン濃度(mg/L)に対する有機物濃度(mg/L)の比率が1.5以下になるように、好ましくは1.0以下になるように、生物反応槽12で廃水中の有機物を分解除去することが好ましい。   In the case of this Fenton oxidation method, the result of FIG. 2 is the same, and the ratio of the organic matter concentration (mg / L) to the 1,4-dioxane concentration (mg / L) contained in the wastewater is 1.5. It is preferable to decompose and remove organic substances in the wastewater in the biological reaction tank 12 so as to be below 1.0, preferably 1.0 or below.

このように構成された第3の実施の形態の廃水処理装置70は、1,4-ジオキサンを含む下水廃水や浸出水廃水等の実廃水から効率的に1,4-ジオキサンを分解除去することができると共に、促進酸化法のように紫外線照射を行わないので、SSの影響が出にくいというメリットがある。   The wastewater treatment apparatus 70 of the third embodiment configured in this manner efficiently decomposes and removes 1,4-dioxane from actual wastewater such as sewage wastewater and leachate wastewater containing 1,4-dioxane. In addition, there is an advantage that the influence of SS is less likely to occur because ultraviolet irradiation is not performed unlike the accelerated oxidation method.

図6は、本発明の第4の実施の形態である廃水処理装置80の概略構成を示した構成図であり、図5における生物反応槽12の後の沈殿槽14に代えて膜分離装置42を設けたものであり、他の構成は図5と同様である。   FIG. 6 is a block diagram showing a schematic configuration of a wastewater treatment apparatus 80 according to the fourth embodiment of the present invention, and a membrane separation apparatus 42 instead of the sedimentation tank 14 after the biological reaction tank 12 in FIG. The other configuration is the same as that of FIG.

第4の実施の形態の廃水処理装置によれば、1,4-ジオキサンを含む下水廃水や浸出水廃水等の実廃水から効率的に1,4-ジオキサンを分解除去することができると共に、促進酸化法のように紫外線照射を行わないので、SSの影響が出にくいというメリットがある。更には、生物反応槽12での有機物除去後の固液分離装置として膜分離装置42を用いることにより、生物反応槽12内の活性汚泥濃度を10000mg/L〜30000mg/Lの高濃度に維持でき、これにより前述した汚泥転換率10%以下を7%以下まで低減可能である。また、膜分離装置42で固液分離することで、ジオキサン分解装置54にSS成分がいかないように膜分離装置42で確実にSS成分を除去できるので、ジオキサン分解装置54での1,4-ジオキサンの分解性能を向上できる。   According to the wastewater treatment apparatus of the fourth embodiment, 1,4-dioxane can be efficiently decomposed and removed from actual wastewater such as sewage wastewater or leachate wastewater containing 1,4-dioxane and promoted. Since the ultraviolet irradiation is not performed unlike the oxidation method, there is a merit that the influence of SS is hardly generated. Furthermore, the activated sludge concentration in the biological reaction tank 12 can be maintained at a high concentration of 10000 mg / L to 30000 mg / L by using the membrane separation device 42 as a solid-liquid separation device after organic matter removal in the biological reaction tank 12. Thus, the sludge conversion rate of 10% or less can be reduced to 7% or less. Further, by performing solid-liquid separation with the membrane separation device 42, the SS component can be reliably removed with the membrane separation device 42 so that the SS component is not present in the dioxane decomposition device 54, so that 1,4-dioxane in the dioxane decomposition device 54 is obtained. The decomposition performance of can be improved.

(実施例1)
実施例1では、図1に示した生物反応槽12→沈殿槽14→砂濾過槽16→調整槽18→促進酸化法のジオキサン分解装置20から成る廃水処理装置10を用いて、1,4-ジオキサンを含む廃水の分解除去試験を行った。尚、実施例1では、促進酸化槽34から排出される廃オゾンガスは生物反応槽に戻さなかった。
(Example 1)
In Example 1, the wastewater treatment apparatus 10 including the biological reaction tank 12 → the precipitation tank 14 → the sand filtration tank 16 → the adjustment tank 18 → the dioxane decomposition apparatus 20 of the accelerated oxidation method shown in FIG. A decomposition removal test of wastewater containing dioxane was conducted. In Example 1, waste ozone gas discharged from the accelerated oxidation tank 34 was not returned to the biological reaction tank.

供試廃水は、1,4-ジオキサン濃度が200(mg/L)、共存する有機物濃度がTOCで2000(mg/L)であり、主たる有機物はエチレングリコール系の有機物である。また、生物反応槽の活性汚泥濃度は3000(mg/L)とし、廃水の滞留時間を4日間として運転した。この結果、生物反応槽12における活性汚泥処理で、廃水中の有機物のほとんどが分解除去され、砂濾過槽16後の分離水中の有機物濃度がTOCで80(mg/L)まで減少した。また、分離水には1,4-ジオキサンが供試廃水の半分以上が残存していた。   The test wastewater has a 1,4-dioxane concentration of 200 (mg / L) and a coexisting organic substance concentration of 2000 (mg / L) in TOC, and the main organic substance is an ethylene glycol organic substance. Moreover, the activated sludge density | concentration of the biological reaction tank was 3000 (mg / L), and the residence time of waste water was operated as 4 days. As a result, most of the organic substances in the wastewater were decomposed and removed by the activated sludge treatment in the biological reaction tank 12, and the organic substance concentration in the separated water after the sand filtration tank 16 was reduced to 80 (mg / L) by TOC. In the separated water, 1,4-dioxane remained more than half of the test wastewater.

次に、この分離水を促進酸化法のジオキサン分解装置20で処理した。ジオキサン分解装置20の条件は、促進酸化槽34内の分離水へのオゾン注入濃度を16(mg/L)とし、オゾン注入速度を3(mg- O3 /L/min)とした。また、紫外線ランプは40Wとした。その結果、ジオキサン分解装置20後の処理水中の1,4-ジオキサン濃度は0.05(mg/L)であり、大部分の1,4-ジオキサンを分解除去することができた。 Next, this separated water was treated with the dioxane decomposition apparatus 20 of the accelerated oxidation method. The conditions of the dioxane decomposition apparatus 20 were such that the ozone injection concentration into the separated water in the accelerated oxidation tank 34 was 16 (mg / L), and the ozone injection rate was 3 (mg-O 3 / L / min). The ultraviolet lamp was 40W. As a result, the 1,4-dioxane concentration in the treated water after the dioxane decomposition apparatus 20 was 0.05 (mg / L), and most of the 1,4-dioxane could be decomposed and removed.

一方、供試廃水を促進酸化法のジオキサン分解装置20で直接処理した比較例では、ジオキサン分解装置20後の処理水中の1,4-ジオキサン濃度は198(mg/L)でほとんど分解することができなかった。   On the other hand, in the comparative example in which the test wastewater was directly treated with the dioxane decomposition device 20 of the accelerated oxidation method, the 1,4-dioxane concentration in the treated water after the dioxane decomposition device 20 was almost decomposed at 198 (mg / L). could not.

(実施例2)
実施例2では、図3に示した生物反応槽12→膜分離装置42→調整槽18→促進酸化法のジオキサン分解装置20から成る廃水処理装置50を用いて、1,4-ジオキサンを含む廃水の分解除去試験を行った。膜分離装置42としては回転平膜装置を使用した。供試廃水は実施例1の場合と同様である。
(Example 2)
In Example 2, the wastewater treatment apparatus 50 including the biological reaction tank 12 → the membrane separation apparatus 42 → the adjustment tank 18 → the dioxane decomposition apparatus 20 of the accelerated oxidation method shown in FIG. The decomposition removal test was conducted. As the membrane separator 42, a rotary flat membrane device was used. The test wastewater is the same as in Example 1.

その結果、実施例1の場合には、生物反応槽12内に保持できた活性汚泥濃度は3000(mg/L)であったが、実施例2のように膜分離装置42で固液分離することにより、生物反応槽12内の活性汚泥濃度を10000〜30000(mg/L)の高濃度に維持することができた。これにより、生物反応槽12での有機物分解性能が向上するので、膜分離後の分離水の有機物濃度がTOCで50(mg/L)まで低減できた。   As a result, in the case of Example 1, the activated sludge concentration that could be held in the biological reaction tank 12 was 3000 (mg / L), but the solid-liquid separation was performed by the membrane separation device 42 as in Example 2. Thus, the activated sludge concentration in the biological reaction tank 12 could be maintained at a high concentration of 10,000 to 30,000 (mg / L). Thereby, since the organic substance decomposition | disassembly performance in the biological reaction tank 12 improved, the organic substance density | concentration of the separation water after membrane separation was able to be reduced to 50 (mg / L) by TOC.

また、実施例1の場合での有機物からSS成分への汚泥転換率は10%程度であったが、実施例2では7%まで下げることができた。これにより余剰汚泥の発生量を低減できた。更に、実施例2では促進酸化槽34から排出される廃オゾンガスを生物反応槽12に戻し、廃オゾンガスで汚泥を分解して可溶化したので、汚泥転換率を7%よりも更に低減できた。   Moreover, the sludge conversion rate from the organic matter to the SS component in the case of Example 1 was about 10%, but in Example 2, it could be lowered to 7%. As a result, the amount of excess sludge generated was reduced. Furthermore, in Example 2, the waste ozone gas discharged from the accelerated oxidation tank 34 was returned to the biological reaction tank 12, and the sludge was decomposed and solubilized with the waste ozone gas, so that the sludge conversion rate could be further reduced from 7%.

また、実施例2では、分離水を促進酸化法のジオキサン分解装置20で処理したところ、ジオキサン分解装置20後の処理水の1,4-ジオキサンを実施例1よりも更に低い0.02(mg/L)まで低減できた。これは、生物反応槽12後の流出水を膜分離装置42で固液分離し、SS成分を完全に除去したことによるものと考察される。   Moreover, in Example 2, when the separated water was processed with the dioxane decomposition apparatus 20 of the accelerated oxidation method, the 1,4-dioxane of the treated water after the dioxane decomposition apparatus 20 was 0.02 (mg / L). This is considered to be due to the solid-liquid separation of the effluent water after the biological reaction tank 12 by the membrane separation device 42 and the complete removal of the SS component.

(実施例3)
実施例3では、図5に示した生物反応槽12→沈殿槽14→調整槽18→フェントン酸化法のジオキサン分解装置54→沈殿槽66から成る廃水処理装置70を用いて、1,4-ジオキサンを含む廃水の分解除去試験を行った。供試廃水は実施例1、2の場合と同様である。
(Example 3)
In Example 3, 1,4-dioxane is used by using the wastewater treatment apparatus 70 including the biological reaction tank 12 → the precipitation tank 14 → the adjustment tank 18 → the dioxane decomposition apparatus 54 of the Fenton oxidation method → the precipitation tank 66 shown in FIG. The decomposition removal test of the wastewater containing was conducted. The test wastewater is the same as in Examples 1 and 2.

その結果、砂濾過槽16を設けなかったために、沈殿槽14後の分離水の有機物濃度がTOCで実施例1や2よりも多い100(mg/L)であった。   As a result, since the sand filtration tank 16 was not provided, the organic matter concentration of the separated water after the settling tank 14 was 100 (mg / L) higher than that of Examples 1 and 2 in TOC.

この分離水を、フェントン酸化法のジオキサン分解装置54のPH調整槽56でPHを2〜4に調整し、金属触媒添加槽58で鉄を添加して攪拌した。更に、金属触媒・過酸化水素添加槽62で鉄と過酸化水素を添加した。鉄の合計添加量は1000(mg/L)、過酸化水素の添加量は2000(mg/L)であり、反応時間を60分反応とした。その結果、分離水中の1,4-ジオキサンを1(mg/L)まで低減できた。   PH of this separated water was adjusted to 2 to 4 in the PH adjustment tank 56 of the dioxane decomposition apparatus 54 of the Fenton oxidation method, and iron was added in the metal catalyst addition tank 58 and stirred. Further, iron and hydrogen peroxide were added in the metal catalyst / hydrogen peroxide addition tank 62. The total amount of iron added was 1000 (mg / L), the amount of hydrogen peroxide added was 2000 (mg / L), and the reaction time was 60 minutes. As a result, 1,4-dioxane in the separated water could be reduced to 1 (mg / L).

更に1,4-ジオキサンの分解効率を上げるために、鉄と過酸化水素との添加を2段に分割して添加する2段添加を行った。即ち、鉄を添加量500(mg/L)、過酸化水素を1000(mg/L)で1 段目の添加を行って30分反応させた後、更に鉄を添加量500(mg/L)、過酸化水素を1000(mg/L)で2段目の添加を行って30分反応させた。1段目と2段目を合計した鉄の添加量、過酸化水素の添加量、反応時間は1段添加の場合と同じにした。その結果、1,4-ジオキサンを0.4(mg/L)まで低減することができた。   Further, in order to increase the decomposition efficiency of 1,4-dioxane, two-stage addition was performed in which the addition of iron and hydrogen peroxide was added in two stages. That is, after adding the first stage at an addition amount of iron (500 mg / L) and hydrogen peroxide of 1000 (mg / L) and reacting for 30 minutes, an additional iron addition amount (500 mg / L) Then, hydrogen peroxide was added at 1000 (mg / L) for the second stage and reacted for 30 minutes. The total amount of iron added, the amount of hydrogen peroxide added, and the reaction time in the first and second stages were the same as in the first stage addition. As a result, 1,4-dioxane could be reduced to 0.4 (mg / L).

更に、鉄と過酸化水素との添加を4段に分割して添加する4段添加を行った。即ち、鉄を添加量250(mg/L)、過酸化水素を500(mg/L)で1段目の添加を行って15分反応させた後、更に鉄を添加量250(mg/L)、過酸化水素を500(mg/L)で2段目の添加を行い15分反応させた。引き続き、鉄を添加量250(mg/L)、過酸化水素を500(mg/L)で3段目の添加を行い15分反応させた後、更に鉄を添加量250(mg/L)、過酸化水素を500(mg/L)で4段目の添加を行い15分反応させた。1回目〜4回目を合計した鉄の添加量、過酸化水素の添加量、反応時間は1段添加の場合と同じにした。その結果、1,4-ジオキサンを0.1(mg/L)まで低減することができた。   Further, four-stage addition was performed in which the addition of iron and hydrogen peroxide was added in four stages. That is, after adding the first stage at an addition amount of iron (250 mg / L) and hydrogen peroxide (500 mg / L) and reacting for 15 minutes, an addition amount of iron (250 mg / L) was further added. Then, hydrogen peroxide was added at 500 (mg / L) for the second stage and reacted for 15 minutes. Subsequently, after the third stage addition was performed with iron addition amount 250 (mg / L) and hydrogen peroxide 500 (mg / L) and reacted for 15 minutes, iron addition amount 250 (mg / L), Hydrogen peroxide was added at the fourth stage at 500 mg / L, and reacted for 15 minutes. The total addition amount of iron, the addition amount of hydrogen peroxide, and the reaction time in the first to fourth rounds were the same as in the first stage addition. As a result, 1,4-dioxane could be reduced to 0.1 (mg / L).

この結果から分かるように、フェントン酸化法による1,4-ジオキサンの分解の場合には、金属触媒と過酸化水素の添加を複数段に分けて行うことにより分解効率を上げることができる。   As can be seen from this result, when 1,4-dioxane is decomposed by the Fenton oxidation method, the decomposition efficiency can be increased by adding the metal catalyst and hydrogen peroxide in multiple stages.

本発明の第1の実施の形態である廃水処理装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the waste water treatment apparatus which is the 1st Embodiment of this invention. 廃水中の1,4-ジオキサン濃度に対する有機物濃度と、1,4-ジオキサンの分解速度との関係を示した説明図。Explanatory drawing which showed the relationship between the organic substance density | concentration with respect to the 1, 4- dioxane density | concentration in wastewater, and the decomposition rate of 1, 4- dioxane. 本発明の第2の実施の形態である廃水処理装置の概略構成図。The schematic block diagram of the waste water treatment apparatus which is the 2nd Embodiment of this invention. 本発明の第2の実施の形態である廃水処理装置の変形例を示した概略構成図。The schematic block diagram which showed the modification of the waste water treatment apparatus which is the 2nd Embodiment of this invention. 本発明の第3の実施の形態である廃水処理装置の概略構成図。The schematic block diagram of the waste water treatment apparatus which is the 3rd Embodiment of this invention. 本発明の第4の実施の形態である廃水処理装置の概略構成図。The schematic block diagram of the waste water treatment apparatus which is the 4th Embodiment of this invention.

符号の説明Explanation of symbols

10、50、60、70、80…廃水処理装置、12…生物反応槽、14…沈殿槽、16…砂濾過槽、18…調整槽、20…促進酸化法のジオキサン分解装置、22…原水管、24…散気管、26…ブロアー、28…送水管、30…汚泥返送管、32…引き抜き管、34…促進酸化槽、36…オゾンガス注入管、38…紫外線ランプ、40…廃オゾン戻し管、42…膜分離装置、44…膜分離活性汚泥処理装置、46…膜分離槽、48…膜モジュール、54…フェントン酸化法のジオキサン分解装置、56…PH調整槽、58…金属触媒添加槽、62…金属触媒・過酸化水素添加槽、64…酸化分解槽、66…沈殿槽   DESCRIPTION OF SYMBOLS 10, 50, 60, 70, 80 ... Waste water treatment apparatus, 12 ... Biological reaction tank, 14 ... Precipitation tank, 16 ... Sand filtration tank, 18 ... Adjustment tank, 20 ... Dioxane decomposition apparatus of accelerated oxidation method, 22 ... Raw water pipe 24 ... Aeration pipe, 26 ... Blower, 28 ... Water pipe, 30 ... Sludge return pipe, 32 ... Drawer pipe, 34 ... Accelerated oxidation tank, 36 ... Ozone gas injection pipe, 38 ... UV lamp, 40 ... Waste ozone return pipe, 42 ... Membrane separation device, 44 ... Membrane separation activated sludge treatment device, 46 ... Membrane separation tank, 48 ... Membrane module, 54 ... Dioxane decomposition device of Fenton oxidation method, 56 ... PH adjustment tank, 58 ... Metal catalyst addition tank, 62 ... Metal catalyst / hydrogen peroxide addition tank, 64 ... oxidation decomposition tank, 66 ... precipitation tank

Claims (7)

廃水中に含有される1,4-ジオキサンを促進酸化法又はフェントン酸化法によるジオキサン分解工程で分解除去する廃水処理方法において、
前記ジオキサン分解工程の前処理として、
前記廃水に共存する有機物を生物反応槽で分解除去する有機物除去工程と、
前記有機物除去工程で処理された廃水を固液分離する固液分離工程とを設け、
前記固液分離工程で分離された分離水を前記ジオキサン分解工程で処理することを特徴とする廃水処理方法。
In a wastewater treatment method in which 1,4-dioxane contained in wastewater is decomposed and removed in a dioxane decomposition step by an accelerated oxidation method or a Fenton oxidation method,
As a pretreatment of the dioxane decomposition step,
An organic matter removing step of decomposing and removing organic matter coexisting in the wastewater in a biological reaction tank;
A solid-liquid separation step for solid-liquid separation of the wastewater treated in the organic matter removal step,
A wastewater treatment method, wherein the separated water separated in the solid-liquid separation step is treated in the dioxane decomposition step.
前記廃水中に含有される前記1,4-ジオキサン濃度(mg/L)に対する前記有機物濃度(mg/L)の比率が1.5以下になるように、前記有機物除去工程で廃水中の有機物を分解除去することを特徴とする請求項1の廃水処理方法。   The organic matter in the wastewater is removed in the organic matter removal step so that the ratio of the organic matter concentration (mg / L) to the 1,4-dioxane concentration (mg / L) contained in the wastewater is 1.5 or less. The wastewater treatment method according to claim 1, wherein the wastewater treatment method is performed by decomposition and removal. 前記廃水中には1,4-ジオキサン濃度が10mg/L以上含まれていることを特徴とする請求項1又は2の廃水処理方法。   The wastewater treatment method according to claim 1 or 2, wherein the wastewater contains a concentration of 1,4-dioxane of 10 mg / L or more. 前記ジオキサン分解工程を前記促進酸化法で行う場合には、発生する廃オゾンガスを前記生物反応槽に吹き込むことを特徴とする請求項1〜3の何れか1の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 3, wherein when the dioxane decomposition step is performed by the accelerated oxidation method, waste ozone gas generated is blown into the biological reaction tank. 前記ジオキサン分解工程を前記フェントン酸化法で行う場合には、金属触媒と過酸化水素の添加を複数段に分けて行うことを特徴とする請求項1〜3の何れか1の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 3, wherein when the dioxane decomposition step is performed by the Fenton oxidation method, the metal catalyst and hydrogen peroxide are added in a plurality of stages. 廃水中に含有される1,4-ジオキサンを分解除去する廃水処理装置において、
前記廃水に共存する有機物を分解除去する生物反応槽と、
前記生物反応槽で処理された廃水を固液分離する固液分離装置と、
前記固液分離装置で分離された分離水に含有される1,4-ジオキサンを促進酸化法又はフェントン酸化法によって分解除去するジオキサン分解装置と、
を備えたことを特徴とする廃水処理装置。
In wastewater treatment equipment that decomposes and removes 1,4-dioxane contained in wastewater,
A biological reaction tank for decomposing and removing organic substances coexisting in the waste water;
A solid-liquid separation device for solid-liquid separation of the wastewater treated in the biological reaction tank;
A dioxane decomposition apparatus that decomposes and removes 1,4-dioxane contained in separated water separated by the solid-liquid separation apparatus by an accelerated oxidation method or a Fenton oxidation method;
A wastewater treatment apparatus characterized by comprising:
前記固液分離装置は膜分離装置であることを特徴とする請求項6の廃水処理装置。   The wastewater treatment apparatus according to claim 6, wherein the solid-liquid separation apparatus is a membrane separation apparatus.
JP2003289959A 2003-08-08 2003-08-08 Method and apparatus for waste water treatment Pending JP2005058854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289959A JP2005058854A (en) 2003-08-08 2003-08-08 Method and apparatus for waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289959A JP2005058854A (en) 2003-08-08 2003-08-08 Method and apparatus for waste water treatment

Publications (1)

Publication Number Publication Date
JP2005058854A true JP2005058854A (en) 2005-03-10

Family

ID=34368125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289959A Pending JP2005058854A (en) 2003-08-08 2003-08-08 Method and apparatus for waste water treatment

Country Status (1)

Country Link
JP (1) JP2005058854A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093819A (en) * 1983-10-27 1985-05-25 Nec Corp Clock switching circuit
KR100710591B1 (en) 2006-05-11 2007-04-24 (주) 선일인바텍 Processing process of 1,4-dioxane inclusion wastewater
JP2010188306A (en) * 2009-02-19 2010-09-02 Sumitomo Precision Prod Co Ltd Method for decomposing dioxane
KR101064472B1 (en) 2009-02-25 2011-09-15 도레이첨단소재 주식회사 Processing process of 1,4-Dioxane inclusion wastewater
JP2011212618A (en) * 2010-03-31 2011-10-27 New Japan Chem Co Ltd Method for treating wastewater
JP2012035189A (en) * 2010-08-06 2012-02-23 Kubota Corp Equipment and method for water treatment
JP2012143672A (en) * 2011-01-07 2012-08-02 Kurita Water Ind Ltd Method and device for treating dioxane-containing water
JP2012161737A (en) * 2011-02-07 2012-08-30 Hitachi Plant Technologies Ltd Treatment method and treatment apparatus for waste-water containing 1,4-dioxane
JP2012187443A (en) * 2011-03-08 2012-10-04 Kotobuki Kakoki Kk Water treatment apparatus
JP2013126617A (en) * 2011-12-16 2013-06-27 Hitachi Plant Technologies Ltd Method for treating 1,4-dioxane in wastewater and device therefor
CN103304011A (en) * 2013-06-25 2013-09-18 武汉大学 Electrochemical treatment process for removing chemical oxygen demand in landfill leachate
JP2014097472A (en) * 2012-11-15 2014-05-29 Swing Corp Treatment method and treatment apparatus for organic waste water
JP2014188506A (en) * 2013-03-28 2014-10-06 Sumitomo Precision Prod Co Ltd Method for acclimatizing active sludge, method for treating waste water, and waste water treatment system
JP2015128751A (en) * 2014-01-08 2015-07-16 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
JP2016064338A (en) * 2014-09-24 2016-04-28 住友精密工業株式会社 Waste water treatment system and waste water treatment method
JP2017000992A (en) * 2015-06-15 2017-01-05 東洋紡株式会社 Water treatment system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093819A (en) * 1983-10-27 1985-05-25 Nec Corp Clock switching circuit
KR100710591B1 (en) 2006-05-11 2007-04-24 (주) 선일인바텍 Processing process of 1,4-dioxane inclusion wastewater
JP2010188306A (en) * 2009-02-19 2010-09-02 Sumitomo Precision Prod Co Ltd Method for decomposing dioxane
KR101064472B1 (en) 2009-02-25 2011-09-15 도레이첨단소재 주식회사 Processing process of 1,4-Dioxane inclusion wastewater
JP2011212618A (en) * 2010-03-31 2011-10-27 New Japan Chem Co Ltd Method for treating wastewater
JP2012035189A (en) * 2010-08-06 2012-02-23 Kubota Corp Equipment and method for water treatment
JP2012143672A (en) * 2011-01-07 2012-08-02 Kurita Water Ind Ltd Method and device for treating dioxane-containing water
JP2012161737A (en) * 2011-02-07 2012-08-30 Hitachi Plant Technologies Ltd Treatment method and treatment apparatus for waste-water containing 1,4-dioxane
JP2012187443A (en) * 2011-03-08 2012-10-04 Kotobuki Kakoki Kk Water treatment apparatus
JP2013126617A (en) * 2011-12-16 2013-06-27 Hitachi Plant Technologies Ltd Method for treating 1,4-dioxane in wastewater and device therefor
JP2014097472A (en) * 2012-11-15 2014-05-29 Swing Corp Treatment method and treatment apparatus for organic waste water
JP2014188506A (en) * 2013-03-28 2014-10-06 Sumitomo Precision Prod Co Ltd Method for acclimatizing active sludge, method for treating waste water, and waste water treatment system
CN103304011A (en) * 2013-06-25 2013-09-18 武汉大学 Electrochemical treatment process for removing chemical oxygen demand in landfill leachate
JP2015128751A (en) * 2014-01-08 2015-07-16 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
JP2016064338A (en) * 2014-09-24 2016-04-28 住友精密工業株式会社 Waste water treatment system and waste water treatment method
JP2017000992A (en) * 2015-06-15 2017-01-05 東洋紡株式会社 Water treatment system

Similar Documents

Publication Publication Date Title
JP2005058854A (en) Method and apparatus for waste water treatment
US6077431A (en) Process for decomposition and removal of dioxins contained in sludge
JP2000015288A (en) Waste water treatment method and apparatus
JP2007069091A (en) Organic wastewater treatment method
JP2001205277A (en) Method and apparatus for removing hardly decomposable organic compound in water
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
JP3867326B2 (en) Ozone treatment method for activated sludge process water
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
JP2007069053A (en) Method and facility for treating organic sludge
JP2003088892A (en) Organic waste water treatment apparatus
EP0952116B1 (en) Process for decomposition and removal of dioxins contained in sludge
NL2026394B1 (en) Wastewater ozone treatment
KR101071709B1 (en) Photo-Fenton oxidation reactor to remove 1,4-dioxane and method to remove 1,4-dioxane by Photo-Fenton oxidation
JP2002177981A (en) Waste water treatment method and equipment
CN202865059U (en) Integral type sewage treatment device
JP2000117279A (en) Water treatment
JP2005246347A (en) Method and apparatus for treating sewage
JP2003080274A (en) Treatment method and equipment for sewage
JP2001170672A (en) Waste water treatment method
JP2002059200A (en) Method of treating sewage and sludge
JP3271322B2 (en) Treatment of wastewater containing dimethyl sulfoxide
JP2001054798A (en) Method and apparatus for treating harmful material in sewage
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
JP3495318B2 (en) Advanced treatment method for landfill leachate
KR102299760B1 (en) High concentrated organic wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304