JP2012187443A - Water treatment apparatus - Google Patents

Water treatment apparatus Download PDF

Info

Publication number
JP2012187443A
JP2012187443A JP2011050471A JP2011050471A JP2012187443A JP 2012187443 A JP2012187443 A JP 2012187443A JP 2011050471 A JP2011050471 A JP 2011050471A JP 2011050471 A JP2011050471 A JP 2011050471A JP 2012187443 A JP2012187443 A JP 2012187443A
Authority
JP
Japan
Prior art keywords
water
treated water
tank
supply pipe
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011050471A
Other languages
Japanese (ja)
Other versions
JP5701648B2 (en
Inventor
Kazunobu Sano
教信 佐野
Motoaki Imaeda
基明 今枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOTOBUKI KAKOKI KK
Original Assignee
KOTOBUKI KAKOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOTOBUKI KAKOKI KK filed Critical KOTOBUKI KAKOKI KK
Priority to JP2011050471A priority Critical patent/JP5701648B2/en
Publication of JP2012187443A publication Critical patent/JP2012187443A/en
Application granted granted Critical
Publication of JP5701648B2 publication Critical patent/JP5701648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus capable of achieving the complete decomposition of biodegradable organic matter and the decomposition of hardly decomposable matter with an appropriate combination of chemical oxidation and biological oxidative decomposition.SOLUTION: A part or the most part of second treated water subjected to oxidation treatment in an ultraviolet oxidation tower 5 is returned to a filtration tank 3 through a fourth water supply pipe 51, a valve 54 and a fifth water supply pipe 52 (a first circulating path). This circulation has an effect of decomposing organic matter partially oxidized in the ultraviolet oxidation tower 5, by microorganisms living in the filtration tank 3. A part or the most part of final treated water in an activated carbon tower 6 is returned to a first water tank 4 through a seventh water supply pipe 56, a valve 59 and an eighth water supply pipe 57 (a second circulating path). In this case, decomposition is effective when the concentration of the remaining hardly decomposable matter is comparatively low.

Description

本発明は、水処理装置に関し、詳細には、水に含まれる有機物および生物的に分解困難な有機物を処理する技術に関する。   The present invention relates to a water treatment apparatus, and more particularly to a technique for treating organic substances contained in water and organic substances that are difficult to biodegrade.

従来、工場等の生産工程から排出される排水にはさまざまな成分が含まれており、近年ではこれらに対する処理技術が種々開発・応用され、環境への負荷の低減に役立っている。しかしながら、ある種の物質、特に生物分解が困難な有機化学物質(以下、「難分解性物質」と言う。)は通常の生物処理工程においても十分な分解がなされないため、そのまま公共水域に放流されることが多い。これらの難分解性物質は合成されたのもが大部分で、環境中に放出されると動植物に摂取されて体内濃縮を受け、更に、食物連鎖の結果ヒトの体内に蓄積し、健康被害を起こす可能性がある。そのため、例えば、特許文献1に記載のように、「生物分解」と「紫外線による酸化」を用いた水処理装置が提案されている。   Conventionally, various components are contained in wastewater discharged from production processes in factories and the like, and in recent years, various treatment technologies have been developed and applied to help reduce the burden on the environment. However, certain substances, especially organic chemical substances that are difficult to biodegrade (hereinafter referred to as “hard-degradable substances”) are not sufficiently decomposed even in normal biological treatment processes, so they are released into public waters as they are. Often done. Most of these persistent substances are synthesized, and when released into the environment, they are ingested by animals and plants and concentrated in the body, and as a result of the food chain, they can accumulate in the human body and cause health damage. There is sex. Therefore, for example, as described in Patent Document 1, a water treatment apparatus using “biodegradation” and “oxidation by ultraviolet rays” has been proposed.

また、水に含まれる不純物質の分離・分解技術には、従来、「沈殿・浮上」、「生物分解」、「活性炭吸着」、「化学的酸化」、及び「促進酸化」等が知られている。「沈殿・浮上」では、沈殿または浮上できるような比較的大きい粒子の分離は出来るが、溶解性の有機物は分離できない。また、「生物分解」では、好気的分解および嫌気的分解を行い、有機化合物の分解を行う。また、「活性炭吸着」では、活性炭により残留した有機物を吸着する。また、「化学的酸化」は、オゾン、塩素、過酸化水素などによる酸化分解であり、有機物の部分的な酸化が起きるものの、水(HO)や二酸化炭素(CO)までの分解は困難である。また、「促進酸化」は、オゾンと過酸化水素の組み合わせ、または紫外線と上記酸化剤を組み合わせてOHラジカルを発生させ有機物を分解する方法で、HOやCOまでの分解が可能であり、通常の化学的酸化より更に強い酸化力を有する。 In addition, conventionally known technologies for separating and decomposing impurities contained in water include “precipitation / flotation”, “biodegradation”, “activated carbon adsorption”, “chemical oxidation”, and “promoted oxidation”. Yes. In “precipitation / floating”, relatively large particles that can settle or float can be separated, but soluble organic substances cannot be separated. In “biodegradation”, aerobic decomposition and anaerobic decomposition are performed to decompose organic compounds. In the “activated carbon adsorption”, residual organic substances are adsorbed by activated carbon. “Chemical oxidation” is oxidative decomposition by ozone, chlorine, hydrogen peroxide, etc., and partial oxidation of organic matter occurs, but decomposition to water (H 2 O) and carbon dioxide (CO 2 ) Have difficulty. “Promoted oxidation” is a method of decomposing organic matter by generating OH radicals by combining ozone and hydrogen peroxide, or by combining ultraviolet rays and the above oxidizing agents, and can decompose to H 2 O and CO 2 . It has a stronger oxidizing power than ordinary chemical oxidation.

特開2010−221173号公報JP 2010-221173 A

しかしながら、上記の技術のうち、生物処理後に残留した分解困難な有機物ついては「活性炭吸着」または「化学的酸化」、「促進酸化」の処理が行われているが、設備費や維持費が高くなるという問題点があり、水処理装置の小型化やランニングコストの低減が望まれている。   However, among the above-mentioned technologies, “active carbon adsorption”, “chemical oxidation”, and “promoted oxidation” are performed on organic substances that remain after biological treatment and are difficult to decompose. However, equipment costs and maintenance costs increase. Therefore, it is desired to reduce the size of the water treatment device and reduce the running cost.

本発明は、上記課題を解決するためになされたものであり、生分解可能な有機物を完全に分解すること及び難分解性物質の分解を化学的な酸化と生物的な酸化分解との適切な組み合わせを実行できる水処理装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and is capable of completely decomposing a biodegradable organic substance and appropriately decomposing a hardly decomposable substance between chemical oxidation and biological oxidative decomposition. It aims at providing the water treatment apparatus which can perform combination.

本発明の一態様に係る水処理装置は、被処理水を貯水する原水槽と、前記原水槽から供給される前記被処理水を生物分解及び濾過して第一処理水を得る濾過槽と、前記濾過槽で濾過された第一処理水を貯溜する第一水槽と、前記第一水槽から供給される前記第一処理水に紫外線による酸化処理を行い第二処理水を得る紫外線酸化部と、前記紫外線酸化部で酸化された前記第二処理水を活性炭で濾過して最終処理水を得る活性炭濾過部と、前記紫外線酸化部で酸化された第二処理水の一部を前記濾過槽へ戻す第一循環路とを備えたことを特徴とする。   A water treatment apparatus according to an aspect of the present invention includes a raw water tank for storing treated water, a filtration tank for biodegrading and filtering the treated water supplied from the raw water tank to obtain first treated water, A first water tank for storing the first treated water filtered in the filtration tank; and an ultraviolet oxidation unit for obtaining a second treated water by oxidizing the first treated water supplied from the first water tank with ultraviolet rays, An activated carbon filtration unit that obtains a final treated water by filtering the second treated water oxidized in the ultraviolet oxidation unit with activated carbon, and a part of the second treated water oxidized in the ultraviolet oxidation unit is returned to the filtration tank. And a first circulation path.

この水処理装置では、第一循環路の循環により、紫外線酸化部で部分的な酸化を受けた有機物が濾過槽に生息する微生物に分解される効果がある。   In this water treatment device, there is an effect that organic matter that has been partially oxidized in the ultraviolet oxidation section is decomposed into microorganisms that live in the filtration tank by circulation in the first circulation path.

また、上記水処理装置では、前記活性炭濾過部で濾過された最終処理水の一部を前記第一水槽へ戻す第二循環路を備えても良い。この場合には、第二循環路の循環により、残留する難分解性物質が比較的低濃度の場合に有効である。このことによる効果は以下の通りである。(1)活性炭濾過部の活性炭に吸着された有機物は活性炭内で増殖した微生物により分解される。(2)紫外線酸化部の酸化によって生成したOHラジカルにより活性炭に吸着された有機物がさらに酸化分解を受ける。第二循環路の循環を行うことにより、(1)(2)の効果が繰り返され有機物の分解が促進する。   Moreover, in the said water treatment apparatus, you may provide the 2nd circulation path which returns a part of final treated water filtered with the said activated carbon filtration part to said 1st water tank. In this case, it is effective when the remaining hardly decomposable substance has a relatively low concentration due to the circulation of the second circulation path. The effect by this is as follows. (1) The organic matter adsorbed on the activated carbon in the activated carbon filtration part is decomposed by microorganisms grown in the activated carbon. (2) The organic matter adsorbed on the activated carbon is further subjected to oxidative decomposition by OH radicals generated by oxidation of the ultraviolet oxidation portion. By circulating the second circulation path, the effects of (1) and (2) are repeated, and the decomposition of the organic matter is promoted.

また、上記水処理装置では、前記紫外線酸化部へ供給される前記第一処理水へ酸化剤を投入する酸化剤供給部を備えても良い。この場合には、紫外線酸化部で酸化剤と紫外線によって生成したOHラジカルにより活性炭に吸着された有機物がさらに酸化分解を受けることができる。   The water treatment apparatus may further include an oxidant supply unit that inputs an oxidant to the first treated water supplied to the ultraviolet oxidation unit. In this case, the organic matter adsorbed on the activated carbon by the OH radical generated by the oxidizing agent and the ultraviolet rays in the ultraviolet oxidation portion can be further subjected to oxidative decomposition.

また、上記水処理装置では、前記紫外線酸化部は前記第一処理水が注入される反応槽を備え、当該反応槽内に筒形の石英ジャケットを設け、前記石英ジャケット内に低圧水銀灯と外部から空気を供給する空気供給管とを設け、さらに、前記石英ジャケット内で低圧水銀灯と前記空気が接触して生成するオゾンを含有する空気を前記反応槽の下部から前記第一処理水に放出するオゾン化空気管を備えても良い。低圧水銀灯の発する主な紫外線は254nmであり、この場合には、さらに酸化剤と反応して、OHラジカルを生成する(このOHラジカルが有機物を分解する)。また、この低圧水銀灯は、185nmの紫外線も発し、この紫外線は酸素(空気)との接触によりオゾンを生成することができる。   In the water treatment apparatus, the ultraviolet oxidation unit includes a reaction tank into which the first treated water is injected, a cylindrical quartz jacket is provided in the reaction tank, and a low-pressure mercury lamp and an external device are provided in the quartz jacket. An air supply pipe for supplying air; and ozone that releases ozone containing ozone generated from contact between the low-pressure mercury lamp and the air in the quartz jacket from the lower part of the reaction tank to the first treated water A chemical air tube may be provided. The main ultraviolet ray emitted from the low-pressure mercury lamp is 254 nm, and in this case, it further reacts with an oxidizing agent to generate OH radicals (the OH radicals decompose organic substances). The low-pressure mercury lamp also emits 185 nm ultraviolet light, which can generate ozone by contact with oxygen (air).

水処理装置1の構成を示すフローシートである。2 is a flow sheet showing the configuration of the water treatment apparatus 1. 紫外線酸化搭5の構造を示す縦断面図である。2 is a longitudinal sectional view showing a structure of an ultraviolet oxidation tower 5. FIG.

以下、本発明の水処理装置の一実施形態である水処理装置1について、図面に基づいて説明する。先ず、図1を参照して、水処理装置1の構成を説明する。水処理装置1は、被処理水が貯水される原水槽2と、原水槽2から供給される被処理水を生物分解及び濾過して第一処理水を得る濾過槽3と、濾過槽3で濾過された第一処理水が貯水される第一水槽4と、第一水槽4とから供給される第一処理水を紫外線で酸化する紫外線酸化搭5と、紫外線酸化搭5で酸化された第二処理水を活性炭で濾過する活性炭搭6(活性炭濾過部に相当)と、活性炭搭6で濾過された最終処理水を貯水する処理水槽7と、酸化剤を供給する酸化剤供給部62とを備えている。   Hereinafter, the water treatment apparatus 1 which is one Embodiment of the water treatment apparatus of this invention is demonstrated based on drawing. First, the configuration of the water treatment apparatus 1 will be described with reference to FIG. The water treatment apparatus 1 includes a raw water tank 2 in which treated water is stored, a filtration tank 3 that biodegrades and filters the treated water supplied from the raw water tank 2 to obtain first treated water, and a filtration tank 3. The first water tank 4 in which the filtered first treated water is stored, the ultraviolet oxidation tower 5 that oxidizes the first treated water supplied from the first water tank 4 with ultraviolet light, and the first oxidized water in the ultraviolet oxidation tower 5. Activated carbon tower 6 (corresponding to the activated carbon filtration section) for filtering the two treated water with activated carbon, treated water tank 7 for storing the final treated water filtered by the activated carbon tower 6, and an oxidizer supply section 62 for supplying an oxidizer I have.

また、原水槽2と濾過槽3とは第一給水管21により接続され、第一給水管21には、原水槽2から濾過槽3へ被処理水を送る第一ポンプ22が設けられている。また、濾過槽3と第一水槽4とは第二給水管33により接続され、第二給水管33には、第二ポンプ34が設けられている。また、第一水槽4と紫外線酸化搭5とは、第三給水管41により接続され、第三給水管41には、第三ポンプ42が設けられている。   Moreover, the raw | natural water tank 2 and the filtration tank 3 are connected by the 1st water supply pipe 21, and the 1st pump 22 which sends to-be-processed water from the raw | natural water tank 2 to the filtration tank 3 is provided in the 1st water supply pipe 21. . The filtration tank 3 and the first water tank 4 are connected by a second water supply pipe 33, and the second water supply pipe 33 is provided with a second pump 34. The first water tank 4 and the ultraviolet oxidation tower 5 are connected by a third water supply pipe 41, and the third water supply pipe 41 is provided with a third pump 42.

紫外線酸化搭5には、第四給水管51が接続され、第四給水管51は、途中から第五給水管52と第六給水管53とに分岐し、第五給水管52の先は濾過槽3に接続され、第六給水管53の先は活性炭搭6に接続されている。また、第五給水管52には、バルブ54が設けられ、第六給水管53にもバルブ55が設けられている。第四給水管51と第五給水管52とバルブ54とで第一循環路を構成する。   A fourth water supply pipe 51 is connected to the ultraviolet oxidation tower 5, and the fourth water supply pipe 51 branches into a fifth water supply pipe 52 and a sixth water supply pipe 53 from the middle, and the tip of the fifth water supply pipe 52 is filtered. Connected to the tank 3, the tip of the sixth water supply pipe 53 is connected to the activated carbon tower 6. The fifth water supply pipe 52 is provided with a valve 54, and the sixth water supply pipe 53 is also provided with a valve 55. The fourth water supply pipe 51, the fifth water supply pipe 52, and the valve 54 constitute a first circulation path.

活性炭搭6には、第七給水管56が接続され、第七給水管56は、途中から第八給水管57と第九給水管58とに分岐し、第八給水管57の先は第一水槽4に接続され、第九給水管58の先は処理水槽7に接続されている。また、第八給水管57には、バルブ59が設けられ、第九給水管58にもバルブ60が設けられている。第七給水管56と第八給水管57とバルブ59とで第二循環路を構成する。また、酸化剤供給部62には酸化剤供給管63が接続され、酸化剤供給部62に内蔵された酸化剤が第三給水管41に供給されて紫外線酸化搭5に送り込まれるようになっている。   A seventh water supply pipe 56 is connected to the activated carbon tower 6, and the seventh water supply pipe 56 branches from the middle into an eighth water supply pipe 57 and a ninth water supply pipe 58, and the tip of the eighth water supply pipe 57 is the first one. Connected to the water tank 4, the tip of the ninth water supply pipe 58 is connected to the treated water tank 7. The eighth water supply pipe 57 is provided with a valve 59, and the ninth water supply pipe 58 is also provided with a valve 60. The seventh water supply pipe 56, the eighth water supply pipe 57 and the valve 59 constitute a second circulation path. Further, an oxidant supply pipe 63 is connected to the oxidant supply part 62, and the oxidant built in the oxidant supply part 62 is supplied to the third water supply pipe 41 and sent to the ultraviolet oxidation tower 5. Yes.

次に、上記各構成の詳細を説明する。原水槽2は、被処理水である原水の供給源(図示せず)に接続され、原水を貯水する。原水槽2に貯水された原水は第一ポンプ22により第一給水管21を介して濾過槽3へ送られる。   Next, details of each of the above-described configurations will be described. The raw water tank 2 is connected to a supply source (not shown) of raw water that is treated water, and stores the raw water. The raw water stored in the raw water tank 2 is sent to the filtration tank 3 via the first water supply pipe 21 by the first pump 22.

濾過槽3は、第一給水管21を介して原水槽2の下流側に接続されている。濾過槽3は、工場排水等の原水に対して、化学的な酸化処理を行うための前処理である生物処理を行う。具体的には、被処理水である原水に含まれる難分解性物質を処理するには、まず生物的に分解可能な成分を効率よく分解する必要がある。有機物を効率よくかつ低コストで分解するには、まず生分解可能な有機物を生物分解反応においてほぼ完全に分解することが重要である。なぜなら、他の分解方法に比べて生物分解法が最もランニングコストが低いからである。   The filtration tank 3 is connected to the downstream side of the raw water tank 2 through the first water supply pipe 21. The filtration tank 3 performs biological treatment, which is a pretreatment for performing chemical oxidation treatment on raw water such as factory waste water. Specifically, in order to treat a hardly decomposable substance contained in raw water that is to be treated, it is first necessary to efficiently decompose biologically degradable components. In order to decompose organic substances efficiently and at low cost, it is important to first decompose biodegradable organic substances almost completely in a biodegradation reaction. This is because the biodegradation method has the lowest running cost compared to other decomposition methods.

図1に示すように、濾過槽3の底には散気管32が設けられ、散気管32は図示外の空気ポンプから供給される空気を排出して濾過槽3内を攪拌する。また、濾過槽3内には、濾過膜ユニット31が設けられ、濾過膜ユニット31で濾過された第一処理水が第二給水管33を介して第二ポンプ34により第一水槽4へ送られる。尚、濾過膜ユニット31は、膜分離活性汚泥法(MBR;メンブレン・バイオ・リアクター)により生物処理を行う。従って、濾過槽3は、生物反応槽と濾過槽を兼ねている。濾過槽3内で、十分に分解した排水を、濾過槽3に浸漬した濾過膜ユニット31で濾過する。濾過膜ユニット31の濾過膜は1μm以下の孔径を持っており、濾過槽3で生成した生物汚泥や懸濁物質を完全に分離する。このため、濾過槽3内には高濃度の汚泥が蓄積され、それに比例して高濃度の微生物が保持される。そのぶん生分解反応が促進され高度に生分解された透明な濾過水が得られる。また、濾過膜ユニット31において完全に懸濁物質が分離されるので通常の活性汚泥法のように沈殿処理が不要である。また、濾過槽3には、第五給水管52が接続され、紫外線酸化搭5で酸化された第二処理水の一部が還流される。   As shown in FIG. 1, an air diffuser 32 is provided at the bottom of the filtration tank 3, and the air diffuser 32 discharges air supplied from an air pump (not shown) to agitate the inside of the filter tank 3. Further, a filtration membrane unit 31 is provided in the filtration tank 3, and the first treated water filtered by the filtration membrane unit 31 is sent to the first water tank 4 by the second pump 34 through the second water supply pipe 33. . The filtration membrane unit 31 performs biological treatment by a membrane separation activated sludge method (MBR; membrane bioreactor). Therefore, the filtration tank 3 serves as a biological reaction tank and a filtration tank. In the filtration tank 3, the fully decomposed waste water is filtered by the filtration membrane unit 31 immersed in the filtration tank 3. The filtration membrane of the filtration membrane unit 31 has a pore size of 1 μm or less, and completely separates biological sludge and suspended matter generated in the filtration tank 3. For this reason, high concentration sludge is accumulated in the filtration tank 3, and high concentration microorganisms are retained in proportion thereto. Perhaps the biodegradation reaction is promoted to obtain highly biodegraded transparent filtered water. In addition, since the suspended solids are completely separated in the filtration membrane unit 31, no precipitation treatment is required as in the normal activated sludge method. Further, a fifth water supply pipe 52 is connected to the filtration tank 3, and a part of the second treated water oxidized by the ultraviolet oxidation tower 5 is refluxed.

第一水槽4は、濾過槽3で生物処理された第一処理水を貯水すると共に、活性炭搭6で濾過された最終処理水の一部が還流される。紫外線酸化搭5では、濾過槽3で生物処理された第一処理水に対して化学的な酸化を行う。   The first water tank 4 stores the first treated water biologically treated in the filtration tank 3 and a part of the final treated water filtered by the activated carbon tower 6 is refluxed. In the ultraviolet oxidation tower 5, chemical oxidation is performed on the first treated water biologically treated in the filtration tank 3.

紫外線酸化搭5での酸化処理の一例を以下に説明する。難分解性物質を分解するには化学的な酸化が必要であるが、これらの物質が酸化される時、分子形状のままでの酸化から分子の切断が起こり、ついにはHOとCOまでに分解される。このことを、難分解性物質の一つであるエチレングリコールを例にとって説明する。エチレングリコールの酸化分解は次のような順序でHOとCO に分解される。
OHCH−CHOH +O→ 2HCOOH+O→ 2HO+2CO
An example of the oxidation treatment in the ultraviolet oxidation tower 5 will be described below. Chemical oxidation is necessary to decompose hardly decomposable substances, but when these substances are oxidized, molecular cleavage occurs from oxidation in the molecular shape, and finally H 2 O and CO 2. Is broken down by. This will be described by taking ethylene glycol, which is one of the hardly decomposable substances, as an example. The oxidative decomposition of ethylene glycol is decomposed into H 2 O and CO 2 in the following order.
OHCH 2 —CH 2 OH + O 2 → 2HCOOH + O 2 → 2H 2 O + 2CO 2

しかしながら、化学的な酸化によってHO、COまで分解するには多量の酸化剤とエネルギーが必要である。上記の反応式からもわかるように、有機物の酸化は分子内酸化を経て−COOH基を持つカルボン酸、すなわち有機酸を生成する。通常の有機酸が生体内で容易に分解することを考えれば、化学的酸化によってHO、COまでの完全な酸化を行わずとも、その中間体までの酸化を行い、そのあと生物分解を行うのがランニングコストを低く出来ることは自明である。このことより、難分解性物質の分解には、化学的な酸化と生物的な酸化分解の適切な組み合わせが重要である。 However, a large amount of oxidant and energy are required to decompose to H 2 O and CO 2 by chemical oxidation. As can be seen from the above reaction formula, the oxidation of the organic substance undergoes intramolecular oxidation to generate a carboxylic acid having a —COOH group, that is, an organic acid. Considering that ordinary organic acids can be easily decomposed in vivo, chemical oxidation does not completely oxidize H 2 O and CO 2 , but also oxidizes the intermediate and then biodegrades. Obviously, running can reduce running costs. Therefore, an appropriate combination of chemical oxidation and biological oxidative decomposition is important for the decomposition of a hardly decomposable substance.

第一水槽4に貯水された第一処理水は第三ポンプ42で吸引され、酸化剤供給部62から酸化剤供給管63を介して送られる酸化剤が加えられて、紫外線酸化搭5へ送られる。このとき加えられる酸化剤の一例としては、オゾン、過酸化水素、次亜塩素酸ナトリウムがある。酸化剤の添加方法については、酸化剤の種類により異なり、以下のようになる。   The first treated water stored in the first water tank 4 is sucked by the third pump 42, added with the oxidant sent from the oxidant supply unit 62 through the oxidant supply pipe 63, and sent to the ultraviolet oxidation tower 5. It is done. Examples of the oxidizing agent added at this time include ozone, hydrogen peroxide, and sodium hypochlorite. About the addition method of an oxidizing agent, it changes with kinds of oxidizing agent as follows.

オゾンの場合は、オゾンがガス体であるので、第三ポンプ42後の第三給水管41にエジェクター(図示外)を設け、これによって生ずる負圧を利用して吸引させる方法、または、紫外線酸化搭5内に、散気管を配しこれより紫外線酸化搭5内にオゾンを供給する方法が考えられる。これらの方法は気体の供給であるので紫外線酸化搭5での気液混合により攪拌効果が十分にできる。   In the case of ozone, since ozone is a gas body, an ejector (not shown) is provided in the third water supply pipe 41 after the third pump 42, and suction is performed using the negative pressure generated thereby, or ultraviolet oxidation A method of supplying a diffuser tube in the tower 5 and supplying ozone into the ultraviolet oxidation tower 5 can be considered. Since these methods are gas supply, the stirring effect can be sufficiently obtained by gas-liquid mixing in the ultraviolet oxidation tower 5.

一方、過酸化水素や次亜塩素酸ナトリウムの場合は液体であるので紫外線酸化搭5内で十分な混合がなされない可能性がある。このことを解決する手段として以下のように二つの方法が考えられる。第一の方法としては、紫外線酸化搭5の底部に散気管を設けこれより空気を供給し槽内を攪拌する方法が考えられる。   On the other hand, since hydrogen peroxide and sodium hypochlorite are liquids, there is a possibility that sufficient mixing is not performed in the ultraviolet oxidation tower 5. The following two methods can be considered as means for solving this problem. As a first method, a method in which an air diffusion tube is provided at the bottom of the ultraviolet oxidation tower 5 and air is supplied from this to stir the inside of the tank can be considered.

第二の方法としては以下の方法が考えられる。図2に示すように、紫外線酸化搭5は、円筒形の密閉された反応筒70(反応槽に相当)の上部に第三給水管41が接続され第一処理水が注入され、反応筒70の下部に酸化された第二処理水が排出される第四給水管51が接続されている。また、紫外線酸化搭5の内に円筒形の石英ジャケット71を設けて、当該石英ジャケット71内に放電管73と空気供給管72を設け、放電管73には電源76を接続し、空気供給管72には、上部72Aから空気を供給し、放電管73の下方から空気を吐き出す。放電管73と接触して生成するオゾンを含有する空気(図2に示す矢印)をオゾン化空気管74により、紫外線酸化搭5の下部に設けた散気管75から反応筒70内に放出して拡散する。この方法は、特に185nmの紫外線を発する低圧水銀灯を用いる場合に有効である。   The following method can be considered as the second method. As shown in FIG. 2, the ultraviolet oxidation tower 5 has a third water supply pipe 41 connected to the upper part of a cylindrical sealed reaction cylinder 70 (corresponding to a reaction tank), and the first treated water is injected into the reaction cylinder 70. A fourth water supply pipe 51 through which the oxidized second treated water is discharged is connected to the lower part of the pipe. Further, a cylindrical quartz jacket 71 is provided in the ultraviolet oxidation tower 5, a discharge tube 73 and an air supply tube 72 are provided in the quartz jacket 71, a power supply 76 is connected to the discharge tube 73, and an air supply tube 72 is supplied with air from the upper part 72 </ b> A and discharges air from below the discharge tube 73. Air containing ozone generated in contact with the discharge tube 73 (arrow shown in FIG. 2) is discharged into the reaction tube 70 from the diffuser tube 75 provided at the lower portion of the ultraviolet oxidation tower 5 by the ozonized air tube 74. Spread. This method is particularly effective when a low-pressure mercury lamp that emits ultraviolet rays of 185 nm is used.

尚、放電管73の一例としては、低圧水銀灯を用いる。この低圧水銀灯の発する主な紫外線は254nmであり、この波長には殺菌効果があり、さらに酸化剤と反応して、OHラジカルを生成する(このOHラジカルが有機物を分解する)。また、この低圧水銀灯は、185nmの紫外線も発し、この紫外線は酸素(空気)との接触によりオゾンを生成する。従って、石英ジャケット71内でオゾン化された空気をオゾン化空気管74により取り出し、これを紫外線酸化搭5の反応筒70内に吹き込むことにより撹拌効果を与え、かつOHラジカルを発生させ酸化を助けることができる。   As an example of the discharge tube 73, a low-pressure mercury lamp is used. The main ultraviolet rays emitted from this low-pressure mercury lamp are 254 nm, and this wavelength has a bactericidal effect, and further reacts with an oxidizing agent to generate OH radicals (the OH radicals decompose organic substances). The low-pressure mercury lamp also emits ultraviolet rays of 185 nm, and the ultraviolet rays generate ozone by contact with oxygen (air). Accordingly, the ozonized air in the quartz jacket 71 is taken out by the ozonized air tube 74 and blown into the reaction cylinder 70 of the ultraviolet oxidation tower 5 to give a stirring effect, and generate OH radicals to help the oxidation. be able to.

次に、活性炭搭6について説明する。活性炭搭6内には、第二処理水を濾過して最終処理水にする活性炭が充填されている。また、活性炭搭6には、第二処理水を流入する第六給水管53と、最終処理水が流出する第七給水管56が接続されているが、通常は、図1に示すように、活性炭搭6の上部に第六給水管53を接続し、下部に第七給水管56を接続して、活性炭搭6の上から下へ第二処理水を流入させる。この場合には、前段の紫外線酸化搭5でオゾンや空気との接触で残ったガスが活性炭内に蓄積する。これを取り除くために定期的な逆流洗浄を行う。一方、活性炭搭6の下部に第六給水管53を接続し、上部に第七給水管56を接続して、活性炭搭6の下から上へ第二処理水を流入させるようにしても良い。この場合には、活性炭搭6内の活性炭層が流動状態になるので、活性炭層内にガスが蓄積しないため逆流洗浄の必要がない。   Next, the activated carbon tower 6 will be described. The activated carbon tower 6 is filled with activated carbon that filters the second treated water into final treated water. Further, the activated carbon tower 6 is connected to a sixth water supply pipe 53 into which the second treated water flows and a seventh water supply pipe 56 from which the final treated water flows out. Normally, as shown in FIG. A sixth water supply pipe 53 is connected to the upper part of the activated carbon tower 6 and a seventh water supply pipe 56 is connected to the lower part of the activated carbon tower 6 so that the second treated water flows from the top to the bottom of the activated carbon tower 6. In this case, the gas remaining in contact with ozone or air in the UV oxidation tower 5 in the previous stage is accumulated in the activated carbon. Regular backwashing is performed to remove this. On the other hand, the sixth water supply pipe 53 may be connected to the lower part of the activated carbon tower 6, and the seventh water supply pipe 56 may be connected to the upper part, so that the second treated water flows from the bottom to the upper side of the activated carbon tower 6. In this case, since the activated carbon layer in the activated carbon tower 6 is in a fluidized state, no gas is accumulated in the activated carbon layer, so there is no need for backflow cleaning.

次に、本発明のポイントを説明する。紫外線酸化搭5における酸化剤と紫外線による酸化処理の方法は、酸化剤量と紫外線ランプ本数を多くし滞留時間を長くとれば有機物の殆どをHO、COまで分解できるが、設備コストやランニングコストの増大で実用化が困難である。このことを解決する手段として、本実施の形態の水処理装置1では、以下のような方法を講ずる。先ず、図1に示すように紫外線酸化搭5で酸化処理された第二処理水の一部または大部分を第四給水管51、バルブ54及び第五給水管52(第一循環路)により濾過槽3へ戻すようにする。この循環により、紫外線酸化搭5で部分的な酸化を受けた有機物が濾過槽3に生息する微生物に分解される効果がある。この方法は、残留する難分解性物質が比較的濃度の高い場合に有効である。難分解性物質が紫外線酸化により部分的な酸化を受けると生分解性が向上するため、微生物量の多い濾過槽3へ返送して分解するものである。 Next, the points of the present invention will be described. The method of oxidizing treatment with an oxidant and ultraviolet rays in the ultraviolet oxidation tower 5 can decompose most of organic substances into H 2 O and CO 2 by increasing the amount of oxidant and the number of ultraviolet lamps and increasing the residence time. Practical application is difficult due to increased running costs. As means for solving this problem, the water treatment apparatus 1 of the present embodiment employs the following method. First, as shown in FIG. 1, a part or most of the second treated water oxidized by the ultraviolet oxidation tower 5 is filtered through the fourth water supply pipe 51, the valve 54 and the fifth water supply pipe 52 (first circulation path). Return to tank 3. By this circulation, there is an effect that the organic matter partially oxidized in the ultraviolet oxidation tower 5 is decomposed into microorganisms that live in the filtration tank 3. This method is effective when the remaining hardly decomposable substance has a relatively high concentration. Since the biodegradability is improved when the hardly decomposable substance is subjected to partial oxidation by ultraviolet oxidation, it is returned to the filtration tank 3 having a large amount of microorganisms for decomposition.

また、図1に示すように、活性炭搭6から排出される最終処理水の一部または大部分を第七給水管56、バルブ59及び第八給水管57により、第一水槽4に戻すようにする(第二循環路)。この場合には、残留する難分解性物質が比較的低濃度の場合に有効である。このことによる効果は以下の通りである。
(1)活性炭に吸着された有機物は活性炭内で増殖した微生物により分解される。
(2)酸化剤と紫外線によって生成したOHラジカルにより活性炭に吸着された有機物がさらに酸化分解を受ける。
(3)循環を行うことにより、(1)(2)の効果が繰り返され有機物の分解が促進する。これらの効果により有機物分解と共に活性炭そのものの再生が起きるため、吸着容量が増大し活性炭の寿命が著しく延びる。
Further, as shown in FIG. 1, part or most of the final treated water discharged from the activated carbon tower 6 is returned to the first water tank 4 by the seventh water supply pipe 56, the valve 59 and the eighth water supply pipe 57. (Second circuit). In this case, it is effective when the remaining hardly decomposable substance has a relatively low concentration. The effect by this is as follows.
(1) The organic matter adsorbed on the activated carbon is decomposed by microorganisms grown in the activated carbon.
(2) The organic matter adsorbed on the activated carbon by the OH radical generated by the oxidizing agent and ultraviolet rays is further subjected to oxidative decomposition.
(3) By performing the circulation, the effects of (1) and (2) are repeated, and the decomposition of the organic matter is promoted. Because of these effects, the activated carbon itself is regenerated along with the decomposition of organic matter, so that the adsorption capacity is increased and the life of the activated carbon is remarkably extended.

上記2種類の循環は、残留有機物が多ければ多いほど原水流入に対する循環比を大きくする必要があるが、通常は1:1〜1:10の範囲が好ましい。尤も、流入水の有機物濃度が極めて低い時は循環を行う必要がない。尚、循環比の調整は、第二処理水の濾過槽3への循環はバルブ54及びバルブ55の開度の割合を変えることにより行う。また、最終処理水の第一水槽4への循環はバルブ59及びバルブ60の開度の割合を変えることにより行う。バルブ54及びバルブ55の開度の調整による第五給水管52への流量:第六給水管53への流量比は、一例として、9:1〜0:10程度の範囲で残留有機物の量に応じて調整すれば良い。また、バルブ59及びバルブ60の開度の調整による第八給水管57への流量:第九給水管58への流量比は、一例として、5:1〜0:5程度の範囲で残留有機物の量に応じて調整すれば良い。   In the above two types of circulation, it is necessary to increase the circulation ratio with respect to the raw water inflow as the amount of residual organic matter increases, but a range of 1: 1 to 1:10 is usually preferable. However, there is no need to circulate when the organic concentration of the influent water is very low. The circulation ratio is adjusted by circulating the second treated water to the filtration tank 3 by changing the opening ratio of the valve 54 and the valve 55. Further, the circulation of the final treated water to the first water tank 4 is performed by changing the ratio of the opening degree of the valve 59 and the valve 60. The flow rate to the fifth water supply pipe 52 by adjusting the opening of the valve 54 and the valve 55: The flow ratio to the sixth water supply pipe 53 is, for example, the amount of residual organic matter in the range of 9: 1 to 0:10. It may be adjusted accordingly. Further, the flow rate ratio to the eighth water supply pipe 57 by adjusting the opening degree of the valve 59 and the valve 60: the flow ratio ratio to the ninth water supply pipe 58 is, for example, a range of about 5: 1 to 0: 5 of residual organic matter. What is necessary is just to adjust according to quantity.

次に、上記水処理装置1を使用した実験結果を表1として説明する。難分解性物質としては、ジエチレングリコールを使用した。
(1)処理条件
・原水組成:ジエチレングリコール200ppm水溶液、pH約6、TOC(有機炭素、Total Organic Carbon)45ppm
・通水条件:10L/h
・濾過槽3:250L、活性汚泥が約5000ppmに保たれている。濾過面積0.5m2
・紫外線酸化搭5:容量5L、40W低圧水銀灯
・活性炭搭6:活性炭充填量10L
・酸化剤:オゾン、注入量100ppm
Next, the experimental result using the said water treatment apparatus 1 is demonstrated as Table 1. FIG. Diethylene glycol was used as the hardly decomposable substance.
(1) Treatment conditions and raw water composition: 200 ppm diethylene glycol aqueous solution, pH of about 6, TOC (Total Organic Carbon) 45 ppm
・ Water flow conditions: 10L / h
-Filtration tank 3: 250 L, activated sludge is kept at about 5000 ppm. Filtration area 0.5m 2
・ UV oxidation tower 5: Capacity 5L, 40W low-pressure mercury lamp ・ Activated carbon tower 6: Activated carbon filling 10L
・ Oxidizing agent: ozone, injection amount 100ppm

(2)処理結果
酸化剤のあるなし、循環のあるなしについて比較した結果を示す。
但し、第一循環路(循環(1))、第二循環路(循環(2))とも循環水量は40L/hであった。

Figure 2012187443
上記表1に示すように、酸化剤を加えず、第一循環路(循環(1))、第二循環路(循環(2))とも循環水量無しの場合(RUN−1)は、ジエチレングリコールの除去率が33%と低いが、酸化剤を加えて、第一循環路(循環(1))、第二循環路(循環(2))とも循環水量が40L/hの場合(RUN−3)は、ジエチレングリコールの除去率が96%と高いことが分かる。また、酸化剤を加えて、第一循環路(循環(1))のみの場合(RUN−2)でも、ジエチレングリコールの除去率が82%と高く有効であることが分かる。 (2) Treatment results The results of comparison with and without oxidizing agent and with or without circulation are shown.
However, the amount of circulating water in both the first circulation path (circulation (1)) and the second circulation path (circulation (2)) was 40 L / h.
Figure 2012187443
As shown in Table 1 above, when no oxidizer is added and the first circulation path (circulation (1)) and the second circulation path (circulation (2)) are not circulated (RUN-1), diethylene glycol Although the removal rate is as low as 33%, the amount of circulating water is 40 L / h for both the first circulation path (circulation (1)) and the second circulation path (circulation (2)) by adding an oxidizing agent (RUN-3). It can be seen that the removal rate of diethylene glycol is as high as 96%. It can also be seen that the removal rate of diethylene glycol is as high as 82% and is effective even when only the first circulation path (circulation (1)) is added (RUN-2).

以上の構成を有する水処理装置1によれば、以下の効果を奏する。即ち、紫外線酸化後の処理水は難分解性有機物が部分的な酸化を受けるだけで、HOとCO までには分解されず、生分解が可能な状態になっている場合が大部分なので、これを濾過槽3(活性汚泥槽)へ返送して生物分解するのがコスト上メリットがある。一方、活性炭搭6で分解する場合は、活性炭内に棲息する微生物量に限界があるので出来るだけ低い濃度の排水に適する。微生物による分解は溶存酸素を必要とするので、常温での溶存酸素は約10ppmであることから、この濃度の酸素が消費される範囲内の有機物濃度が適当である。 According to the water treatment apparatus 1 having the above configuration, the following effects are obtained. In other words, the treated water after UV oxidation is mostly in a state in which biodegradation is possible without being decomposed to H 2 O and CO 2 only by partial oxidation of the hardly decomposable organic matter. Therefore, there is a cost merit in returning this to the filtration tank 3 (activated sludge tank) and biodegrading. On the other hand, when decomposing with the activated carbon tower 6, there is a limit to the amount of microorganisms living in the activated carbon, so it is suitable for drainage with as low a concentration as possible. Since decomposition by microorganisms requires dissolved oxygen, the dissolved oxygen at room temperature is about 10 ppm. Therefore, the organic substance concentration within the range in which this concentration of oxygen is consumed is appropriate.

尚、本発明の水処理装置は上記実施形態に限らず、各種の変形が可能なことは言うまでもない。例えば、pHの調整は以下のようにすれば良い。有機物の分解が進行するとpHが変化する。炭水化物が酸化されると有機物を生成するためpHが下がる。一方アミン類はアンモニアを遊離するのでpHが上昇する。従って、濾過槽3や活性炭搭6では、生物分解が進行しているので、pHは中性付近に調整する。   In addition, it cannot be overemphasized that the water treatment apparatus of this invention is not restricted to the said embodiment, Various deformation | transformation are possible. For example, the pH may be adjusted as follows. The pH changes as the decomposition of organic matter proceeds. When carbohydrates are oxidized, organic substances are produced, which lowers the pH. On the other hand, since amines liberate ammonia, the pH rises. Therefore, in the filtration tank 3 and the activated carbon tower 6, since the biodegradation is proceeding, the pH is adjusted to near neutral.

また、紫外線酸化搭5の後に気液分離を行うようにしても良い。オゾンなどの気体を吹き込んだ状態で、そのまま活性炭搭6へ流入させると、上向流型の活性炭搭6では、気泡により活性炭が浮遊、混和し系外に流出する場合がある。一方、下向流の場合でも活性炭搭6内に気泡が蓄積し、急激な濾過圧差圧の上昇が起きる場合がある。従って、紫外線酸化搭5の後の第四給水管51に気液分離機構を設けて、液体のみ活性炭搭6へ流入させるようにしても良い。また、反応筒70や石英ジャケット71は、必ずしも円筒形に限られず、反応筒70や石英ジャケット71は角型の筒等でも良い。   Further, gas-liquid separation may be performed after the ultraviolet oxidation tower 5. If a gas such as ozone is blown into the activated carbon tower 6 as it is, the activated carbon tower 6 may float and mix due to bubbles and flow out of the system. On the other hand, even in the case of a downward flow, bubbles may accumulate in the activated carbon tower 6 and a sudden increase in the filtration pressure differential pressure may occur. Therefore, a gas-liquid separation mechanism may be provided in the fourth water supply pipe 51 after the ultraviolet oxidation tower 5 so that only the liquid flows into the activated carbon tower 6. Further, the reaction tube 70 and the quartz jacket 71 are not necessarily limited to a cylindrical shape, and the reaction tube 70 and the quartz jacket 71 may be a square tube or the like.

1 水処理装置
2 原水槽
3 濾過槽
4 第一水槽
5 紫外線酸化搭(紫外線酸化部)
6 活性炭搭(活性炭濾過部)
7 処理水槽
21 第一給水管
22 第一ポンプ
31 濾過膜ユニット
32 散気管
33 第二給水管
34 第二ポンプ
41 第三給水管
42 第三ポンプ
51 第四給水管
52 第五給水管
53 第六給水管
54 バルブ
55 バルブ
56 第七給水管
57 第八給水管
58 第九給水管
59 バルブ
60 バルブ
62 酸化剤供給部
63 酸化剤供給管
70 反応筒
71 石英ジャケット
73 放電管
74 オゾン化空気管
75 散気管
DESCRIPTION OF SYMBOLS 1 Water treatment apparatus 2 Raw water tank 3 Filtration tank 4 1st water tank 5 UV oxidation tower (UV oxidation part)
6 Activated carbon tower (activated carbon filtration part)
7 treated water tank 21 first water supply pipe 22 first pump 31 filtration membrane unit 32 aeration pipe 33 second water supply pipe 34 second pump 41 third water supply pipe 42 third pump 51 fourth water supply pipe 52 fifth water supply pipe 53 sixth Water supply pipe 54 Valve 55 Valve 56 Seventh water supply pipe 57 Eighth water supply pipe 58 Ninth water supply pipe 59 Valve 60 Valve 62 Oxidant supply part 63 Oxidant supply pipe 70 Reaction cylinder 71 Quartz jacket 73 Discharge pipe 74 Ozonated air pipe 75 Diffuser

Claims (4)

被処理水を貯水する原水槽と、
前記原水槽から供給される前記被処理水を生物分解及び濾過して第一処理水を得る濾過槽と、
前記濾過槽で濾過された第一処理水を貯溜する第一水槽と、
前記第一水槽から供給される前記第一処理水に紫外線による酸化処理を行い第二処理水を得る紫外線酸化部と、
前記紫外線酸化部で酸化された前記第二処理水を活性炭で濾過して最終処理水を得る活性炭濾過部と、
前記紫外線酸化部で酸化された第二処理水の一部を前記濾過槽へ戻す第一循環路と
を備えたことを特徴とする水処理装置。
A raw water tank for storing treated water;
A filtration tank for biodegrading and filtering the treated water supplied from the raw water tank to obtain first treated water;
A first water tank for storing the first treated water filtered in the filtration tank;
An ultraviolet oxidation unit that obtains second treated water by subjecting the first treated water supplied from the first water tank to oxidation treatment with ultraviolet rays;
An activated carbon filtration unit that obtains a final treated water by filtering the second treated water oxidized by the ultraviolet oxidation unit with activated carbon;
A water treatment apparatus comprising: a first circulation path for returning a part of the second treated water oxidized in the ultraviolet oxidation unit to the filtration tank.
前記活性炭濾過部で濾過された最終処理水の一部を前記第一水槽へ戻す第二循環路を備えたことを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, further comprising a second circulation path for returning a part of the final treated water filtered by the activated carbon filtration unit to the first water tank. 前記紫外線酸化部へ供給される前記第一処理水へ酸化剤を投入する酸化剤供給部を備えたことを特徴とする請求項1又は2に記載の水処理装置。   The water treatment apparatus according to claim 1, further comprising an oxidant supply unit that introduces an oxidant into the first treated water supplied to the ultraviolet oxidation unit. 前記紫外線酸化部は、
前記第一処理水が注入される反応槽を備え、
当該反応槽内に筒形の石英ジャケットを設け、
前記石英ジャケット内に低圧水銀灯と外部から空気を供給する空気供給管とを設け、
さらに、前記石英ジャケット内で低圧水銀灯と前記空気が接触して生成するオゾンを含有する空気を前記反応槽の下部から前記第一処理水に放出するオゾン化空気管を備えたことを特徴とする請求項1〜3の何れかに記載の水処理装置。
The ultraviolet oxidation part is
Comprising a reaction tank into which the first treated water is injected;
A cylindrical quartz jacket is provided in the reaction vessel,
A low-pressure mercury lamp and an air supply pipe for supplying air from the outside are provided in the quartz jacket,
Furthermore, an ozonized air pipe is provided that discharges air containing ozone generated by contact between the low-pressure mercury lamp and the air in the quartz jacket from the lower part of the reaction tank to the first treated water. The water treatment apparatus in any one of Claims 1-3.
JP2011050471A 2011-03-08 2011-03-08 Water treatment equipment Active JP5701648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050471A JP5701648B2 (en) 2011-03-08 2011-03-08 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050471A JP5701648B2 (en) 2011-03-08 2011-03-08 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2012187443A true JP2012187443A (en) 2012-10-04
JP5701648B2 JP5701648B2 (en) 2015-04-15

Family

ID=47081217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050471A Active JP5701648B2 (en) 2011-03-08 2011-03-08 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP5701648B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195788A (en) * 2013-03-29 2014-10-16 三浦工業株式会社 Ultraviolet sterilization system
JP2017000994A (en) * 2015-06-15 2017-01-05 東洋紡株式会社 Water treatment system
KR101790872B1 (en) * 2016-04-20 2017-10-26 장윤정 Advanced Water Treatment System
JP2019034870A (en) * 2017-08-17 2019-03-07 壽化工機株式会社 Liquid fertilizer producing system
CN115072858A (en) * 2022-07-15 2022-09-20 广州市波华水处理设备有限公司 A sodium hypochlorite intelligence disinfecting equipment for water treatment

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114393A (en) * 1983-11-22 1985-06-20 Samuson Eng Kk Treating device for waste water
JPS61263691A (en) * 1985-05-20 1986-11-21 Iwasaki Electric Co Ltd Water treating apparatus
JPH0631897U (en) * 1992-09-30 1994-04-26 神奈川県 Industrial effluent recycling equipment
JPH0975993A (en) * 1995-09-19 1997-03-25 Taiyo Kagaku Kogyo Kk Treatment of organic matter-containing waste water and device therefor
JPH09117797A (en) * 1995-10-27 1997-05-06 Kubota Corp Method for removing hardly decomposable organic matter
JP2000093953A (en) * 1998-09-25 2000-04-04 Kubota Corp Apparatus for decomposing hardly decomposable organic substance and method for removing using the same hardly decomposable organic substance
JP2001170672A (en) * 1999-12-17 2001-06-26 Sumitomo Precision Prod Co Ltd Waste water treatment method
JP2002166275A (en) * 2000-09-21 2002-06-11 Ebara Corp Method and equipment for treating drainage containing thermally degradable organic compound
JP2004121973A (en) * 2002-10-02 2004-04-22 Kubota Corp Treatment method for organic wastewater
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2005058854A (en) * 2003-08-08 2005-03-10 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JP2006175369A (en) * 2004-12-22 2006-07-06 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk Water treatment method and water treatment apparatus
JP2007029825A (en) * 2005-07-25 2007-02-08 Daiki Ataka Engineering Co Ltd Apparatus for treating waste water and method for treating waste water using the apparatus
JP2008043898A (en) * 2006-08-18 2008-02-28 Opc:Kk Water treatment system and water treatment method
JP2009189943A (en) * 2008-02-14 2009-08-27 Japan Organo Co Ltd Water treatment method and apparatus
JP2009262122A (en) * 2008-03-31 2009-11-12 Panasonic Corp Apparatus for water treatment
JP2010172843A (en) * 2009-01-30 2010-08-12 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114393A (en) * 1983-11-22 1985-06-20 Samuson Eng Kk Treating device for waste water
JPS61263691A (en) * 1985-05-20 1986-11-21 Iwasaki Electric Co Ltd Water treating apparatus
JPH0631897U (en) * 1992-09-30 1994-04-26 神奈川県 Industrial effluent recycling equipment
JPH0975993A (en) * 1995-09-19 1997-03-25 Taiyo Kagaku Kogyo Kk Treatment of organic matter-containing waste water and device therefor
JPH09117797A (en) * 1995-10-27 1997-05-06 Kubota Corp Method for removing hardly decomposable organic matter
JP2000093953A (en) * 1998-09-25 2000-04-04 Kubota Corp Apparatus for decomposing hardly decomposable organic substance and method for removing using the same hardly decomposable organic substance
JP2001170672A (en) * 1999-12-17 2001-06-26 Sumitomo Precision Prod Co Ltd Waste water treatment method
JP2002166275A (en) * 2000-09-21 2002-06-11 Ebara Corp Method and equipment for treating drainage containing thermally degradable organic compound
JP2004121973A (en) * 2002-10-02 2004-04-22 Kubota Corp Treatment method for organic wastewater
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2005058854A (en) * 2003-08-08 2005-03-10 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JP2006175369A (en) * 2004-12-22 2006-07-06 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk Water treatment method and water treatment apparatus
JP2007029825A (en) * 2005-07-25 2007-02-08 Daiki Ataka Engineering Co Ltd Apparatus for treating waste water and method for treating waste water using the apparatus
JP2008043898A (en) * 2006-08-18 2008-02-28 Opc:Kk Water treatment system and water treatment method
JP2009189943A (en) * 2008-02-14 2009-08-27 Japan Organo Co Ltd Water treatment method and apparatus
JP2009262122A (en) * 2008-03-31 2009-11-12 Panasonic Corp Apparatus for water treatment
JP2010172843A (en) * 2009-01-30 2010-08-12 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195788A (en) * 2013-03-29 2014-10-16 三浦工業株式会社 Ultraviolet sterilization system
JP2017000994A (en) * 2015-06-15 2017-01-05 東洋紡株式会社 Water treatment system
KR101790872B1 (en) * 2016-04-20 2017-10-26 장윤정 Advanced Water Treatment System
JP2019034870A (en) * 2017-08-17 2019-03-07 壽化工機株式会社 Liquid fertilizer producing system
JP7064104B2 (en) 2017-08-17 2022-05-10 昆山納諾環保科技有限公司 Liquid fertilizer generation system
CN115072858A (en) * 2022-07-15 2022-09-20 广州市波华水处理设备有限公司 A sodium hypochlorite intelligence disinfecting equipment for water treatment
CN115072858B (en) * 2022-07-15 2022-10-28 广州市波华水处理设备有限公司 A sodium hypochlorite intelligence disinfecting equipment for water treatment

Also Published As

Publication number Publication date
JP5701648B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
TWI317349B (en)
JP4029100B2 (en) Water treatment apparatus and water treatment method
JP2008055291A (en) Water treating device
JP5701648B2 (en) Water treatment equipment
JP2009254967A (en) Water treatment system
KR101186922B1 (en) A treatment apparatus of raw water by use of ozon reaction with DOF separator and bio activated carbon filter
JP2007069091A (en) Organic wastewater treatment method
JP5808663B2 (en) Method and apparatus for treating 1,4-dioxane in wastewater
JP2009262122A (en) Apparatus for water treatment
KR101019590B1 (en) Purifying Apparatus for Removing Fe and Mn in Water and Purifying Method thereof
JP2005058854A (en) Method and apparatus for waste water treatment
JP2008126125A (en) Polluted water treatment apparatus and method
JP4787814B2 (en) Organic wastewater purification method and apparatus
KR101024805B1 (en) System and method for Advanced Oxidation Process using dissolved micro ozone bubble
JP2013146718A (en) Cleaning method of organic sewage and apparatus of the same
KR101071709B1 (en) Photo-Fenton oxidation reactor to remove 1,4-dioxane and method to remove 1,4-dioxane by Photo-Fenton oxidation
CN103420539A (en) Integrated sewage treatment unit and method
KR200407311Y1 (en) Dirty Water Purification Apparatus By Using Circulation Method
CN202865059U (en) Integral type sewage treatment device
JP2004141697A (en) Wastewater treatment equipment and manufacturing method of soil improving material using the same
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JP2003334432A (en) Gas dissolving device and water treatment device and water treatment apparatus having these
WO2007043134A1 (en) Palm oil production wastewater treatment system and method of treating palm oil production wastewater
JPH04135694A (en) Water treating device
JP2004329988A (en) Liquid purifying treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150218

R150 Certificate of patent or registration of utility model

Ref document number: 5701648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250