JP2002166275A - Method and equipment for treating drainage containing thermally degradable organic compound - Google Patents

Method and equipment for treating drainage containing thermally degradable organic compound

Info

Publication number
JP2002166275A
JP2002166275A JP2001265987A JP2001265987A JP2002166275A JP 2002166275 A JP2002166275 A JP 2002166275A JP 2001265987 A JP2001265987 A JP 2001265987A JP 2001265987 A JP2001265987 A JP 2001265987A JP 2002166275 A JP2002166275 A JP 2002166275A
Authority
JP
Japan
Prior art keywords
treated
membrane
water
oxidation reaction
membrane filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001265987A
Other languages
Japanese (ja)
Inventor
Souta Nakagawa
創太 中川
Yousei Katsura
甬生 葛
Toshihiro Tanaka
俊博 田中
Takuya Kobayashi
琢也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001265987A priority Critical patent/JP2002166275A/en
Publication of JP2002166275A publication Critical patent/JP2002166275A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating a drainage containing thermally decomposable organic compounds such as dioxins where the compounds contained in the drainage can be decomposed and treated with a membrane while suppressing the amount of an excessively produced sludge, and to provide an equipment therefor. SOLUTION: In the method for treating the drainage containing the thermally decomposable organic compounds such as dioxins, the liquid to be treated 1 is treated while the liquid is partially circulated 2, 5 between a membrane filtering process having a separating filter 10 and an accelerated oxidation reaction process 7 to obtain membrane permeated water 3 from the membrane filtering process as the treated water 4, a powdered activated carbon and/or an activated sludge is added to the liquid to be treated in the membrane filtering process, and it is preferred that the liquid to be treated is always fluidized by normally aerating inside the membrane filtering process, the membrane permeated water 3 from the membrane filtering process is allowed to pass through an activated carbon adsorption column 12 to obtain the treated water 4. In addition, the reaction process 7 comprises at least an ozonization reaction process where the liquid to be treated in the membrane filtering process is supplied and can be treated by circulating the liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、難分解性有機化合
物含有排水の処理に係り、特に、ダイオキシン類や環境
ホルモン類等の難分解性有機化合物を含む産業排水や生
活排水、最終処分場、焼却場などからの排水、下水を分
離膜を用いて膜ろ過する処理方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of wastewater containing hardly decomposable organic compounds, and more particularly to industrial wastewater, domestic wastewater, and final disposal sites containing hardly decomposable organic compounds such as dioxins and environmental hormones. The present invention relates to a method and an apparatus for performing membrane filtration of wastewater and sewage from an incineration plant or the like using a separation membrane.

【0002】[0002]

【従来の技術】従来、ダイオキシン類を含む排水からダ
イオキシン類を除去するための処理方法としては、図3
に示すように、ダイオキシン類を含む排水1を生物処理
槽26に流入させ、有機物を分解除去し、この混合液を
沈殿池21により活性汚泥23と上澄水24に分離さ
せ、この上澄水をさらに砂ろ過槽22に流入させ、処理
水中の懸濁物質を分離除去し、砂ろ過処理水25を得
る。さらに、この砂ろ過処理水25を活性炭吸着塔12
に流入させ、被処理水中のダイオキシン類を吸着除去
し、活性炭吸着塔12からの流出水を処理水4として得
るか、又は、上述の砂ろ過処理水25を促進酸化反応槽
に供給し、促進酸化反応槽においてダイオキシン類を分
解除去し、促進酸化反応槽からの流出水を処理水として
得ていた。
2. Description of the Related Art Conventionally, a treatment method for removing dioxins from wastewater containing dioxins is shown in FIG.
As shown in (1), the wastewater 1 containing dioxins is flowed into the biological treatment tank 26 to decompose and remove organic matter, and this mixed solution is separated into activated sludge 23 and supernatant water 24 by the sedimentation tank 21. It is made to flow into the sand filtration tank 22 to separate and remove suspended substances in the treated water to obtain treated sand filtered water 25. Further, this sand filtration treated water 25 is supplied to the activated carbon adsorption tower 12.
And the dioxins in the water to be treated are adsorbed and removed, and the effluent from the activated carbon adsorption tower 12 is obtained as the treated water 4, or the above-mentioned sand filtration treated water 25 is supplied to the promoted oxidation reaction tank to promote the treatment. Dioxins were decomposed and removed in the oxidation reaction tank, and the effluent from the accelerated oxidation reaction tank was obtained as treated water.

【0003】また、活性汚泥による排水処理では、処理
に伴う余剰汚泥の処理処分法としては、引き抜き、濃
縮、脱水、焼却などの工程を得て、系外に排出しなけれ
ばならない。その費用はかなり莫大なものであり、全体
のランニングコストの増大を招いていた。さらに、汚泥
脱水処理においても、適切な薬注率などの管理に伴うメ
ンテナンスの煩雑さも残る。最近、活性汚泥処理と組合
せた汚泥減容化処理として、余剰汚泥量以上の汚泥を沈
殿池又は生物反応曝気槽から引き抜き、オゾンを注入す
る別個のオゾン反応槽に導入して処理し、オゾン処理を
受けた汚泥を再び生物反応曝気槽に返送すると、曝気槽
でオゾン処理汚泥の一部が生物処理によって分解するこ
とが知られている。
[0003] In the wastewater treatment using activated sludge, as a method of treating and disposing of excess sludge accompanying the treatment, it is necessary to obtain processes such as drawing, concentration, dehydration, and incineration and discharge the sludge to the outside of the system. The costs were quite enormous, leading to an increase in overall running costs. Furthermore, even in the sludge dewatering treatment, the complexity of maintenance associated with management of an appropriate chemical injection rate and the like remains. Recently, as sludge volume reduction treatment combined with activated sludge treatment, sludge of excess sludge amount or more is withdrawn from a sedimentation tank or biological reaction aeration tank, introduced into a separate ozone reaction tank into which ozone is injected, and treated. It is known that when returned sludge is returned to the biological reaction aeration tank, a part of the ozone-treated sludge is decomposed by the biological treatment in the aeration tank.

【0004】このようなダイオキシン類等の難分解性有
機化合物含有排水の従来技術による処理では、以下に示
す問題点がある。すなわち、砂ろ過槽では、一定時間ご
とに清澄な水により逆流洗浄を行う必要があり、大量の
水が必要であり、また、砂ろ過槽内に蓄積した汚染物質
を含有した洗浄排水が大量に生じる問題点がある。活性
汚泥による排水処理では、処理に伴い余剰汚泥が発生
し、引き抜き、濃縮、脱水、焼却などの工程を得て、系
外に排出しなければならない。その費用はかなり莫大な
ものであり、全体のランニングコストが増加する問題点
がある。さらに、汚泥脱水処理においても、適切な薬注
率などの管理に伴うメンテナンスが煩雑になる問題点が
ある。また、膜処理では、ダイオキシン濃度が高まった
濃縮水を系外に排出する必要があるが、濃縮水の処分が
問題となる。
[0004] The treatment of such wastewater containing a hardly decomposable organic compound such as dioxins by a conventional technique has the following problems. In other words, in the sand filtration tank, it is necessary to perform backwashing with clear water at regular intervals, a large amount of water is required, and a large amount of washing wastewater containing contaminants accumulated in the sand filtration tank is required. There are problems that arise. In wastewater treatment using activated sludge, excess sludge is generated as a result of the treatment, and it is necessary to obtain processes such as drawing, concentration, dehydration, and incineration, and discharge the sludge to the outside of the system. The cost is quite enormous, and there is a problem that the overall running cost increases. Furthermore, in sludge dewatering treatment, there is a problem that maintenance accompanying management of an appropriate chemical injection rate or the like becomes complicated. Further, in the membrane treatment, it is necessary to discharge the concentrated water having the increased dioxin concentration out of the system, but disposal of the concentrated water poses a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明では、上述した
問題点を解決し、ダイオキシン類や環境ホルモン等の難
分解性有機化合物を含む有機性排水について、難分解性
有機化合物を分解除去し、同時に排水中の有機物を分解
し、さらに生物処理過程で発生する余剰汚泥の発生量を
押さえる処理方法と装置を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and decomposes and removes hard-to-decompose organic compounds from organic wastewater containing hard-to-decompose organic compounds such as dioxins and environmental hormones. It is another object of the present invention to provide a processing method and an apparatus that simultaneously decompose organic substances in wastewater and suppress the amount of excess sludge generated in a biological treatment process.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、難分解性有機化合物を含む排水の処理
方法であって、前記被処理液を、分離膜を有する膜ろ過
工程と促進酸化反応工程との間を一部循環させながら処
理し、該膜ろ過工程からの膜透過水を処理水として得る
こととしたものである。前記処理方法において、膜ろ過
工程の被処理液には、粉末活性炭及び/又は活性汚泥が
添加され、該膜ろ過工程を常時曝気することにより、該
被処理液を常に流動させるのがよく、また、前記膜ろ過
工程からの膜透過水は、活性炭吸着工程に通して、その
流出水を処理水とすることができ、さらに、前記促進酸
化反応工程が、少なくともオゾンを注入するオゾン反応
工程を含むものであり、膜ろ過工程の活性汚泥を含む被
処理液の一部を供給して循環処理することができる。ま
た、本発明では、難分解性有機化合物を含む排水の処理
装置であって、粉末活性炭及び/又は活性汚泥を有する
被処理液が入っている分離膜を備えた膜ろ過槽と、有機
化合物を酸化分解する促進酸化反応槽と、前記膜ろ過槽
と促進酸化反応槽の間を被処理液が循環する循環経路を
有すると共に、前記膜ろ過槽の分離膜を透過した膜透過
水を通して処理水を得る活性炭吸着塔を有することとし
たものである。
According to the present invention, there is provided a method for treating wastewater containing a hardly decomposable organic compound, comprising the steps of: The treatment is performed while partially circulating between the accelerated oxidation reaction step and the membrane permeated water from the membrane filtration step is obtained as treated water. In the above treatment method, powdered activated carbon and / or activated sludge is added to the liquid to be treated in the membrane filtration step, and the liquid to be treated is preferably allowed to flow constantly by constantly aerating the membrane filtration step. The membrane permeated water from the membrane filtration step can be passed through an activated carbon adsorption step, and the effluent can be treated water. Further, the accelerated oxidation reaction step includes an ozone reaction step of injecting at least ozone. And a part of the liquid to be treated including the activated sludge in the membrane filtration step can be supplied and circulated. Further, according to the present invention, there is provided an apparatus for treating wastewater containing a hardly decomposable organic compound, comprising: a membrane filtration tank provided with a separation membrane containing a liquid to be treated having powdered activated carbon and / or activated sludge; A promoted oxidation reaction tank that undergoes oxidative decomposition, and a circulation path through which the liquid to be treated circulates between the membrane filtration tank and the promoted oxidation reaction tank, and the treated water is passed through the membrane permeated water that has passed through the separation membrane of the membrane filtration tank. And an activated carbon adsorption tower.

【0007】[0007]

【発明の実施の形態】本発明において、難分解性有機化
合物としては、ダイオキシン類等の有機塩素化合物や、
ノニルフェノール等の環境ホルモンなどの通常の活性汚
泥等の生物処理では分解されない化合物をいう。なお、
本発明において、促進酸化反応とは、オゾン、紫外線、
過酸化水素及び触媒を組合せて有機化合物を酸化分解す
る反応をいう。触媒には、金属を含む物質及び活性炭、
粉末活性炭を挙げることができる。また、本発明で膜ろ
過工程における装置構成は、膜を槽内に浸漬させるも
の、カートリッジ型膜モジュールによるものなどが挙げ
られるが、これらに限るものではない。膜としては、M
F膜、UF膜、NF膜、RO膜などを用いることができ
る。材質は有機化合物、セラミック、金属などを用いる
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, examples of the hardly decomposable organic compound include organic chlorine compounds such as dioxins, and the like.
A compound that is not decomposed by biological treatment of ordinary activated sludge such as environmental hormones such as nonylphenol. In addition,
In the present invention, the accelerated oxidation reaction includes ozone, ultraviolet light,
This refers to a reaction in which hydrogen peroxide and a catalyst are combined to oxidatively decompose an organic compound. The catalyst includes a substance containing metal and activated carbon,
Powdered activated carbon can be mentioned. In the present invention, examples of the device configuration in the membrane filtration step include a device in which a membrane is immersed in a tank, a device using a cartridge type membrane module, and the like, but are not limited thereto. As the membrane, M
An F film, a UF film, an NF film, an RO film, or the like can be used. As the material, an organic compound, ceramic, metal or the like can be used.

【0008】次に、本発明を図面を参照して詳細に説明
する。図1は、研究施設から排出されたダイオキシン類
等の難分解性有機化合物含有排水を、本発明の処理方法
により処理する一例を示すフローシートである。図1に
示すように、難分解性有機化合物含有排水1を促進酸化
反応工程7に供給し、促進酸化反応工程7からの促進酸
化反応工程流出水2を得る。促進酸化反応工程流出水2
を膜ろ過工程9に供給し、膜ろ過工程9内に設置されて
いる中空糸膜10により吸引ろ過し、膜透過水3を得
る。膜透過水3を、活性炭吸着工程12に供給し、活性
炭吸着工程12からの活性炭吸着工程流出水4を、処理
水として得る。難分解性有機化合物含有排水1は、膜ろ
過工程9に供給してもよい。膜ろ過工程9内の混合液中
に粉末活性炭及び/又は活性汚泥を添加することがで
き、膜ろ過工程9における粉末活性炭の濃度は、100
0mg/L以上が好ましく、また、膜ろ過工程9におけ
る活性汚泥の濃度は、3000〜6000mg/Lであ
ることが好ましい。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a flow sheet showing an example of treating wastewater containing a hardly decomposable organic compound such as dioxins discharged from a research facility by the treatment method of the present invention. As shown in FIG. 1, a wastewater 1 containing a hardly decomposable organic compound is supplied to a promoted oxidation reaction step 7 to obtain a promoted oxidation reaction step effluent 2 from the promoted oxidation reaction step 7. Accelerated oxidation reaction process effluent 2
Is supplied to the membrane filtration step 9, which is subjected to suction filtration by the hollow fiber membrane 10 installed in the membrane filtration step 9, to obtain the permeated water 3. The permeated water 3 is supplied to the activated carbon adsorption step 12, and the effluent water 4 from the activated carbon adsorption step 12 from the activated carbon adsorption step 12 is obtained as treated water. The wastewater 1 containing the hardly decomposable organic compound may be supplied to the membrane filtration step 9. Powdered activated carbon and / or activated sludge can be added to the mixed solution in the membrane filtration step 9, and the concentration of the powdered activated carbon in the membrane filtration step 9 is 100
0 mg / L or more is preferable, and the concentration of activated sludge in the membrane filtration step 9 is preferably 3000 to 6000 mg / L.

【0009】膜ろ過工程9内の混合液の一部を促進酸化
反応工程7に循環させる。循環は連続的に行っても断続
的に行っても良い。膜ろ過工程9での促進酸化反応工程
流出水2の平均滞留時間は4時間以上が好ましい。膜ろ
過工程9内の混合液5の一部を、促進酸化反応工程7に
返送することにより、汚泥の蓄積を防ぐことができ、難
分解性有機化合物の分解効率を向上させることができ
る。促進酸化反応工程7内には、紫外線ランプ8が備え
られており、また、オゾンガス発生装置13からオゾン
ガス6が供給されており、混合液5及び難分解性有機化
合物含有排水1中の難分解性有機化合物を酸化分解して
いる。促進酸化反応工程は、処理方法が連続式又は回分
式のいずれであっても良い。回分式では、循環水の流れ
が断続的となる。回分式とは、促進酸化反応工程と貯留
タンクの間に水が循環する型式のものも含まれる。該促
進酸化反応工程7での処理液の平均滞留時間は任意に設
定できる。促進酸化反応を回分的に行う場合は、処理時
間は1時間〜24時間が好ましい。また、膜ろ過工程9
内には、混合液を常時曝気して流動させるための散気管
11が備えられている。活性炭吸着工程12での膜透過
水3の平均滞留時間は、1時間以上が好ましい。
A part of the mixed solution in the membrane filtration step 9 is circulated to the accelerated oxidation reaction step 7. Circulation may be performed continuously or intermittently. The average residence time of the effluent water 2 in the accelerated oxidation reaction step in the membrane filtration step 9 is preferably 4 hours or more. By returning a part of the mixed solution 5 in the membrane filtration step 9 to the accelerated oxidation reaction step 7, accumulation of sludge can be prevented, and the decomposition efficiency of the hardly decomposable organic compound can be improved. An ultraviolet lamp 8 is provided in the accelerated oxidation reaction step 7, and an ozone gas 6 is supplied from an ozone gas generator 13. Organic compounds are oxidatively decomposed. In the accelerated oxidation reaction step, the treatment method may be either a continuous method or a batch method. In a batch system, the flow of circulating water is intermittent. The batch type includes a type in which water is circulated between the accelerated oxidation reaction step and the storage tank. The average residence time of the treatment liquid in the accelerated oxidation reaction step 7 can be set arbitrarily. When the accelerated oxidation reaction is performed batchwise, the treatment time is preferably 1 hour to 24 hours. In addition, the membrane filtration step 9
Inside, there is provided a diffuser 11 for constantly aerating and flowing the mixed solution. The average residence time of the permeated water 3 in the activated carbon adsorption step 12 is preferably 1 hour or more.

【0010】図2は、本発明の処理方法により処理する
他の例を示すフローシートである。図2においては、図
1の連続的に酸化処理を行うのに変えて、酸化処理を回
分式に行う方法のフローシートであり、促進酸化反応工
程7は、貯留タンク17と、オゾンガス6を導入して行
う主反応槽18と、紫外線ランプ8により紫外線照射を
行う紫外線ユニット19とからなり、膜処理工程9から
被処理水を、循環ポンプ15により定期的に貯留タンク
17に抜き取り、貯留タンク17内の被処理水は循環ポ
ンプ15’により、オゾンガス6を導入して主反応槽1
8でオゾン酸化処理して、次いで紫外線ユニット19で
紫外線ランプ8の照射を受けて、貯留タンク17に流入
する循環経路20で難分解生化合物を酸化分解処理す
る。促進酸化反応工程で酸化処理された処理水は、定期
的に循環ポンプ15”により膜分離工程9に移送され
て、図1と同様に処理される。
FIG. 2 is a flow sheet showing another example of processing by the processing method of the present invention. FIG. 2 is a flow sheet of a method in which the oxidation treatment is performed batchwise instead of performing the continuous oxidation treatment in FIG. 1. In the accelerated oxidation reaction step 7, the storage tank 17 and the ozone gas 6 are introduced. And a UV unit 19 for irradiating UV light from the UV lamp 8. The water to be treated from the membrane treatment step 9 is periodically drawn out to the storage tank 17 by the circulating pump 15, and is stored in the storage tank 17. The to-be-processed water in the main reaction tank 1 is introduced with ozone gas 6 by a circulation pump 15 '.
The ozone is oxidized at 8, and then irradiated with the ultraviolet lamp 8 at the ultraviolet unit 19 to oxidize and decompose the hard-to-degrade biochemical in the circulation path 20 flowing into the storage tank 17. The treated water that has been oxidized in the accelerated oxidation reaction step is periodically transferred to the membrane separation step 9 by the circulation pump 15 ″, and is treated in the same manner as in FIG.

【0011】[0011]

【実施例】以下において、本発明を実施例によりさらに
具体的に説明するが、本発明は、この実施例により限定
されるものではない。 実施例1 この実施例1においては、図1に示すようなフローによ
りダイオキシン類含有排水の処理を行った。膜ろ過工程
には、活性汚泥と粉末活性炭を添加した。最初に、促進
酸化反応工程7における処理について説明する。本実施
例では、促進酸化反応槽工程7に供給するオゾンガス6
は、促進酸化反応工程7におけるオゾンガス注入率で約
50mg/Lになるように供給した。なお、促進酸化反
応工程7における滞留時間は約0.5時間、紫外線の強
度は1W・h/Lであった。また、促進酸化反応工程7
に供給する膜ろ過槽混合液5の水量は、促進酸化反応工
程7に供給するダイオキシン類含有排水1の水量とほぼ
同じであった。表1にダイオキシン類含有排水1の水質
及び水量を示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Example 1 In Example 1, treatment of dioxin-containing wastewater was performed according to the flow shown in FIG. In the membrane filtration step, activated sludge and powdered activated carbon were added. First, the processing in the accelerated oxidation reaction step 7 will be described. In this embodiment, the ozone gas 6 supplied to the accelerated oxidation reaction tank process 7 is used.
Was supplied at an ozone gas injection rate of about 50 mg / L in the accelerated oxidation reaction step 7. The residence time in the accelerated oxidation reaction step 7 was about 0.5 hour, and the intensity of ultraviolet light was 1 W · h / L. In addition, accelerated oxidation reaction step 7
The amount of water in the mixed solution 5 of the membrane filtration tank supplied to the dioxin-containing wastewater 1 supplied to the accelerated oxidation reaction step 7 was substantially the same as the amount of water supplied to the dioxin-containing wastewater 1. Table 1 shows the water quality and amount of the dioxin-containing wastewater 1.

【0012】[0012]

【表1】 [Table 1]

【0013】表2に促進酸化反応工程7における処理結
果を示す。表2より、本実施例では促進酸化反応工程7
においてダイオキシン類は、膜ろ過工程混合液5に28
0pg−TEQ/L、ダイオイキシン類含有排水1に2
50pg−TEQ/L含まれていたが、促進酸化反応工
程流出水2で28pg−TEQ/Lまで減少した。ま
た、促進酸化反応工程7の流入水でのS−CODとS−
BODはそれぞれ8mg/Lと<2mg/Lであるのに
対し、流出水のS−CODとS−BODはそれぞれ95
mg/Lと85mg/Lであり、出口では入口と比較し
て溶解性成分が増加した。
Table 2 shows the results of the treatment in the accelerated oxidation reaction step 7. As shown in Table 2, in this example, the accelerated oxidation reaction step 7
Dioxins are added to the mixed solution 5 in the membrane filtration step.
0pg-TEQ / L, 2 per drainage containing dioxin
Although 50 pg-TEQ / L was contained, it was reduced to 28 pg-TEQ / L in the effluent 2 of the accelerated oxidation reaction step. Further, S-COD and S-
The BOD was 8 mg / L and <2 mg / L, respectively, whereas the S-COD and S-BOD of the effluent were 95
mg / L and 85 mg / L, and the soluble component increased at the outlet compared to the inlet.

【0014】[0014]

【表2】 膜ろ過工程9における汚泥発生量は、本実施例では0.
18kg/dであった。同じ処理水量でオゾン処理を行
わなかった場合の汚泥発生量は、0.54kg/dであ
り、1日あたり0.36kg汚泥が減少し、余剰汚泥の
発生量を低減できた。
[Table 2] The amount of sludge generated in the membrane filtration step 9 is 0.1 in this embodiment.
It was 18 kg / d. When the ozone treatment was not performed with the same amount of treated water, the amount of generated sludge was 0.54 kg / d, which reduced 0.36 kg of sludge per day, thereby reducing the amount of generated excess sludge.

【0015】次に、膜ろ過工程9における処理について
説明する。本実施例では、膜ろ過工程9に活性汚泥をM
LSSで6000mg/Lになるように添加し、粉末活
性炭を5000mg/Lとなるように添加した。中空糸
膜10は、公称孔径0.4μm、公称膜面積42m2
ユニットを1基用いた。活性汚泥及び粉末活性炭の撹拌
と活性汚泥への酸素の供給のために、曝気ブロワ16に
より常時曝気を行った。吸引ろ過ポンプ14は13分運
転、2分間停止となるように運転し、膜透過流束は約
0.2m/dでろ過を行った。表3に膜ろ過工程9から
の膜透過水3の水質を示す。表3から、膜ろ過工程9に
よる処理により、CODは2mg/L以下、BODは5
mg/L以下となった。ダイオキシン類は、膜透過水で
1pg−TEQ/L以下であった。
Next, the processing in the membrane filtration step 9 will be described. In this example, activated sludge was added to the membrane
LSS was added so as to be 6000 mg / L, and powdered activated carbon was added so as to be 5000 mg / L. The hollow fiber membrane 10 used one unit having a nominal pore size of 0.4 μm and a nominal membrane area of 42 m 2 . In order to stir the activated sludge and the powdered activated carbon and to supply oxygen to the activated sludge, aeration was always performed by the aeration blower 16. The suction filtration pump 14 was operated for 13 minutes and stopped for 2 minutes, and filtration was performed at a membrane permeation flux of about 0.2 m / d. Table 3 shows the water quality of the permeated water 3 from the membrane filtration step 9. From Table 3, COD is 2 mg / L or less and BOD is 5
mg / L or less. Dioxins were 1 pg-TEQ / L or less in membrane permeated water.

【表3】 [Table 3]

【0016】本実施例における、活性炭吸着工程流出水
4の水質を表4に示す。表4から、活性炭吸着工程流出
水(処理水)のCODは2mg/L以下、BODは5m
g/L以下で、放流水として良好な処理水が得られた。
また、ダイオキシン類は、活性炭吸着工程流出水で1p
g−TEQ/L以下であり、放流基準を十分満足するも
のであった。
Table 4 shows the water quality of the effluent water 4 in the activated carbon adsorption step in this embodiment. From Table 4, the COD of the activated carbon adsorption step effluent (treated water) is 2 mg / L or less, and the BOD is 5 m.
At g / L or less, good treated water as effluent was obtained.
In addition, dioxins are reduced to 1p in effluent from activated carbon adsorption process.
g-TEQ / L or less, which sufficiently satisfied the discharge standard.

【表4】 [Table 4]

【0017】実施例2 この実施例2においては、図1に示すようなフローによ
りダイオキシン類含有排水の処理を行った。最初に、促
進酸化反応工程7における処理について説明する。本実
施例では、促進酸化反応工程7に供給するオゾンガス6
は、促進酸化反応工程7におけるオゾンガス注入率で約
50mg/Lになるように供給した。なお、促進酸化反
応工程7における滞留時間は約0.5時間、紫外線の強
度は1W・h/Lであった。また、促進酸化反応工程7
に供給する膜ろ過槽混合液の水量は、促進酸化反応工程
7に供給するダイオキシン類含有排水1の水量とほぼ同
じであった。表5にダイオキシン類含有排水1の水質及
び水量を示す。
Example 2 In Example 2, dioxin-containing wastewater was treated according to the flow shown in FIG. First, the processing in the accelerated oxidation reaction step 7 will be described. In this embodiment, the ozone gas 6 supplied to the accelerated oxidation reaction
Was supplied at an ozone gas injection rate of about 50 mg / L in the accelerated oxidation reaction step 7. The residence time in the accelerated oxidation reaction step 7 was about 0.5 hour, and the intensity of ultraviolet light was 1 W · h / L. In addition, accelerated oxidation reaction step 7
The amount of water in the mixed solution of the membrane filtration tank supplied to the dioxin-containing wastewater 1 supplied to the accelerated oxidation reaction step 7 was substantially the same as the amount of water in the mixed liquid. Table 5 shows the water quality and amount of the dioxin-containing wastewater 1.

【表5】 [Table 5]

【0018】表6に促進酸化反応工程7における処理結
果を示す。表6により、本実施例では促進酸化反応工程
7においてダイオキシン類は、膜ろ過槽混合液5及びダ
イオキシン類含有排水1に140pg−TEQ/L含ま
れていたが、促進酸化反応工程流出水2で14pg−T
EQ/Lまで減少し、約90%減少した。
Table 6 shows the results of the treatment in the accelerated oxidation reaction step 7. According to Table 6, in this example, 140 pg-TEQ / L of dioxins was contained in the membrane filtration tank mixture 5 and the dioxin-containing wastewater 1 in the accelerated oxidation reaction step 7 in the accelerated oxidation reaction step 7, 14pg-T
It decreased to EQ / L, about 90%.

【表6】 [Table 6]

【0019】次に、膜ろ過工程9における処理について
説明する。中空糸膜10は、公称孔径0.4μm、公称
膜面積42m2のユニットを1基用いた。膜ろ過工程内
撹拌のため曝気ブロワ16により常時曝気を行った。吸
引ろ過ポンプ14は13分運転、2分間停止となるよう
に運転し、膜透過流束は約0.2m/dでろ過を行っ
た。表7に膜ろ過工程9からの膜透過水3の水質を示
す。表7から、膜ろ過工程9による処理によりCODは
2mg/L以下、BODは5mg/L以下となった。ダ
イオキシン類は、膜透過水で1pg−TEQ/L以下で
あった。
Next, the processing in the membrane filtration step 9 will be described. The hollow fiber membrane 10 used one unit having a nominal pore size of 0.4 μm and a nominal membrane area of 42 m 2 . Aeration was always performed by the aeration blower 16 for stirring in the membrane filtration process. The suction filtration pump 14 was operated for 13 minutes and stopped for 2 minutes, and filtration was performed at a membrane permeation flux of about 0.2 m / d. Table 7 shows the quality of the permeated water 3 from the membrane filtration step 9. From Table 7, the COD was 2 mg / L or less and the BOD was 5 mg / L or less by the treatment in the membrane filtration step 9. Dioxins were 1 pg-TEQ / L or less in membrane permeated water.

【表7】 [Table 7]

【0020】本実施例における、活性炭吸着工程流出水
4の水質を表8に示す。表8から、活性炭吸着と流出水
(処理水)のCODは2mg/L以下、BODは5mg
/L以下で放流水として良好な処理水が得られた。ま
た、ダイオキシン類は活性炭吸着塔流出水で1pg−T
EQ/L以下であり、放流基準を十分満足するものであ
った。
Table 8 shows the water quality of the effluent water 4 in the activated carbon adsorption step in this embodiment. From Table 8, the COD of activated carbon adsorption and effluent (treated water) is 2 mg / L or less, and the BOD is 5 mg / L.
/ L or less, good treated water as effluent was obtained. Dioxins are 1 pg-T in the effluent of the activated carbon adsorption tower.
It was equal to or less than EQ / L, which was enough to satisfy the discharge standard.

【表8】 [Table 8]

【0021】実施例3 この実施例3においては、図1に示すようなフローによ
りCOD成分のうち内分泌系撹乱物質(環境ホルモン)
含有排水の処理を行った。本実施例では環境ホルモンの
うちノニルフェノール含有排水について処理を行った。
最初に、促進酸化反応工程7における処理について説明
する。本実施例では、促進酸化反応工程7に供給するオ
ゾンガス6は、促進酸化反応工程7におけるオゾンガス
注入率で約5mg/Lになるように供給した。なお、促
進酸化反応工程7における滞留時間は0.25時間、紫
外線の強度は0.03W・h/Lであった。また、促進
酸化反応工程に供給する膜ろ過工程混合液の水量は、促
進酸化反応工程7に供給するノニルフェノール含有排水
1の水量とほぼ同じであった。表9にノニルフェノール
含有排水1の水質及び水量を示す。
Example 3 In Example 3, an endocrine disrupting substance (environmental hormone) among the COD components was obtained by the flow shown in FIG.
The wastewater containing was treated. In this example, nonylphenol-containing wastewater among environmental hormones was treated.
First, the processing in the accelerated oxidation reaction step 7 will be described. In the present embodiment, the ozone gas 6 supplied to the accelerated oxidation reaction step 7 was supplied such that the ozone gas injection rate in the enhanced oxidation reaction step 7 was about 5 mg / L. The residence time in the accelerated oxidation reaction step 7 was 0.25 hours, and the intensity of ultraviolet rays was 0.03 W · h / L. The amount of water in the mixed solution in the membrane filtration step supplied to the accelerated oxidation reaction step was almost the same as the amount of water in the nonylphenol-containing wastewater 1 supplied to the accelerated oxidation reaction step 7. Table 9 shows the water quality and amount of the nonylphenol-containing wastewater 1.

【表9】 [Table 9]

【0022】表10に促進酸化反応工程7における処理
結果を示す。表10より、本実施例では促進酸化反応工
程7においてノニルフェノールは、膜ろ過工程混合液5
に25μg/L、ノニルフェノール含有排水に26μg
/L含まれていたが、促進酸化反応工程流出水2で0.
5μmg/Lまで減少した。
Table 10 shows the results of the treatment in the accelerated oxidation reaction step 7. From Table 10, in this example, in the accelerated oxidation reaction step 7, nonylphenol was mixed with the mixed solution 5 in the membrane filtration step.
25 µg / L for nonylphenol-containing wastewater and 26 µg for wastewater containing nonylphenol
/ L, but 0.1% in the effluent water 2 of the accelerated oxidation reaction step.
It decreased to 5 μmg / L.

【表10】 [Table 10]

【0023】次に、膜ろ過工程9における処理について
説明する。中空糸膜10は、公称孔径0.4μm、公称
膜面積42m2のユニットを1基用いた。活性汚泥及び
粉末活性炭の撹拌と活性汚泥への酸素の供給のために曝
気ブロワ16により常時曝気を行った。吸引ろ過ポンプ
14は13分運転、2分間停止となるように運転し、こ
の時の膜透過流束は約0.2m/dであった。表11に
膜ろ過工程9からの膜透過水3の水質を示す。表11か
ら、膜ろ過工程9による処理により、CODは2mg/
L以下、BODは5g/L以下となった。ノニルフェノ
ールは、膜透過水で0.5μg/L以下であった。
Next, the processing in the membrane filtration step 9 will be described. The hollow fiber membrane 10 used one unit having a nominal pore size of 0.4 μm and a nominal membrane area of 42 m 2 . The aeration blower 16 constantly aerated to agitate the activated sludge and the powdered activated carbon and to supply oxygen to the activated sludge. The suction filtration pump 14 was operated for 13 minutes and stopped for 2 minutes, and the membrane permeation flux at this time was about 0.2 m / d. Table 11 shows the water quality of the permeated water 3 from the membrane filtration step 9. From Table 11, COD was 2 mg / d by the treatment in the membrane filtration step 9.
L and BOD was 5 g / L or less. Nonylphenol was 0.5 μg / L or less in membrane permeated water.

【表11】 [Table 11]

【0024】本実施例における、活性炭吸着工程流出水
4の水質を表12に示す。表12から、活性炭吸着工程
と流出水(処理水)のCODは2mg/L以下、BOD
は5mg/L以下で放流水として良好な処理水が得られ
た。また、ノニルフェノールは活性炭吸着工程出水で
0.5μg/L以下であり、98%以上除去された。
Table 12 shows the water quality of the effluent water 4 in the activated carbon adsorption step in this embodiment. From Table 12, the COD of the activated carbon adsorption step and the effluent (treated water) is 2 mg / L or less, and the BOD
With 5 mg / L or less, good treated water as effluent was obtained. In addition, nonylphenol was 0.5 μg / L or less in the water discharged from the activated carbon adsorption step, and 98% or more was removed.

【表12】 [Table 12]

【0025】実施例4 図2示すフローによりダイオキシン類含有排水の処理を
行った。膜ろ過工程には粉末活性炭を濃度1000mg
/Lとなるように添加した。本実施例では、循環ポンプ
(取水)15により膜ろ過工程混合液を貯留タンクに一
定量取水し、循環ポンプ(取水)15を止めた後に、促
進酸化処理を行う構成としている。促進酸化処理が終了
した後、促進酸化処理水は循環ポンプ(返水)15”に
より、膜ろ過工程に返送される。促進酸化処理は、被処
理液を貯留タンク、主反応槽及び紫外線ランプユニット
の間に循環させることで行う。下記に運転条件を示す。
Example 4 The wastewater containing dioxins was treated according to the flow shown in FIG. 1000mg powdered activated carbon in the membrane filtration process
/ L. In this embodiment, the circulation pump (water intake) 15 takes a fixed amount of the mixed solution in the membrane filtration step into the storage tank, and after the circulation pump (water intake) 15 is stopped, accelerated oxidation treatment is performed. After the completion of the accelerated oxidation treatment, the promoted oxidation treatment water is returned to the membrane filtration step by a circulation pump (return water) 15 ″. In the accelerated oxidation treatment, the liquid to be treated is stored in a storage tank, a main reaction tank, and an ultraviolet lamp unit. The operation conditions are shown below.

【0026】 原水(ダイオキシン類含有排水) ・原水流量 24m3/day ・ダイオキシン類濃度 20pg−TEQ/L 膜処理工程 ・容積 10m3 ・膜孔径 0.4μm ・膜面積 160m2 促進酸化反応工程 ・貯留タンク容積 2.5m3 ・循環ポンプ(促進酸化処理)流量 42L/min ・主反応槽容積 80L ・UVランプ入力電力 130W ・オゾンガス注入条件 8g/hr ・処理時間 22hrRaw water (dioxin-containing wastewater) Raw water flow rate 24 m 3 / day Dioxin concentration 20 pg-TEQ / L Membrane treatment step Volume 10 m 3 Membrane pore diameter 0.4 μm Membrane area 160 m 2 Promoted oxidation reaction step Storage Tank capacity 2.5m 3・ Circulation pump (promoted oxidation treatment) flow rate 42L / min ・ Main reaction tank capacity 80L ・ UV lamp input power 130W ・ Ozone gas injection condition 8g / hr ・ Processing time 22hr

【0027】上記のような条件で処理した結果、ダイオ
キシン類濃度は概ね下記に示す値となり、膜処理工程混
合液におけるダイオキシン類濃度は、200〜250p
g−TEQ/Lの範囲で安定状態を保った。これによ
り、膜処理工程で分離濃縮されるダイオキシン類量と促
進酸化処理工程で分解されるダイオキシン類量がバラン
スし、膜処理工程混合液のダイオキシン類濃度が定常化
することにより本装置外へのダイオキシン類の排出が皆
無となった。以上の結果より、膜処理工程から促進酸化
処理工程への循環水供給を断続的に行い、促進酸化処理
を回分的に行った場合においても、本発明の効果に変わ
りはないことが確認された。 促進酸化処理におけるダイオキシン類濃度 ・促進酸化処理前 250pg−TEQ/L ・促進酸化処理後 47pg−TEQ/L 膜処理工程混合液のダイオキシン類濃度 200〜250pg−TEQ/L 膜透過水(処理水)のダイオキシン類濃度1pg−TEQ/L以下
As a result of the treatment under the above-mentioned conditions, the dioxin concentration is generally as shown below, and the dioxin concentration in the mixed solution in the membrane treatment step is 200 to 250 p.
The stable state was maintained in the range of g-TEQ / L. As a result, the amount of dioxins separated and concentrated in the membrane treatment process and the amount of dioxins decomposed in the accelerated oxidation treatment process are balanced, and the concentration of dioxins in the mixed solution of the membrane treatment process is stabilized, so that the amount of dioxins outside the device is reduced. Dioxin emissions were completely eliminated. From the above results, it was confirmed that the effect of the present invention does not change even when the circulating water supply from the membrane treatment step to the accelerated oxidation treatment step is performed intermittently and the accelerated oxidation treatment is performed batchwise. . Dioxin concentration in accelerated oxidation treatment • 250 pg-TEQ / L before accelerated oxidation treatment • 47 pg-TEQ / L after accelerated oxidation treatment Dioxin concentration in mixed solution of membrane treatment process 200 to 250 pg-TEQ / L Membrane permeated water (treated water) Dioxin concentration 1pg-TEQ / L or less

【0028】[0028]

【発明の効果】本発明によれば、有機性排水や工業排水
の処理において、ダイオキシン類などの難分解性有機化
合物を含む有機性排水を、促進酸化反応工程に流入さ
せ、促進酸化反応工程からの流出水を、好ましくは、粉
末活性炭と活性汚泥のうち少なくともいずれか一つ以上
を有し、中空糸膜を内蔵する膜ろ過工程に供給し、膜ろ
過工程を常時曝気し、膜ろ過工程内の混合液を常に流動
させれば、ダイオキシン類は粉末活性炭、又は活性汚泥
により吸着される。また、中空糸膜による吸引ろ過によ
り、膜ろ過工程内の懸濁性物質はすべて分離除去される
ため、排水中の懸濁物質及びダイオキシン類のうち懸濁
性のダイオキシン類を分離することができる。膜透過水
中に非懸濁性ダイオキシン類が残留した場合において
も、膜ろ過工程の後段に設置された活性炭吸着工程にお
いて、非懸濁性ダイオキシン類は吸着除去することがで
きる。膜ろ過工程からの膜透過水は、活性炭吸着工程に
流入させるが、膜透過水には懸濁物質が含まれていない
ため、活性炭吸着工程において、懸濁性物質による閉塞
を防ぐ効果がある。
According to the present invention, in the treatment of organic wastewater or industrial wastewater, organic wastewater containing a hardly decomposable organic compound such as dioxins is allowed to flow into the accelerated oxidation reaction step, and from the accelerated oxidation reaction step. Effluent is preferably supplied to a membrane filtration step having at least one of powdered activated carbon and activated sludge and incorporating a hollow fiber membrane, and the membrane filtration step is constantly aerated, and the The dioxins are adsorbed by powdered activated carbon or activated sludge if a mixture of the above is constantly flowed. In addition, all the suspended substances in the membrane filtration step are separated and removed by suction filtration using the hollow fiber membrane, so that suspended dioxins can be separated from suspended substances and dioxins in the wastewater. . Even when the non-suspendable dioxins remain in the permeated water, the non-suspendable dioxins can be adsorbed and removed in the activated carbon adsorption step provided after the membrane filtration step. The membrane permeated water from the membrane filtration step is allowed to flow into the activated carbon adsorption step. However, since the membrane permeated water does not contain suspended substances, the activated carbon adsorption step has an effect of preventing clogging by suspended substances.

【0029】また、万一膜透過水にダイオキシン類など
の難分解性有機化合物が残留しても、活性炭吸着工程に
おいてダイオキシン類は吸着除去されるため、ダイオキ
シン類が除去された処理水を得ることができる。また、
膜ろ過工程内からの膜ろ過工程混合液を、少なくともオ
ゾンガスを注入する促進酸化反応工程に供給すると、膜
ろ過工程混合液中の活性汚泥を、生物が代謝しやすい液
化有機物に分解できる。さらに、オゾン反応工程処理液
を膜ろ過工程に流入させることにより、液化有機物を膜
ろ過工程内の活性汚泥により無機化することがきる。以
上のことから、膜ろ過工程内の活性汚泥を無機化できる
ため、余剰汚泥の発生量を減少させることができる。ま
た、膜ろ過工程内からの膜ろ過工程混合液にオゾンガス
を注入するため、膜ろ過工程混合液中に含まれるダイオ
キシン類を含む有機化合物を、酸化分解することができ
る。このように、本発明では、ダイオキシン類を含む有
機性排水に含まれるダイオキシン類を分解除去及び吸着
除去することができるため、本装置外へのダイオキシン
類の排出を低減あるいは皆無にできる効果がある。
Also, even if a hardly decomposable organic compound such as dioxins remains in the permeated water, dioxins are adsorbed and removed in the activated carbon adsorption step, so that treated water from which dioxins have been removed must be obtained. Can be. Also,
When the mixed liquid in the membrane filtration step from the inside of the membrane filtration step is supplied to the accelerated oxidation reaction step in which at least ozone gas is injected, the activated sludge in the mixed liquid in the membrane filtration step can be decomposed into liquefied organic matter that is easily metabolized by living organisms. Further, by flowing the treatment liquid in the ozone reaction step into the membrane filtration step, the liquefied organic matter can be mineralized by activated sludge in the membrane filtration step. From the above, since the activated sludge in the membrane filtration step can be mineralized, the amount of excess sludge generated can be reduced. Further, since ozone gas is injected into the mixed solution of the membrane filtration step from the inside of the membrane filtration step, organic compounds containing dioxins contained in the mixed solution of the membrane filtration step can be oxidatively decomposed. As described above, in the present invention, since dioxins contained in organic wastewater containing dioxins can be decomposed and removed and adsorbed and removed, there is an effect that discharge of dioxins outside the present apparatus can be reduced or eliminated. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の難分解性有機化合物含有排水の処理方
法を実施するための一例を示すフロー構成図。
FIG. 1 is a flow diagram showing an example for carrying out a method for treating wastewater containing a hardly decomposable organic compound according to the present invention.

【図2】本発明の難分解性有機化合物含有排水の処理方
法を実施するための他の例を示すフロー構成図。
FIG. 2 is a flow diagram showing another example for carrying out the method for treating wastewater containing a hardly decomposable organic compound according to the present invention.

【図3】従来のダイオキシン類含有排水の処理方法の一
例を示すフロー図。
FIG. 3 is a flowchart showing an example of a conventional method for treating dioxin-containing wastewater.

【符号の説明】[Explanation of symbols]

1:難分解性有機化合物含有排水、2:促進酸化反応工
程流出水、3:膜透過水、4:活性炭吸着工程流出水
(処理水)、5:膜ろ過工程混合液、6:オゾンガス、
7:促進酸化反応工程、8:紫外線ランプ、9:膜ろ過
工程、10:中空糸膜、11:散気管、12:活性炭吸
着工程、13:オゾンガス発生装置、14:吸引ろ過ポ
ンプ、15、15’、15”:循環ポンプ、16:曝気
ブロワ、17:貯留タンク、18:主反応槽、19:紫
外線ユニット、20:促進酸化反応工程循環経路
1: wastewater containing a hardly decomposable organic compound, 2: effluent of an accelerated oxidation reaction step, 3: membrane permeated water, 4: effluent of an activated carbon adsorption step (treated water), 5: mixed liquid of a membrane filtration step, 6: ozone gas,
7: accelerated oxidation reaction step, 8: ultraviolet lamp, 9: membrane filtration step, 10: hollow fiber membrane, 11: diffuser tube, 12: activated carbon adsorption step, 13: ozone gas generator, 14: suction filtration pump, 15, 15 ', 15 ": circulation pump, 16: aeration blower, 17: storage tank, 18: main reaction tank, 19: ultraviolet unit, 20: circulation path of the advanced oxidation reaction process

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/08 C02F 3/08 B 4H006 3/12 3/12 V 9/00 501 9/00 501C 502 502E 502H 502R 503 503C 504 504A 504E C07B 35/06 C07B 35/06 37/06 37/06 C07C 39/06 C07C 39/06 // C07D 319/24 C07D 319/24 (72)発明者 田中 俊博 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 小林 琢也 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 Fターム(参考) 4D003 AA14 AB02 BA02 CA02 EA14 EA25 FA06 4D006 GA06 HA01 KA01 KA72 KB12 KB22 MA01 PB08 PB70 4D024 AA04 AB04 AB11 BA02 BB01 BC01 CA01 DB05 DB10 DB15 DB24 4D028 AB00 BC03 BC17 BD17 4D050 AA13 AA15 AB15 AB19 BB02 BC09 BD06 CA06 CA09 CA17 4H006 AA05 AC13 AC26 AD17 AD19 BE31 FC52 FE13 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 3/08 C02F 3/08 B 4H006 3/12 3/12 V 9/00 501 9/00 501C 502 502E 502H 502R 503 503C 504 504A 504E C07B 35/06 C07B 35/06 37/06 37/06 C07C 39/06 C07C 39/06 // C07D 319/24 C07D 319/24 (72) Inventor Toshihiro Tanaka Fujisawa, Kanagawa 4-2-1 Motofujisawa, Ebara Research Institute, Inc. (72) Inventor Takuya Kobayashi 4-2-1, Fujisawa, Fujisawa-shi, Kanagawa F-term in Ebara Research Institute, Inc. 4D003 AA14 AB02 BA02 CA02 EA14 EA25 FA06 4D006 GA06 HA01 KA01 KA72 KB12 KB22 MA01 PB08 PB70 4D024 AA04 AB04 AB11 BA02 BB01 BC01 CA01 DB05 DB10 DB15 DB24 4D028 AB00 BC03 BC17 BD17 4D050 AA13 AA15 AB15 AB19 BB02 BC09 BD06 CA06 CA09 CA17 4H006 AA05 AC13 AC26 AD17 AD19 BE31 FC52 FE13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 難分解性有機化合物を含む排水の処理方
法であって、前記被処理液を、分離膜を有する膜ろ過工
程と促進酸化反応工程との間を一部循環させながら処理
し、該膜ろ過工程からの膜透過水を処理水として得るこ
とを特徴とする難分解性有機化合物含有排水の処理方
法。
1. A method for treating wastewater containing a hardly decomposable organic compound, wherein the liquid to be treated is treated while partially circulating between a membrane filtration step having a separation membrane and an accelerated oxidation reaction step, A method for treating wastewater containing a hardly decomposable organic compound, comprising obtaining permeated water from the membrane filtration step as treated water.
【請求項2】 前記膜ろ過工程の被処理液には、粉末活
性炭及び/又は活性汚泥が添加され、該ろ過工程を常時
曝気することにより、該被処理液を常に流動させること
を特徴とする請求項1記載の難分解性有機化合物含有排
水の処理方法。
2. The liquid to be treated in the membrane filtration step is characterized in that powdered activated carbon and / or activated sludge is added, and the liquid to be treated is always fluidized by constantly aerating the filtration step. The method for treating wastewater containing a hardly decomposable organic compound according to claim 1.
【請求項3】 前記膜ろ過工程からの膜透過水は、活性
炭吸着工程に通して、その流出水を処理水とすることを
特徴とする請求項1又は2記載の難分解性有機化合物含
有排水の処理方法。
3. The wastewater containing a hardly decomposable organic compound according to claim 1, wherein the permeated water from the membrane filtration step is passed through an activated carbon adsorption step, and the effluent is treated water. Processing method.
【請求項4】 前記促進酸化反応工程が、少なくともオ
ゾンを注入するオゾン反応工程を含むものであることを
特徴とする請求項1、2又は3記載の難分解性有機化合
物含有排水の処理方法。
4. The method for treating wastewater containing a hardly decomposable organic compound according to claim 1, wherein the accelerated oxidation reaction step includes an ozone reaction step of injecting at least ozone.
【請求項5】 難分解性有機化合物を含む排水の処理装
置であって、粉末活性炭及び/又は活性汚泥を有する被
処理液が入っている分離膜を備えた膜ろ過槽と、有機化
合物を酸化分解する促進酸化反応槽と、前記膜ろ過槽と
促進酸化反応槽の間を被処理液が循環する循環経路を有
すると共に、前記膜ろ過槽の分離膜を透過した膜透過水
を通して処理水を得る活性炭吸着塔を有することを特徴
とする難分解性有機化合物含有排水の処理装置。
5. An apparatus for treating wastewater containing a hardly decomposable organic compound, comprising: a membrane filtration tank provided with a separation membrane containing a liquid to be treated having powdered activated carbon and / or activated sludge; A promoted oxidation reaction tank that decomposes, and a circulation path through which the liquid to be treated circulates between the membrane filtration tank and the promoted oxidation reaction tank, and treated water is obtained through membrane permeated water that has passed through the separation membrane of the membrane filtration tank. An apparatus for treating wastewater containing a hardly decomposable organic compound, comprising an activated carbon adsorption tower.
JP2001265987A 2000-09-21 2001-09-03 Method and equipment for treating drainage containing thermally degradable organic compound Pending JP2002166275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265987A JP2002166275A (en) 2000-09-21 2001-09-03 Method and equipment for treating drainage containing thermally degradable organic compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-286474 2000-09-21
JP2000286474 2000-09-21
JP2001265987A JP2002166275A (en) 2000-09-21 2001-09-03 Method and equipment for treating drainage containing thermally degradable organic compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005266588A Division JP2006000854A (en) 2000-09-21 2005-09-14 Method and apparatus for treating wastewater containing dioxins

Publications (1)

Publication Number Publication Date
JP2002166275A true JP2002166275A (en) 2002-06-11

Family

ID=26600386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265987A Pending JP2002166275A (en) 2000-09-21 2001-09-03 Method and equipment for treating drainage containing thermally degradable organic compound

Country Status (1)

Country Link
JP (1) JP2002166275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187443A (en) * 2011-03-08 2012-10-04 Kotobuki Kakoki Kk Water treatment apparatus
JP2015058401A (en) * 2013-09-19 2015-03-30 パナソニック株式会社 Wastewater treatment apparatus
CN109475819A (en) * 2016-07-25 2019-03-15 西门子能源有限公司 The system and method that permission active carbon and film for handling waste stream directly contact
CN109761442A (en) * 2019-01-30 2019-05-17 海宁一泓环境科技有限公司 A method of black smelly waste water is administered using hollow-fibre membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187443A (en) * 2011-03-08 2012-10-04 Kotobuki Kakoki Kk Water treatment apparatus
JP2015058401A (en) * 2013-09-19 2015-03-30 パナソニック株式会社 Wastewater treatment apparatus
CN109475819A (en) * 2016-07-25 2019-03-15 西门子能源有限公司 The system and method that permission active carbon and film for handling waste stream directly contact
CN109761442A (en) * 2019-01-30 2019-05-17 海宁一泓环境科技有限公司 A method of black smelly waste water is administered using hollow-fibre membrane

Similar Documents

Publication Publication Date Title
JP2007069091A (en) Organic wastewater treatment method
JP3867326B2 (en) Ozone treatment method for activated sludge process water
JP4765922B2 (en) Waste liquid treatment method and waste liquid treatment apparatus
KR101208683B1 (en) Water Re-Cycling System and method thereof
JP2003088885A (en) Method and apparatus for treating organic waste water
JP2003088892A (en) Organic waste water treatment apparatus
JP2002166275A (en) Method and equipment for treating drainage containing thermally degradable organic compound
JP2010058078A (en) Water treating system used for water treating method and it
JP2009136823A (en) Cleaning method of organic sewage and equipment thereof
JPH1133593A (en) Treatment of organic waste water
JP2002192181A (en) High-degree treatment method for wastewater by addition of powdery activated carbon
JP2002177981A (en) Waste water treatment method and equipment
JP3763444B2 (en) Organic wastewater treatment method
KR100464837B1 (en) A ozonize filtration type waste water process method and a waste water disposal apparatus thereof
JP5004313B2 (en) Treatment method and apparatus for wastewater containing persistent substances
JP2002126480A (en) Ozonized water treatment equipment
JP2000350997A (en) Method and apparatus for treating sewage
JP2000153294A (en) Waste water treating method and device therefor
JP2006000854A (en) Method and apparatus for treating wastewater containing dioxins
JP3383541B2 (en) Biological treatment method and apparatus for organic wastewater
JP3963533B2 (en) Water treatment method
JPH05277475A (en) Treatment method for water containing organic substance
JP2000350988A (en) Method and apparatus for treating excretion sewage
JP2001054798A (en) Method and apparatus for treating harmful material in sewage
JP3735281B2 (en) Organic wastewater treatment apparatus and treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060427