JPH04135694A - Water treating device - Google Patents

Water treating device

Info

Publication number
JPH04135694A
JPH04135694A JP25933890A JP25933890A JPH04135694A JP H04135694 A JPH04135694 A JP H04135694A JP 25933890 A JP25933890 A JP 25933890A JP 25933890 A JP25933890 A JP 25933890A JP H04135694 A JPH04135694 A JP H04135694A
Authority
JP
Japan
Prior art keywords
water
treated
active oxygen
oxygen species
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25933890A
Other languages
Japanese (ja)
Inventor
Toshiaki Kobayashi
小林 敏昭
Masaaki Tanaka
正明 田中
Akira Ikeda
彰 池田
Kenji Ezaki
江崎 謙治
Yasuhiro Tanimura
泰宏 谷村
Shigeki Nakayama
繁樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25933890A priority Critical patent/JPH04135694A/en
Publication of JPH04135694A publication Critical patent/JPH04135694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To easily form an electric discharge field of a low pressure by mixing active oxygen species generated in the discharge field under the low pressure as a reaction agent into water to be treated, then making water treatment. CONSTITUTION:The silent discharge is generated in the discharge field 9 of the low pressure between an inductor 5 consisting of glass, etc., and a nozzle 2 when an AC high voltage is impressed from an AC power source 8 to a power feed electrode 6. The head gas in the upper part of a water storage tank contg. steam from a gaseous raw material inlet 7 is sucked from the upper part 16 of the water storage tank. The reaction to form oxygen atoms from the oxygen molecules and to form hydroxyl radicals from the water molecules takes place in the discharge field 9 where the gas contg. the oxygen and steam flows in. The active oxygen species of the formed oxygen atoms and hydroxyl radicals, etc., are mixed with the water to be treated from the spacing between the nozzle 2 and the throat 3 and are dissolved in the water under the low pressure. Since the active oxygen species formed in the discharge field 9 are relatively high in concn., the active oxygen species react effectively with the org. matter, etc., contained in the water when these species dissolve into the water. The water treatment is thus executed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、反応性の高い酸素原子、ヒドロキンルラジ
カル、−重環酸素、ヒドロペルオキシラジカル、過酸化
水素などの活性酸素種を用いた水処理装置に関するもの
である。
Detailed Description of the Invention [Industrial Field of Application] This invention is directed to the production of water using active oxygen species such as highly reactive oxygen atoms, hydroquine radicals, heavy ring oxygen, hydroperoxy radicals, and hydrogen peroxide. It relates to a processing device.

[従来の技術] 水中に含まれる汚濁物質の処理や殺菌・消毒処理では、
一般に塩素やオゾンなどの酸化剤が用いられる。
[Conventional technology] In the treatment of pollutants contained in water and sterilization/disinfection treatment,
Generally, oxidizing agents such as chlorine and ozone are used.

塩素とオゾンを比較すると、オゾンは一般に酸化・殺菌
効果が高く、かつ有害物質の生成が少ない、最終的には
酸素ガスに戻るために残留毒性がないなどの利点を持つ
。このようにオゾンは強力な酸化剤であるが、オゾンに
よっても分解できない有機物も少なからず存在する。
Comparing chlorine and ozone, ozone generally has advantages such as high oxidizing and sterilizing effects, less generation of harmful substances, and no residual toxicity as it eventually reverts to oxygen gas. Although ozone is a powerful oxidizing agent, there are many organic substances that cannot be decomposed by ozone.

この発明は、オゾンよりもさらに反応性の高い活性酸素
種を用いて、水中に含まれる有機物などの酸化分解や殺
菌を行うものである。
This invention uses active oxygen species that are even more reactive than ozone to oxidatively decompose and sterilize organic matter contained in water.

この問題を解決するために、第5図に示す同一出願人に
よる流体処理装置(特開平1−163551号公報)が
提案されている。これらはいずれも放電部分と気液混合
部分を一体化した「放電−体形エゼクタ」を用いる方法
である。第5図において、(1)は放電一体形エゼクタ
への被処理水入口、(2)はノズル、(3〉はスロート
、〈4)はエゼクタからの処理水出口、(5〉は誘電体
管、〈6〉は給電電極、(7)は原料気体入口、(8)
は交流電源、(9)は放電場、(10)は貯水槽、<1
1)は被処理水、(12〉はポンプ、(13)は貯水槽
注水口、(14)は貯水槽取り出し口、り15〉は加湿
器である。なお、加湿器(15〉は、放電で酸素原子を
発生させる場合には不要であるが、ヒドロキシルラジカ
ルを発生させる場合には必要な構成要素である。
In order to solve this problem, a fluid treatment device (Japanese Unexamined Patent Publication No. 1-163551) has been proposed by the same applicant as shown in FIG. All of these methods use a "discharge-body-shaped ejector" that integrates a discharge part and a gas-liquid mixing part. In Figure 5, (1) is the inlet of treated water to the discharge integrated ejector, (2) is the nozzle, (3> is the throat, <4) is the treated water outlet from the ejector, and (5> is the dielectric pipe). , <6> is the power supply electrode, (7) is the raw material gas inlet, (8)
is an AC power supply, (9) is a discharge field, (10) is a water tank, <1
1) is the water to be treated, (12> is the pump, (13) is the water tank water inlet, (14) is the water tank outlet, and 15) is the humidifier. Although it is not necessary when generating oxygen atoms, it is a necessary component when generating hydroxyl radicals.

次に動作について説明する。貯水槽〈10〉に貯水槽注
水口(13〉から注入された被処理水〈11)は、ポン
プ(12)で加圧された後、被処理水入口(1)および
ノズル(2〉を経てスロート〈3)に流れ込む。この時
ノズル〈2)とスロー1−(3)との間隙から気体を巻
き込むため、放電場(9)は大気圧より低圧力となる。
Next, the operation will be explained. The water to be treated (11) injected into the water tank (10) from the tank water inlet (13) is pressurized by the pump (12), and then passes through the water inlet (1) and nozzle (2). Flows into the throat (3). At this time, gas is drawn in from the gap between the nozzle (2) and the throw 1-(3), so the discharge field (9) has a pressure lower than atmospheric pressure.

ここで、交流高電圧を交流電源〈8)から給電電極〈6
)に印加すると、誘電体管(5〉とノズル〈2)との間
の低圧力の放電場〈9)で無声放電が生じる。原料気体
人口(7〉から乾燥した酸素含有気体を流入する場合に
は放電場(9)で酸素原子が生成する。また、原料ガス
が加湿器(15)を経て水蒸気を含有する場合には、放
電場(9)でヒドロキシルラジカルが生成スる。
Here, the AC high voltage is supplied from the AC power supply <8) to the power supply electrode <6
), a silent discharge occurs in the low pressure discharge field <9) between the dielectric tube (5> and the nozzle <2). When dry oxygen-containing gas is introduced from the raw material gas population (7), oxygen atoms are generated in the discharge field (9).Also, when the raw material gas passes through the humidifier (15) and contains water vapor, Hydroxyl radicals are generated in the discharge field (9).

二のように発生させた酸素原子またはヒドロキシルラジ
カルはノズル(2)とスロート(釦との間のギャップか
ら気液混合され、低圧力中で水に吸収される。酸素原子
およびヒドロキシルラジカルは反応性が極めて高いため
、被処理水中に含まれる有機物などを酸化分解し高度な
水処理を達成することがで永る。
Oxygen atoms or hydroxyl radicals generated as in step 2 are mixed with gas and liquid through the gap between the nozzle (2) and the throat (button) and absorbed into water at low pressure.Oxygen atoms and hydroxyl radicals are reactive. Since the amount of water is extremely high, it is possible to oxidize and decompose organic matter contained in the water to be treated and achieve advanced water treatment.

E発明が解決しようとする課題] 従来の水処理装置は以上のように、酸素原子またはヒド
ロキシルラジカルのどちらがをを効率良く発生させる条
件を設定し、これらの化字種を限定的に用いて水処理を
行うことを主眼としている。
[Problem to be solved by the invention] As described above, conventional water treatment equipment sets conditions for efficiently generating either oxygen atoms or hydroxyl radicals, and uses these radicals in a limited manner to treat water. The main focus is processing.

しかし、放電条件によっては酸素原子またはヒドロキシ
ルラジカルく・OH)のどちらがか圧倒的優勢に発生す
るのではなく、この両者が混在したり、さらに−3i項
酸素(’02)、過酸化水素(H2O2)、ヒドロベル
オキンラジカル(HO2・)、スーパーオキシド<02
−)、オゾン(o3)などの活性酸素種も放電場に形成
される可能性がある。
However, depending on the discharge conditions, either oxygen atoms or hydroxyl radicals (OH) are not overwhelmingly generated, but both are mixed, or even -3i term oxygen ('02) and hydrogen peroxide (H2O2) are generated. ), hydroberoquine radical (HO2・), superoxide <02
-), ozone (O3), and other active oxygen species may also be formed in the discharge field.

従来の方法では、酸素原子またはヒドロキシルラジカル
に注目してこれらの活性酸素種のみを独占的に形成させ
る特定の条件を設定しておく必要があった。
In conventional methods, it is necessary to focus on oxygen atoms or hydroxyl radicals and set specific conditions to exclusively form only these active oxygen species.

この発明は上記のような問題点を解決するためになされ
たもので、活性酸素種として酸素原子またはヒドロキシ
ルラジカルに限定するための発生条件設定の煩雑さを解
消するために、活性酸素種として特定の一種類に限定す
る二となく、放電場で形成される種々の活性酸素種が混
在した状態で用いる水処理装置を提供することを目的と
する。
This invention was made to solve the above-mentioned problems, and in order to eliminate the complexity of setting generation conditions to limit active oxygen species to oxygen atoms or hydroxyl radicals, It is an object of the present invention to provide a water treatment device that is used in a state in which various active oxygen species formed in a discharge field are mixed, without being limited to one type.

[課題を解決するための手段] この発明の水処理装置は、活性酸素種を放電により発生
させる活性酸素種発生手段、および被処理水をノズルか
ら加圧噴射するが、または吸引して送給し、上記活性酸
素種発生手段の放電場の気体を被処理水中に吸引させて
上記放電場を大気圧以下の低圧力に減圧する減圧送給手
段を備え、低圧力下の上記放電場で発生させた活性酸素
種を反応剤として上記被処理水に混合して水処理するよ
うにしたものである。
[Means for Solving the Problems] The water treatment device of the present invention includes an active oxygen species generating means that generates active oxygen species by electric discharge, and a means for spraying the water to be treated under pressure from a nozzle, or sucking and feeding the water. and includes a reduced pressure feeding means for sucking the gas in the discharge field of the active oxygen species generating means into the water to be treated to reduce the pressure of the discharge field to a low pressure below atmospheric pressure, so that the gas generated in the discharge field under low pressure is provided. The activated oxygen species thus produced are mixed into the water to be treated as a reactant for water treatment.

[作用] この発明の水処理装置においては、低圧力下の放電によ
って発生する活性酸素種のうちの特定種が優勢になる放
電条件に限定することなく、発生する活性酸素種を混在
する状態で水処理に利用するため、放電場の制約条件が
少なく、簡便に活性酸素種による水処理を行うことがで
きる。
[Function] In the water treatment device of the present invention, the discharge condition is not limited to a discharge condition in which a specific species of active oxygen species generated by discharge under low pressure is predominant, but the water treatment device can be used under conditions where the generated active oxygen species are mixed. Since it is used for water treatment, there are few restrictions on the discharge field, and water treatment using active oxygen species can be easily performed.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1〜4図はいずれも、この発明の一実施例の活性酸素
種を用いた水処理装置を示す。
1 to 4 all show a water treatment apparatus using active oxygen species according to an embodiment of the present invention.

図において、(J6)は貯水槽上部、<17〉は供給ガ
ス絞り弁、(18〉は除塵フィルタ、(19)はろ過器
、〈20〉は滞留槽、<21〉は処理水槽、(22)は
地下水、<23〉は井戸、(24)は導水管である。
In the figure, (J6) is the upper part of the water storage tank, <17> is the supply gas throttle valve, (18> is the dust removal filter, (19) is the filter, <20> is the retention tank, <21> is the treated water tank, (22) ) is groundwater, <23> is a well, and (24) is a water pipe.

次に動作について説明する。第1図において、飲料水な
どの被処理水(11)は、貯水槽注水口〈13)を通し
て適宜貯水槽(1o〉に貯習され、随時貯水槽出口(1
4)を経て飲用などに消費される。貯水槽(10)は、
たとえば上水道の末端供給手前に設置される受水槽、あ
るいは電気冷水機内の水槽、船舶・航空機・電車内の飲
用水槽などである。貯水槽く10〉に注入される水は、
通常、塩素などによって消毒されているが、貯水槽に滞
留することなどによって残留塩素が減衰し、時として細
菌類や藻類などが繁殖することがある。また、水道水は
カビ臭などの異臭味を帯びていたり、汚染物質を含んで
いる二となどがある。そこで、このような水槽水を以下
に述べるような方法で処理する。
Next, the operation will be explained. In Fig. 1, water to be treated (11) such as drinking water is stored in a water tank (1o) as needed through a water tank water inlet (13), and is stored at the water tank outlet (1o) as needed.
After 4), it is consumed for drinking. The water tank (10) is
Examples include water tanks installed before the terminal supply of water supply, water tanks in electric water coolers, and drinking water tanks in ships, aircraft, and trains. The water injected into the water tank (10) is
Normally, water is disinfected with chlorine, but residual chlorine decays when it remains in a water tank, sometimes allowing bacteria and algae to grow. In addition, tap water may have an unpleasant odor such as moldy odor, or may contain pollutants. Therefore, such aquarium water is treated by the method described below.

すなわち、第1図において、水処理運転時、被処理水<
11〉はポンプ〈12〉、被処理水入口〈1〉、ノズル
(2)を経てスロー1−(3)に流れ込むが、この時ノ
ズル(2)とスロートり3)の間の間隙から気体を吸弓
するため、放電場(9〉は大気圧以下の低圧力になる。
That is, in FIG. 1, during water treatment operation, the water to be treated <
11> flows into the throw 1-(3) via the pump <12>, the water inlet to be treated <1>, and the nozzle (2), but at this time, gas is drawn from the gap between the nozzle (2) and the throat 3). Due to the bow absorption, the discharge field (9〉) has a low pressure below atmospheric pressure.

こ二で交流高電圧を交流電源(8)から給電電極(6)
に印加するとガラス等の誘電体(5〉とノズル(2)と
の間の低圧力の放電場(9〉で無声放電が生じる。ここ
で原料気体入口(7〉からは水蒸気を含んだ貯水槽上部
のへラドガスが貯水槽上部(16)から吸引される。酸
素および水蒸気を含む気体が流入している放電場(9)
では酸素分子からは酸素原子を、また水分子からはヒド
ロキシルラジカルを生成する反応が起こる。ユニで生成
した酸素原子およびヒドロキシルラジカルなどの活性酸
素種はノズル(2)とスロート〈3〉の間の間隙から被
処理水に混合され、低圧力下で水に溶解される。被処理
水入口<1)から処理水出口(4)に至るまでの活性酸
素種の発生と水への混合を行なう部分は以後「放電一体
形エゼクタ」と称する。
The AC high voltage is supplied from the AC power source (8) to the electrode (6).
When applied to a dielectric material such as glass (5) and a low pressure discharge field (9) between the nozzle (2), a silent discharge occurs. Upper Herad gas is sucked from the upper part of the water tank (16).A discharge field (9) into which gas containing oxygen and water vapor is flowing.
In this case, a reaction occurs that generates oxygen atoms from oxygen molecules and hydroxyl radicals from water molecules. Active oxygen species such as oxygen atoms and hydroxyl radicals generated in Uni are mixed into the water to be treated through the gap between the nozzle (2) and the throat <3>, and are dissolved in the water under low pressure. The portion from the treated water inlet <1) to the treated water outlet (4) where active oxygen species are generated and mixed into water is hereinafter referred to as the "discharge integrated ejector".

放電場(9)で生成した活性酸素種は比較的高濃度であ
るため、水中に溶解すると、水中に含まれている有機物
などと効果的に反応して水処理が行われる。活性酸素種
の酸化力は極めて高いため、被処理水中に含まれる細菌
などの消毒・殺菌処理も行われる。これらの反応はスロ
ートク3)において達成されなから、処理水は処理水出
口(4〉から吐出される。
Since the active oxygen species generated in the discharge field (9) has a relatively high concentration, when dissolved in water, it effectively reacts with organic matter contained in the water to perform water treatment. Since the oxidizing power of active oxygen species is extremely high, disinfection and sterilization treatment of bacteria contained in the water to be treated is also performed. Since these reactions are not achieved in the throat tank 3), the treated water is discharged from the treated water outlet (4>).

このように、反応に供するのは酸素原子でもヒドロキシ
ルラジカルでもあるいは他の活性酸素種でもかまわない
。したがって、放電場(9)に供給するガスは乾燥した
酸素含有ガスとか温度を上げて水蒸気を十分に含有させ
たガスとかに限定しないのが二の発明の特徴である。
In this way, oxygen atoms, hydroxyl radicals, or other active oxygen species may be used in the reaction. Therefore, the second invention is characterized in that the gas supplied to the discharge field (9) is not limited to a dry oxygen-containing gas or a gas whose temperature has been raised to sufficiently contain water vapor.

なお、原料気体入口(7)から流入する空気などの原料
ガスの流量が大きいと、放電場(9)が所定の低圧力に
まで減圧しないので、原料気体入口〈7〉は適切なガス
流量が得られるような管径に絞っておく必要がある。原
料気体入口(7〉の手前には、絞り弁(17)を付加す
ることによって、ガス供給量を適正に調節することがで
きる。また、水槽上部への空気通気口には除塵フィルタ
(1釦を付加することによって、はこりなどが混入しな
い清浄な原料ガスを供給することが可能である。ただし
、これらの構成要素は必須ではない。
Note that if the flow rate of the raw material gas such as air flowing in from the raw material gas inlet (7) is large, the discharge field (9) will not be depressurized to a predetermined low pressure. It is necessary to narrow down the pipe diameter to the one that can be obtained. By adding a throttle valve (17) in front of the raw material gas inlet (7), the gas supply amount can be adjusted appropriately.In addition, a dust filter (1 button) is installed at the air vent to the top of the water tank. By adding these components, it is possible to supply a clean raw material gas that is not contaminated with lumps or the like. However, these components are not essential.

第1図ではポンプで被処理水を放電一体形エゼクタに加
圧送水しているが、放電一体形エゼクタの後段に水封真
空ポンプを設置することによって水を吸引して速結を行
なってもよい。
In Figure 1, the water to be treated is fed under pressure to the discharge integrated ejector using a pump, but a water ring vacuum pump can be installed after the discharge integrated ejector to suck water and perform rapid consolidation. good.

第1図は水道水など汚濁物質の少ない被処理水を対象と
した場合、すなわち水中に浮遊する懸濁物質などの量も
比較的少ない場合なので、水中の懸濁物質を除去する手
段は講じなくても特に支障はない。また、貯水槽り10
)の容量や処理水の利用速度にもよるが、必ずしも連続
的に運転する必要はなく、間欠°運転でも実用的な効果
を発揮できる。
Figure 1 shows the case where water to be treated has few pollutants such as tap water, that is, the amount of suspended solids floating in the water is relatively small, so no measures are taken to remove suspended solids from the water. However, there is no particular problem. Also, water tank 10
) Although it depends on the capacity of the system and the rate of use of treated water, it does not necessarily have to be operated continuously, and even intermittent operation can have practical effects.

これに対して、遊泳プールや養殖池などの水槽では汚濁
物質が水中へ蓄積する速度が速く、また、一般に水中の
懸濁物質も無視できない濃度で存在する。このような場
合を想定したのが第2図の実施例である。水槽における
水質rE5濁の負荷が高い場合には、活性酸素種で処理
するより上流側においてろ過器(19)を付加して比較
的大きな懸濁物質を除去した後に放電一体型エゼクタに
よって処理を行なう。
On the other hand, in aquariums such as swimming pools and aquaculture ponds, pollutants accumulate in the water at a high rate, and suspended solids in the water are generally present at a non-negligible concentration. The embodiment shown in FIG. 2 assumes such a case. If the water quality rE5 turbidity load in the aquarium is high, rather than treating with active oxygen species, a filter (19) is added on the upstream side to remove relatively large suspended substances, and then treatment is performed with an electric discharge integrated ejector. .

ろ過器(19)を設置することによって放電一体型エゼ
クタ部分への夾雑物の混入がなくなるため、エゼクタ品
分の汚れ、閉塞、活性酸素種の無効消費などを防止でき
る。放電一体形エゼクタにおける動作は第1図の場合と
同様である。放電場(9〉へ供給するガスとして、乾燥
した空気を用いれば放電場〈9〉では主として酸素原子
が発生する。
By installing the filter (19), it is possible to prevent contaminants from entering the discharge-integrated ejector portion, thereby preventing contamination of the ejector, clogging, and ineffective consumption of active oxygen species. The operation of the discharge integrated ejector is similar to that shown in FIG. If dry air is used as the gas supplied to the discharge field (9), oxygen atoms will mainly be generated in the discharge field (9).

方、たとえば屋内プールの場合などにプールの上部空気
を用いれば、水蒸気含有量が多いため、ヒドロキシルラ
ジカルの発生比率が高められる。
On the other hand, if the air above the pool is used, for example in the case of an indoor pool, the generation rate of hydroxyl radicals will be increased due to the high water vapor content.

なお、放電一体型エゼクタで処理された水中には酸化力
のある物質が残存し、これが水槽内の人や魚などに悪影
響を及ぼす可能性がある場合には、処理水出口(4〉か
ら直接貯水槽〈10)へ返送するのではなく、両者の間
に場合によっては滞留槽〈20)を設けてもよい。
In addition, if there are oxidizing substances remaining in the water treated with the discharge integrated ejector and this may have a negative effect on people or fish in the aquarium, remove the treated water directly from the treated water outlet (4). Instead of returning the water to the water storage tank (10), a retention tank (20) may be provided between the two, depending on the case.

浄水場や下水処理場などの高度水処理の場合には、水を
循環して処理するのではなく、−過器で処理する二とも
考えられる。この場合でも、被処理水、をポンプで加圧
送水または水封真空ポンプで吸引して放電一体型エゼク
タに送給して処理するのは循環型の第1図、第2図と同
様であ・る。
In the case of advanced water treatment such as water purification plants and sewage treatment plants, it is also conceivable that water is treated in a filter rather than being circulated. Even in this case, the water to be treated is fed under pressure using a pump or suctioned using a water ring vacuum pump and sent to the discharge integrated ejector for treatment, as in the circulation type shown in Figures 1 and 2.・Ru.

ただし、被処理水槽と処理水槽の間に落差がある場合に
は、水位差による圧力を利用して被処理水を放電一体型
エゼクタに加圧供給して水処理を行なうことができる。
However, if there is a head difference between the water tank to be treated and the water tank to be treated, water treatment can be performed by supplying the water to be treated under pressure to the discharge-integrated ejector using the pressure caused by the water level difference.

二のような場合の実施例を第3図に示す。第3図におい
て、貯水槽<10>中の被処理水<11〉は水位差によ
る水圧で放電一体型エゼクタに供給されて、前述と同様
の方法で水処理か行なわれた後、処理水槽(21〉に送
られる。
An example of the second case is shown in FIG. In FIG. 3, the water to be treated <11> in the water storage tank <10> is supplied to the discharge-integrated ejector by the water pressure caused by the water level difference, and after water treatment is performed in the same manner as described above, the water to be treated <11> in the water storage tank <10> ( 21〉.

下水処理場の場合には、処理水槽(21〉は河J湖沼・
海域などの公共水域であることも想定される。また、い
わゆる水処理施設ではな(、貯水槽〈lO)が貯水ダム
や滝、河川における人工化キであってもよい。ヘッド差
でエゼクタ部分へ送水する二と以外の動作は第1図、第
2図の場合と同様である。
In the case of a sewage treatment plant, the treatment tank (21) is a river, lake, or
It is also assumed that it is a public water area such as a sea area. Furthermore, instead of being a so-called water treatment facility, the water storage tank (lO) may be an artificial water storage dam, waterfall, or river. The operations other than 2 and 2, in which water is fed to the ejector portion by the head difference, are the same as in the case of FIGS. 1 and 2.

また、水処理施設においてはオゾン処理などの曝気処理
が行なわれることがある。オゾン曝気槽などから排出さ
れるガスは水蒸気で飽和されているので、二の排ガスを
放電一体型エゼクタへの供給ガスとして再利用すれば、
放電場〈9〉におけるヒドロキシルラジカルの発生量を
高めることができる。
In addition, aeration treatments such as ozone treatment are sometimes performed in water treatment facilities. Since the gas discharged from an ozone aeration tank etc. is saturated with water vapor, if the second exhaust gas is reused as the supply gas to the discharge integrated ejector,
The amount of hydroxyl radicals generated in the discharge field <9> can be increased.

近年、化学汚染物質などによる地下水の水質悪化か問題
になっているが、第4図は地下水の浄化処理の一実施例
である。同図において、地下水(22)は井戸〈23)
にそって設置された導水管<24)を通って地上にまで
ポンプ(12)で汲み上げられる。この場合、ポンプ(
12〉は単に地下水(22)の場所から地上までの揚程
のものではなく、さらに放電一体型エゼクタの被処理水
入口(1)へ加圧送給できる能力を有する必要がある。
In recent years, there has been a problem of deterioration of groundwater quality due to chemical pollutants, etc., and FIG. 4 shows an example of groundwater purification treatment. In the same figure, groundwater (22) is from a well (23).
The water is pumped up to the ground by a pump (12) through a water conduit (24) installed along the river. In this case, the pump (
12> is not simply a lift from the location of the groundwater (22) to the surface, but it also needs to have the ability to feed under pressure to the treated water inlet (1) of the discharge-integrated ejector.

この実施例では地下水は揚水されると同時に水処理され
るので、処理水槽〈21)には浄化された地下水が貯留
される。
In this embodiment, groundwater is pumped and treated at the same time, so purified groundwater is stored in the treated water tank (21).

[発明の効果] 以上のように、この発明によれば、活性酸素種を放電に
よって発生させる活性酸素種発生手段、および被処理水
をノズルから加圧噴射するかあるいは吸引することによ
って供給し、上記活性酸素種発生手段の放電場の気体を
上記被処理水に吸弓して上記放電場を大気圧以下の低圧
力にする減圧送給手段を備え、低圧力下の上記放電場で
発生させた活性酸素種を反応剤として上記被処理水に混
合して水処理するようにしたので、低圧力の放電場を容
易に形成でき、低圧下の放電場で効率良く高濃度の活性
酸素種が得られ、簡単かつ容易に高度水処理を行える水
処理装置が得られる効果かある。
[Effects of the Invention] As described above, according to the present invention, the active oxygen species generating means generates active oxygen species by electric discharge, and the water to be treated is supplied by pressurized injection or suction from a nozzle, A reduced-pressure feeding means is provided that absorbs gas in the discharge field of the active oxygen species generation means into the water to be treated to make the discharge field at a low pressure below atmospheric pressure, and generates gas in the discharge field under low pressure. Since the water is treated by mixing active oxygen species as a reactant with the water to be treated, a low-pressure discharge field can be easily formed, and a high concentration of active oxygen species can be efficiently generated in the low-pressure discharge field. This has the effect of providing a water treatment device that can easily and easily perform advanced water treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による水処理装置を示す構
成図、第2図〜第を図はそれぞれこの発明の他の実施例
による水処理装置を示す構成図、第5図は従来の水処理
装置を示す構成図である。 図において、<1)は放電一体形エゼクタへの被処理水
入口、(2〉はノズル、(3)はスロート、(4)はエ
ゼクタからの処理水出口、〈5)は誘電体管、(6ンは
給電電極、(7)は原料気体入口、〈8〉は交流電源、
(9〉は放電場、<10〉は貯水槽、<11)は被処理
水、〈12)はポンプ、(13)は貯水槽注水口、(1
4〉は貯水槽取り出し口、〈15)は加湿器、(16)
は貯水槽上部、(17)は供給ガス紋り弁、(18)は
除塵フィルタ、く19)はろ過器、(20)は滞留槽、
(21)は処理水槽、(22)は地下水、〈23)は井
戸、(24)は導水管である。 なお、図中、同一符号は同一または相当部分を示す。 第5図
FIG. 1 is a block diagram showing a water treatment device according to an embodiment of the present invention, FIGS. It is a block diagram showing a water treatment device. In the figure, <1) is the treated water inlet to the discharge integrated ejector, (2> is the nozzle, (3) is the throat, (4) is the treated water outlet from the ejector, <5) is the dielectric pipe, ( 6 is the power supply electrode, (7) is the raw material gas inlet, <8> is the AC power supply,
(9> is the discharge field, <10> is the water tank, <11) is the water to be treated, <12) is the pump, (13) is the water tank water inlet, (1
4> is the water tank outlet, <15) is the humidifier, (16)
is the upper part of the water storage tank, (17) is the supply gas valve, (18) is the dust removal filter, 19) is the filter, (20) is the retention tank,
(21) is a treated water tank, (22) is groundwater, (23) is a well, and (24) is a water pipe. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Figure 5

Claims (1)

【特許請求の範囲】[Claims]  活性酸素種を放電によつて発生させる活性酸素種発生
手段、および被処理水をノズルから加圧噴射するかまた
は吸引して送給し、上記活性酸素種発生手段の放電場の
気体を上記被処理水に吸引して上記放電場を大気圧以下
の低圧力に減圧する減圧送給手段を備え、低圧力下の上
記放電場で発生させた活性酸素種を上記被処理水に混合
して水を処理する水処理装置。
Active oxygen species generation means for generating active oxygen species by electric discharge, and water to be treated is supplied by pressurized injection or suction from a nozzle, and the gas in the discharge field of the active oxygen species generation means is supplied to the above-mentioned treated water. A reduced pressure feeding means is provided to reduce the pressure in the discharge field to a low pressure below atmospheric pressure by suctioning into the treated water, and the active oxygen species generated in the discharge field under low pressure are mixed with the water to be treated to produce water. Water treatment equipment that processes water.
JP25933890A 1990-09-26 1990-09-26 Water treating device Pending JPH04135694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25933890A JPH04135694A (en) 1990-09-26 1990-09-26 Water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25933890A JPH04135694A (en) 1990-09-26 1990-09-26 Water treating device

Publications (1)

Publication Number Publication Date
JPH04135694A true JPH04135694A (en) 1992-05-11

Family

ID=17332718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25933890A Pending JPH04135694A (en) 1990-09-26 1990-09-26 Water treating device

Country Status (1)

Country Link
JP (1) JPH04135694A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003485A (en) * 2013-02-20 2014-08-27 株式会社神户制钢所 Water processing device
CN104003486A (en) * 2013-02-20 2014-08-27 株式会社神户制钢所 Water-treatment device
CN104797533A (en) * 2012-11-13 2015-07-22 三菱电机株式会社 Water treatment device and water treatment method
WO2021205594A1 (en) * 2020-04-09 2021-10-14 三菱電機株式会社 Oxygen radical supply device and oxygen radical supply method
WO2021205593A1 (en) * 2020-04-09 2021-10-14 三菱電機株式会社 Oxygen radical generation device and oxygen radical generation method
US20220348484A1 (en) * 2021-04-28 2022-11-03 West Country Pump And Filtration Ltd. Water treatment device and system using hydroxyl radicals and method of using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797533A (en) * 2012-11-13 2015-07-22 三菱电机株式会社 Water treatment device and water treatment method
CN104003485A (en) * 2013-02-20 2014-08-27 株式会社神户制钢所 Water processing device
CN104003486A (en) * 2013-02-20 2014-08-27 株式会社神户制钢所 Water-treatment device
WO2021205594A1 (en) * 2020-04-09 2021-10-14 三菱電機株式会社 Oxygen radical supply device and oxygen radical supply method
WO2021205593A1 (en) * 2020-04-09 2021-10-14 三菱電機株式会社 Oxygen radical generation device and oxygen radical generation method
CN115298135A (en) * 2020-04-09 2022-11-04 三菱电机株式会社 Oxygen radical supply device and oxygen radical supply method
US20220348484A1 (en) * 2021-04-28 2022-11-03 West Country Pump And Filtration Ltd. Water treatment device and system using hydroxyl radicals and method of using same

Similar Documents

Publication Publication Date Title
JP3440313B2 (en) Method and apparatus for treating contaminated water
TW530032B (en) Purifying device
JPH05228480A (en) Device for processing hardly biodegradable substance
JP5808663B2 (en) Method and apparatus for treating 1,4-dioxane in wastewater
WO1999033552A1 (en) Vapor/liquid mixer and polluted water purification apparatus using the mixer
KR101890361B1 (en) An off ozone gas recirculation type UV disinfection system
JP5701648B2 (en) Water treatment equipment
JPH04135694A (en) Water treating device
JP2009066467A (en) Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof
KR101071709B1 (en) Photo-Fenton oxidation reactor to remove 1,4-dioxane and method to remove 1,4-dioxane by Photo-Fenton oxidation
JPH11285691A (en) Waste water treating device
JP2003334432A (en) Gas dissolving device and water treatment device and water treatment apparatus having these
KR100330361B1 (en) An apparatus and method for the effective recycle and reuse of discharged ozone
JPH11347576A (en) Method and apparatus for treating water
JP3191339B2 (en) Water sterilization and purification equipment
KR100411956B1 (en) Ozone And Oxigen Supplier
JP2003311282A (en) Water treatment method and apparatus therefor
JPH0645030B2 (en) Ozone water treatment equipment
KR102138176B1 (en) Wastewater pre-processing system with OH reaction agitation tank
KR100956017B1 (en) Dissolved Ozone acceleration amplification photocatalyst practical fou wastewater the quality of water improvement Water
JP2003024991A (en) Treatment system for wastewater containing formalin
JP2009082784A (en) Equipment for volume-reducing waste sludge
JP2003001272A (en) Method for removing manganese
JPH07236884A (en) Water purifying and sterilizing treatment apparatus
JP2005211825A (en) Biological waste liquid treatment apparatus