JP3271322B2 - Treatment of wastewater containing dimethyl sulfoxide - Google Patents

Treatment of wastewater containing dimethyl sulfoxide

Info

Publication number
JP3271322B2
JP3271322B2 JP24314492A JP24314492A JP3271322B2 JP 3271322 B2 JP3271322 B2 JP 3271322B2 JP 24314492 A JP24314492 A JP 24314492A JP 24314492 A JP24314492 A JP 24314492A JP 3271322 B2 JP3271322 B2 JP 3271322B2
Authority
JP
Japan
Prior art keywords
treatment
tank
dmso
dms
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24314492A
Other languages
Japanese (ja)
Other versions
JPH0691289A (en
Inventor
幹夫 北川
佳美 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP24314492A priority Critical patent/JP3271322B2/en
Publication of JPH0691289A publication Critical patent/JPH0691289A/en
Application granted granted Critical
Publication of JP3271322B2 publication Critical patent/JP3271322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はジメチルスルホキシド
(DMSO)を含む排水の処理法に係り、特に、DMS
O含有排水を低コストにて効率的に生物処理するDMS
O含有排水の処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater containing dimethyl sulfoxide (DMSO), and more particularly to a method for treating wastewater containing DMS.
DMS for efficient biological treatment of O-containing wastewater at low cost
The present invention relates to a method for treating O-containing wastewater.

【0002】[0002]

【従来の技術】近年、液晶パネル製造や半導体製造分野
で、DMSOを含有した洗浄剤が用いられている。DM
SOは馴養した細菌を用いることで生物分解が可能であ
り、基本的に活性汚泥処理が可能である。
2. Description of the Related Art In recent years, a detergent containing DMSO has been used in the field of liquid crystal panel manufacturing and semiconductor manufacturing. DM
SO can be biodegraded by using acclimated bacteria, and can basically be treated with activated sludge.

【0003】近年、半導体製造工程や液晶パネル製造工
程でDMSOが多く使用されるようになり、これらDM
SO含有排水の処理方法が重要となっているが、一般的
な活性汚泥処理により、これらのDMSO含有排水を処
理すると、DMSOの生分解の過程で発生する代謝物の
うち、硫化メチル(DMS)及びメチルメルカプタン
(MM)が残留し、曝気槽や処理水から臭気が発生す
る。このため、従来、DMSO含有排水の活性汚泥処理
は困難であるとされており、現在、DMSO含有排水の
処理には焼却処理や酸化剤による酸化処理が行なわれて
いる。
In recent years, DMSO has been widely used in a semiconductor manufacturing process and a liquid crystal panel manufacturing process.
The treatment method of SO-containing wastewater is important, but when these DMSO-containing wastewaters are treated by a general activated sludge treatment, methyl sulfide (DMS) is one of the metabolites generated during the biodegradation of DMSO. And methyl mercaptan (MM) remains, and odor is generated from the aeration tank and the treated water. For this reason, conventionally, it has been considered that it is difficult to treat the activated sludge of the DMSO-containing wastewater, and at present, the treatment of the DMSO-containing wastewater is incinerated or oxidized by an oxidizing agent.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、焼却処
理では、燃料や中和剤を要し、また、酸化処理では酸化
剤や凝集剤を要し、いずれも処理コストが高くつくとい
う問題がある。
However, incineration requires a fuel and a neutralizing agent, and oxidizing requires an oxidizing agent and a coagulant, all of which have high processing costs.

【0005】このため、維持管理コストの低減が可能な
生物処理により、DMSO含有排水を工業的有利に処理
する方法が要望されているが、上述の如く、活性汚泥処
理方式を基本とした処理方式では、負荷量を高めた効率
的な運転は臭気の発生を増加させることにつながり、大
掛かりな脱臭設備が必要となる。そのため、臭気の発生
量が少なく、処理効率が高く、また、処理装置がコンパ
クトな生物処理方式の開発が要望されている。
[0005] For this reason, there is a demand for a method for industrially treating wastewater containing DMSO by biological treatment capable of reducing the maintenance cost, but as described above, a treatment system based on the activated sludge treatment system is required. Then, efficient operation with an increased load leads to an increase in the generation of odor, and a large-scale deodorizing facility is required. Therefore, there is a demand for the development of a biological treatment system in which the generation amount of odor is small, the treatment efficiency is high, and the treatment device is compact.

【0006】本発明は上記従来の実情に鑑みてなされた
ものであって、DMSO含有排水を生物処理により処理
するにあたり、臭気発生の問題を解決し、高い処理効率
にて、低コストに処理することができるDMSOを含む
排水の処理法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and solves the problem of odor generation when treating DMSO-containing wastewater by biological treatment, and treats wastewater with high treatment efficiency at low cost. It is an object of the present invention to provide a method for treating wastewater containing DMSO.

【0007】[0007]

【課題を解決するための手段】本発明のDMSOを含む
排水の処理法は、ジメチルスルホキシドを含む排水を、
ジメチルスルホキシド以外の有機物を含有する排水と混
合し、該混合排水を嫌気性処理槽で嫌気性処理した後、
曝気が行なわれている好気性処理槽で好気性処理し、次
いで固液分離処理して処理水を得る方法であって、該固
液分離処理により分離された汚泥の少なくとも一部を、
返送汚泥として前記嫌気性処理槽及び好気性処理槽に返
送することを特徴とする。
According to the method for treating wastewater containing DMSO of the present invention, the wastewater containing dimethylsulfoxide is treated as follows.
After mixing with wastewater containing an organic substance other than dimethyl sulfoxide, and after performing the anaerobic treatment on the mixed wastewater in an anaerobic treatment tank,
Aerobic treatment in an aerobic treatment tank in which aeration is performed, and then a method of obtaining treated water by solid-liquid separation treatment, wherein at least a part of the sludge separated by the solid-liquid separation treatment,
The sludge is returned to the anaerobic treatment tank and the aerobic treatment tank as returned sludge.

【0008】[0008]

【作用】DMSOの生分解は、図2に示す如く、DM
S、MMを経由し最終的には硫酸イオンまで、或いは、
DMSからアルデヒド、ギ酸を経由して炭酸ガスまで、
分解されることが一般的に知られている。
The biodegradation of DMSO is as shown in FIG.
Via S, MM and finally to sulfate ion, or
From DMS to carbon dioxide via aldehyde and formic acid,
It is generally known that it is decomposed.

【0009】本発明者らの検討においても、都市下水処
理場やし尿処理場の活性汚泥を用いることで、DMSO
はDMS、MM、H2 S(硫化水素)を経由して硫酸イ
オンまで分解が可能であった。しかして、これらの分解
経路を詳細に検討した結果、DMSOからDMSへの分
解は還元反応に近いこと、一方、DMS以降の分解は酸
化分解であること、従って、DMSOの生分解は還元反
応と酸化反応とを組み合わせることで効率的な処理が可
能であることが予想された。
In the study of the present inventors, the use of activated sludge from a municipal sewage treatment plant or a human waste treatment plant has been
Could be decomposed to sulfate ions via DMS, MM, and H 2 S (hydrogen sulfide). Thus, as a result of a detailed examination of these decomposition routes, the decomposition of DMSO to DMS is close to a reduction reaction, while the decomposition after DMS is oxidative decomposition. It was expected that efficient treatment would be possible by combining with the oxidation reaction.

【0010】以下に本発明における検討結果から得られ
たDMSOの生分解の特徴を詳述する。
The characteristics of the biodegradation of DMSO obtained from the study results in the present invention will be described below in detail.

【0011】 DMSOからDMSへの分解 DMSOからDMSへの生分解は、DMSO単独では行
なわれにくいが、生分解性が良好なグルコース、エタノ
ール等の有機物をDMSOと混合することで、好気性下
の条件より嫌気性下の条件において、約1.7倍高い分
解速度が得られた。嫌気性下の分解反応は、DMSOに
混合された他の有機物が水素の供給源となり、DMSO
からDMSへの還元反応が速やかに進行したものと予想
される(図3参照)。
Decomposition of DMSO to DMS Biodegradation of DMSO to DMS is difficult to perform with DMSO alone, but by mixing an organic substance having good biodegradability, such as glucose and ethanol, with DMSO, the decomposition under aerobic conditions is achieved. Under anaerobic conditions, about 1.7 times higher decomposition rate was obtained. In an anaerobic decomposition reaction, other organic substances mixed with DMSO serve as a source of hydrogen,
It is expected that the reduction reaction from to DMS proceeded quickly (see FIG. 3).

【0012】 DMSからMM、H2 S、硫酸イオン
への分解 DMSからMM、H2 Sを経由して硫酸イオンへの分解
は好気性下で進行し、その際にDMS以外の有機物を混
合しても分解速度の増加は生じなかった(図4参照)。
Decomposition of DMS into MM, H 2 S, and sulfate ions The decomposition of DMS into sulfate ions via MM and H 2 S proceeds under aerobic conditions. At this time, organic substances other than DMS are mixed. However, the decomposition rate did not increase (see FIG. 4).

【0013】従って、DMSOを生分解する方法とし
て、DMSO排水に生分解性が良好な有機物を混合し、
まず、嫌気性処理を行なってDMSOをDMSに分解し
た後、好気性処理を行なって、嫌気性処理で生じたDM
Sを硫酸イオンにまで分解することにより、DMSOを
効率的に処理することができる。
Accordingly, as a method for biodegrading DMSO, an organic substance having good biodegradability is mixed with DMSO wastewater,
First, DMSO is decomposed into DMS by performing an anaerobic treatment, and then aerobic treatment is performed, and DM generated by the anaerobic treatment is performed.
By decomposing S to sulfate ions, DMSO can be treated efficiently.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明のDMSOを含有する排水の
処理法の一実施方法を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for treating wastewater containing DMSO of the present invention.

【0016】図中、1は攪拌機1Aを備える嫌気性処理
槽、2は曝気管2Aを備える好気性処理槽、3は沈殿
槽、4は生物脱臭装置である。
In the figure, 1 is an anaerobic treatment tank provided with a stirrer 1A, 2 is an aerobic treatment tank provided with an aeration tube 2A, 3 is a sedimentation tank, and 4 is a biological deodorizer.

【0017】本実施例の方法においては、配管11より
DMSO含有排水を、また配管12よりDMSO以外の
有機物含有水をそれぞれ嫌気性処理槽1に送給し、嫌気
性処理槽1内で両者を混合すると共に嫌気性処理する。
In the method of the present embodiment, DMSO-containing wastewater is supplied from a pipe 11 and organic matter-containing water other than DMSO is supplied from a pipe 12 to the anaerobic treatment tank 1. Mix and perform anaerobic treatment.

【0018】ここで、DMSO含有排水に混合するDM
SO以外の有機物としては、生分解性が良好な糖類やア
ルコール、アミン等の有機物、一般に、BODとCOD
crとの比BOD/CODcrが0.5以上のもの(具
体的にはイソプロピルアルコ−ルやエタノ−ル含有洗浄
排水)が好ましく、その混合比率は、DMSOのTOC
換算濃度に対して10%以上とするのが好ましい。即
ち、この有機物の混合比率が少ない場合には、嫌気性下
におけるDMSOのDMSへの分解速度が低下するおそ
れがあることから、上記比率は10%以上、特に10〜
100%とするのが好ましい。
Here, the DM mixed with the DMSO-containing wastewater is
Organic substances other than SO include organic substances such as sugars, alcohols and amines having good biodegradability, and generally BOD and COD.
It is preferable that the ratio of BOD / CODcr to cr is 0.5 or more (specifically, washing wastewater containing isopropyl alcohol or ethanol).
It is preferable that the concentration be 10% or more based on the reduced concentration. That is, when the mixing ratio of the organic matter is small, the decomposition rate of DMSO to DMS under anaerobic conditions may be reduced.
It is preferably set to 100%.

【0019】嫌気性処理槽1内において、有機物が混合
されたDMSO含有排水中のDMSOは、該槽内におい
て、酸素(空気)の供給を行なわない嫌気性条件下に
て、DMSに分解される。
In the anaerobic treatment tank 1, the DMSO in the DMSO-containing wastewater mixed with organic matter is decomposed into DMS in the tank under anaerobic conditions without supplying oxygen (air). .

【0020】この嫌気性処理槽1は、槽内液のpHを
6.0〜7.5の範囲に調整すると共に、液温を20〜
35℃に調整するのが好ましい。また、槽内は攪拌機1
Aにより緩やかな攪拌を行なって、原水と汚泥とを十分
に混合する。
In the anaerobic treatment tank 1, the pH of the liquid in the tank is adjusted within a range of 6.0 to 7.5, and the liquid temperature is adjusted to 20 to 7.5.
Preferably, the temperature is adjusted to 35 ° C. In addition, the stirrer 1
The raw water and the sludge are sufficiently mixed by performing gentle stirring with A.

【0021】この嫌気性処理槽1の負荷量は汚泥のDM
SO分解能力や汚泥濃度、DMSO含有排水に添加混合
した有機物の生分解性の程度等によっても異なるが、槽
容量1m3 に対する1日のTOC負荷量として、2.0
kg−TOC/m3 ・day以下とするのが適当であ
る。
The load of the anaerobic treatment tank 1 is the sludge DM.
Although it varies depending on the SO decomposition capacity, sludge concentration, and the degree of biodegradability of the organic matter added to and mixed with the wastewater containing DMSO, the TOC load per day for a tank capacity of 1 m 3 is 2.0%.
It is appropriate that the pressure be not more than kg-TOC / m 3 · day.

【0022】この嫌気性処理槽1における嫌気性処理で
発生するガス中には、DMSOの分解により発生したD
MSが含まれているため、この嫌気性処理槽1は完全密
閉構造とし、発生ガスはすべて配管13より吸引し、生
物脱臭装置4に導いて脱臭処理を行なう。
The gas generated by the anaerobic treatment in the anaerobic treatment tank 1 contains D generated by the decomposition of DMSO.
Since anaerobic treatment tank 1 contains MS, the anaerobic treatment tank 1 has a completely sealed structure, and all generated gas is sucked from piping 13 and guided to biological deodorizing device 4 to perform deodorizing treatment.

【0023】なお、この嫌気性処理槽1の発生ガスは、
後述の好気性処理槽2に吹き込んでも良い。
The gas generated in the anaerobic treatment tank 1 is as follows:
It may be blown into the aerobic treatment tank 2 described later.

【0024】有機物の共存下における嫌気性処理によ
り、DMSOがDMSに分解した嫌気性処理槽1の流出
液は、次いで、配管14より好気性処理槽2に移送し、
DMS以降の酸化分解を行なう。この好気性処理槽2
は、一般に、活性汚泥処理装置の完全混合方式とされる
が、槽内部に充填材を設置した接触曝気方式とすること
もできる。この好気性処理槽は1槽でも良いが、複数の
好気性処理槽を直列に連結したものであっても良い。
The effluent of the anaerobic treatment tank 1 in which DMSO has been decomposed into DMS by anaerobic treatment in the presence of organic matter is then transferred from the pipe 14 to the aerobic treatment tank 2,
Performs oxidative decomposition after DMS. This aerobic treatment tank 2
Is generally a complete mixing system for an activated sludge treatment apparatus, but may be a contact aeration system in which a filler is provided inside a tank. This aerobic treatment tank may be a single tank, or a plurality of aerobic treatment tanks connected in series.

【0025】好気性処理槽の負荷量は、前段の嫌気性処
理槽の性能にもよるが、槽容量1m3 に対する1日の原
水のTOC濃度として、1.0kg−TOC/m3 ・d
ay以下とするのが適当である。
Although the load of the aerobic treatment tank depends on the performance of the anaerobic treatment tank in the preceding stage, the TOC concentration of the raw water per day per 1 m 3 of the tank is 1.0 kg-TOC / m 3 · d.
ay or less is appropriate.

【0026】好気性処理槽の内液のpHと液温は嫌気性
処理槽と同様な範囲に調整するのが好ましい。
It is preferable that the pH and the temperature of the liquid in the aerobic treatment tank are adjusted in the same range as in the anaerobic treatment tank.

【0027】この好気性処理槽への通気量は、原水中の
有機物が炭酸ガスと水に分解される酸素量と、硫黄成分
が硫酸イオンまで分解される酸素量が十分供給される程
度とする。
The amount of aeration into the aerobic treatment tank is such that the amount of oxygen that decomposes organic matter in raw water into carbon dioxide and water and the amount of oxygen that decomposes sulfur components into sulfate ions are sufficiently supplied. .

【0028】なお、DMSO含有排水に添加する有機物
として、アミン類等の含窒素有機物を用いた場合は、硝
化に要する酸素量も考慮する必要がある。
When nitrogen-containing organic substances such as amines are used as organic substances to be added to the DMSO-containing wastewater, it is necessary to consider the amount of oxygen required for nitrification.

【0029】また、前段嫌気性処理槽からの臭気成分を
含んだ臭気ガスを好気性処理槽に吹き込んで生物脱臭を
行なう場合は、臭気ガスの吹き込み位置に注意し、臭気
ガスが十分に汚泥に接触できるように考慮する必要があ
る。
When the odor gas containing the odor component from the first anaerobic treatment tank is blown into the aerobic treatment tank to carry out the biological deodorization, attention should be paid to the position where the odor gas is blown, and the odor gas is sufficiently reduced to sludge. You need to take care of contact.

【0030】好気性処理槽からの排ガスは、配管15よ
り生物脱臭装置4に通気し、ガス中の臭気成分を完全に
除去する。生物脱臭装置4で臭気成分が完全に除去され
たガスは配管16より系外へ排出される。
The exhaust gas from the aerobic treatment tank is passed through the pipe 15 to the biological deodorizer 4 to completely remove the odor components in the gas. The gas from which the odor component has been completely removed by the biological deodorizing device 4 is discharged from the pipe 16 to the outside of the system.

【0031】好気性処理槽2の処理水は、次いで配管1
7より沈殿槽3に送給し、固液分離する。汚泥槽3で分
離された汚泥は、配管18を経て抜き出され、返送汚泥
として、配管18aより嫌気性処理槽1へ、配管18b
より好気性処理槽2へそれぞれ返送される。この返送汚
泥は、嫌気性処理槽1と好気性処理槽2とに分離して返
送する他、嫌気性処理槽に返送した汚泥の一部を好気性
処理槽に送給するようにしても良い。
The treated water in the aerobic treatment tank 2 is then supplied to the pipe 1
7 to the settling tank 3 for solid-liquid separation. The sludge separated in the sludge tank 3 is extracted through the pipe 18 and returned as sludge from the pipe 18a to the anaerobic treatment tank 1 through the pipe 18b.
Each is returned to the more aerobic treatment tank 2. This returned sludge is separated and returned to the anaerobic treatment tank 1 and the aerobic treatment tank 2, and a part of the sludge returned to the anaerobic treatment tank may be sent to the aerobic treatment tank. .

【0032】沈殿槽3の上澄水は配管19より処理水と
して系外へ排出される。
The supernatant water of the settling tank 3 is discharged out of the system as treated water from a pipe 19.

【0033】なお、図1に示す実施方法は本発明の一実
施例であって、本発明は何ら図示の方法に限定されるも
のではない。
The embodiment shown in FIG. 1 is an embodiment of the present invention, and the present invention is not limited to the illustrated method.

【0034】例えば、好気性処理槽は、前述の如く、複
数、好ましくは3槽以上の好気性処理槽を直列に連絡し
たものとすることができるが、この場合、特に次のよう
な構成とするのが好ましい。
For example, as described above, the aerobic treatment tank can be a plurality of, preferably three or more aerobic treatment tanks connected in series. In this case, in particular, the following structure is adopted. Is preferred.

【0035】即ち、3槽以上の曝気槽を直列に連絡し、
嫌気性処理水が流入する第1の曝気槽に酸素含有ガスを
散気すると共に、下流側の曝気槽が連絡されている上流
側の各曝気槽から排出された散気排ガスを次の下流側の
曝気槽に散気する。
That is, three or more aeration tanks are connected in series,
The oxygen-containing gas is diffused into the first aeration tank into which the anaerobic treated water flows, and the diffused exhaust gas discharged from each upstream aeration tank connected to the downstream aeration tank is transferred to the next downstream side. To the aeration tank.

【0036】このような好気性処理槽構成とすることに
より、3段以上の多段曝気処理でより一層確実な分解反
応を行なうことができ、高水質処理水を得ることができ
ると共に、前段の曝気槽の排ガス中に含まれるDMSや
MM等の悪臭成分は、後段の曝気槽に散気されて当該曝
気槽で処理されることにより、最後段の曝気槽からは悪
臭のない排ガスが得られるようになる。
With such an aerobic treatment tank configuration, a more reliable decomposition reaction can be carried out by multi-stage aeration treatment of three or more stages, and high-quality treated water can be obtained. Offensive odor components such as DMS and MM contained in the exhaust gas of the tank are diffused into a later-stage aeration tank and processed in the aeration tank so that exhaust gas without odor is obtained from the last-stage aeration tank. become.

【0037】以下に実験例、比較実験例及び具体的な実
施例、比較例を挙げて、本発明をより詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to experimental examples, comparative experimental examples, specific examples, and comparative examples.

【0038】実験例1、比較実験例1 DMSOをTOC換算で300mg/l、グルコースを
TOC換算で200mg/l含む原水を嫌気性処理槽
(実験例1)又は好気性処理槽(比較実験例1)で下記
表1に示す条件で処理し、槽内のDMS濃度の経時変化
を調べ、結果を図3に示した。
Experimental Example 1, Comparative Experimental Example 1 Raw water containing 300 mg / l of DMSO in terms of TOC and 200 mg / l of glucose in terms of TOC was anaerobically treated (Experimental Example 1) or aerobic treated tank (Comparative Experimental Example 1). ), The treatment was carried out under the conditions shown in Table 1 below, and the change over time in the DMS concentration in the tank was examined. The results are shown in FIG.

【0039】[0039]

【表1】 [Table 1]

【0040】図3より、DMSOからDMSへの生分解
は、グルコースの共存下で良好に進行するが、特に、嫌
気性下の条件(実験例1)においては、好気性下の条件
(比較実験例1)におけるよりも約1.7倍もの高い分
解速度が得られることが明らかである。
FIG. 3 shows that the biodegradation of DMSO to DMS proceeds well in the coexistence of glucose, but especially under anaerobic conditions (Experimental Example 1), under aerobic conditions (comparative experiment). It is evident that degradation rates as high as about 1.7 times are obtained than in Example 1).

【0041】実験例2、比較実験例2 DMSをTOC換算で50mg/l含む原水(実験例
2)、及び、DMSをTOC換算で50mg/l、グル
コースをTOC換算で50mg/l含む原水(比較実験
例2)について、それぞれ好気性処理槽(汚泥濃度:4
700mg/l、水温:25℃、pH:7.0)で処理
を行ない、槽内の硫酸イオン濃度の経時変化を調べ、結
果を図4に示した。
Experimental Example 2, Comparative Experimental Example 2 Raw water containing 50 mg / l of DMS in terms of TOC (Experimental Example 2), and raw water containing 50 mg / l of DMS in terms of TOC and 50 mg / l of glucose in terms of TOC (comparative Regarding Experimental Example 2), aerobic treatment tanks (sludge concentration: 4)
The treatment was performed at 700 mg / l, water temperature: 25 ° C., pH: 7.0), and the time-dependent change in the sulfate ion concentration in the tank was examined. The results are shown in FIG.

【0042】図4より、DMSから硫酸イオンに至る分
解は、好気性下で良好に進行するが、その際、DMS以
外の有機物を混合しても(比較実験例2)、分解速度の
増加は起こらないことが明らかである。
FIG. 4 shows that the decomposition from DMS to sulfate ions proceeds well under aerobic conditions. At this time, even if organic substances other than DMS were mixed (Comparative Experimental Example 2), the decomposition rate increased. It is clear that this will not happen.

【0043】実施例1 図1に示す方法に従って、DMSO含有排水の処理を行
なった。
Example 1 DMSO-containing wastewater was treated according to the method shown in FIG.

【0044】TOC換算で300mg/lに溶解したD
MSO液に、TOC200mg/lの2−アミノエタノ
ールを混合し、全体のTOC濃度を500mg/lに調
整すると共に、リン酸緩衝液でpHを7に調整した合成
排水を1リットル容の嫌気性処理槽及び2リットル容の
好気性処理槽(曝気槽)に順次通水して処理した。活性
汚泥としては、都市下水処理場の余剰汚泥を用いた。ま
た、各槽の負荷量、水温は表2に示す通りとした。
D dissolved to 300 mg / l in terms of TOC
To the MSO solution, 200 mg / l of TOC 2-aminoethanol was mixed to adjust the total TOC concentration to 500 mg / l, and the synthetic wastewater whose pH was adjusted to 7 with a phosphate buffer was subjected to 1-liter anaerobic treatment. Water was sequentially passed through a tank and a 2-liter aerobic treatment tank (aeration tank) for treatment. As activated sludge, surplus sludge from an urban sewage treatment plant was used. The load and water temperature of each tank were as shown in Table 2.

【0045】なお、本法は、小型装置であるため、前段
の嫌気性反応槽の臭気ガスを後段の好気性反応槽には吹
き込まず、生物脱臭装置にて脱臭処理を行なった。
Since the present method is a small-sized apparatus, the odor gas in the anaerobic reaction tank in the former stage was not blown into the aerobic reaction tank in the latter stage, but deodorizing treatment was carried out by a biological deodorizer.

【0046】その結果、DMSOの分解反応が15日後
に認められ、好気性反応槽の処理水中の残留DMSは図
5に示す如く、検出下限値以下であり、また、好気性反
応槽からの排ガス中のDMS濃度も0.1ppm以下と
著しく低かった。これらの結果は表2に併記した。
As a result, the decomposition reaction of DMSO was observed after 15 days, the residual DMS in the treated water in the aerobic reaction tank was below the lower limit of detection as shown in FIG. 5, and the exhaust gas from the aerobic reaction tank was The DMS concentration therein was also extremely low at 0.1 ppm or less. These results are also shown in Table 2.

【0047】比較例1 嫌気性処理槽を用いず、5リットル容の好気性処理槽
(曝気槽)1槽のみを用い、表2に示す負荷量及び水温
にて処理を行なったこと以外は実施例1と同様にして処
理を行なった。
Comparative Example 1 An anaerobic treatment tank was not used, and only one 5-liter aerobic treatment tank (aeration tank) was used, and the treatment was carried out at the load and water temperature shown in Table 2. The procedure was as in Example 1.

【0048】その結果、図5に示す如く、処理水中には
8〜17mg/lのDMSが残留しており、好気性処理
槽の排ガス中のDMS濃度も15〜50ppmと高濃度
であり、臭気が激しかった。これらの結果は表2に併記
した。
As a result, as shown in FIG. 5, DMS at 8 to 17 mg / l remained in the treated water, and the DMS concentration in the exhaust gas from the aerobic treatment tank was as high as 15 to 50 ppm. Was intense. These results are also shown in Table 2.

【0049】[0049]

【表2】 [Table 2]

【0050】表2より、本発明の方法によれば、従来の
好気性処理のみの処理法に比べて、3.3倍の負荷量に
て、著しく高水質な処理水を得ることができ、しかも排
ガスの臭気も大幅に低減されることが明らかである。
From Table 2, according to the method of the present invention, it is possible to obtain remarkably high quality treated water at a load of 3.3 times that of the conventional aerobic treatment alone. Moreover, it is clear that the odor of the exhaust gas is also greatly reduced.

【0051】[0051]

【発明の効果】以上詳述した通り、本発明の排水の処理
法によれば、嫌気性処理槽において、DMSOが他の有
機物との共存下において、高効率的にDMSに分解され
た後、このDMSが好気性処理槽において、効率的に硫
酸イオンに分解される。
As described above in detail, according to the wastewater treatment method of the present invention, after DMSO is efficiently decomposed into DMS in the anaerobic treatment tank in the presence of other organic substances, This DMS is efficiently decomposed into sulfate ions in the aerobic treatment tank.

【0052】このため、DMSO含有排水を生物処理に
より効率的に処理することが可能とされることから、 焼却、酸化剤による酸化等の一般的な処理法に比べ
て、維持管理費を大幅に低減することができる。 通常の活性汚泥処理法に比べて、処理槽当りの負荷
量を高めることができる。また、臭気の発生も低減され
る。 といった効果が奏され、DMSO含有廃水を低コストに
て効率的に処理して、高水質の処理水を得ることができ
る。
[0052] For this reason, the wastewater containing DMSO can be efficiently treated by biological treatment, so that the maintenance and management costs are significantly reduced as compared with general treatment methods such as incineration and oxidation with an oxidizing agent. Can be reduced. The load per treatment tank can be increased as compared with the ordinary activated sludge treatment method. Further, generation of odor is also reduced. Thus, the DMSO-containing wastewater can be efficiently treated at low cost, and high-quality treated water can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のDMSOを含む排水の処理法の一実施
方法を示す系統図である。
FIG. 1 is a system diagram showing one embodiment of a method for treating wastewater containing DMSO of the present invention.

【図2】DMSOの生分解代謝経路を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a biodegradation metabolic pathway of DMSO.

【図3】実験例1及び比較実験例1で求めたDMSOか
らDMSへの分解反応の進行状況を示すグラフである。
FIG. 3 is a graph showing the progress of the decomposition reaction from DMSO to DMS obtained in Experimental Example 1 and Comparative Experimental Example 1.

【図4】実験例2及び比較実験例2で求めたDMSから
硫酸イオンへの分解反応の進行状況を示すグラフであ
る。
FIG. 4 is a graph showing the progress of the decomposition reaction of DMS to sulfate ions obtained in Experimental Example 2 and Comparative Experimental Example 2.

【図5】実施例1及び比較例1における処理により得ら
れた処理水中のDMS濃度の経時変化を示すグラフであ
る。
FIG. 5 is a graph showing the change over time of the DMS concentration in the treated water obtained by the treatment in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 嫌気性処理槽 2 好気性処理槽 3 沈殿槽 4 生物脱臭装置 Reference Signs List 1 anaerobic treatment tank 2 aerobic treatment tank 3 sedimentation tank 4 biological deodorizer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 3/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C02F 3/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ジメチルスルホキシドを含む排水を、ジ
メチルスルホキシド以外の有機物を含有する排水と混合
し、該混合排水を嫌気性処理槽で嫌気性処理した後、曝
気が行なわれている好気性処理槽で好気性処理し、次い
で固液分離処理して処理水を得る方法であって、 該固液分離処理により分離された汚泥の少なくとも一部
を、返送汚泥として前記嫌気性処理槽及び好気性処理槽
に返送することを特徴とするジメチルスルホキシドを含
む排水の処理法。
1. An aerobic treatment tank in which effluent containing dimethyl sulfoxide is mixed with effluent containing organic matter other than dimethyl sulfoxide, and the mixed effluent is subjected to anaerobic treatment in an anaerobic treatment tank and then aerated. Aerobic treatment, followed by solid-liquid separation treatment to obtain treated water, wherein at least a part of the sludge separated by the solid-liquid separation treatment is returned sludge as the anaerobic treatment tank and the aerobic treatment. A method for treating wastewater containing dimethyl sulfoxide, which is returned to a tank.
JP24314492A 1992-09-11 1992-09-11 Treatment of wastewater containing dimethyl sulfoxide Expired - Lifetime JP3271322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24314492A JP3271322B2 (en) 1992-09-11 1992-09-11 Treatment of wastewater containing dimethyl sulfoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24314492A JP3271322B2 (en) 1992-09-11 1992-09-11 Treatment of wastewater containing dimethyl sulfoxide

Publications (2)

Publication Number Publication Date
JPH0691289A JPH0691289A (en) 1994-04-05
JP3271322B2 true JP3271322B2 (en) 2002-04-02

Family

ID=17099446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24314492A Expired - Lifetime JP3271322B2 (en) 1992-09-11 1992-09-11 Treatment of wastewater containing dimethyl sulfoxide

Country Status (1)

Country Link
JP (1) JP3271322B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212588B2 (en) * 2005-03-08 2009-01-21 シャープ株式会社 Waste water treatment apparatus and waste water treatment method
JP4490908B2 (en) * 2005-03-17 2010-06-30 シャープ株式会社 Wastewater treatment equipment
US7713410B2 (en) 2005-12-20 2010-05-11 Sharp Kabuhsiki Kaisha Wastewater treatment apparatus

Also Published As

Publication number Publication date
JPH0691289A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
JP2000015288A (en) Waste water treatment method and apparatus
JP2003275796A (en) Method and apparatus for treating sludge by making good use of sludge pretreating unit and membrane separation type bioreactor
JP2007105630A (en) Method for treating organic waste water
JP3271322B2 (en) Treatment of wastewater containing dimethyl sulfoxide
JP4631162B2 (en) Organic waste treatment methods
JP3409728B2 (en) Organic waste treatment method
JPH05337479A (en) Aerobic treatment plant
JP2002059200A (en) Method of treating sewage and sludge
JPS6222678B2 (en)
JP3916697B2 (en) Wastewater treatment method
JP4581174B2 (en) Biological treatment method
JP2001149981A (en) Method for treating sewage and sludge
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JP3447037B2 (en) Aerobic digestion of activated sludge
JP2000263091A (en) Sewage and sludge treatment method
JP4004370B2 (en) Treatment method of septic tank sludge
JPH1133598A (en) Method for biological treatment of organic wastewater
JP2000084596A (en) Treatment of sludge
JPH09122679A (en) Method for processing organic waste water and its apparatus
JP3215619B2 (en) Purification device and operation method thereof
JP3400622B2 (en) Method and apparatus for treating organic sewage
JPH10211497A (en) Method for biological treatment of organic wastewater
JPH0788495A (en) Method for aerobic treatment of organic drainage
JPH10151491A (en) Operation method of septic facility
JP2001225091A (en) Method and apparatus for treating sewage and sludge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11