JP2000233198A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JP2000233198A
JP2000233198A JP3310099A JP3310099A JP2000233198A JP 2000233198 A JP2000233198 A JP 2000233198A JP 3310099 A JP3310099 A JP 3310099A JP 3310099 A JP3310099 A JP 3310099A JP 2000233198 A JP2000233198 A JP 2000233198A
Authority
JP
Japan
Prior art keywords
biological treatment
solid
sludge
denitrification
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3310099A
Other languages
Japanese (ja)
Other versions
JP3575312B2 (en
Inventor
Motoyuki Yoda
元之 依田
Yasuo Takeda
康雄 武田
Tokuaki Ono
徳昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP3310099A priority Critical patent/JP3575312B2/en
Publication of JP2000233198A publication Critical patent/JP2000233198A/en
Application granted granted Critical
Publication of JP3575312B2 publication Critical patent/JP3575312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance treated water quality in aerobic biological treatment and to prevent functional trouble such as the generation of scum, bulking or the like in a succeeding solid-liquid separation process in a treatment method subjecting waste water containing an org. solid to anaerobic biological treatment and aerobic biological treatment successively. SOLUTION: Org. waste water is subjected to solid-liquid separation treatment in a solid-liquid separation means 1 and the separated liquid is subjected to anaerobic biological treatment in an anaerobic biological treatment process 2 while the separated sludge is subjected to aerobic biological treatment along with anaerobically and biologically treated water in an aerobic biological treatment process 5. In this treatment method, a denitrification treatment process 5B is provided to the aerobic biological treatment process 5 or the separated sludge is subjected to aerobic treatment and denitrification treatment before supplied to the aerobic biological treatment process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性固形物を含
む排水(ビール、デンプン、ポテト加工排水など)の処
理方法に係り、特に、この有機性排水を嫌気性生物処理
した後好気性生物処理する処理方法において、好気性生
物処理での処理水質を高め、その後の固液分離工程にお
けるスカム発生、バルキングなどの機能障害を防止する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater containing organic solids (beer, starch, potato-processed wastewater, etc.), and more particularly to an aerobic organism after treating this organic wastewater with an anaerobic organism. The present invention relates to a treatment method for improving the quality of treated water in an aerobic biological treatment, and preventing scum generation and bulking in a subsequent solid-liquid separation step.

【0002】[0002]

【従来の技術】ビール、デンプン、ポテト加工排水など
の有機性固形物を含む排水の処理方法として、図4に示
す如く、該排水を固液分離手段1で沈殿や汚泥浮上法な
どによって固液分離した後、分離水(以下「前沈上澄
み」と称す場合がある。)をUASB(Upflow Anaerob
ic Sludge Blanket:上向流嫌気性汚泥床)などの高負
荷嫌気性生物処理工程2で嫌気性生物処理してメタンに
分解し、分離汚泥(以下「前沈排泥」と称す場合があ
る。)をこの嫌気性処理水と混合して曝気槽3で活性汚
泥による好気性生物処理し、得られた好気性処理水を、
沈殿槽4で固液分離する方法がある。この方法では、嫌
気性生物処理工程2、特に高速型のUASB反応槽に固
形物が流入して蓄積すると、反応槽の有効容量が減少し
たり、汚泥の活性が低下し、処理能力が低下するため、
予め固液分離手段1において固形物の除去が行われてい
る。
2. Description of the Related Art As a method for treating wastewater containing organic solids such as beer, starch and potato wastewater, as shown in FIG. 4, the wastewater is solid-liquid separated by a solid-liquid separation means 1 by sedimentation or sludge flotation. After separation, the separated water (hereinafter sometimes referred to as “pre-sedimentation supernatant”) is subjected to UASB (Upflow Anaerob).
In a high-load anaerobic biological treatment process 2 such as an ic sludge blanket (upward-flow anaerobic sludge bed), anaerobic biological treatment is performed to decompose to methane, which may be referred to as separated sludge (hereinafter referred to as “pre-sedimentation sludge”). ) Is mixed with this anaerobic treated water and subjected to aerobic biological treatment with activated sludge in the aeration tank 3, and the obtained aerobic treated water is
There is a method of performing solid-liquid separation in the precipitation tank 4. In this method, when solids flow into and accumulate in the anaerobic biological treatment step 2, particularly the high-speed UASB reaction tank, the effective capacity of the reaction tank decreases, the activity of sludge decreases, and the treatment capacity decreases. For,
Solid matter has been removed in the solid-liquid separation means 1 in advance.

【0003】[0003]

【発明が解決しようとする課題】図4に示す如く、従来
の有機性排水の処理方法では、嫌気性生物処理工程2の
前段で分離した固形物を嫌気性処理水と共に曝気槽3に
送給して活性汚泥処理するが、この活性汚泥処理工程に
おいて、固形性有機物の流入量が多くなり、溶解性有機
物の割合が減少すると、多くの場合、 フロックの形成が不安定となり、フロックが分散傾
向となって処理水中に微細なSSが流出して透視度が著
しく低下する。 負荷変動によっては、後段の沈殿槽4でスカムや汚
泥が浮上したり、曝気槽3での発泡が著しくなる。 など、活性汚泥処理の運転が非常に不安定となる。特
に、嫌気処理水は易分解性の有機物の割合が少なく、C
ODCr/BOD5の値が4〜5程度と大きくなるため、
こうした現象が起こり易い。
As shown in FIG. 4, in the conventional organic wastewater treatment method, the solids separated in the preceding stage of the anaerobic biological treatment step 2 are sent to the aeration tank 3 together with the anaerobic treated water. Activated sludge treatment is performed.In this activated sludge treatment step, when the inflow of solid organic matter increases and the proportion of soluble organic matter decreases, floc formation often becomes unstable and floc tends to disperse. As a result, fine SS flows out into the treated water, and the visibility decreases significantly. Depending on the load fluctuation, scum and sludge float in the sedimentation tank 4 at the subsequent stage, and foaming in the aeration tank 3 becomes remarkable. For example, the operation of the activated sludge treatment becomes very unstable. In particular, anaerobic treated water has a low proportion of easily decomposable organic substances,
Since the value of OD Cr / BOD 5 becomes as large as about 4 to 5,
Such a phenomenon is likely to occur.

【0004】このような現象を防ぐために、実際には嫌
気性生物処理工程に通水する水量を制限し、原水(有機
性排水)の一部(全体水量の30%程度)を直接後段の
曝気槽3に送給することが行われているが、このように
原水の一部を曝気槽3に送給することは、嫌気性生物処
理を採用することによる汚泥発生量の低減、曝気槽の曝
気動力の削減といった効果が損われることとなり、好ま
しくない。
In order to prevent such a phenomenon, the amount of water passing through the anaerobic biological treatment process is actually limited, and a part of the raw water (organic wastewater) (about 30% of the total water amount) is directly aerated in the subsequent stage. Although a part of the raw water is supplied to the aeration tank 3 as described above, it is necessary to reduce the amount of sludge generated by employing the anaerobic biological treatment, The effect of reducing the aeration power is impaired, which is not preferable.

【0005】また、この活性汚泥処理工程での問題は、
前沈排泥に起因していることから、この前沈排泥を曝気
槽3に導入して処理することなく、直接脱水処理するこ
とも試みられているが、腐敗し易い有機性汚泥をそのま
ま脱水することは、臭気発生の問題があり、実用上不可
能である。
[0005] The problem in the activated sludge treatment process is as follows.
Because of the pre-sedimentation sludge, this pre-sedimentation sludge has been attempted to be directly dehydrated without being introduced into the aeration tank 3 for treatment. Dehydration has a problem of odor generation and is practically impossible.

【0006】本発明は上記従来の問題点を解決し、有機
性固形物を含む排水を嫌気性生物処理した後好気性生物
処理する処理法において、好気性生物処理での処理水質
を高め、その後の固液分離工程におけるスカム発生、バ
ルキングなどの機能障害を防止する方法を提供すること
を目的とする。
[0006] The present invention solves the above-mentioned conventional problems, and in a treatment method for treating effluent containing organic solids by anaerobic biological treatment and then aerobic biological treatment, the quality of treated water in aerobic biological treatment is improved. It is an object of the present invention to provide a method for preventing functional troubles such as scum generation and bulking in the solid-liquid separation step.

【0007】[0007]

【課題を解決するための手段】本発明の有機性排水の処
理方法は、有機性排水を固液分離して、排水中の有機性
固形物を分離する固液分離工程と、該固液分離工程で分
離された液分を嫌気的に生物処理する嫌気性生物処理工
程と、該嫌気性生物処理工程から排出される嫌気性生物
処理水及び前記固液分離工程で分離した有機性固形分を
好気的に生物処理する好気性生物処理工程とを有する有
機性排水の処理方法に関する。
According to the present invention, there is provided a method for treating organic waste water, comprising the steps of: solid-liquid separation of the organic waste water to separate organic solids in the waste water; An anaerobic biological treatment step of anaerobically biologically treating the liquid separated in the step, and an anaerobic biological treatment water discharged from the anaerobic biological treatment step and an organic solid separated in the solid-liquid separation step. And an aerobic biological treatment step for aerobic biological treatment.

【0008】請求項1の発明では、該好気性生物処理工
程に、脱窒処理過程が設けられ、好ましくは、前記固液
分離工程で分離された有機性固形分を、好気処理過程を
経た後、前記好気性生物処理工程に供給する。
According to the first aspect of the present invention, the aerobic biological treatment step is provided with a denitrification treatment step. Preferably, the organic solids separated in the solid-liquid separation step are subjected to the aerobic treatment step. Then, it supplies to the said aerobic biological treatment process.

【0009】請求項3の発明では、前記固液分離工程で
分離された有機性固形分を、好気処理過程と脱窒処理過
程とを経た後、前記好気性生物処理工程に供給する。
According to the third aspect of the present invention, the organic solid separated in the solid-liquid separation step is supplied to the aerobic biological treatment step after passing through an aerobic treatment step and a denitrification treatment step.

【0010】本発明者らは、上述の従来法における問題
について鋭意解析した結果、この問題の要因は前沈排泥
の固形物の分解とその代謝産物による影響が大きいこと
が明らかになった。即ち、多くの食品排水では前沈排泥
中の有機性SSには、主としてタンパクに由来する固形
性の窒素含有有機物が含まれており、曝気槽の滞留時間
(SRT)を5日程度或いはそれ以上に長くとると、こ
の窒素含有有機物が、活性汚泥による分解の過程で、可
溶性窒素含有有機物→アンモニア→亜硝酸→硝酸の順で
分解され、活性汚泥処理水が流入する沈殿槽4におい
て、主として硝酸、亜硝酸による脱窒現象により汚泥が
浮上したり、スカムが発生するなどの問題が発生する。
一般的に、汚泥を安定化させて、できるだけ余剰汚泥の
発生量を低下させることが経済的であるため、曝気槽の
SRTを長くとって運転を行う場合が多いが、このよう
に曝気槽のSRTを長くする運転条件では、上述の硝化
に起因する障害を避けることはできない。逆に、曝気槽
のSRTを短くして有機性SSの分解を抑制しようとす
ると、汚泥濃度を下げざるを得ず、汚泥中に存在する菌
体の割合が低いなかで、従って菌体よりも固形有機物が
相対的に多い状況で運転を行うこととなり、過負荷のた
めバルキングが起こったり、著しい発泡現象が起こるこ
ととなる。また、曝気槽の前段で嫌気性生物処理を行う
ために、曝気槽の運転温度は通常30℃程度となるが、
このような温度条件では、たとえSRTを短く維持した
としても、硝化反応が起こり易く、生成した亜硝酸や硝
酸と汚泥中に残留する固形性有機物が沈殿槽内で反応し
て、脱窒が起こり、汚泥の浮上やスカムの生成といった
問題を引き起こすこととなる。
The present inventors have conducted intensive analysis on the problem in the above-mentioned conventional method and found that the cause of this problem is largely affected by decomposition of solids in the pre-set sludge and its metabolites. That is, in many food wastewaters, the organic SS in the pre-sedimentation sludge contains solid nitrogen-containing organic matter mainly derived from proteins, and the residence time (SRT) in the aeration tank is about 5 days or less. If it takes longer, this nitrogen-containing organic matter is decomposed in the order of soluble nitrogen-containing organic matter → ammonia → nitrous acid → nitric acid in the course of decomposition by activated sludge, and mainly in the sedimentation tank 4 into which the activated sludge treated water flows. Problems such as sludge floating and scum are generated due to the denitrification phenomenon by nitric acid and nitrous acid.
In general, it is economical to stabilize the sludge and reduce the amount of excess sludge generated as much as possible. Therefore, it is often the case that the operation is performed with a long SRT of the aeration tank. Under the operating conditions that increase the SRT, the above-mentioned obstacles caused by nitrification cannot be avoided. Conversely, if the SRT in the aeration tank is shortened to suppress the decomposition of organic SS, the concentration of sludge must be reduced, and the ratio of bacterial cells present in the sludge is low. The operation is performed in a state where the amount of solid organic matter is relatively large, and bulking occurs due to overload, and a remarkable foaming phenomenon occurs. In addition, in order to perform anaerobic biological treatment in the previous stage of the aeration tank, the operating temperature of the aeration tank is usually about 30 ° C.,
Under such temperature conditions, even if the SRT is kept short, the nitrification reaction is likely to occur, and the generated nitrous acid or nitric acid and the solid organic matter remaining in the sludge react in the sedimentation tank to cause denitrification. This causes problems such as floating of sludge and generation of scum.

【0011】従って、従来法における問題を根本的に解
決するためには、曝気槽のSRTを比較的長くとって前
沈排泥中の有機性SSの分解を促進した上で、活性汚泥
処理水が流入する沈殿槽において、上述のような脱窒反
応による汚泥の浮上やスカムの生成といった問題が起こ
らないようにする必要がある。
Therefore, in order to fundamentally solve the problems in the conventional method, the SRT in the aeration tank is set relatively long to promote the decomposition of the organic SS in the pre-set sludge and the activated sludge treated water It is necessary to prevent problems such as floating of sludge and generation of scum due to the denitrification reaction as described above in the sedimentation tank into which water flows.

【0012】請求項1の有機性排水の処理方法では、好
気性生物処理工程に脱窒処理過程が設けられているた
め、好気性生物処理工程での分解で生成した硝酸や亜硝
酸が、この脱窒処理過程で除去される。このため、後段
の沈殿槽に流入する活性汚泥処理水中の硝酸、亜硝酸は
著しく低減され、これらに起因する汚泥の浮上やスカム
の生成の問題は解消される。
In the method for treating organic waste water according to the first aspect, the denitrification process is provided in the aerobic biological treatment process, so that the nitric acid and nitrous acid generated by the decomposition in the aerobic biological treatment process are separated from the wastewater. It is removed during the denitrification process. Therefore, the amount of nitric acid and nitrous acid in the activated sludge treatment water flowing into the subsequent settling tank is significantly reduced, and the problems of sludge floating and scum generation due to these are eliminated.

【0013】請求項2の有機性排水の処理方法では、上
記請求項1の方法において、前沈排泥だけを予め好気処
理過程で分解して可溶化、低分子化した後好気性生物処
理工程に送給することにより、固形物の分解を促進して
余剰汚泥の発生量を低減することができる。
According to a second aspect of the present invention, there is provided the method of treating an organic wastewater according to the first aspect, wherein only the pre-sedimentation sludge is previously dissolved in the aerobic treatment step to solubilize and reduce the molecular weight, and then the aerobic biological treatment is performed. By feeding the sludge to the process, it is possible to promote the decomposition of solids and reduce the amount of excess sludge generated.

【0014】請求項3の有機性排水の処理方法では、前
沈排泥を好気処理過程と脱窒処理過程とで処理すること
により前沈排泥中の窒素含有有機物を直接硝化脱窒処理
して除去する。このため、沈殿槽に流入する活性汚泥処
理水中の硝酸、亜硝酸残留量は著しく低減され、これら
に起因する汚泥の浮上やスカムの生成の問題は解消され
る。
According to a third aspect of the present invention, there is provided a method for treating organic waste water, wherein the pre-set sludge is subjected to an aerobic treatment step and a denitrification treatment step, whereby nitrogen-containing organic matter in the pre-set sludge is directly nitrified and denitrified. And remove. For this reason, the residual amounts of nitric acid and nitrous acid in the activated sludge treatment water flowing into the settling tank are significantly reduced, and the problems of sludge floating and scum generation due to these are eliminated.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0016】図1〜3は本発明の有機性排水の処理方法
の実施の形態を示す系統図である。
FIGS. 1 to 3 are system diagrams showing an embodiment of the method for treating organic waste water according to the present invention.

【0017】図1に示す方法では、原水はまず、沈殿
槽、浮上分離槽又はデカンター等の固液分離手段1で固
液分離され、固液分離された液分(前沈上澄み)が嫌気
性生物処理工程(メタン発酵工程)2で嫌気性生物処理
され、含有される有機物の80〜90%がメタンに分解
される。
In the method shown in FIG. 1, raw water is first solid-liquid separated by a solid-liquid separation means 1 such as a sedimentation tank, a flotation tank or a decanter, and the solid-liquid separated liquid (pre-sedimentation supernatant) is anaerobic. Anaerobic biological treatment is performed in the biological treatment step (methane fermentation step) 2, and 80 to 90% of the contained organic matter is decomposed into methane.

【0018】この嫌気性生物処理工程2は、一相式であ
っても良く、酸生成とメタン生成との二相式であっても
良い。また、汚泥の保持方式もUASB方式、浮遊方式
等のいずれでも良い。
The anaerobic biological treatment step 2 may be a single-phase system or a two-phase system of acid generation and methane generation. The sludge holding method may be any of the UASB method, the floating method, and the like.

【0019】嫌気性処理水は、固液分離手段1で分離さ
れた固形分(前沈排泥)と共に好気性生物処理工程5で
好気性生物処理され、残留有機物が分解されるが、本実
施の形態では、この好気性生物処理工程5が仕切壁によ
り3つの領域に分割されており、流入液は、順次、第1
番目の領域(第1曝気部)5Aで好気性生物処理が行わ
れた後、第2番目の領域(脱窒部)5Bで嫌気条件下に
脱窒処理が行われ、その後、第3番目の領域(第2曝気
部)5Cで好気性生物処理が行われるように構成されて
いる。
The anaerobic treated water is subjected to the aerobic biological treatment in the aerobic biological treatment step 5 together with the solid matter (pre-sedimentation sludge) separated by the solid-liquid separation means 1 to decompose the residual organic matter. In this embodiment, the aerobic biological treatment step 5 is divided into three regions by a partition wall.
After the aerobic biological treatment is performed in the second region (first aeration unit) 5A, the denitrification treatment is performed in the second region (denitrification unit) 5B under anaerobic conditions, and thereafter, the third treatment is performed. The aerobic biological treatment is performed in the region (second aeration unit) 5C.

【0020】即ち、第1曝気部5Aでは、前沈排泥及び
嫌気処理水中の有機物の分解と、有機性窒素のアンモニ
ア化及び硝化が行われ、脱窒部5Bで脱窒が行われ、第
2曝気部5Cで残留有機物を分解し、溶存酸素を高めて
処理水を沈殿槽4に送給する。
That is, in the first aeration unit 5A, decomposition of organic substances in the pre-sedimentation sludge and anaerobic treated water, ammoniaation and nitrification of organic nitrogen are performed, and denitrification is performed in the denitrification unit 5B. (2) The residual organic matter is decomposed in the aeration section 5C, the dissolved oxygen is increased, and the treated water is fed to the settling tank 4.

【0021】この好気性生物処理工程5の汚泥の保持方
式は、浮遊方式、固定床式、流動床式、生物膜式のいず
れでも良い。
The sludge holding system in the aerobic biological treatment step 5 may be any of a floating system, a fixed bed system, a fluidized bed system, and a biofilm system.

【0022】好気性生物処理工程5における脱窒部5B
の容積割合が、過度に大きいと好気性生物処理工程とし
ての機能が損われ、過度に小さいと脱窒部を設けること
による本発明の効果が得られない。従って、脱窒部5B
は、好気性生物処理工程5の容積(第1曝気部5A,脱
窒部5B及び第2曝気部5Cの合計の容積)の10〜5
0%、特に20〜30%程度とするのが好ましい。
The denitrification section 5B in the aerobic biological treatment step 5
If the volume ratio is excessively large, the function of the aerobic biological treatment process will be impaired. If the volume ratio is excessively small, the effect of the present invention due to the provision of the denitrification unit cannot be obtained. Therefore, the denitrification unit 5B
Is 10 to 5 of the volume of the aerobic biological treatment step 5 (the total volume of the first aeration unit 5A, the denitrification unit 5B, and the second aeration unit 5C).
It is preferably set to 0%, particularly about 20 to 30%.

【0023】また、好気性生物処理工程5における脱窒
部5Bは、図1に示す如く、第1曝気部5Aと第2曝気
部5Bとの間に設ける他、好気性生物処理工程を脱窒部
とその後段の曝気部とで構成し、曝気部の流出液の一部
を脱窒部に返送して循環させるようにしても良い。
As shown in FIG. 1, the denitrification section 5B in the aerobic biological treatment step 5 is provided between the first aeration section 5A and the second aeration section 5B. It is also possible to constitute a part and an aeration part at the subsequent stage, and return a part of the effluent of the aeration part to the denitrification part and circulate it.

【0024】この脱窒部5Bは、嫌気性条件下、即ち曝
気を全く行わないか、曝気を行っても供給酸素量を制限
とすることで脱窒細菌により硝酸イオン、亜硝酸イオン
を窒素ガスに分解する工程であり、この脱窒部5Bにお
ける脱窒反応は、汚泥中に含まれる有機物を水素供与体
とする内生脱窒であっても、脱窒効率を上げるために原
水又は前沈上澄みの一部(好ましくは3〜20%、より
好ましくは5〜10%程度)を図1の破線で示す如く、
脱窒部5Bに直接導入するものであっても良い。原水又
は前沈上澄みの一部を水素供与体として直接脱窒部5B
に導入した場合には、一般的には脱窒速度、脱窒効率が
高められ、より一層良好な水質の処理水を得ることがで
きる。
The denitrification section 5B is capable of converting nitrate ions and nitrite ions with nitrogen gas by denitrifying bacteria under anaerobic conditions, that is, by not performing aeration at all or by limiting the amount of oxygen supplied even if aeration is performed. In the denitrification reaction in the denitrification section 5B, even in the case of endogenous denitrification using organic matter contained in sludge as a hydrogen donor, raw water or pre-sedimentation is required to increase the denitrification efficiency. A part of the supernatant (preferably about 3 to 20%, more preferably about 5 to 10%) is shown by a broken line in FIG.
It may be introduced directly into the denitrification section 5B. Direct denitrification unit 5B using raw water or part of the pre-sedimentation supernatant as hydrogen donor
In general, the denitrification rate and the denitrification efficiency are increased, and treated water with better water quality can be obtained.

【0025】図1に示す如く、好気性生物処理工程5に
脱窒部5Bを設けることにより、好気性生物処理で生成
した亜硝酸や硝酸が脱窒部5Bで脱窒されるため、後段
の沈殿槽4では脱窒現象が生起することはなく、このた
め沈殿槽4における汚泥の浮上やスカムの生成は防止さ
れる。
As shown in FIG. 1, by providing the denitrification unit 5B in the aerobic biological treatment step 5, nitrous acid and nitric acid generated in the aerobic biological treatment are denitrified in the denitrification unit 5B. Denitrification does not occur in the sedimentation tank 4, and therefore, floating of sludge and generation of scum in the sedimentation tank 4 are prevented.

【0026】第2の曝気部5Cから沈殿槽4に送給され
た好気性処理水は、沈殿槽4で固液分離され、上澄水が
処理水として系外へ排出される。一方、分離汚泥は返送
汚泥として好気性生物処理工程5へ返送される。なお、
好気性生物処理工程5の汚泥又はこの分離汚泥の一部
は、必要に応じて余剰汚泥として系外へ排出される。
The aerobic treated water sent from the second aeration unit 5C to the settling tank 4 is separated into solid and liquid in the settling tank 4, and the supernatant water is discharged out of the system as treated water. On the other hand, the separated sludge is returned to the aerobic biological treatment step 5 as returned sludge. In addition,
The sludge of the aerobic biological treatment step 5 or a part of the separated sludge is discharged out of the system as surplus sludge as necessary.

【0027】前述の如く、沈殿槽5では脱窒現象が防止
され、それによる汚泥の浮上やスカムの発生が防止され
るため、浮上汚泥や微細フロックの流出等による処理水
水質の悪化が防止され、沈殿槽5からは高水質の処理水
を得ることができる。
As described above, the denitrification phenomenon is prevented in the sedimentation tank 5, and the floating of sludge and the generation of scum due to the denitrifying phenomenon are prevented. Therefore, the deterioration of the treated water quality due to the outflow of floating sludge and fine flocs is prevented. From the sedimentation tank 5, high-quality treated water can be obtained.

【0028】なお、好気性処理水の固液分離手段として
は、沈殿槽5の代りに膜分離装置を用いても良い。
As the solid-liquid separation means for the aerobic treated water, a membrane separation device may be used instead of the precipitation tank 5.

【0029】図2に示す方法は、汚泥安定化槽6を設
け、この汚泥安定化槽6で前沈排泥を好気性生物処理し
た後好気性生物処理工程5に送給する点が図1に示す方
法と異なり、その他は同様の構成とされている。
The method shown in FIG. 2 is characterized in that a sludge stabilization tank 6 is provided, and the pre-sedimentation sludge is subjected to aerobic biological treatment in this sludge stabilization tank 6 and then fed to the aerobic biological treatment step 5. Are different from the method shown in FIG.

【0030】この方法では、前沈排泥だけを汚泥安定化
槽6で好気性生物処理することにより滞留時間を長くで
き、十分に可溶化、低分子化した後好気性生物処理工程
5に送給することにより、固形物の分解を促進して余剰
汚泥の発生量を低減することができる。なお、返送汚泥
の一部は汚泥安定化槽6における菌体濃度の維持のため
に汚泥安定化槽6に送給される。この方法では、汚泥安
定化槽6においても有機性窒素の硝化反応で硝酸、亜硝
酸が生成するが、生成した硝酸、亜硝酸は図1の方法と
同様に好気性生物処理工程5の脱窒部5Bで脱窒され
る。
In this method, only the pre-sedimentation sludge is subjected to the aerobic biological treatment in the sludge stabilization tank 6 so that the residence time can be prolonged. By feeding, the decomposition of solid matter can be promoted and the amount of excess sludge generated can be reduced. A part of the returned sludge is sent to the sludge stabilization tank 6 to maintain the cell concentration in the sludge stabilization tank 6. In this method, nitric acid and nitrous acid are generated in the nitrification reaction of organic nitrogen also in the sludge stabilization tank 6, and the generated nitric acid and nitrous acid are denitrified in the aerobic biological treatment step 5 in the same manner as in the method of FIG. It is denitrified in the part 5B.

【0031】図3に示す方法は、汚泥安定化槽6が仕切
壁により2つの領域に分割されており、流入汚泥は、第
1番目の領域(脱窒部)6Aで嫌気性生物処理が行われ
た後、第2番目の領域(曝気部)6Bで好気性生物処理
が行われ、この曝気部6Bの処理水の一部が脱窒部6A
に循環されるように構成されている点が図2に示す方法
と異なり、その他は同様の構成とされている。
In the method shown in FIG. 3, the sludge stabilization tank 6 is divided into two areas by a partition wall, and the inflow sludge is subjected to anaerobic biological treatment in the first area (denitrification section) 6A. Then, aerobic biological treatment is performed in the second area (aeration section) 6B, and a part of the treated water in the aeration section 6B is denitrified by the denitrification section 6A.
The configuration shown in FIG. 2 is different from the method shown in FIG.

【0032】この脱窒部6Aも前述の脱窒部5Bと同
様、嫌気性条件下、即ち曝気を全く行わないか、曝気を
行っても供給酸素量を制限とすることで脱窒細菌により
硝酸イオン、亜硝酸イオンを窒素ガスに分解するもので
あり、従って、この方法では、図2に示す方法と同様
に、汚泥安定化槽6において、前沈排泥の可溶化、低分
子化が促進されると共に、前沈排泥中の固形物由来の有
機性窒素が汚泥安定化槽6の脱窒部6A及び曝気部6B
で硝化、脱窒されて除去される。
Similarly to the denitrification unit 5B, the denitrification unit 6A is subjected to nitric acid by denitrifying bacteria under anaerobic conditions, that is, by not performing aeration at all or by limiting the amount of supplied oxygen even if aeration is performed. Therefore, this method promotes solubilization and low-molecularization of pre-sedimentation sludge in the sludge stabilization tank 6, as in the method shown in FIG. At the same time, the organic nitrogen derived from solid matter in the pre-sedimentation sludge is removed by the denitrification section 6A and the aeration section 6B of the sludge stabilization tank 6.
It is removed by nitrification and denitrification.

【0033】なお、図3に示す方法において、前沈排泥
中の有機性窒素は汚泥安定化槽6で硝化、脱窒されるた
め、好気性生物処理工程5の脱窒部5Bは必ずしも必要
とされず、好気性生物処理工程5は曝気部のみで構成さ
れていても良い。
In the method shown in FIG. 3, since the organic nitrogen in the pre-sedimentation sludge is nitrified and denitrified in the sludge stabilization tank 6, the denitrification part 5B in the aerobic biological treatment step 5 is not necessarily required. Instead, the aerobic biological treatment step 5 may include only the aeration unit.

【0034】図3に示す方法でも、汚泥安定化槽6、更
には好気性生物処理工程5における硝化、脱窒で有機性
窒素が除去されることにより、沈殿槽4に導入される好
気性生物処理水中の硝酸、亜硝酸量が低減され、これら
による脱窒現象に起因する沈殿槽4での汚泥の浮上、ス
カムの発生、それによる処理水水質の悪化は防止され
る。
In the method shown in FIG. 3 as well, the organic nitrogen is removed by the nitrification and denitrification in the sludge stabilization tank 6 and further in the aerobic biological treatment step 5, whereby the aerobic organism introduced into the sedimentation tank 4 is obtained. The amounts of nitric acid and nitrous acid in the treated water are reduced, and floating of sludge in the sedimentation tank 4 due to the denitrification phenomenon, generation of scum, and deterioration of the treated water quality due to these are prevented.

【0035】このように汚泥安定化槽6に脱窒部6Aを
設ける場合、脱窒部6Aの容積割合は、好気性生物処理
工程5の脱窒部の有無によっても異なるが、好気性生物
処理工程5に脱窒部がない場合には、脱窒部6Aは汚泥
安定化槽6の全容積の20〜50%程度とし、好気性生
物処理工程5に脱窒部を設けた場合には脱窒部6Aは汚
泥安定化槽6の全容積の10〜30%程度とするのが好
ましい。
When the denitrification section 6A is provided in the sludge stabilization tank 6 as described above, the volume ratio of the denitrification section 6A depends on the presence or absence of the denitrification section in the aerobic biological treatment step 5. If there is no denitrification part in the step 5, the denitrification part 6A is about 20 to 50% of the total volume of the sludge stabilization tank 6, and if the denitrification part is provided in the aerobic biological treatment step 5, It is preferable that the nitrogen content 6A is about 10 to 30% of the total volume of the sludge stabilization tank 6.

【0036】この汚泥安定化槽6についても、好気性生
物処理工程5と同様、循環を行わずに曝気部、脱窒部及
び曝気部の三相式とすることもできる。
This sludge stabilization tank 6 can also be of a three-phase type consisting of an aeration section, a denitrification section and an aeration section without circulation, as in the aerobic biological treatment step 5.

【0037】なお、図1〜3に示す方法は本発明の実施
例であって、本発明はその要旨を超えない限り何ら図示
の方法に限定されるものではない。
Note that the method shown in FIGS. 1 to 3 is an embodiment of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist.

【0038】例えば、前述の如く、原水又は前沈上澄み
は、好気性生物処理工程の脱窒部への水素供与体供給源
としてその一部を直接好気性生物処理工程の脱窒部へ送
給しても良い。
For example, as described above, raw water or pre-sedimentation supernatant is directly supplied to the denitrification section of the aerobic biological treatment step as a hydrogen donor supply source to the denitrification section of the aerobic biological treatment step. You may.

【0039】[0039]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0040】なお、以下の実施例及び比較例において
は、ビール工場総合排水を固液分離し、前沈上澄みをU
ASBによる嫌気性生物処理した後、前沈排泥と共に好
気性生物処理し、好気性処理水を固液分離する処理系
に、各々の方法を適用して行った。
In the following Examples and Comparative Examples, the effluent from the beer factory was separated into solid and liquid, and the pre-sedimentation supernatant was replaced with U
After the anaerobic biological treatment by ASB, the aerobic biological treatment was performed together with the pre-sedimentation sludge, and each method was applied to a treatment system for solid-liquid separation of the aerobic treated water.

【0041】この処理系における前沈上澄み、前沈排
泥、UASB処理水の水質は表1に示す通りである。
The water quality of the pre-settling supernatant, pre-settling sludge and UASB treated water in this treatment system is as shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】比較例1(図4に示す従来例) PVC製の曝気槽を直列に配置し、第1曝気槽(容量
5.0L)、第2曝気槽(容量2.5L)、第3曝気槽
(容量2.5L)で各々好気性生物処理を行った。な
お、第1曝気槽へのUASB処理水の流入量は21L/
day、前沈排泥の流入量は1.2L/dayとし、各
曝気槽のMLSSは約6000〜7000mg/Lとな
るように汚泥の引抜き量を調整した。処理温度は約25
〜30℃とした。第1曝気槽の負荷は表2に示す通りで
あった。また、汚泥返送量は原水の2倍量とした。
Comparative Example 1 (conventional example shown in FIG. 4) Aeration tanks made of PVC were arranged in series, a first aeration tank (capacity: 5.0 L), a second aeration tank (capacity: 2.5 L), and a third aeration tank Each tank was subjected to aerobic biological treatment in a capacity of 2.5 L. The flow rate of the UASB treated water into the first aeration tank was 21 L /
The amount of sludge withdrawal was adjusted so that the inflow of day and pre-sedimentation sludge was 1.2 L / day, and the MLSS of each aeration tank was about 6000 to 7000 mg / L. Processing temperature is about 25
-30 ° C. The load of the first aeration tank was as shown in Table 2. The amount of sludge returned was twice the amount of raw water.

【0044】このようにして処理を継続したときの、処
理水(沈殿槽の上澄水)の透視度、処理水SS及び処理
水中の硝酸性及び亜硝酸性窒素濃度の経時変化はそれぞ
れ、図5、図6、図7に示す通りであった。
When the treatment was continued in this manner, the time-dependent changes in the transparency of the treated water (supernatant water in the sedimentation tank) and the concentrations of nitric acid and nitrite nitrogen in the treated water SS and the treated water were respectively shown in FIG. 6 and 7.

【0045】実施例1(図1に示す本発明法) 比較例1において、第2曝気槽で曝気を行わずに嫌気性
生物処理を行った(即ち、第2曝気槽を脱窒槽とす
る。)こと以外は比較例1と同様にして処理を行った。
このときの第1曝気槽の負荷は表2に示す通り、比較例
1の場合と同等である。
Example 1 (Method of the Present Invention Shown in FIG. 1) In Comparative Example 1, anaerobic biological treatment was performed without performing aeration in the second aeration tank (that is, the second aeration tank was a denitrification tank). Except for this, processing was performed in the same manner as in Comparative Example 1.
As shown in Table 2, the load of the first aeration tank at this time is equivalent to that of Comparative Example 1.

【0046】このようにして処理を継続したときの、処
理水(沈殿槽の上澄水)の透視度、処理水SS及び処理
水中の硝酸性及び亜硝酸性窒素濃度の経時変化はそれぞ
れ、図5、図6、図7に示す通りであった。
When the treatment was continued in this manner, the time-dependent changes in the visibility of the treated water (supernatant water in the sedimentation tank) and the concentrations of nitric acid and nitrite nitrogen in the treated water SS and the treated water were respectively shown in FIG. 6 and 7.

【0047】実施例2(図2に示す本発明法) 実施例1において、更に、第1汚泥安定化槽(容量1.
5L)と第2汚泥安定化槽(容量1.5L)とを直列に
配置し、前沈排泥をこれら第1,第2汚泥安定化槽で好
気性生物処理した後第1曝気槽に供給すると共に、前沈
上澄みのうちの一部2.2L/dayを第2槽の脱窒槽
に直接送給したこと以外は実施例1と同様にして処理を
行った。なお、第1汚泥安定化槽には沈殿槽で分離され
た汚泥の10%を返送し、残部を第1曝気槽に返送し
た。
Example 2 (the method of the present invention shown in FIG. 2) In Example 1, a first sludge stabilization tank (capacity 1.
5L) and a second sludge stabilization tank (capacity 1.5 L) are arranged in series, and the pre-set sludge is subjected to aerobic biological treatment in these first and second sludge stabilization tanks and then supplied to the first aeration tank. The treatment was performed in the same manner as in Example 1 except that 2.2 L / day of the pre-settle supernatant was directly fed to the second denitrification tank. In addition, 10% of the sludge separated in the sedimentation tank was returned to the first sludge stabilization tank, and the remainder was returned to the first aeration tank.

【0048】このときの第1曝気槽の負荷は表2に示す
通りである。
The load of the first aeration tank at this time is as shown in Table 2.

【0049】このようにして処理を継続したときの、処
理水(沈殿槽の上澄水)の透視度、処理水SS及び処理
水中の硝酸性及び亜硝酸性窒素濃度の経時変化はそれぞ
れ、図5、図6、図7に示す通りであった。
When the treatment was continued in this manner, the time-dependent changes in the transparency of the treated water (supernatant water in the sedimentation tank) and the concentrations of nitric acid and nitrite nitrogen in the treated water SS and the treated water were respectively shown in FIG. 6 and 7.

【0050】実施例3(図3に示す本発明法) 実施例2において、第1汚泥安定化槽で曝気を行わず嫌
気性生物処理を行い、第2汚泥安定化槽の流出液の30
0%を第1汚泥安定化槽に循環し、また、前沈上澄みは
その全量を嫌気性生物処理工程へ送給したこと以外は実
施例2と同様にして処理を行った。このときの第1曝気
槽の負荷は表2に示す通りである。
Example 3 (the method of the present invention shown in FIG. 3) In Example 2, anaerobic biological treatment was performed without aeration in the first sludge stabilization tank, and 30% of the effluent of the second sludge stabilization tank was used.
0% was circulated to the first sludge stabilization tank, and the pre-sedimentation supernatant was treated in the same manner as in Example 2 except that the entire amount was sent to the anaerobic biological treatment step. The load on the first aeration tank at this time is as shown in Table 2.

【0051】このようにして処理を継続したときの、処
理水(沈殿槽の上澄水)の透視度、処理水SS及び処理
水中の硝酸性及び亜硝酸性窒素濃度の経時変化はそれぞ
れ、図5、図6、図7に示す通りであった。
When the treatment was continued in this manner, the time-dependent changes in the visibility of the treated water (supernatant water in the settling tank) and the concentrations of nitric acid and nitrite nitrogen in the treated water SS and the treated water were respectively shown in FIG. 6 and 7.

【0052】[0052]

【表2】 [Table 2]

【0053】上記比較例1及び実施例1〜3の結果から
次のことが明らかである。
The following is clear from the results of Comparative Example 1 and Examples 1 to 3.

【0054】即ち、従来法による比較例1では、沈殿槽
にスカムが頻繁に発生し、処理水の透視度が低かった。
実施例1、3では内生脱窒のみでの脱窒であり、好気性
生物処理工程に設けた脱窒槽で完全に窒素除去できてい
ないため、やや透視度が低く、処理水に流出するSS
も、実施例2よりも高かった。実施例2では、前沈上澄
みの一部を水素供与体として直接導入することで、好気
性生物処理工程に設けた脱窒槽でのNOx−N除去がほ
ぼ完全に行われ、残留NOx−Nが少ないため、処理水
SS、透視度が最も良好であった。
That is, in Comparative Example 1 according to the conventional method, scum was frequently generated in the sedimentation tank, and the visibility of the treated water was low.
In Examples 1 and 3, the denitrification was performed only by endogenous denitrification, and nitrogen was not completely removed in the denitrification tank provided in the aerobic biological treatment process.
Was higher than that of Example 2. In Example 2, by directly introducing a part of the pre-sedimentation supernatant as a hydrogen donor, the NO x -N removal in the denitrification tank provided in the aerobic biological treatment step was almost completely performed, and the residual NO x- Since N was small, the treated water SS and the visibility were the best.

【0055】[0055]

【発明の効果】以上詳述した通り、本発明の有機性排水
の処理方法によれば、有機性固形物を含む排水を嫌気性
生物処理した後、好気性生物処理する処理法において、
好気性生物処理工程の滞留時間を十分に長くとって処理
水水質を高めると共に、その後の固液分離工程における
スカム発生やバルキング等の機能障害を防止して、安定
かつ効率的な処理を行える。
As described above in detail, according to the method for treating organic wastewater of the present invention, the wastewater containing organic solids is treated anaerobically and then aerobicly treated.
The retention time of the aerobic biological treatment step is sufficiently long to improve the quality of the treated water, and scum generation and bulking in the subsequent solid-liquid separation step are prevented, and stable and efficient treatment can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の有機性排水の処理方法の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for treating organic wastewater according to claim 1;

【図2】請求項2の有機性排水の処理方法の実施の形態
を示す系統図である。
FIG. 2 is a system diagram showing an embodiment of a method for treating organic wastewater according to claim 2;

【図3】請求項3の有機性排水の処理方法の実施の形態
を示す系統図である。
FIG. 3 is a system diagram showing an embodiment of an organic wastewater treatment method according to claim 3;

【図4】従来法を示す系統図である。FIG. 4 is a system diagram showing a conventional method.

【図5】実施例1〜3及び比較例1における処理水透視
度の推移を示すグラフである。
FIG. 5 is a graph showing changes in treated water visibility in Examples 1 to 3 and Comparative Example 1.

【図6】実施例1〜3及び比較例1における処理水SS
の推移を示すグラフである。
FIG. 6 shows treated water SS in Examples 1 to 3 and Comparative Example 1.
5 is a graph showing the transition of.

【図7】実施例1〜3及び比較例1における処理水NO
x−Nの推移を示すグラフである。
FIG. 7: Treated water NO in Examples 1 to 3 and Comparative Example 1
It is a graph which shows transition of x- N.

【符号の説明】[Explanation of symbols]

1 固液分離手段 2 嫌気性生物処理工程 3 曝気槽 4 沈殿槽 5 好気性生物処理工程 6 汚泥安定化槽 DESCRIPTION OF SYMBOLS 1 Solid-liquid separation means 2 Anaerobic biological treatment process 3 Aeration tank 4 Sedimentation tank 5 Aerobic biological treatment process 6 Sludge stabilization tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 徳昭 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社 Fターム(参考) 4D040 BB01 BB04 4D059 AA07 AA08 BA31  ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Noriaki Ono 3-7-7 Nishishinjuku, Shinjuku-ku, Tokyo F-term Kurita Kogyo Co., Ltd. 4D040 BB01 BB04 4D059 AA07 AA08 BA31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機性排水を固液分離して、排水中の有
機性固形物を分離する固液分離工程と、 該固液分離工程で分離された液分を嫌気的に生物処理す
る嫌気性生物処理工程と、 該嫌気性生物処理工程から排出される嫌気性生物処理水
及び前記固液分離工程で分離した有機性固形分を好気的
に生物処理する好気性生物処理工程と、を有する有機性
排水の処理方法において、 該好気性生物処理工程に、脱窒処理過程が設けられてい
ることを特徴とする有機性排水の処理方法。
1. A solid-liquid separation step of solid-liquid separation of an organic waste water to separate organic solids in the waste water, and an anaerobic biological treatment of the liquid separated in the solid-liquid separation step in an anaerobic manner. An anaerobic biological treatment step, and an aerobic biological treatment step of aerobically biologically treating the anaerobic biological treatment water discharged from the anaerobic biological treatment step and the organic solids separated in the solid-liquid separation step. A method for treating organic wastewater, comprising: a denitrification treatment step provided in the aerobic biological treatment step.
【請求項2】 固液分離工程で分離された有機性固形分
が、好気処理過程を経た後、前記好気性生物処理工程に
供給されることを特徴とする有機性排水の処理方法。
2. A method for treating organic wastewater, wherein an organic solid separated in the solid-liquid separation step is supplied to the aerobic biological treatment step after passing through an aerobic treatment step.
【請求項3】 有機性排水を固液分離して、排水中の有
機性固形物を分離する固液分離工程と、 該固液分離工程で分離された液分を嫌気的に生物処理す
る嫌気性生物処理工程と、 該嫌気性生物処理工程から排出される嫌気性生物処理水
及び前記固液分離工程で分離した有機性固形分を好気的
に生物処理する好気性生物処理工程と、を有する有機性
排水の処理方法において、 前記固液分離工程で分離された有機性固形分が、好気処
理過程と脱窒処理過程とを経た後、前記好気性生物処理
工程に供給されることを特徴とする有機性排水の処理方
法。
3. A solid-liquid separation step of solid-liquid separation of the organic wastewater to separate organic solids in the wastewater, and an anaerobic biological treatment of the liquid separated in the solid-liquid separation step in an anaerobic manner. An anaerobic biological treatment step, and an aerobic biological treatment step of aerobically biologically treating the anaerobic biological treatment water discharged from the anaerobic biological treatment step and the organic solids separated in the solid-liquid separation step. In the method for treating organic waste water, the organic solids separated in the solid-liquid separation step are supplied to the aerobic biological treatment step after undergoing an aerobic treatment step and a denitrification treatment step. Characteristic organic wastewater treatment method.
JP3310099A 1999-02-10 1999-02-10 Organic wastewater treatment method Expired - Fee Related JP3575312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3310099A JP3575312B2 (en) 1999-02-10 1999-02-10 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3310099A JP3575312B2 (en) 1999-02-10 1999-02-10 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2000233198A true JP2000233198A (en) 2000-08-29
JP3575312B2 JP3575312B2 (en) 2004-10-13

Family

ID=12377260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3310099A Expired - Fee Related JP3575312B2 (en) 1999-02-10 1999-02-10 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3575312B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071497A (en) * 2001-09-03 2003-03-11 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic waste
JP2009101296A (en) * 2007-10-23 2009-05-14 Asahi Breweries Ltd Treatment method and apparatus for food production wastewater
JP2010515567A (en) * 2007-01-09 2010-05-13 ケンブリッジ・ウォーター・テクノロジー・インコーポレーテッド System and method for promoting activated sludge treatment
JP2011016076A (en) * 2009-07-09 2011-01-27 Ihi Corp Method and apparatus of treating organic waste water
CN102079606B (en) * 2009-11-30 2012-05-23 中国科学院成都生物研究所 Method for treating waste liquid of sweet potato fuel alcohol
JP2013017928A (en) * 2011-07-08 2013-01-31 Ihi Corp Wastewater treatment method, and wastewater treatment apparatus
US8470172B2 (en) 2007-01-09 2013-06-25 Siemens Industry, Inc. System for enhancing a wastewater treatment process
JP2013128929A (en) * 2013-03-29 2013-07-04 Swing Corp Device and method for treating organic waste water
US8540877B2 (en) 2007-01-09 2013-09-24 Siemens Water Technologies Llc Ballasted sequencing batch reactor system and method for treating wastewater
US8623205B2 (en) 2007-01-09 2014-01-07 Siemens Water Technologies Llc Ballasted anaerobic system
US8840786B2 (en) 2007-01-09 2014-09-23 Evoqua Water Technologies Llc System and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
JP2014213320A (en) * 2013-04-29 2014-11-17 株式会社明電舎 Method and device for treating 1,4-dioxane-containing waste water
CN105236588A (en) * 2015-10-09 2016-01-13 何学倩 Method for water environmental modification by microbial bag
CN105399213A (en) * 2015-12-12 2016-03-16 常州大学 Microbial degradation method for phenol-containing waste water
US9651523B2 (en) 2012-09-26 2017-05-16 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
US10919792B2 (en) 2012-06-11 2021-02-16 Evoqua Water Technologies Llc Treatment using fixed film processes and ballasted settling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103523932B (en) * 2013-10-30 2015-02-11 湖南大学 Application of biological combination photocatalytic composite degradation liquid system in phenolic waste water degradation
CN105330015B (en) * 2015-10-09 2017-07-14 北京工业大学 The method of maximum nitrite accumulation in denitrification process

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071497A (en) * 2001-09-03 2003-03-11 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic waste
US8540877B2 (en) 2007-01-09 2013-09-24 Siemens Water Technologies Llc Ballasted sequencing batch reactor system and method for treating wastewater
JP2010515567A (en) * 2007-01-09 2010-05-13 ケンブリッジ・ウォーター・テクノロジー・インコーポレーテッド System and method for promoting activated sludge treatment
US8470172B2 (en) 2007-01-09 2013-06-25 Siemens Industry, Inc. System for enhancing a wastewater treatment process
US10023486B2 (en) 2007-01-09 2018-07-17 Evoqua Water Technologies Llc Ballasted sequencing batch reactor system and method for treating wastewater
US8506800B2 (en) 2007-01-09 2013-08-13 Siemens Industry, Inc. System for enhancing a wastewater treatment process
US8845901B2 (en) 2007-01-09 2014-09-30 Evoqua Water Technologies Llc Ballasted anaerobic method for treating wastewater
US8623205B2 (en) 2007-01-09 2014-01-07 Siemens Water Technologies Llc Ballasted anaerobic system
US8673142B2 (en) 2007-01-09 2014-03-18 Siemens Water Technologies Llc System for enhancing a wastewater treatment process
US8702987B2 (en) 2007-01-09 2014-04-22 Evoqua Water Technologies Llc Methods for enhancing a wastewater treatment process
US8840786B2 (en) 2007-01-09 2014-09-23 Evoqua Water Technologies Llc System and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
JP2009101296A (en) * 2007-10-23 2009-05-14 Asahi Breweries Ltd Treatment method and apparatus for food production wastewater
JP2011016076A (en) * 2009-07-09 2011-01-27 Ihi Corp Method and apparatus of treating organic waste water
CN102079606B (en) * 2009-11-30 2012-05-23 中国科学院成都生物研究所 Method for treating waste liquid of sweet potato fuel alcohol
JP2013017928A (en) * 2011-07-08 2013-01-31 Ihi Corp Wastewater treatment method, and wastewater treatment apparatus
US10919792B2 (en) 2012-06-11 2021-02-16 Evoqua Water Technologies Llc Treatment using fixed film processes and ballasted settling
US9651523B2 (en) 2012-09-26 2017-05-16 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
JP2013128929A (en) * 2013-03-29 2013-07-04 Swing Corp Device and method for treating organic waste water
JP2014213320A (en) * 2013-04-29 2014-11-17 株式会社明電舎 Method and device for treating 1,4-dioxane-containing waste water
CN105236588A (en) * 2015-10-09 2016-01-13 何学倩 Method for water environmental modification by microbial bag
CN105399213A (en) * 2015-12-12 2016-03-16 常州大学 Microbial degradation method for phenol-containing waste water

Also Published As

Publication number Publication date
JP3575312B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
JP3575312B2 (en) Organic wastewater treatment method
US5833856A (en) Process for biologically removing phosphorus and nitrogen from wastewater by controlling carbohydrate content therein
JPH09122682A (en) Method for treating waste water
US20240059597A1 (en) Anaerobic ammonia oxidation treatment system for treating wastewater with high ammonia nitrogen and high cod
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR20010047158A (en) Wastewater treatment process using return sludge reaction tank
JP2002361292A (en) Anaerobic digesting apparatus
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
JP2002136989A (en) Method and apparatus for treating organic waste liquid
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
JP3311925B2 (en) Organic wastewater treatment method
JP4581174B2 (en) Biological treatment method
JPS6222678B2 (en)
JP4464035B2 (en) Treatment method of sludge return water
JP2003010877A (en) Activated sludge treatment method for sewage and its apparatus
JPH06182377A (en) Method for treating sewage
JP4617572B2 (en) Nitrogen-containing wastewater treatment method
JP3206102B2 (en) Method for treating wastewater containing ammoniacal or organic nitrogen compounds
JP2001212593A (en) Post-treatment method for ascending current anaerobic treatment apparatus
JP3937625B2 (en) Biological treatment method for organic waste
KR100285896B1 (en) System for removing highly-concentrated organics and nitrogen from wastewater
JPH0661552B2 (en) Organic wastewater treatment method
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees