JPH06182377A - Method for treating sewage - Google Patents

Method for treating sewage

Info

Publication number
JPH06182377A
JPH06182377A JP34406492A JP34406492A JPH06182377A JP H06182377 A JPH06182377 A JP H06182377A JP 34406492 A JP34406492 A JP 34406492A JP 34406492 A JP34406492 A JP 34406492A JP H06182377 A JPH06182377 A JP H06182377A
Authority
JP
Japan
Prior art keywords
sludge
tank
sewage
phosphorus
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34406492A
Other languages
Japanese (ja)
Other versions
JP2678123B2 (en
Inventor
Kiwamu Matsubara
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP34406492A priority Critical patent/JP2678123B2/en
Publication of JPH06182377A publication Critical patent/JPH06182377A/en
Application granted granted Critical
Publication of JP2678123B2 publication Critical patent/JP2678123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To provide a method for treating sewage which yields stable dephosphorization and denitrification efficiency in a short hydraulic retention time. CONSTITUTION:In a sewage treatment method with an active sludge, sludge separated from liquid in the final sedimentation vessel 2 is treated anaerobically in an anaerobic vessel 3 and, after being treated aerobically in an aerobic vessel 4, is returned to an aeration vessel 1 as return sludge. Since the separated sludge is alone subjected to dephosphorization etc., its hydraulic retention time can be shortened, stabilizing the dephosphorization efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脱リン効率を高めた下
水の処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating sewage having improved dephosphorization efficiency.

【0002】[0002]

【従来の技術】脱リンを目的とした下水の処理方法とし
ては、図5に示される嫌気・好気法が従来から知られて
いる。この方法は、下水を返送汚泥とともに嫌気槽11に
入れて菌体からリンの吐き出しを行わせた後、好気槽12
において菌体へのリンの過剰摂取を行わせ、混合液を最
終沈殿槽13へ送って固液分離させたうえ、上澄水は処理
水として放流する一方、沈殿汚泥の一部を返送汚泥とし
て嫌気槽11へ返送させる方法である。
2. Description of the Related Art As a method for treating sewage for the purpose of dephosphorization, the anaerobic / aerobic method shown in FIG. 5 has been conventionally known. In this method, sewage is put into the anaerobic tank 11 together with the returned sludge to discharge phosphorus from the bacterial cells, and then the aerobic tank 12
At the same time, the bacterial cells were over-ingested and the mixed solution was sent to the final settling tank 13 for solid-liquid separation, and the supernatant water was discharged as treated water, while part of the settling sludge was anaerobically used as return sludge. This is a method of returning to the tank 11.

【0003】ところがこの従来法では、嫌気処理に1.5
時間、好気処理に4.5 時間、合計6時間程度の長い処理
時間(水理学的滞留時間)が必要であった。また嫌気処
理時間が短いために下水にDOやNOx-N 等が混入したとき
には、嫌気槽11のORP(酸化還元電位) が十分に下がら
ず、脱リン効率が不安定であった。更に流入下水中の有
機性窒素のほとんどを好気槽12においてNH4-N 、NOx-N
等の可溶性物質に分解した後に固液分離するため、窒素
の除去率が30%程度と低い欠点があった。
However, in this conventional method, the anaerobic treatment is 1.5
It took 4.5 hours for the aerobic treatment, a long treatment time of about 6 hours (hydraulic retention time). In addition, since the anaerobic treatment time was short, when DO, NOx-N, etc. were mixed in the sewage, the ORP (oxidation-reduction potential) of the anaerobic tank 11 was not sufficiently lowered, and the dephosphorization efficiency was unstable. Furthermore, most of the organic nitrogen in the inflowing sewage is stored in the aerobic tank 12 as NH 4 -N and NOx-N.
Since the solid-liquid separation is carried out after decomposing into soluble substances such as, the removal rate of nitrogen is as low as about 30%.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、処理槽内の水理学的滞留時間を短
縮させることができ、安定した高い脱リン効率を得るこ
とができ、しかも脱窒効率の向上を図ることもできる下
水の処理方法を提供するために完成されたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, shortens the hydraulic retention time in the treatment tank, and can obtain stable high dephosphorization efficiency. Moreover, the present invention has been completed in order to provide a method for treating sewage which can also improve the denitrification efficiency.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、下水を曝気槽で活性汚泥処理し
たうえ最終沈殿槽で固液分離する下水の処理方法におい
て、最終沈殿槽で固液分離された汚泥を嫌気処理及び好
気処理した後に、返送汚泥として曝気槽へ返送すること
を特徴とするものである。
The present invention, which has been made to solve the above-mentioned problems, provides a method for treating sewage in which sewage is treated with activated sludge in an aeration tank and then solid-liquid separated in a final settling tank. The sludge that has been subjected to solid-liquid separation in anaerobic treatment and aerobic treatment is returned to the aeration tank as return sludge.

【0006】以下に本発明を図1〜図3を参照しつつ更
に詳細に説明する。図1は本発明のフローを示すもの
で、1は曝気槽、2は最終沈殿槽、3は汚泥嫌気槽、4
は汚泥好気槽である。本発明においても、下水は返送汚
泥とともに曝気槽1で活性汚泥処理され、その後に最終
沈殿槽2で固液分離されることは従来と同様である。
The present invention will be described in more detail below with reference to FIGS. FIG. 1 shows the flow of the present invention. 1 is an aeration tank, 2 is a final settling tank, 3 is a sludge anaerobic tank, 4
Is a sludge aerobic tank. Also in the present invention, sewage is treated with activated sludge in the aeration tank 1 together with the returned sludge, and thereafter, solid-liquid separation is performed in the final settling tank 2 as in the conventional case.

【0007】しかし本発明においては、最終沈殿槽2か
ら引き抜かれた汚泥のうちの返送にまわされる汚泥は、
汚泥嫌気槽3において汚泥単独で嫌気処理される。ここ
では汚泥が吸着している有機物を使ってORP が-200〜-4
00mVの嫌気状態が保たれ、リンの吐き出しが十分に行わ
れる。この汚泥嫌気槽3での実滞留時間は1〜3時間
(汚泥返送率が50%のとき、水理学的滞留時間HRT が0.
33〜1.0 時間) が必要である。またここではNOx-N の脱
窒も行われるが、実質的な滞留時間が長いのでリンの吐
き出し、脱窒ともに完全に行うことができる。
However, in the present invention, of the sludge drawn out from the final settling tank 2, the sludge to be returned is
The sludge anaerobic tank 3 anaerobically treats the sludge alone. Here, the ORP is -200 ~ -4 using the organic matter adsorbed by the sludge.
The anaerobic state of 00mV is maintained and phosphorus is sufficiently discharged. The actual residence time in this sludge anaerobic tank 3 is 1 to 3 hours (when the sludge return rate is 50%, the hydraulic retention time HRT is 0.
33 to 1.0 hours) is required. Although NOx-N is also denitrified here, since the substantial residence time is long, both phosphorus discharge and denitrification can be performed completely.

【0008】次に汚泥は汚泥好気槽4において曝気され
る。ここでは曝気により汚泥に活性が与えられ、同時に
汚泥中の有機性窒素は硝化されてNOx-N になる。また汚
泥嫌気槽3において吐き出されたリンはここで吸収され
る。ここでの滞留時間は2〜5時間(汚泥返送率が50%
のとき、水理学的滞留時間HRT が0.67〜1.7 時間) が適
当であり、硝化を必要とするときには長めが好ましく、
必要としないときには短めが好ましい。ここでの曝気に
よって、次の曝気槽1における汚泥の吸着性を向上させ
ることができる。
Next, the sludge is aerated in the sludge aerobic tank 4. Here, the sludge is activated by aeration, and at the same time, the organic nitrogen in the sludge is nitrified into NOx-N. Further, the phosphorus discharged in the sludge anaerobic tank 3 is absorbed here. Residence time here is 2-5 hours (sludge return rate is 50%
, A hydraulic retention time HRT of 0.67 to 1.7 hours is appropriate, and a longer time is preferable when nitrification is required,
Shorter is preferred when not needed. The aeration here can improve the adsorptivity of sludge in the next aeration tank 1.

【0009】汚泥好気槽4から出た汚泥は、活性汚泥と
して下水とともに曝気槽1へ入る。ここで下水中の有機
物や有機性窒素は汚泥に吸着され、リンは過剰摂取され
る。リンを過剰摂取するための条件としては、曝気槽1
中のDOを0.5 〜2.0mg/L に保つ必要がある。DOが0.5mg/
L より少ないと曝気槽1におけるT-P(Total-リン) の過
剰摂取の効率が低下し、図2に示すように、処理水のT-
P 濃度が上昇する。またDOが2.0mg/L を越えると、汚泥
が汚泥嫌気槽3に返送されたときに持込みDOの影響でOR
P が十分に低下せず、図3に示すようにリンの吐き出し
が悪くなる。
The sludge discharged from the sludge aerobic tank 4 enters the aeration tank 1 together with sewage as activated sludge. Here, organic matter and organic nitrogen in sewage are adsorbed by sludge, and phosphorus is ingested excessively. The conditions for excessive intake of phosphorus are aeration tank 1
It is necessary to keep DO in 0.5 to 2.0 mg / L. DO is 0.5 mg /
If the amount is less than L, the efficiency of excessive intake of TP (Total-Phosphorus) in the aeration tank 1 decreases, and as shown in FIG.
P concentration increases. If the DO exceeds 2.0 mg / L, when the sludge is returned to the sludge anaerobic tank 3, it is ORed due to the effect of the carried-in DO.
P does not decrease sufficiently, and phosphorus is exhaled as shown in FIG.

【0010】またここでの水理学的滞留時間HRT は0.5
〜2.0 時間がよく、滞留時間が不足するとリンの過剰摂
取及び有機物(BOD) の吸着が不足し、図4に示すように
処理水にリンや有機物が残留するようになる。逆に、滞
留時間がこれよりも長くても処理効率はそれ以上向上し
ないだけではなく、有機性窒素のNH4-N 、NOx-N への分
解が進み、脱窒効率が低下する。また、NOx-N が生成し
たときには汚泥嫌気槽3へのNOx-N の持込みが多くな
り、汚泥嫌気槽3でのリンの吐き出しに悪影響を及ぼ
す。曝気槽1から出た混合液は最終沈殿槽2で固液分離
され、上澄水は処理水として放出され、汚泥はその一部
が余剰汚泥として引き抜かれ、残部は返送用として再び
汚泥嫌気槽3に入る。
The hydraulic retention time HRT here is 0.5
~ 2.0 hours is good, and if the residence time is insufficient, excessive intake of phosphorus and adsorption of organic matter (BOD) will be insufficient, and phosphorus and organic matter will remain in the treated water as shown in FIG. On the contrary, even if the residence time is longer than this, not only the treatment efficiency is not further improved, but also the decomposition of organic nitrogen into NH 4 -N and NOx-N progresses, and the denitrification efficiency decreases. Further, when NOx-N is produced, the amount of NOx-N carried into the sludge anaerobic tank 3 increases, which adversely affects the discharge of phosphorus in the sludge anaerobic tank 3. The mixed solution discharged from the aeration tank 1 is subjected to solid-liquid separation in the final settling tank 2, the supernatant water is discharged as treated water, a part of sludge is withdrawn as excess sludge, and the rest is returned to the sludge anaerobic tank 3 again. to go into.

【0011】[0011]

【作用】このように、本発明では最終沈殿槽2で固液分
離された汚泥を汚泥単独で嫌気処理してリンの吐き出し
を行わせ、その後に下水と混合してリンの過剰摂取を行
わせている。このため、混合液の状態で脱リンを行わせ
ていた従来法よりも水理学的滞留時間を短縮することが
できる。また、曝気槽1では有機物の吸着及びリンの過
剰摂取のみを行わせることによって固液分離後の汚泥嫌
気槽3でのリンの吐き出しに必要な有機物を確保し、汚
泥嫌気槽3でのORP を十分に低下させることができる。
また、曝気槽1における有機性窒素の分解を防止し、有
機性窒素を汚泥に吸着させたままで固液分離を行うこと
により、余剰汚泥として有機性窒素を引抜き、脱窒率の
向上を図ることができる。
As described above, in the present invention, sludge solid-liquid separated in the final settling tank 2 is anaerobically treated with sludge alone to discharge phosphorus, and then mixed with sewage to cause excessive intake of phosphorus. ing. Therefore, the hydraulic retention time can be shortened as compared with the conventional method in which dephosphorization is performed in the state of a mixed solution. Further, in the aeration tank 1, only the adsorption of organic matter and excessive intake of phosphorus are performed to secure the organic matter necessary for the discharge of phosphorus in the sludge anaerobic tank 3 after solid-liquid separation, and the ORP in the sludge anaerobic tank 3 is secured. It can be lowered sufficiently.
Further, by preventing the decomposition of the organic nitrogen in the aeration tank 1 and performing solid-liquid separation while adsorbing the organic nitrogen to the sludge, the organic nitrogen is extracted as surplus sludge to improve the denitrification rate. You can

【0012】[0012]

【実施例】本発明の下水処理方法と、従来法の嫌気・好
気法とを、1m3/Hr の処理規模で比較した結果を表1に
示す。表1から明らかなように、処理時間は沈殿槽を除
くと71%、沈殿槽を含めても21%の削減になる。また、
処理水質もBOD 、Pは従来法と同等であるばかりでな
く、Nの除去率は向上する。
EXAMPLE Table 1 shows the result of comparison between the sewage treatment method of the present invention and the conventional anaerobic / aerobic method at a treatment scale of 1 m 3 / Hr. As is clear from Table 1, the processing time is reduced by 71% when the sedimentation tank is excluded, and by 21% when the sedimentation tank is included. Also,
The treated water quality is not only the same as that of the conventional method for BOD and P, but also the removal rate of N is improved.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】本発明の効果を列挙すると次の通りであ
る。 最終沈殿槽を除いた水理学的滞留時間HRT が1.5 〜
4.7 時間で、下水の有機物やリンを効率よく除去でき
る。従って反応槽の規模は従来の25〜80%に削減するこ
とができる。 リンの吐き出しは最終沈殿槽で固液分離した後の汚
泥だけで行うので、下水の持込みDOやNOx-N に影響され
にくい。また嫌気時間を十分に取ることができるのでリ
ンの吐き出しは十分に行うことができる。従ってリンの
過剰摂取を十分に行うことができ、安定したリン除去が
可能になる。 下水中の有機性窒素は吸着→固液分離→余剰汚泥引
抜きの工程で除去され、NH4-N 、NOx-N への分解工程が
ないので、窒素除去率は従来の30%程度から50〜60%に
まで向上する。
The effects of the present invention are listed below. The hydraulic retention time HRT excluding the final settling tank is 1.5-
In 4.7 hours, sewage organic matter and phosphorus can be removed efficiently. Therefore, the scale of the reaction tank can be reduced to 25-80% of the conventional one. Phosphorus is discharged only by sludge after solid-liquid separation in the final settling tank, so it is not easily affected by DO and NOx-N carried in sewage. Moreover, since the anaerobic time can be taken sufficiently, phosphorus can be sufficiently discharged. Therefore, excessive intake of phosphorus can be sufficiently performed, and stable phosphorus removal can be achieved. Organic nitrogen in sewage is removed by the steps of adsorption → solid-liquid separation → excess sludge extraction, and there is no decomposition process into NH 4 -N and NOx-N, so the nitrogen removal rate is about 50% from the conventional 30%. Improves to 60%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフローシートである。FIG. 1 is a flow sheet of the present invention.

【図2】曝気槽DOと、処理水T-P との関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between aeration tank DO and treated water TP.

【図3】曝気槽DOと、汚泥嫌気槽ORP との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between an aeration tank DO and a sludge anaerobic tank ORP.

【図4】曝気槽の水理学的滞留時間と処理水の水質との
関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the hydraulic retention time of the aeration tank and the quality of treated water.

【図5】従来の嫌気、好気法のフローシートである。FIG. 5 is a flow sheet of a conventional anaerobic and aerobic method.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 最終沈殿槽 3 汚泥嫌気槽 4 汚泥好気槽 1 Aeration tank 2 Final settling tank 3 Sludge anaerobic tank 4 Sludge aerobic tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下水を曝気槽で活性汚泥処理したうえ最
終沈殿槽で固液分離する下水の処理方法において、最終
沈殿槽で固液分離された汚泥を嫌気処理及び好気処理し
た後に、返送汚泥として曝気槽へ返送することを特徴と
する下水の処理方法。
1. A sewage treatment method in which sewage is treated with activated sludge in an aeration tank and then solid-liquid separated in a final settling tank, and the sludge solid-liquid separated in the final settling tank is anaerobically and aerobically treated and then returned. A method for treating sewage, which comprises returning the sludge to the aeration tank.
【請求項2】 曝気槽の水理学的滞留時間を0.5 〜2.0
時間としたことを特徴とする請求項1記載の下水の処理
方法。
2. The hydraulic retention time of the aeration tank is 0.5 to 2.0.
The method for treating sewage according to claim 1, characterized in that the time is set.
【請求項3】 曝気槽のDOを0.5 〜2.0 mg/Lに制御した
ことを特徴とする請求項1記載の下水の処理方法。
3. The method for treating sewage according to claim 1, wherein the DO in the aeration tank is controlled to 0.5 to 2.0 mg / L.
JP34406492A 1992-12-24 1992-12-24 Sewage treatment method Expired - Fee Related JP2678123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34406492A JP2678123B2 (en) 1992-12-24 1992-12-24 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34406492A JP2678123B2 (en) 1992-12-24 1992-12-24 Sewage treatment method

Publications (2)

Publication Number Publication Date
JPH06182377A true JPH06182377A (en) 1994-07-05
JP2678123B2 JP2678123B2 (en) 1997-11-17

Family

ID=18366379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34406492A Expired - Fee Related JP2678123B2 (en) 1992-12-24 1992-12-24 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP2678123B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763640B1 (en) * 2001-06-11 2007-10-05 가부시키가이샤 와카오덴키 Liquid-waste treating apparatus and liquid-waste treating method
JP2008237992A (en) * 2007-03-26 2008-10-09 Sumiju Kankyo Engineering Kk Apparatus and method for wastewater treatment
CN102167480A (en) * 2011-03-23 2011-08-31 中山大学 Excess sludge decrement treatment method and device
KR20120113746A (en) * 2009-12-01 2012-10-15 리진민 Wastewater pretreatment method and sewage treatment method using the pretreatment method
JP2019171321A (en) * 2018-03-29 2019-10-10 高砂熱学工業株式会社 Waste water treatment system and waste water treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544471A (en) * 1977-06-13 1979-01-13 Kubota Ltd Method of treating raw sewage system organic waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544471A (en) * 1977-06-13 1979-01-13 Kubota Ltd Method of treating raw sewage system organic waste water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763640B1 (en) * 2001-06-11 2007-10-05 가부시키가이샤 와카오덴키 Liquid-waste treating apparatus and liquid-waste treating method
JP2008237992A (en) * 2007-03-26 2008-10-09 Sumiju Kankyo Engineering Kk Apparatus and method for wastewater treatment
KR20120113746A (en) * 2009-12-01 2012-10-15 리진민 Wastewater pretreatment method and sewage treatment method using the pretreatment method
JP2013512098A (en) * 2009-12-01 2013-04-11 リ、ジンミン Wastewater pretreatment method and wastewater treatment method using this pretreatment method
US9169143B2 (en) 2009-12-01 2015-10-27 Jinmin Li Wastewater pretreatment method and sewage treatment method using the pretreament method
CN102167480A (en) * 2011-03-23 2011-08-31 中山大学 Excess sludge decrement treatment method and device
JP2019171321A (en) * 2018-03-29 2019-10-10 高砂熱学工業株式会社 Waste water treatment system and waste water treatment method

Also Published As

Publication number Publication date
JP2678123B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JP2000233198A (en) Treatment of organic waste water
JPH07171594A (en) Method and apparatus for denitrifying and dephosphorizing sewage
JP2678123B2 (en) Sewage treatment method
JP2000061494A (en) Biological treatment of ammonia nitrogen
JPH0259000B2 (en)
JPH0768294A (en) Wastewater treatment method
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JP4464035B2 (en) Treatment method of sludge return water
JPH0437760B2 (en)
JPH05192687A (en) Batch type sewage treatment
JP2500974B2 (en) Method for denitrifying and dephosphorizing organic wastewater
JP3215348B2 (en) How to denitrify nitrogen-containing wastewater
JP3206102B2 (en) Method for treating wastewater containing ammoniacal or organic nitrogen compounds
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JP3837763B2 (en) Method for treating selenium-containing water
JPH09141294A (en) Biological nitrogen removing method
JPH03229693A (en) Treatment of organic waste water
JPH06170388A (en) Treatment of sewage
JPS61197097A (en) Method for denitrifying waste water
JPH0679714B2 (en) Organic wastewater treatment method
JPH0663589A (en) Sewage treatment device
JPS6012196A (en) Excretion treating method
JP3886352B2 (en) How to remove nitrogen from organic wastewater
JPH037436B2 (en)
JPH0137197B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

LAPS Cancellation because of no payment of annual fees