JP2000061494A - Biological treatment of ammonia nitrogen - Google Patents

Biological treatment of ammonia nitrogen

Info

Publication number
JP2000061494A
JP2000061494A JP10238405A JP23840598A JP2000061494A JP 2000061494 A JP2000061494 A JP 2000061494A JP 10238405 A JP10238405 A JP 10238405A JP 23840598 A JP23840598 A JP 23840598A JP 2000061494 A JP2000061494 A JP 2000061494A
Authority
JP
Japan
Prior art keywords
nitrification
nitrogen
tank
stage
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10238405A
Other languages
Japanese (ja)
Other versions
JP3656426B2 (en
Inventor
Takako Ogasawara
多佳子 小笠原
Hironori Nakamura
裕紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP23840598A priority Critical patent/JP3656426B2/en
Publication of JP2000061494A publication Critical patent/JP2000061494A/en
Application granted granted Critical
Publication of JP3656426B2 publication Critical patent/JP3656426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably and effectively perform nitrification reaction of nitrous acid type by biologically treating ammonia nitrogen. SOLUTION: A biological reactor 14 is constituted of a nitrification tank consisting of two tanks a first stage nitrification tank 24 and a second stage nitrification tank 26, a denitrification tank consisting of two tanks, a first stage denitrification tank 28 and a second denitrification tank 30, and one aerobic tank 32. In this way, the load quantity of ammonia nitrogen per the first stage nitrification tank 24 is kept at 1.5-2.5 kg-N/m3.day, and the concentration of ammonia nitrogen in the first stage nitrification tank 24 is kept at 250-550 mg/L, thereby enabling to dominantly perform nitrification reaction of nitrous acid type be stopping nitrification reaction in the stage of nitrous acid nitrogen which is an intermediate product for oxidizing ammonia nitrogen to nitric acid nitrogen. Therefore, since the nitrification reaction of nitrous acid type can be stably performed, the time required for the nitrification reaction can be shortened, and also the aeration quantity of air for forming aerobic conditions can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
の生物学的処理方法に係り、特に、高濃度のアンモニア
性窒素を生物学的に除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically treating ammoniacal nitrogen, and more particularly to a method for biologically removing high concentrations of ammoniacal nitrogen.

【0002】[0002]

【従来の技術】下水、し尿、産業廃水等の廃水中に含ま
れるアンモニア性窒素は、放流先の湖沼や内湾等の閉鎖
性水域における溶存酸素の低下や富栄養化現象の原因と
されている。従来、これらの廃水中から窒素成分を除去
する窒素除去技術としては、微生物を利用した生物学的
な硝化・脱窒処理が行われている。生物学的な硝化・脱
窒処理は、独立栄養菌である硝化細菌のアンモニア酸化
力と亜硝酸酸化力を利用して、廃水中のアンモニア性窒
素を好気性状態で亜硝酸性窒素を経て硝酸性窒素まで酸
化する。その後、従属栄養細菌である脱窒細菌の働きで
廃水中の有機物を電子供与体として硝酸性窒素を嫌気状
態で窒素ガスに還元することにより、廃水中のアンモニ
ア性窒素を除去するものである。
2. Description of the Related Art Ammonia nitrogen contained in wastewater such as sewage, night soil, industrial wastewater, etc. is said to be a cause of declining dissolved oxygen and eutrophication in closed water bodies such as lakes and inner bays. . Conventionally, as a nitrogen removal technology for removing nitrogen components from these wastewaters, biological nitrification / denitrification treatment using microorganisms has been performed. Biological nitrification and denitrification treatment utilizes the ammonia oxidizing power and nitrite oxidizing power of autotrophic nitrifying bacteria to remove ammoniacal nitrogen in wastewater in an aerobic state through nitrite nitrogen and nitrate. Oxidize to neutral nitrogen. Then, by the action of denitrifying bacteria, which are heterotrophic bacteria, the organic matter in the wastewater is used as an electron donor to reduce nitrate nitrogen to nitrogen gas in an anaerobic state, thereby removing the ammoniacal nitrogen in the wastewater.

【0003】従って、硝化反応は、次式のようにアンモ
ニアから亜硝酸性窒素に酸化する反応と、亜硝酸性窒素
から硝酸性窒素に酸化する反応の2段階の反応を行う。 NH4-N →NO2-N →NO3-N また、硝化反応の後段の脱窒処理における脱窒細菌は、
亜硝酸性窒素から窒素ガスに還元することができる。
Therefore, the nitrification reaction is carried out in two steps, as shown in the following equation, a reaction of oxidizing ammonia to nitrite nitrogen and a reaction of oxidizing nitrite nitrogen to nitrate nitrogen. NH 4 -N → NO 2 -N → NO 3 -N In addition, the denitrifying bacteria in the denitrification treatment after the nitrification reaction are:
It is possible to reduce nitrite nitrogen to nitrogen gas.

【0004】ところで、硝化反応を、アンモニア性窒素
を硝酸に酸化する中間生成物である亜硝酸の段階で硝化
反応を停止する亜硝酸型の硝化反応を行うことができる
なら、硝化反応時にエアを曝気する曝気量を低減でき、
ブロアーの運転動力費を大幅に削減することができる。
また、脱窒処理における栄養源であるメタノール等の有
機物の添加量も低減することができる。更には、硝酸性
窒素まで反応させる必要がないので、硝化反応の所要時
間を短縮することができる。
By the way, if the nitrification reaction can be carried out at a stage of nitrous acid, which is an intermediate product for oxidizing ammonia nitrogen to nitric acid, the nitrification type nitrification reaction that stops the nitrification reaction can be carried out, air is supplied during the nitrification reaction. The amount of aeration can be reduced,
The operating power cost of the blower can be significantly reduced.
Further, the amount of organic substances such as methanol, which is a nutrient source in the denitrification process, can be reduced. Furthermore, since it is not necessary to react up to nitrate nitrogen, the time required for the nitrification reaction can be shortened.

【0005】このような背景から、従来より、硝化槽内
の液の溶存酸素を変化させたり、pHを制御したり、あ
るいは有機のアンモニアや亜硝酸を利用して微生物阻害
する方法等を行ったりして、亜硝酸型の硝化反応を行う
試みがなされてきた。
From such a background, conventionally, the dissolved oxygen of the liquid in the nitrification tank is changed, the pH is controlled, or a method for inhibiting microorganisms by using organic ammonia or nitrous acid is used. Then, an attempt has been made to carry out a nitrite type nitrification reaction.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記し
た従来のいずれの試みも、アンモニア性窒素を硝酸に酸
化する中間生成物である亜硝酸の段階で硝化反応を停止
する亜硝酸型の硝化反応を行うことができなかった。本
発明は、このような事情に鑑みて成されたもので、安定
的且つ効率的に亜硝酸型の硝化反応を行うことができる
アンモニア性窒素の生物学的処理方法を提供することを
目的とする。
However, in any of the above-mentioned conventional attempts, a nitrite type nitrification reaction that stops the nitrification reaction at the stage of nitrite which is an intermediate product that oxidizes ammoniacal nitrogen to nitric acid is carried out. Could not be done. The present invention has been made in view of such circumstances, and an object thereof is to provide a biological treatment method of ammoniacal nitrogen capable of stably and efficiently performing a nitrite type nitrification reaction. To do.

【0007】[0007]

【課題を解決するための手段】本発明は、前記目的を達
成するために、アンモニア性窒素を含有する廃水と微生
物固定化担体とを硝化槽内で好気性条件下で接触させる
ことによりアンモニア性窒素を硝化処理するアンモニア
性窒素の生物学的処理方法において、前記硝化槽当たり
のアンモニア性窒素負荷量を1.5〜2.5kg−N/
3 ・日に維持し、且つ前記硝化槽内のアンモニア性窒
素濃度を250〜550mg/Lに維持することによ
り、亜硝酸型の硝化反応を行うことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method of contacting wastewater containing ammoniacal nitrogen with a microorganism-immobilized carrier under aerobic conditions in a nitrification tank. In the biological treatment method of ammoniacal nitrogen for nitrifying nitrogen, the ammoniacal nitrogen load per nitrification tank is 1.5 to 2.5 kg-N / N.
The nitrite type nitrification reaction is carried out by maintaining m 3 · day and maintaining the concentration of ammonia nitrogen in the nitrification tank at 250 to 550 mg / L.

【0008】本発明によれば、硝化槽当たりのアンモニ
ア性窒素負荷量を1.5〜2.5kg−N/m3 ・日に
維持し、且つ硝化槽内のアンモニア性窒素濃度を250
〜550mg/Lに維持するようにしたので、亜硝酸型
の硝化反応を安定的且つ効率的に行うことができる。
According to the present invention, the ammonia nitrogen load per nitrification tank is maintained at 1.5 to 2.5 kg-N / m 3 · day, and the ammonia nitrogen concentration in the nitrification tank is set to 250.
Since it is maintained at ˜550 mg / L, the nitrite type nitrification reaction can be carried out stably and efficiently.

【0009】[0009]

【発明の実施の形態】以下、添付図面により本発明のア
ンモニア性窒素の生物学的処理方法の好ましい実施の形
態を詳説する。本発明のアンモニア性窒素の生物学的処
理方法の理論的根拠を説明する。発明者等は、アンモニ
ア性窒素を硝酸性窒素に酸化する中間生成物である亜硝
酸性窒素の段階で硝化反応を停止させる亜硝酸型の硝化
反応を安定的且つ効率的に行うための管理指標を検討し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the biological treatment method for ammoniacal nitrogen according to the present invention will be described below in detail with reference to the accompanying drawings. The rationale for the ammoniacal nitrogen biological treatment method of the present invention will be described. The inventors have established a management index for stably and efficiently performing a nitrite type nitrification reaction that stops the nitrification reaction at the stage of nitrite nitrogen, which is an intermediate product that oxidizes ammoniacal nitrogen to nitrate nitrogen. It was investigated.

【0010】(1)先ず、亜硝酸型の硝化反応と硝化槽
当たりのアンモニア性窒素の負荷量との関係について説
明する。図1は、硝化槽当たりのアンモニア性窒素負荷
量(以下「負荷量」という)と亜硝酸型の硝化反応との
関係を示したものである。即ち、充填率20%の微生物
固定化担体(以下「担体」という)を収納する硝化槽内
にアンモニア性窒素(NH4-N)のみを1000(mg
/L)の濃度で含有する合成廃水を供給し、負荷量を
0.8〜3.0(kg−N/m3 ・日)まで増加してい
きながら硝化反応を行った。そして、この時の硝化槽内
の硝化液中のアンモニア性窒素濃度(NH4-N)、亜硝
酸性窒素濃度(NO2-N)及び硝酸性窒素濃度(NO3-
N)の増減の推移を調べた。
(1) First, the relationship between the nitrite type nitrification reaction and the amount of ammonia nitrogen loaded per nitrification tank will be described. FIG. 1 shows the relationship between the amount of ammonia nitrogen loading per nitrification tank (hereinafter referred to as “load”) and the nitrite type nitrification reaction. That is, only 1000 (mg of ammoniacal nitrogen (NH 4 -N) is contained in a nitrification tank containing a microorganism-immobilized carrier (hereinafter referred to as “carrier”) having a filling rate of 20%.
/ L) was supplied, and the nitrification reaction was performed while increasing the load amount to 0.8 to 3.0 (kg-N / m 3 · day). Then, the ammoniacal nitrogen concentration (NH 4 -N), the nitrite nitrogen concentration (NO 2 -N), and the nitrate nitrogen concentration (NO 3- ) in the nitrification liquid in the nitrification tank at this time.
The change in N) was examined.

【0011】図2は、図1のデータを基に、負荷量を増
加していった時の硝酸性窒素と亜硝酸性窒素の合計に対
する亜硝酸性窒素の比率(以下「亜硝酸比率」という)
を示したものである。図2において比率が1とは完全な
亜硝酸型の硝化反応が行われていることを意味し、比率
0とは完全な硝酸型の硝化反応が行われていることを意
味する。
FIG. 2 shows the ratio of nitrite nitrogen to the total amount of nitrate nitrogen and nitrite nitrogen when the load is increased based on the data of FIG. 1 (hereinafter referred to as “nitrite ratio”). )
Is shown. In FIG. 2, a ratio of 1 means that a complete nitrite type nitrification reaction is performed, and a ratio of 0 means that a complete nitric acid type nitrification reaction is performed.

【0012】図1及び図2から分かるように、負荷量が
0.8(kg−N/m3 ・日)の時には、硝化槽内の硝
化液中には、硝酸性窒素のみが認められた。このこと
は、負荷量が、0.8(kg−N/m3 ・日)の時に
は、アンモニア性窒素が硝化反応により全て硝酸性窒素
まで酸化される硝酸型の硝化反応が完全に支配すること
を意味する。
As can be seen from FIGS. 1 and 2, when the load was 0.8 (kg-N / m 3 · day), only nitrate nitrogen was found in the nitrification solution in the nitrification tank. . This means that when the load is 0.8 (kg-N / m 3 · day), the nitric acid type nitrification reaction, in which all of the ammoniacal nitrogen is oxidized to nitric acid nitrogen, is completely controlled by the nitrification reaction. Means

【0013】負荷量を1.0(kg−N/m3 ・日)ま
で増加すると、硝化液中に亜硝酸性窒素が認められ始め
る一方、硝酸性窒素濃度が低下してくる。そして、負荷
量が1.1(kg−N/m3 ・日)の時に亜硝酸比率が
略0.5となり硝酸型の硝化反応と亜硝酸型の硝化反応
が略平衡状態になった。更に、負荷量を1.5(kg−
N/m3 ・日)まで増加すると、亜硝酸比率が0.8と
なり硝酸型の硝化反応から亜硝酸型の硝化反応が支配的
になった。
When the loading amount is increased to 1.0 (kg-N / m 3 · day), nitrite nitrogen starts to be recognized in the nitrification solution, while the nitrate nitrogen concentration decreases. Then, when the load was 1.1 (kg-N / m 3 · day), the nitrite ratio became about 0.5, and the nitric acid type nitrification reaction and the nitrite type nitrification reaction were in a substantially equilibrium state. Furthermore, the load amount is 1.5 (kg-
(N / m 3 · day), the nitrite ratio became 0.8 and the nitric acid type nitrification reaction became dominant from the nitric acid type nitrification reaction.

【0014】負荷量が2.0(kg−N/m3 ・日)付
近において、亜硝酸比率が0.9以上と最大になり、引
き続き負荷量を増加すると亜硝酸比率は低下し始め、負
荷量2.5(kg−N/m3 ・日)において亜硝酸比率
が0.8となった。そして、負荷量3.0(kg−N/
3 ・日)の時に亜硝酸比率が0.4程度まで低下し、
再び硝酸型の硝化反応が支配するようになった。
When the load amount is around 2.0 (kg-N / m 3 · day), the nitrite ratio reaches a maximum of 0.9 or more, and when the load amount is continuously increased, the nitrite ratio begins to decrease, and When the amount was 2.5 (kg-N / m 3 · day), the nitrite ratio was 0.8. Then, the load amount 3.0 (kg-N /
m 3 · day), the nitrite ratio decreases to about 0.4,
The nitric acid-type nitrification reaction came to dominate again.

【0015】尚、上記の場合には、負荷量を0.8(k
g−N/m3 ・日)から3.0(kg−N/m3 ・日)
に増加させる場合で説明したが、逆に3.0(kg−N
/m 3 ・日)から0.8(kg−N/m3 ・日)に減少
させた場合も同様の結果を得た。上記した亜硝酸型の硝
化反応と硝化槽当たりのアンモニア性窒素の負荷量との
関係から、負荷量を1.5〜2.5(kg−N/m3
日)の範囲に維持することにより亜硝酸比率を0.8以
上にすることができるので、亜硝酸型の硝化反応を支配
的に行うことができる。
In the above case, the load amount is 0.8 (k
g-N / m3・ Day to 3.0 (kg-N / m)3·Day)
However, on the contrary, 3.0 (kg-N
/ M 3・ Day) to 0.8 (kg-N / m)3・ Day)
Similar results were obtained when the above was used. Nitrite type glass mentioned above
Reaction and the amount of ammonia nitrogen loading per nitrification tank
From the relationship, the load amount is 1.5 to 2.5 (kg-N / m3
(Day) to maintain the nitrite ratio below 0.8.
Dominates the nitrite type nitrification reaction because it can be on top
Can be done on a regular basis.

【0016】しかし、図1から、負荷量と硝化液中に残
存するアンモニア性窒素濃度との関係について見ると、
負荷量を増加していった時に、負荷量が1.0(kg−
N/m3 ・日)でアンモニア性窒素が残存し始め、その
後、負荷量が大きくなるにつれて残存濃度が高くなっ
た。そして、負荷量が1.5〜2.5(kg−N/m3
・日)の範囲におけるアンモニア性窒素の残存濃度は2
00〜450(mg/L)の範囲であった。このよう
に、アンモニア性窒素濃度1000(mg/L)の合成
廃水を硝化処理した場合、負荷量を1.5〜2.5(k
g−N/m3 ・日)の範囲に維持することにより亜硝酸
型の硝化反応を支配的に行うことができるものの、硝化
液中には硝化反応が進行しないアンモニア性窒素が多く
残存することになる。
However, looking at the relationship between the load and the concentration of ammonia nitrogen remaining in the nitrification solution from FIG.
When increasing the load amount, the load amount becomes 1.0 (kg-
(N / m 3 · day), ammoniacal nitrogen started to remain, and thereafter, the residual concentration became higher as the load amount increased. Then, the load amount is 1.5 to 2.5 (kg-N / m 3
・ Residual concentration of ammonia nitrogen in the range of (day) is 2
The range was from 00 to 450 (mg / L). As described above, when the synthetic wastewater having an ammoniacal nitrogen concentration of 1000 (mg / L) is nitrified, the load amount is 1.5 to 2.5 (k
Although the nitrite type nitrification reaction can be predominantly carried out by maintaining it within the range of g-N / m 3 · day), a large amount of ammoniacal nitrogen in which the nitrification reaction does not proceed remains in the nitrification solution. become.

【0017】このことは、単に、負荷量を制御するだけ
では問題があることを意味する。 (2)そこで、本発明者等は、負荷量を1.5〜2.5
(kg−N/m3 ・日)の範囲に維持した状態で、合成
廃水のアンモニア性窒素濃度(以下「廃水NH 4-N濃
度」という)と硝化液中に残存するアンモニア性窒素の
濃度(以下「硝化液NH4-N濃度」という)の関係につ
いて検討した。
This simply controls the amount of load.
Then there is a problem. (2) Then, the present inventors set the load amount to 1.5 to 2.5.
(Kg-N / m3・ Synthesis in the range of (day)
Ammonia nitrogen concentration in wastewater (hereinafter “wastewater NH Four-N
Of the ammoniacal nitrogen remaining in the nitrification solution.
Concentration (hereinafter “Nitrification liquid NHFour-N concentration ")
There were examined.

【0018】図3は、廃水NH4-N濃度を1000(m
g/L)から100(mg/L)まで減少していった場
合において、廃水NH4-N濃度に対する硝化液NH4-N
濃度の比率である残存NH4-N比率を調べたものであ
る。図3から分かるように、廃水NH4-N濃度を100
0(mg/L)から100(mg/L)まで減少させて
いくに従って残存NH4-N比率が小さくなり、廃水NH
4-N濃度が550〜250(mg/L)の範囲におい
て、残存NH4-N比率が0.1以下の最小領域となっ
た。そして、廃水NH4-N濃度が250(mg/L)を
下回ると残存NH4-N比率が再び増加した。
FIG. 3 shows that the NH 4 -N concentration of the wastewater is 1000 (m
(g / L) to 100 (mg / L), the nitrification solution NH 4 -N against the wastewater NH 4 -N concentration
The residual NH 4 —N ratio, which is the ratio of the concentrations, was investigated. As can be seen from FIG. 3, the NH 4 -N concentration of the wastewater is 100%.
The residual NH 4 -N ratio decreases with decreasing 0 (mg / L) to 100 (mg / L), and the wastewater NH
In the 4- N concentration range of 550 to 250 (mg / L), the residual NH 4- N ratio was the minimum region of 0.1 or less. Then, when the NH 4 -N concentration of the wastewater fell below 250 (mg / L), the residual NH 4 -N ratio increased again.

【0019】以上、(1)と(2)の結果から、発明者
等は、負荷量を1.5〜2.5(kg−N/m3 ・日)
の範囲に維持し、且つ廃水のアンモニア性窒素濃度を2
50〜550(mg/L)の範囲に維持することによ
り、亜硝酸型の硝化反応を安定的且つ効率的に行うこと
ができるという知見を得た。ところで、硝化反応を行う
硝化細菌を大別すると、高濃度のアンモニア性窒素雰囲
気の条件下で高活性を発揮するAH菌と、低濃度のアン
モニア性窒素雰囲気の条件下で高活性を発揮するAL菌
とがある。そして、AH菌はアンモニア性窒素濃度が4
00(mg/L)以上の領域で優先繁殖し、菌数の顕著
な増殖が見られ、硝化速度も顕著に高くなる。これに対
し、AL菌はアンモニア性窒素濃度が200(mg/
L)以下の領域で優先繁殖し、菌数の顕著な増殖が見ら
れ、硝化速度は100(mg/L)にピークがある放物
線を示す。また、アンモニア性窒素濃度が150〜40
0(mg/L)の領域ではAH菌とAL菌とが混相繁殖
し、硝化速度は2種類の菌の混在による相乗効果を生じ
る。
From the results of (1) and (2) above, the inventors have found that the load amount is 1.5 to 2.5 (kg-N / m 3 · day).
And maintain the ammonia nitrogen concentration of wastewater at 2
It was found that the nitrite type nitrification reaction can be stably and efficiently carried out by maintaining the range of 50 to 550 (mg / L). By the way, the nitrifying bacteria that carry out the nitrification reaction are roughly classified into AH bacteria that exhibit high activity under conditions of high-concentration ammoniacal nitrogen atmosphere and AL that exhibits high activity under conditions of low-concentration ammoniacal nitrogen atmosphere. There are fungi. And, AH bacteria has an ammoniacal nitrogen concentration of 4
It proliferates preferentially in the area of 00 (mg / L) or more, the number of bacteria is remarkably increased, and the nitrification rate is remarkably increased. In contrast, the AL bacterium has an ammoniacal nitrogen concentration of 200 (mg /
L) and the following regions are preferentially propagated, marked growth of the number of bacteria is observed, and the nitrification rate shows a parabola with a peak at 100 (mg / L). Moreover, the ammonia nitrogen concentration is 150 to 40.
In the region of 0 (mg / L), AH bacteria and AL bacteria propagate in a mixed phase, and the nitrification rate produces a synergistic effect due to the mixing of two kinds of bacteria.

【0020】従って、前記アンモニア性窒素濃度250
〜550(mg/L)の範囲のうち、400〜550
(mg/L)の範囲に維持する場合には、予めAH菌を
優先繁殖させた微生物固定化担体を使用することが好ま
しい。ここで、AH菌とは、濃度5000(mg/L)
の硫酸アンモニア溶液中で8週間培養して検出される硝
化細菌を言い、AL菌とは、濃度100(mg/L)の
硫酸アンモニア溶液中で8週間培養して検出される硝化
細菌を言う。
Therefore, the ammonia nitrogen concentration is 250
To 550 (mg / L), 400 to 550
When maintaining in the range of (mg / L), it is preferable to use a microorganism-immobilized carrier in which AH bacteria are preferentially propagated in advance. Here, the AH bacterium is a concentration of 5000 (mg / L)
Refers to nitrifying bacteria that are detected by culturing for 8 weeks in an ammonium sulfate solution, and AL bacterium refers to nitrifying bacteria that are detected by culturing for 8 weeks in an ammonium sulfate solution with a concentration of 100 (mg / L).

【0021】本発明は、上記の知見を基に、アンモニア
性窒素を含有する廃水と微生物固定化担体とを硝化槽内
で好気性条件下で接触させることによりアンモニア性窒
素を硝化処理するアンモニア性窒素の生物学的処理方法
において、硝化槽当たりのアンモニア性窒素負荷量を
1.5〜2.5kg−N/m3 ・日に維持し、且つ硝化
槽内のアンモニア性窒素濃度を250〜550mg/L
に維持するように構成したものである。
The present invention is based on the above findings, and an ammoniacal nitrogen treatment for nitrifying ammoniacal nitrogen is carried out by bringing wastewater containing ammoniacal nitrogen into contact with a microorganism-immobilized carrier under aerobic conditions in a nitrification tank. In the biological treatment method of nitrogen, the ammonia nitrogen loading per nitrification tank is maintained at 1.5 to 2.5 kg-N / m 3 · day, and the ammonia nitrogen concentration in the nitrification tank is 250 to 550 mg. / L
It is configured to maintain.

【0022】図4は、本発明のアンモニア性窒素の生物
学的処理方法を適用した装置10の1例を示したもので
ある。図4に示すように、原水タンク12と生物反応装
置14を繋ぐ原水配管16の途中に水道配管18が接続
され、原水配管16と水道配管18にはそれれぞれ流量
調整ポンプ20、22が配設される。これにより、原水
タンク12から生物反応装置14に供給される廃水を水
道水で希釈することができる。
FIG. 4 shows an example of an apparatus 10 to which the method for biological treatment of ammonia nitrogen according to the present invention is applied. As shown in FIG. 4, a water pipe 18 is connected in the middle of a raw water pipe 16 connecting the raw water tank 12 and the bioreactor 14, and the raw water pipe 16 and the water pipe 18 are provided with flow rate adjusting pumps 20 and 22, respectively. It is arranged. Thereby, the waste water supplied from the raw water tank 12 to the bioreactor 14 can be diluted with tap water.

【0023】生物反応装置14は、硝化槽と脱窒槽とが
交互に複数直列に配設され、最終段に好気槽を配設して
構成され、図4には、1段目硝化槽24と2段目硝化槽
26の2槽から成る硝化槽と、1段目脱窒槽28と2段
目脱窒槽30の2槽から成る脱窒槽と1槽の好気槽32
で構成した例を示した。各硝化槽24、26には、浮遊
汚泥の他に硝化細菌を包括固定化した多数の担体34、
34…が収納される。また、各硝化槽24、26の底部
及び好気槽32の底部には、それぞれ散気板36、36
…が配設され、エア配管38を介して圧縮空気が供給さ
れる。これにより、各硝化槽24、26及び好気槽32
には散気板36からエアが曝気されて好気性条件が形成
される。硝化槽24、26から脱窒槽28、30に排出
される硝化液の排出口には担体流出防止用のスクリーン
40、40がそれぞれ配設される。また、各硝化槽2
4、26の近傍には、カセイソーダ等のアルカリ液を貯
留するアルカリタンク42が設けられ、アルカリタンク
42と各硝化槽24、26とは、配管44及び流量調整
ポンプ46を介して接続される。これにより、硝化槽2
4、26に供給される液のpHが調整される。
The bioreactor 14 is constructed by alternately arranging a plurality of nitrification tanks and denitrification tanks in series, and arranging an aerobic tank at the final stage. In FIG. 4, the first-stage nitrification tank 24 is shown. And a second-stage nitrification tank 26, which is a nitrification tank, a second-stage denitrification tank 28 and a second-stage denitrification tank 30, and a single aerobic tank 32.
An example is shown below. In each of the nitrification tanks 24 and 26, in addition to suspended sludge, a large number of carriers 34 in which nitrifying bacteria are entrapped and immobilized,
34 ... is stored. Further, diffuser plates 36, 36 are provided at the bottoms of the nitrification tanks 24, 26 and the aerobic tank 32, respectively.
Are arranged, and compressed air is supplied through the air pipe 38. Thereby, each nitrification tank 24, 26 and aerobic tank 32
Air is aerated from the diffuser plate 36 to form an aerobic condition. Screens 40, 40 for preventing carrier outflow are provided at outlets of the nitrification liquid discharged from the nitrification tanks 24, 26 to the denitrification tanks 28, 30, respectively. In addition, each nitrification tank 2
An alkali tank 42 for storing an alkaline liquid such as caustic soda is provided in the vicinity of Nos. 4 and 26, and the alkali tank 42 and each nitrification tank 24, 26 are connected via a pipe 44 and a flow rate adjusting pump 46. As a result, the nitrification tank 2
The pH of the liquid supplied to Nos. 4 and 26 is adjusted.

【0024】各脱窒槽28、30には浮遊汚泥が浮遊さ
れると共に、脱窒槽28、30の底部には攪拌器48、
48が設けられる。これにより、攪拌器48で脱窒槽2
8、30内の液をゆっくりと攪拌することにより、脱窒
槽28、30に嫌気性条件を形成する。この嫌気性条件
下で硝化液が浮遊汚泥に含まれる脱窒細菌により脱窒処
理されて窒素ガスになる。また、各脱窒槽28、30の
近傍には、脱窒細菌の栄養源であるメタノール等の有機
物を貯留する有機物タンク50と、硫酸等の酸液を貯留
する酸液タンク52が設けられ、有機物タンク50及び
酸液タンク52と、脱窒槽28、30とはそれぞれ配管
54、56と流量調整ポンプ58、60を介して接続さ
れる。そして、硝化槽24、26から脱窒槽28、30
に送られる硝化液中の有機物が不足する場合には、有機
物タンク50から脱窒槽に有機物が補充されると共に、
酸液タンク52からの酸液により脱窒槽28、30内の
pHが調整される。
Floating sludge is suspended in the denitrification tanks 28 and 30, and a stirrer 48 is provided at the bottom of the denitrification tanks 28 and 30.
48 is provided. As a result, the denitrification tank 2 can be
Anaerobic conditions are formed in the denitrification tanks 28 and 30 by slowly stirring the liquid in the tanks 8 and 30. Under this anaerobic condition, the nitrification liquid is denitrified by the denitrifying bacteria contained in the floating sludge to become nitrogen gas. Further, in the vicinity of the denitrification tanks 28 and 30, an organic matter tank 50 for storing organic matter such as methanol, which is a nutrient source for denitrifying bacteria, and an acid solution tank 52 for storing acid solution such as sulfuric acid are provided. The tank 50 and the acid solution tank 52 are connected to the denitrification tanks 28 and 30 via pipes 54 and 56 and flow rate adjusting pumps 58 and 60, respectively. Then, from the nitrification tanks 24, 26 to the denitrification tanks 28, 30.
When the organic matter in the nitrification solution sent to the plant is insufficient, the denitrification tank is supplemented with the organic matter from the organic matter tank 50, and
The pH in the denitrification tanks 28 and 30 is adjusted by the acid solution from the acid solution tank 52.

【0025】また、好気槽32では、2段目脱窒槽30
で処理された液が好気性条件下で浮遊汚泥と接触するこ
とにより、残存した微量のアンモニア性窒素及び残存有
機物が分解される。更に、好気槽32には、抜取り配管
64と抜取りポンプ66が設けられ、好気槽32の液を
適宜抜き取って生物反応装置14全体の負荷が調整する
ことにより、生物反応装置14への廃水供給量と相まっ
て1段目硝化槽当たりの負荷量を制御する。
In the aerobic tank 32, the second-stage denitrification tank 30
When the liquid treated in step 1 comes into contact with the floating sludge under aerobic conditions, a small amount of residual ammoniacal nitrogen and residual organic matter are decomposed. Further, the aerobic tank 32 is provided with a withdrawal pipe 64 and an withdrawal pump 66, and by appropriately withdrawing the liquid from the aerobic tank 32 to adjust the load of the entire bioreactor 14, the wastewater to the bioreactor 14 The load amount per first nitrification tank is controlled together with the supply amount.

【0026】生物反応装置14の後段には、浮遊汚泥を
沈殿する沈殿槽62が設けられ、沈殿槽62で沈降した
汚泥は返送配管68及び返送汚泥ポンプ70により1段
目脱窒槽28に返送される。次に、上記の如く構成され
た生物学的処理装置の作用について説明する。原水タン
ク12の廃水が例えば1000(mg/L)程度の高濃
度のアンモニア性窒素濃度の場合には、原水配管16の
途中で水道水により250〜550(mg/L)の範囲
のアンモニア性窒素濃度になるように希釈される。更
に、流量調整ポンプ20、22により1段目硝化槽24
に供給される廃水量が調整されると共に、抜取りポンプ
66により好気槽32の液が抜き取られる。これによ
り、1段目硝化槽24当たりのアンモニア性窒素負荷量
が1.5〜2.5kg−N/m3 ・日に維持される。
A settling tank 62 for settling suspended sludge is provided at the subsequent stage of the bioreactor 14, and sludge settling in the settling tank 62 is returned to the first stage denitrification tank 28 by a return pipe 68 and a return sludge pump 70. It Next, the operation of the biological treatment device configured as described above will be described. When the wastewater in the raw water tank 12 has a high concentration of ammonia nitrogen of about 1000 (mg / L), for example, tap water in the middle of the raw water pipe 16 causes the ammonia nitrogen in the range of 250 to 550 (mg / L). It is diluted to the concentration. Further, the first stage nitrification tank 24 is controlled by the flow rate adjusting pumps 20 and 22.
The amount of wastewater supplied to the aerobic tank 32 is adjusted and the liquid in the aerobic tank 32 is extracted by the extraction pump 66. As a result, the ammonia nitrogen load per first stage nitrification tank 24 is maintained at 1.5 to 2.5 kg-N / m 3 · day.

【0027】このように、1段目硝化槽24当たりのア
ンモニア性窒素負荷量を1.5〜2.5kg−N/m3
・日に維持し、且つ1段目硝化槽24内のアンモニア性
窒素濃度を250〜550mg/Lに維持するようにし
たので、アンモニア性窒素を硝酸性窒素に酸化する中間
生成物である亜硝酸性窒素の段階で硝化反応を停止させ
る亜硝酸型の硝化反応を支配的に行うことができる。従
って、硝化反応の所要時間を短縮することができると共
に、好気性条件を形成するためのエアの曝気量も削減す
ることができる。
As described above, the amount of ammonia nitrogen loading per first stage nitrification tank 24 is 1.5 to 2.5 kg-N / m 3
-Nitrite, which is an intermediate product that oxidizes ammoniacal nitrogen to nitrate nitrogen, was maintained on a daily basis and the ammoniacal nitrogen concentration in the first stage nitrification tank 24 was maintained at 250 to 550 mg / L. It is possible to predominantly perform a nitrite type nitrification reaction that terminates the nitrification reaction at the stage of neutral nitrogen. Therefore, the time required for the nitrification reaction can be shortened, and the aeration amount of air for forming the aerobic condition can be reduced.

【0028】次に、1段目硝化槽24から1段目脱窒槽
28に硝化液が送られて、脱窒処理が行われる。この脱
窒処理において、硝化液中の大部分が亜硝酸性窒素であ
ることから、脱窒細菌の栄養源である有機物の使用量を
削減することができる。この有機物の削減量をメタノー
ルを用いた例で説明する。及びは硝酸型と亜硝酸型
の脱窒反応式を示したものであり、表1は脱窒量に対す
るメタノール必要量の比(メタノール/N比)の理論値
を示したものである。 〔硝酸型〕 2NO3-N +5/3 CH3OH →N2+2OH - +5/3 CO2 +7/3 H2O … 〔亜硝酸型〕 2NO2-N + CH3OH →N2+2OH - + CO2 + H2O …
Next, the nitrification liquid is sent from the first-stage nitrification tank 24 to the first-stage denitrification tank 28 to perform denitrification treatment. In this denitrification process, most of the nitrification solution contains nitrite nitrogen, so that the amount of organic substances used as a nutrient source for denitrifying bacteria can be reduced. The reduction amount of this organic substance will be described with an example using methanol. And are the denitrification reaction formulas of nitric acid type and nitrite type, and Table 1 shows the theoretical value of the ratio of the required amount of methanol to the denitrification amount (methanol / N ratio). [Nitrate type] 2NO 3 -N +5/3 CH 3 OH → N 2 + 2OH - +5/3 CO 2 +7/3 H 2 O ... [nitrite type] 2NO 2 -N + CH 3 OH → N 2 + 2OH - + CO 2 + H 2 O…

【0029】[0029]

【表1】 表1から分かるように、亜硝酸型の硝化反応は、硝酸型
の硝化反応に比べてメタノール使用量を30%削減する
ことができる。
[Table 1] As can be seen from Table 1, the nitrite type nitrification reaction can reduce the amount of methanol used by 30% as compared with the nitric acid type nitrification reaction.

【0030】次に、1段目脱窒槽28の液が2段目硝化
槽26に送られる。2段目硝化槽26では、1段目硝化
槽24で残存した低濃度のアンモニア性窒素が硝化型の
硝化反応により硝化処理される。2段目硝化槽26で硝
化処理された硝化液は2段目脱窒槽30に送られて脱窒
処理された後、好気槽32において最終的な硝化処理が
行われ、残存有機物が分解される。
Next, the liquid in the first denitrification tank 28 is sent to the second nitrification tank 26. In the second stage nitrification tank 26, the low-concentration ammoniacal nitrogen remaining in the first stage nitrification tank 24 is nitrified by a nitrification type nitrification reaction. The nitrification solution nitrified in the second-stage nitrification tank 26 is sent to the second-stage denitrification tank 30 for denitrification treatment, and then finally nitrification treatment is carried out in the aerobic tank 32 to decompose the residual organic matter. It

【0031】[0031]

【発明の効果】以上説明したように、本発明のアンモニ
ア性窒素の生物学的処理方法によれば、亜硝酸型の硝化
反応を安定的且つ効率的に行うことができる。従って、
硝化反応時に曝気する曝気量を低減でき、ブロアーの運
転動力費を大幅に削減することができる。また、脱窒処
理における栄養源であるメタノール等の有機物の添加量
も低減することができる。更には、硝酸性窒素まで反応
させる必要がないので、硝化反応を所要時間を短縮する
ことができる。
As described above, according to the biological treatment method for ammoniacal nitrogen of the present invention, the nitrite type nitrification reaction can be carried out stably and efficiently. Therefore,
The amount of aeration that is aerated during the nitrification reaction can be reduced, and the operating power cost of the blower can be significantly reduced. Further, the amount of organic substances such as methanol, which is a nutrient source in the denitrification process, can be reduced. Furthermore, since it is not necessary to react up to nitrate nitrogen, the time required for the nitrification reaction can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】硝化槽当たりのアンモニア性窒素負荷量と亜硝
酸型の硝化反応との関係を示したグラフ
FIG. 1 is a graph showing the relationship between ammonia nitrogen loading per nitrification tank and nitrite type nitrification reaction.

【図2】図1のデータを基に、負荷量を増加していった
時の硝酸性窒素と亜硝酸性窒素の合計に対する亜硝酸性
窒素の比率(以下「亜硝酸比率」という)を示したグラ
FIG. 2 shows the ratio of nitrite nitrogen to the total of nitrate nitrogen and nitrite nitrogen (hereinafter referred to as “nitrite ratio”) when the load is increased based on the data of FIG. 1. Graph

【図3】1.5〜2.5(kg−N/m3 ・日)の範囲
に維持した状態で、合成廃水のアンモニア性窒素濃度と
硝化液中に残存するアンモニア性窒素の濃度の関係を示
したグラフ
FIG. 3 shows the relationship between the concentration of ammonia nitrogen in the synthetic wastewater and the concentration of ammonia nitrogen remaining in the nitrification solution, while maintaining the range of 1.5 to 2.5 (kg-N / m 3 · day). Graph showing

【図4】本発明のアンモニア性窒素の生物学的処理方法
を適用した装置の構成例を示した構成図
FIG. 4 is a configuration diagram showing a configuration example of an apparatus to which the biological treatment method for ammoniacal nitrogen of the present invention is applied.

【符号の説明】[Explanation of symbols]

10…生物学的処理装置 12…原水タンク 14…生物反応装置 16…原水配管 18…水道配管 24…1段目硝化槽 26…2段目硝化槽 28…1段目脱窒槽 30…2段目脱窒槽 32…好気槽 34…微生物固定化担体 36…散気板 38…エア配管 40…スクリーン 62…沈殿槽 68…返送汚泥配管 10 ... Biological processing device 12 ... Raw water tank 14 ... Bioreactor 16 ... Raw water piping 18 ... Water pipe 24 ... 1st stage nitrification tank 26 ... Second stage nitrification tank 28 ... 1st stage denitrification tank 30 ... 2nd stage denitrification tank 32 ... aerobic tank 34 ... Carrier for immobilizing microorganisms 36 ... Air diffuser 38 ... Air piping 40 ... Screen 62 ... Settling tank 68 ... Return sludge piping

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アンモニア性窒素を含有する廃水と微生物
固定化担体とを硝化槽内で好気性条件下で接触させるこ
とによりアンモニア性窒素を硝化処理するアンモニア性
窒素の生物学的処理方法において、 前記硝化槽当たりのアンモニア性窒素負荷量を1.5〜
2.5kg−N/m3・日に維持し、且つ前記硝化槽内
のアンモニア性窒素濃度を250〜550mg/Lに維
持することにより、亜硝酸型の硝化反応を行うことを特
徴とするアンモニア性窒素の生物学的処理方法。
1. A biological treatment method of ammonia nitrogen, comprising nitrifying ammonia nitrogen by contacting wastewater containing ammonia nitrogen with a microorganism-immobilized carrier in a nitrification tank under aerobic conditions. The ammonia nitrogen load per nitrification tank is 1.5 to
Ammonia characterized by carrying out a nitrite type nitrification reaction by maintaining the concentration of ammonia nitrogen in the nitrification tank at 250 to 550 mg / L, while maintaining 2.5 kg-N / m 3 · day. Of biological nitrogen treatment.
【請求項2】前記アンモニア性窒素濃度を400〜55
0mg/Lに維持する場合には、硝化細菌であるAH菌
を優先繁殖させた微生物固定化担体を使用することを特
徴とする請求項1のアンモニア性窒素の生物学的処理方
法。
2. The ammoniacal nitrogen concentration is set to 400 to 55.
The biological treatment method for ammoniacal nitrogen according to claim 1, wherein a microorganism-immobilized carrier in which AH bacteria, which are nitrifying bacteria, are preferentially propagated is used to maintain the amount at 0 mg / L.
【請求項3】前記亜硝酸型の硝化反応により硝化液中の
硝酸性窒素と亜硝酸性窒素の合計に対する亜硝酸性窒素
の比率が0.8以上になることを特徴とする請求項1の
アンモニア性窒素の生物学的処理方法。
3. The ratio of nitrite nitrogen to the total of nitrate nitrogen and nitrite nitrogen in the nitrification solution becomes 0.8 or more by the nitrite type nitrification reaction. Biological treatment of ammoniacal nitrogen.
JP23840598A 1998-08-25 1998-08-25 Biological treatment of ammoniacal nitrogen Expired - Fee Related JP3656426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23840598A JP3656426B2 (en) 1998-08-25 1998-08-25 Biological treatment of ammoniacal nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23840598A JP3656426B2 (en) 1998-08-25 1998-08-25 Biological treatment of ammoniacal nitrogen

Publications (2)

Publication Number Publication Date
JP2000061494A true JP2000061494A (en) 2000-02-29
JP3656426B2 JP3656426B2 (en) 2005-06-08

Family

ID=17029724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23840598A Expired - Fee Related JP3656426B2 (en) 1998-08-25 1998-08-25 Biological treatment of ammoniacal nitrogen

Country Status (1)

Country Link
JP (1) JP3656426B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024987A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Nitrification method for ammonia nitrogen-containing water
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
EP1595852A1 (en) * 2003-02-21 2005-11-16 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
CN100347103C (en) * 2003-02-21 2007-11-07 栗田工业株式会社 Method for treating water containing ammonium-nitrogen
JP2012196588A (en) * 2011-03-18 2012-10-18 Kurita Water Ind Ltd Water treatment method and ultrapure water production method
JP2013039538A (en) * 2011-08-18 2013-02-28 Hitachi Plant Technologies Ltd Wastewater treatment apparatus
WO2014017429A1 (en) * 2012-07-26 2014-01-30 学校法人 東洋大学 Method and device for treating ammonia nitrogen-containing water at low temperature
CN104961233A (en) * 2015-06-18 2015-10-07 北京工业大学 Device and method for adjusting coupling intermittent aeration to start shortcut nitrification of urban sewage by using dissolved oxygen
WO2019198389A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen processing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024987A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Nitrification method for ammonia nitrogen-containing water
EP1595852A4 (en) * 2003-02-21 2009-12-16 Kurita Water Ind Ltd Method for treating water containing ammonia nitrogen
EP1595852A1 (en) * 2003-02-21 2005-11-16 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
CN100347103C (en) * 2003-02-21 2007-11-07 栗田工业株式会社 Method for treating water containing ammonium-nitrogen
US7297276B2 (en) 2003-02-21 2007-11-20 Kurita Water Industries Ltd. Method for treating water containing ammonium-nitrogen
AU2004213273B2 (en) * 2003-02-21 2008-06-12 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2012196588A (en) * 2011-03-18 2012-10-18 Kurita Water Ind Ltd Water treatment method and ultrapure water production method
JP2013039538A (en) * 2011-08-18 2013-02-28 Hitachi Plant Technologies Ltd Wastewater treatment apparatus
WO2014017429A1 (en) * 2012-07-26 2014-01-30 学校法人 東洋大学 Method and device for treating ammonia nitrogen-containing water at low temperature
JPWO2014017429A1 (en) * 2012-07-26 2016-07-11 学校法人 東洋大学 Method and apparatus for low temperature treatment of ammonia nitrogen containing water
CN104961233A (en) * 2015-06-18 2015-10-07 北京工业大学 Device and method for adjusting coupling intermittent aeration to start shortcut nitrification of urban sewage by using dissolved oxygen
WO2019198389A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen processing method
JP2019181377A (en) * 2018-04-11 2019-10-24 株式会社日立製作所 Nitrogen treatment method

Also Published As

Publication number Publication date
JP3656426B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
CN112456643A (en) System and method for realizing partial anaerobic ammonia oxidation deep nitrogen and phosphorus removal by circulating and alternately utilizing main flow and side flow zone biomembrane of urban sewage treatment plant
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP3252888B2 (en) Biological nitrogen removal equipment
JP3656426B2 (en) Biological treatment of ammoniacal nitrogen
KR20130004730A (en) Membrane bio reactor system comprising sequencing batch reactor and method using the same
US10384965B2 (en) Sewage treatment system using granule
WO1999000333A1 (en) Process for reducing nitrous oxide emission from waste water treatment
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
CN105110561B (en) A kind of method that high ammonia-nitrogen wastewater is handled under low dissolved oxygen condition
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
JPH10180292A (en) Method of removing nitrogen from waste water and device therefor
CN114620830A (en) Municipal sewage treatment system and method
JPS585118B2 (en) Yuukiseihaisuino
JPS6117559B2 (en)
KR100513429B1 (en) Treatment system and Nutrient Removal of Wastewater using Media Separator
JP3815977B2 (en) Treatment method for wastewater containing high concentration nitrogen
JPS6222678B2 (en)
JP2003094096A (en) Method for treating organic waste, apparatus therefor, and sludge
JPH06182377A (en) Method for treating sewage
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
US10934196B2 (en) Lagoon-based wastewater treatment with denitrification

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees