WO2014017429A1 - Method and device for treating ammonia nitrogen-containing water at low temperature - Google Patents

Method and device for treating ammonia nitrogen-containing water at low temperature Download PDF

Info

Publication number
WO2014017429A1
WO2014017429A1 PCT/JP2013/069776 JP2013069776W WO2014017429A1 WO 2014017429 A1 WO2014017429 A1 WO 2014017429A1 JP 2013069776 W JP2013069776 W JP 2013069776W WO 2014017429 A1 WO2014017429 A1 WO 2014017429A1
Authority
WO
WIPO (PCT)
Prior art keywords
containing water
ammonia
concentration
carrier
nitrogen
Prior art date
Application number
PCT/JP2013/069776
Other languages
French (fr)
Japanese (ja)
Inventor
角野 立夫
Original Assignee
学校法人 東洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東洋大学 filed Critical 学校法人 東洋大学
Priority to JP2014526906A priority Critical patent/JP6161210B2/en
Priority to KR20157002286A priority patent/KR20150037909A/en
Publication of WO2014017429A1 publication Critical patent/WO2014017429A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/10Temperature conditions for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method and apparatus for treating ammonia nitrogen-containing water that biologically nitrifies ammoniacal nitrogen at low temperatures, and in particular, environmental purification such as sewage treatment, industrial waste liquid treatment, lake purification, Regarding removal of ammonia in water at water purification plants and aquariums.
  • waste liquids containing low to high ammonia concentrations are discharged. Since these waste liquids cause eutrophication of water bodies and a decrease in dissolved oxygen, it is necessary to treat them before discharging them from factories.
  • biological treatment is often performed in medium to high concentration ammonia treatment.
  • a treatment method using an activated sludge method is usually performed.
  • ammonia is nitrified by nitrifying bacteria to form nitric acid or nitrous acid, and then converted to nitrogen gas by denitrifying bacteria to remove nitrogen contained in the wastewater.
  • nitrifying bacteria used in such an activated sludge method the present inventors have so far identified a nitrifying group (AH group, detected by culturing for 8 weeks in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more.
  • AH bacteria group (Ammonia oxidizing bacteria detected by MPN method using High ammonium media)
  • MPN method: most probable number method a group of nitrifying bacteria detected by culturing for 8 weeks in a low concentration ammonia sulfate solution with a concentration of 100 mg / L
  • AL fungus group (Ammonia oxidizing bacteria detected by MPN method using Low ammonium media)
  • the AH bacteria group is effective for the treatment of high-concentration ammoniacal nitrogen-containing water (about 400 mg / L to 500 mg / L)
  • the AL fungus group is low-concentration ammoniacal nitrogen-containing water (about 100 mg).
  • the concentration of ammoniacal nitrogen in general household wastewater is as low as 20 to 40 mg / L
  • the AL fungus group suitable for the treatment of low-concentration ammoniacal nitrogen-containing water is mainly used for the treatment of such wastewater. It is used for.
  • the present invention addresses such a problem, and usually treats wastewater at a low temperature using AH bacteria used for the treatment of high-concentration ammoniacal nitrogen-containing water. This is because the AH bacteria group obtained by the present inventors as a result of earnest research can be stably treated with ammoniacal nitrogen-containing water without significantly reducing the treatment activity even at low temperatures. Based on the findings of
  • an object of the present invention is to provide a method capable of stably treating ammonia nitrogen-containing water even at a low temperature of 15 ° C. or lower.
  • Another object of the present invention is to provide an apparatus capable of stably treating ammonia nitrogen-containing water even at a low temperature of 15 ° C. or lower.
  • Still another object of the present invention is to provide a carrier holding AH bacteria group that can stably treat ammoniacal nitrogen-containing water even at a low temperature of 15 ° C. or lower.
  • a method of treating ammonia nitrogen-containing water according to an aspect of the present invention includes: Ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L and a carrier on which a nitrifying bacteria group preferentially propagated by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks
  • the method of treating ammonia nitrogen-containing water includes: Nitrifying bacteria detected by contacting ammonia-containing nitrogen water having an ammonia nitrogen concentration of 100 to 1000 mg / L with a microorganism-supporting carrier and culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks.
  • a culture process for preferentially culturing the group The cultured nitrifying bacteria group is brought into contact with the ammoniacal nitrogen-containing water having an ammoniacal nitrogen concentration of 1 to 300 mg / L in an aerobic atmosphere at 0 ° C. or higher and 15 ° C. or lower to bring the ammoniacal nitrogen-containing water into contact.
  • a nitrification step of nitrifying ammonia is provided.
  • the treatment apparatus for ammoniacal nitrogen-containing water according to another aspect of the present invention, A nitrification tank, An introduction part for introducing ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L into the nitrification tank; A discharge section for discharging the ammoniacal nitrogen-containing water treated from the nitrification tank,
  • the nitrification tank contains a carrier on which a nitrifying bacteria group preferentially propagated by culturing for 8 weeks in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more, In the nitrification tank, the ammoniacal nitrogen-containing water is treated at 0 ° C. or more and 15 ° C. or less.
  • the treatment apparatus for ammoniacal nitrogen-containing water A culture tank for culturing a group of nitrifying bacteria detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks; A first introduction part for introducing ammoniacal nitrogen-containing water having an ammoniacal nitrogen concentration of 100 to 1000 mg / L into the culture tank; A discharge section for discharging the nitrifying bacteria group cultured from the culture tank; and a nitrification tank connected to the discharge section; A second introduction part for introducing ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L into the nitrification tank; A discharge section for discharging the ammoniacal nitrogen-containing water treated from the nitrification tank, Supplying the cultured nitrifying bacteria group from the culture tank to the nitrification tank via the discharge section; In the nitrification tank, the
  • the bacteria holding carrier for the treatment of ammoniacal nitrogen-containing water according to another aspect of the present invention, A carrier; A group of nitrifying bacteria preferentially propagated on the carrier, which is detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks, A bacterial carrier for treating 1 to 300 mg / L of ammoniacal nitrogen-containing water at a temperature of 0 ° C. to 15 ° C.
  • the present invention it is possible to provide a method and an apparatus for treating ammonia nitrogen-containing water, which can perform stable ammonia treatment at a low water temperature of 15 ° C. or lower and can always obtain stable treated water.
  • FIG. 1 It is a schematic diagram of the nitrification tank by this invention. It is a figure which shows the apparatus for ammonia nitrogen containing water treatment by this invention provided with an AH fungal group culture tank. It is a figure which shows the apparatus for water treatment of ammonia nitrogen containing water by this invention to which two or more nitrification tanks were connected. It is a figure which shows the example of application of the multistage processing type by this invention. It is a figure which shows the example of application of the processing flow of the AH fungal group addition type by this invention. It is a figure which shows the influence of the water temperature which acts on the nitrification rate. It is a figure which shows the daily change of the process characteristic by this invention.
  • AH fungal group refers to a nitrifying bacterial group detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks
  • a fungal group This refers to a group of nitrifying bacteria detected by culturing in a low concentration ammonia sulfate solution having a concentration of 100 mg / L for 8 weeks. Therefore, any bacteria can be detected as long as it is detected under such conditions, and is not limited to a specific bacteria.
  • the AH fungal group it is considered that it belongs to the genus Nitrosomonas, but it is not determined taxonomically.
  • a single bacterium from the AH fungal group can be isolated and used, but it is preferable from the viewpoint of stability of activity that a plurality of types of bacteria coexist as the AH fungal group.
  • “detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks” means at least 8 weeks in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more. This means that if cultured, nitrifying bacteria as AH bacteria are generated and can be detected, and it does not mean a culture period of just 8 weeks.
  • the upper limit concentration of the ammonium sulfate solution was not defined, the upper limit is the concentration limit at which nitrifying bacteria can be cultured.
  • nitrification refers to the production of nitric acid or nitrous acid from ammonia.
  • microorganism holding carrier means a carrier on which activated sludge or the like is fixed.
  • the “microorganism holding carrier” also includes a entrapping immobilization microorganism carrier.
  • the carrier on which the nitrifying bacteria group preferentially propagated by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks means the number of bacteria retained on the carrier.
  • the number of AH fungal groups is preferably 2 times or more of the number of AL fungal groups, more preferably 10 times or more, still more preferably 100 times or more, and most preferably 1000 times or more.
  • a carrier dominant in AH bacteria group is also used synonymously.
  • nitrification tank and “AH fungal culture tank” are used synonymously. This is because the nitrification tank for medium to high concentration treatment serves as a tank for treating water containing medium to high concentration ammoniacal nitrogen, and at the same time, the AH bacteria group is cultured in the tank.
  • the AH fungal group used in the present invention can be acclimatized from general activated sludge, lake bottom mud and the like. Therefore, no special technique or raw material is required to obtain the AH bacteria group, and any method known in the art may be used.
  • the AH bacteria group used in the present invention is a gellan gum medium (R. Takahashi, et al .: "Pure isolation of a new chemoautotrophic ammonia-oxidizing bacterium on gellan gum plate", J. Fermentation and Bioengineering, vol. 74, No. 1, pp. 52-54 (1992)) can be used. Further, enrichment culture is possible by immobilizing activated sludge from a sewage treatment plant and culturing it in inorganic wastewater containing an ammoniacal nitrogen concentration of 100 to 1000 mg / L.
  • ⁇ Carrier> In order to retain the bacterium on the carrier, methods such as (i) adhesion immobilization and (ii) entrapping immobilization can be used.
  • a material having many irregularities such as a spherical or cylindrical carrier, a string-like material, a gel-like carrier, or a nonwoven material is preferable for bacterial adhesion, and the use of such a carrier improves the removal rate of ammonia nitrogen.
  • a bacterium and an immobilization material are mixed, polymerized, and the bacterium is comprehensively immobilized inside the gel.
  • the monomer material acrylamide, methylenebisacrylamide, triacryl formal and the like are preferable.
  • the prepolymer material is preferably polyethylene glycol diacrylate or polyethylene glycol methacrylate, and derivatives thereof can also be used.
  • inclusion shapes such as spherical, square, and cylindrical inclusion carriers, string inclusion carriers, and nonwoven inclusion inclusions with many irregularities are preferable, and the ammonia nitrogen removal rate is improved.
  • ammonia nitrogen-containing water includes, but is not limited to, wastewater such as domestic wastewater, human waste, and factory wastewater, and water in a domestic water tank and aquarium. Moreover, if ammonia nitrogen is contained, even the water can be treated by the method or apparatus according to the present invention.
  • the ammoniacal nitrogen concentration of the ammoniacal nitrogen-containing water treated by the method and apparatus according to the present invention is preferably in the range of 1 to 1000 mg / L.
  • the ammoniacal nitrogen concentration is preferably in the range of 1 to 300 mg / L, and 1 to 100 mg / L from the viewpoint of processing efficiency.
  • the AH fungus group culture tank shown in FIG. 2 it is preferably in the range of 100 to 1000 mg / L, and more preferably in the range of 200 to 500 mg / L from the viewpoint of treatment efficiency.
  • the multistage treatment shown in FIG. 3 it is preferably in the range of 50 to 500 mg / L, more preferably in the range of 100 to 300 mg / L from the viewpoint of treatment efficiency.
  • the temperature of the ammoniacal nitrogen-containing water to be treated by the method and apparatus according to the present invention is preferably 0 ° C. or higher and 15 ° C. or lower, and more preferably 0 ° C. or higher and 10 ° C. or lower in view of particularly excellent treatment activity than the conventional method. Further, it is more preferable to use at 0 ° C. or higher and 5 ° C. or lower in consideration of the further excellent treatment activity. That is, nitrification of ammonia nitrogen-containing water by the conventional method hardly progresses at 10 ° C. or lower, but according to the method and apparatus of the present invention, it is stable even at 10 ° C. or lower, further 5 ° C. or lower. Nitrification treatment can be performed.
  • the lower limit of the water temperature processed with a method and an apparatus is not set in particular, it understands that 0 degreeC vicinity which is a freezing point of water becomes a minimum, since this invention is related to water treatment.
  • the nitrification tank 10 includes a carrier 12 in which AH bacteria are retained.
  • the AH bacteria group retained on the carrier nitrifies ammonia to produce nitrous acid or nitric acid.
  • the ammonia-containing nitrogen-containing water stays in the nitrification tank for a certain period of time and then flows out from the treated water outflow part 16 through the carrier separation network 18 as treated water.
  • the treated water that has flowed out is then sent to a denitrification tank (not shown) where nitric acid and nitrous acid in the treated water are converted to nitrogen gas and removed.
  • the nitrification tank may be anything as long as it can hold the carrier and waste water for a certain period of time, and the material and volume of the nitrification tank are not particularly limited.
  • the filling rate of the carrier contained in the nitrification tank is preferably 1% to 60%, more preferably 5% to 20%, and most preferably 8% to 15% from the viewpoint of processing efficiency.
  • the time during which the ammonia nitrogen-containing water stays in the nitrification tank depends on the ammonia nitrogen content of the water to be treated, but is preferably about 0.3 to 24 hours, preferably 0.5 to 12 hours. More preferably, it is 1 to 3 hours, and most preferable in terms of processing efficiency.
  • the processing speed of the AH bacterial group is most preferable to increase.
  • wastewater treatment in a cold region and ammonia removal in a low temperature water tank such as an aquarium can be stably performed.
  • ammonia can be effectively removed even when ammonia is mixed in clean water having a temperature lower than that of waste water.
  • a processing apparatus can be manufactured more compactly and at low cost.
  • FIG. 2 shows a flow equipped with an apparatus for culturing AH bacteria using this detachment solution.
  • the nitrification tank is used in the conventional activated sludge method, for example, floating A tank using a type activated sludge method may be used.
  • the nitrification tank may contain a carrier holding the AH bacteria group.
  • An embodiment including a carrier in which AH bacteria are held in a nitrification tank is preferable in that a larger amount of waste water can be treated at high speed and stably.
  • the AH bacterium culture tank 20 contains a carrier 12 holding microorganisms, and the waste water containing medium to high concentration ammoniacal nitrogen (100 to 100%) from the medium to high concentration ammonia nitrogen containing water introduction section 24 is contained therein. 1000 mg / L) is introduced and brought into contact with the carrier, and the AH bacteria group is preferentially cultured on the carrier. As the culture of the AH fungal group proceeds, a part of the proliferated AH fungal group leaks from the carrier and is supplied to the nitrification tank 100 through the AH fungal group discharge unit 22.
  • the bacteria supplied to the nitrification tank stay in the nitrification tank on average several days to one month.
  • the supplied AH fungal group is contacted with the ammoniacal nitrogen-containing water introduced from the ammoniacal nitrogen-containing water introduction section 14 as in the case of FIG. This produces nitric acid.
  • the treated water flowing out from the treated water outflow part 16 is sent to a denitrification tank (not shown), and nitric acid and nitrous acid in the treated water are converted into nitrogen gas and removed. .
  • FIG. 1 An example in which an environment that easily retains the AH bacteria group is prepared by configuring the medium concentration wastewater in a multi-stage treatment, and the treatment capability at a low water temperature is enhanced. Since a plurality of nitrification tanks are connected, wastewater containing higher concentration ammoniacal nitrogen can be treated at a time.
  • 28, 30, and 32 are the first nitrification tank, the second nitrification tank, and the third nitrification tank, respectively, and the concentration gradient in each tank can be made by multi-stage treatment, and the first nitrification tank has the highest NH 4 -N.
  • the concentration is high, and the concentration of NH 4 -N decreases in the order of the second nitrification tank and the third nitrification tank.
  • the growth of the AH fungal group depends on the NH 4 -N concentration in the atmosphere, and the higher the concentration, the better the growth of the AH fungal group. Therefore, the AH fungal group easily grows in the first nitrification tank. And the AH bacteria group which proliferated in the 1st nitrification tank will be supplied to a 2nd nitrification tank or a 3rd nitrification tank. Thereby, the processing performance in the entire three-stage process is maintained even at a low temperature, and the temperature resistance is improved.
  • the treatment procedure of the ammonia nitrogen-containing water is substantially the same as that in FIG. 1, and the medium-concentration ammonia nitrogen-containing water introduced into the first nitrification tank 28 from the medium-concentration ammonia nitrogen-containing water introduction unit 26 is In contact with the AH bacteria group held on the carrier 12 in one nitrification tank 28, the AH bacteria group held on the carrier nitrifies a part of the ammonia in the water to produce nitrous acid or nitric acid.
  • the ammoniacal nitrogen-containing water is introduced into the second nitrification tank 30 after having stayed in the first nitrification tank 28 for a certain period of time.
  • the digestion of ammonia in water proceeds, and after staying for a certain time, the ammoniacal nitrogen-containing water flows out of the second nitrification tank 30 and moves to the third nitrification tank 32.
  • the nitrification treatment is similarly performed here, and the treated water finally flowing out from the third nitrification tank is then sent to a denitrification tank (not shown) to convert nitric acid and nitrous acid in the treated water into nitrogen gas. Removed.
  • Each nitrification tank may have a different capacity, shape and material, and the residence time and the filling amount of the carrier differ depending on the concentration of NH 4 —N and the treatment amount of ammonia nitrogen-containing water to be treated in each tank. May be. Moreover, the number of nitrification tanks can also be adjusted according to the property of the ammoniacal nitrogen-containing water to be treated.
  • FIG. 4 is equipped with a denitrification device according to the present method
  • FIG. 5 is equipped with a device for introducing the AH fungal group preferred carrier of the present method into the nitrification tank of the modified circulation method or introducing the AH fungal group. is there.
  • ⁇ Production of entrapped immobilization microorganism carrier> Activated sludge from sewage treatment plant (obtained from T city end treatment plant, Gunma Prefecture), 15 parts of polyethylene glycol dimethacrylate ("Light Ester 14EG (product number)", manufactured by Kyoeisha Chemical Co., Ltd.), NNN'N 'tetramethylethylenediamine ("206-04006 (product number)", Wako Pure Chemical Industries, Ltd.) 0.5 part and water 69.25 parts are mixed to form a suspension, and potassium persulfate ("162-04235 (product number) ) ", Manufactured by Wako Pure Chemical Industries, Ltd.) When 0.25 part was added, the polymerization started and gelled. The obtained gel was cut into 3 mm square pellets and used in the following examples.
  • Example 1 ⁇ Production of AH bacteria dominant carrier>
  • the entrapping immobilization microorganism carrier cut into pellets was conditioned with inorganic synthetic wastewater (NH 4 -N: 400 mg / L) shown in Table 1 below.
  • the acclimatization was carried out in a nitrification tank having a volume of 1.4 L shown in FIG. 1 for 2 months with a load of 0.5 kg-N / m 3 ⁇ d. What was acclimatized for 2 months on the said conditions was used as a carrier of AH bacteria group predominance.
  • Comparative Example 1 ⁇ Preparation of carrier dominant in AL fungus group> A load of 0.5 kg-N / m was used in the same manner as in the case of the carrier dominant in the AH bacteria group, except that the inorganic synthetic wastewater was diluted 10-fold with tap water (NH 4 -N: 40 mg / L). It was prepared by acclimation at 3 ⁇ d and used as a carrier for the dominant AL fungus group.
  • the carrier was crushed and the bacteria were dispersed.
  • a fixed amount of carrier was collected in 9 ml of sterilized water, and crushed and dispersed.
  • a homogenizer homogenizer PA type, manufactured by Ikemoto Rika Kogyo Co., Ltd.
  • an ultrasonic treatment device US300 type, manufactured by Nippon Seiki Co., Ltd.
  • Table 2 shows pretreatment conditions.
  • the numbers of AH fungal group and AL fungal group were measured according to the most probable value method using a liquid in which bacteria were dispersed.
  • the number of bacteria measuring medium AH bacteria group and AL bacteria group shown in Table 3 were prepared and after sterile filtration, sterile component into a plurality of test tubes put CaCO 3 to about 50mg and sterilized dry heat by 9mL Noted.
  • a test tube different from that containing the measurement medium was prepared, 9 mL of sterilized water was added thereto, and further 1 mL of the pretreated liquid was added as a stock solution to dilute 10 times.
  • the number of viable bacteria per 1 mL of the stock solution was calculated in the same manner for the carrier dominant in the AL group. The results are shown in Table 4.
  • the carriers of Example 1 and Comparative Example 1 are carriers of the AH group dominant and AL groups dominant, respectively.
  • Nitrification tank volume of 1.4L shown in FIG. 1 after 2 months acclimatization load 0.5kg-N / m 3 ⁇ d , it was measured nitrification rate of the carrier from the balance of the water quality in continuous operation These were 0.45 kg-N / m 3 ⁇ d and 0.46 kg-N / m 3 ⁇ d, respectively, which were almost equal.
  • NH 4 —N, NO 3 —N, and NO 2 —N were measured as the quality of raw water and treated water.
  • NH 4 -N conforms to the indophenol blue colorimetric method (JIS-K0102, where JIS is an abbreviation for Japanese Industrial Standards), and NO 3 -N and NO 2 -N represent ion chromatograph analyzers (" ICS-1600 (product number) ”(manufactured by Dionex). Further, since the suspended water in the treated water was slightly mixed, the treated water was filtered through a 0.45 ⁇ filter (“DISMIC-25cs (product number)”, manufactured by Advantech Co., Ltd.) in advance.
  • Example 2 Using the carrier prepared in Example 1 (AH bacteria group dominant carrier), the nitrification rate according to temperature was measured. For the evaluation, batch treatment was performed using a nitrification tank having a volume of 1.4 L shown in FIG. 1 to obtain a nitrification rate. As raw water, NH 4 -N 40 mg / L obtained by diluting the inorganic synthetic waste water shown in Table 1 10 times was used. The carrier filling amount in the nitrification tank was 8%.
  • Table 5 and FIG. 6 show the results of measurement under the above conditions with the temperature changed to 5, 10, 15 and 20 ° C.
  • Comparative Example 2 The nitrification rate according to temperature was measured in the same manner as in Example 2 except that the carrier prepared in Comparative Example 1 (a carrier dominant in AL bacteria) was used. The results are shown in Table 5 and FIG. From this result, it can be seen that the carrier dominant in the AH group is more resistant to low temperature than the carrier dominant in the AL group. In particular, it can be seen that at a water temperature of 10 ° C. or less, the carrier predominantly AH group can obtain a significantly higher nitrification rate than the carrier predominantly AL group.
  • Example 3 A long-term treatment operation was performed at 5 ° C. using the carrier prepared in Example 1 (AH group dominant carrier).
  • synthetic inorganic wastewater (NH 4 -N concentration: 48 to 66 mg / L) was used in the nitrification tank having the configuration shown in FIG. The conditions of the processing operation are shown below.
  • the results for Example 3 are shown in FIGS.
  • Comparative Example 3 A long-term treatment operation was carried out at 5 ° C. in the same manner as in Example 3 except that the carrier prepared in Comparative Example 1 (a carrier predominantly AL bacteria) was used. The results for Comparative Example 3 are shown in FIGS. It is clear that the AH bacteria-dominant carrier according to the present invention is excellent in treatment performance at low water temperature in both aging ability and nitrification rate against volumetric load.
  • Example 4 The apparatus of the flow of FIG. 2 was used.
  • Medium-to-high concentration treatment of unfamiliar entrapped immobilization microorganism carrier activated sludge immobilization carrier
  • activated sludge immobilization carrier produced using activated sludge using medium-to-high concentration ammoniacal nitrogen-containing water (desorbed liquid after sludge dehydration)
  • the nitrification tank (culture tank) 20 is used, and a leaching solution containing medium to high concentration ammonia is introduced into the nitrification tank (culture tank) 20, and the AH bacteria group inside the carrier in the medium to high concentration treatment nitrification tank (culture tank) 20.
  • a part of the AH bacteria group leaks from the carrier and is put into the nitrification tank 100.
  • Activated sludge is suspended in the nitrification tank 100.
  • Low concentration ammoniacal nitrogen-containing water was allowed to flow into the nitrification tank 100 from the ammoniacal nitrogen-containing water introduction section 14 to perform nitrification treatment.
  • the unfamiliar entrapped immobilization microorganism carrier activated sludge immobilization carrier
  • the immobilized activated sludge activated sludge from the T sewage treatment plant was used.
  • the AH bacteria group grows on the carrier in the culture tank, the AH bacteria group leaks from the carrier, and is supplied to the nitrification tank, whereby nitrification is promoted at a low water temperature.
  • the water temperature was 10 to 13 ° C.
  • the ammoniacal nitrogen concentration in the treated water of the nitrification tank 100 was NH 4 —N: 1 mg / L or less.
  • the treatment was performed using the previously unfamiliar entrapped immobilization microorganism carrier (activated sludge immobilization carrier).
  • activated sludge immobilization carrier activated sludge from the T sewage treatment plant was used.
  • the water temperature was 8 to 13 ° C.
  • the ammoniacal nitrogen concentration in the treated water was NH 4 —N: 1 mg / L or less. Therefore, the effect of the method and apparatus according to the present invention is clear.
  • Nitrification tank 12 Carrier 14 Ammonia nitrogen-containing water introduction part 16 Treated water outflow part 18 Carrier separation network 19 Nitrification liquid circulation line 20
  • AH fungus group release part 24 Medium to high concentration ammonia nitrogen containing water introduction part 26
  • First nitrification tank 30 Second nitrification tank 32
  • Third nitrification tank 100 Conventional nitrification tank 120
  • Conventional Carrier 130 conventional carrier 200 denitrification tank 310 denitrifying bacteria adhesion filler 500 organic substance supply tank

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

A method and a device are provided with which ammonia nitrogen-containing water can be stably treated even when the water temperature is 15ºC or lower. The method includes a nitrification step in which ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1-300 mg/L is brought into contact with a carrier on which nitrifying bacteria have been preferentially propagated to such a degree that the bacteria are detected after 8-week cultivation in an ammonium sulfate solution having a concentration as high as 5,000 mg/L or above, in an aerobic environment at a temperature of 0-15ºC to thereby nitrify the ammonia contained in the ammonia nitrogen-containing water.

Description

アンモニア性窒素含有水の低温処理方法および装置Method and apparatus for low temperature treatment of ammonia nitrogen containing water
 本発明は、アンモニア性窒素を低温で生物学的に硝化する、アンモニア性窒素含有水の処理方法および装置に関するものであり、特に、下水処理、産業廃液処理、湖沼の浄化などの環境浄化や、浄水場および水族館などでの水中アンモニア除去に関する。 The present invention relates to a method and apparatus for treating ammonia nitrogen-containing water that biologically nitrifies ammoniacal nitrogen at low temperatures, and in particular, environmental purification such as sewage treatment, industrial waste liquid treatment, lake purification, Regarding removal of ammonia in water at water purification plants and aquariums.
 食品工場や化学工場などでは、低濃度から高濃度のアンモニアを含む廃液が排出される。これらの廃液は、水域の富栄養化や溶存酸素の低下などの原因となるため、工場等から排出する前に処理を行う必要がある。 In food factories and chemical factories, waste liquids containing low to high ammonia concentrations are discharged. Since these waste liquids cause eutrophication of water bodies and a decrease in dissolved oxygen, it is necessary to treat them before discharging them from factories.
 一般的に、中~高濃度のアンモニア処理では生物処理が多く行われている。廃水中のアンモニア性窒素を生物学的に処理する場合、通常、活性汚泥法を用いた処理方法が行われる。この方法は、硝化菌によってアンモニアを硝化して硝酸または亜硝酸とし、次いで脱窒菌によって更に窒素ガスへと変換することで、廃水に含まれていた窒素を除去する方法である。 In general, biological treatment is often performed in medium to high concentration ammonia treatment. When biologically treating ammonia nitrogen in wastewater, a treatment method using an activated sludge method is usually performed. In this method, ammonia is nitrified by nitrifying bacteria to form nitric acid or nitrous acid, and then converted to nitrogen gas by denitrifying bacteria to remove nitrogen contained in the wastewater.
 このような活性汚泥法に用いる硝化菌として、本発明者等はこれまで、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群(AH菌群、(Ammonia oxidizing bacteria detected by MPN method using High ammonium media))(MPN method: most probable number method)、および濃度100mg/Lの低濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群(AL菌群、(Ammonia oxidizing bacteria detected by MPN method using Low ammonium media))を研究し、開示してきた(特許文献1および非特許文献1)。その過程で、AH菌群は高濃度のアンモニア性窒素含有水(400mg/L~500mg/L程度)の処理に対して有効であり、AL菌群は低濃度のアンモニア性窒素含有水(約100mg/L以下)の処理に対して有効であるとの知見を得た。一般的な家庭排水のアンモニア性窒素濃度は20~40mg/L程度の低濃度であるため、そのような排水の処理には低濃度のアンモニア性窒素含有水の処理に適したAL菌群が主に用いられている。 As nitrifying bacteria used in such an activated sludge method, the present inventors have so far identified a nitrifying group (AH group, detected by culturing for 8 weeks in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more. (Ammonia oxidizing bacteria detected by MPN method using High ammonium media)) (MPN method: most probable number method), and a group of nitrifying bacteria detected by culturing for 8 weeks in a low concentration ammonia sulfate solution with a concentration of 100 mg / L ( AL fungus group (Ammonia oxidizing bacteria detected by MPN method using Low ammonium media)) has been studied and disclosed (Patent Document 1 and Non-Patent Document 1). In the process, the AH bacteria group is effective for the treatment of high-concentration ammoniacal nitrogen-containing water (about 400 mg / L to 500 mg / L), and the AL fungus group is low-concentration ammoniacal nitrogen-containing water (about 100 mg). / L or less) was found to be effective for the treatment. Since the concentration of ammoniacal nitrogen in general household wastewater is as low as 20 to 40 mg / L, the AL fungus group suitable for the treatment of low-concentration ammoniacal nitrogen-containing water is mainly used for the treatment of such wastewater. It is used for.
特許3252887号Japanese Patent No. 325287
 通常、生活排水は地下の下水管を通って廃水処理場に運ばれることから、冬場でも外気に比べて温度が下がりにくい。しかも廃水処理タンクが覆蓋などの断熱加工されている場合が多いことから、廃水の温度は年間を通して大きく変化せず、冬場であっても15℃を下回ることはほとんどなく、10℃を下回るのは非常に稀である。しかし、寒冷地では冬場に廃水温度が15℃を下回り、10℃を下回ることもある。このような場合に、AL菌群を用いた廃水処理では処理能力が大幅に低下する場合があることが判明した。これはAL菌群のアンモニア硝化活性が15℃以下で低下し、10℃を下回るとその活性が著しく低下することに起因するものと考えられている。そして10℃以下では、菌を高濃度に保持しても硝化が進行し難く、硝化がほとんど進行しないことが分かった。したがって、水温が15℃以下でも安定的にアンモニア性窒素含有水の処理が行える方法および装置が求められている。 Usually, domestic wastewater is transported to a wastewater treatment plant through underground sewage pipes, so the temperature is less likely to drop compared to outside air even in winter. Moreover, since the wastewater treatment tank is often heat-insulated such as a cover, the temperature of the wastewater does not change greatly throughout the year, and it is rarely below 15 ° C even in winter, and below 10 ° C. Very rare. However, in cold regions, the temperature of the wastewater may be below 15 ° C and below 10 ° C in winter. In such a case, it has been found that the treatment capacity may be significantly reduced in the wastewater treatment using the AL fungus group. This is considered to be caused by the fact that the ammonia nitrification activity of the AL fungus group decreases at 15 ° C. or less, and that the activity significantly decreases when the temperature falls below 10 ° C. At 10 ° C. or less, it was found that nitrification hardly progressed even if the bacteria were kept at a high concentration, and nitrification hardly proceeded. Therefore, there is a need for a method and apparatus that can stably treat ammonia-containing nitrogen-containing water even when the water temperature is 15 ° C. or lower.
 本発明はこのような課題に対処するものであり、通常は高濃度のアンモニア性窒素含有水の処理に用いられるAH菌群を用いて低温で廃水の処理を行うものである。これは、本発明者らが鋭意研究の結果知得した、AH菌群が低温においてもその処理活性が大幅に低下せずに、安定してアンモニア性窒素含有水の処理を行うことができるとの知見に基づく。 The present invention addresses such a problem, and usually treats wastewater at a low temperature using AH bacteria used for the treatment of high-concentration ammoniacal nitrogen-containing water. This is because the AH bacteria group obtained by the present inventors as a result of earnest research can be stably treated with ammoniacal nitrogen-containing water without significantly reducing the treatment activity even at low temperatures. Based on the findings of
 したがって、本発明の目的は、15℃以下の低温であっても安定してアンモニア性窒素含有水を処理することができる方法を提供することである。 Therefore, an object of the present invention is to provide a method capable of stably treating ammonia nitrogen-containing water even at a low temperature of 15 ° C. or lower.
 また、本発明の別の目的は、15℃以下の低温であっても安定してアンモニア性窒素含有水を処理することができる装置を提供することである。 Another object of the present invention is to provide an apparatus capable of stably treating ammonia nitrogen-containing water even at a low temperature of 15 ° C. or lower.
 また、本発明のさらに別の目的は、15℃以下の低温であっても安定してアンモニア性窒素含有水を処理することができるAH菌群を保持した担体を提供することである。 Furthermore, still another object of the present invention is to provide a carrier holding AH bacteria group that can stably treat ammoniacal nitrogen-containing water even at a low temperature of 15 ° C. or lower.
 本発明の一態様に係るアンモニア性窒素含有水を処理する方法は、
 アンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水と、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群が優先繁殖した担体とを、好気性雰囲気下、0℃以上15℃以下で接触させて前記アンモニア性窒素含有水中のアンモニアを硝化する硝化工程、
を含む。
A method of treating ammonia nitrogen-containing water according to an aspect of the present invention includes:
Ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L and a carrier on which a nitrifying bacteria group preferentially propagated by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks A nitrification step of nitrifying ammonia in the ammoniacal nitrogen-containing water by contacting at 0 ° C. or higher and 15 ° C. or lower in an aerobic atmosphere;
including.
 また、本発明の別の態様に係るアンモニア性窒素含有水を処理する方法は、
 アンモニア性窒素濃度が100~1000mg/Lのアンモニア性窒素含有水と微生物保持担体とを接触させて、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群を優先培養する培養工程と、
 前記培養された硝化菌群と、アンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水とを、好気性雰囲気下、0℃以上15℃以下で接触させて前記アンモニア性窒素含有水中のアンモニアを硝化する硝化工程と
を含む。
Moreover, the method of treating ammonia nitrogen-containing water according to another aspect of the present invention includes:
Nitrifying bacteria detected by contacting ammonia-containing nitrogen water having an ammonia nitrogen concentration of 100 to 1000 mg / L with a microorganism-supporting carrier and culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks. A culture process for preferentially culturing the group;
The cultured nitrifying bacteria group is brought into contact with the ammoniacal nitrogen-containing water having an ammoniacal nitrogen concentration of 1 to 300 mg / L in an aerobic atmosphere at 0 ° C. or higher and 15 ° C. or lower to bring the ammoniacal nitrogen-containing water into contact. A nitrification step of nitrifying ammonia.
 また、本発明の別の態様に係るアンモニア性窒素含有水の処理装置は、
 硝化槽と、
 前記硝化槽にアンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水を導入する導入部と、
 前記硝化槽から処理した前記アンモニア性窒素含有水を排出する排出部と
を備え、
 前記硝化槽の中に濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群が優先繁殖した担体が含まれており、
 前記硝化槽では0℃以上15℃以下で、アンモニア性窒素含有水を処理する。
Moreover, the treatment apparatus for ammoniacal nitrogen-containing water according to another aspect of the present invention,
A nitrification tank,
An introduction part for introducing ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L into the nitrification tank;
A discharge section for discharging the ammoniacal nitrogen-containing water treated from the nitrification tank,
The nitrification tank contains a carrier on which a nitrifying bacteria group preferentially propagated by culturing for 8 weeks in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more,
In the nitrification tank, the ammoniacal nitrogen-containing water is treated at 0 ° C. or more and 15 ° C. or less.
 また、本発明の別の態様に係るアンモニア性窒素含有水の処理装置は、
 濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群を培養する培養槽と、
 前記培養槽にアンモニア性窒素濃度が100~1000mg/Lのアンモニア性窒素含有水を導入する第1の導入部と、
 前記培養槽から培養された前記硝化菌群を放出する放出部と
 前記放出部に接続された硝化槽と、
 前記硝化槽にアンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水を導入する第2の導入部と、
 前記硝化槽から処理した前記アンモニア性窒素含有水を排出する排出部と
を備え、
 前記培養槽から前記硝化槽に、前記放出部を介して、培養した前記硝化菌群を供給し、
 前記硝化槽では0℃以上15℃以下で、アンモニア性窒素含有水を処理する。
Moreover, the treatment apparatus for ammoniacal nitrogen-containing water according to another aspect of the present invention,
A culture tank for culturing a group of nitrifying bacteria detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks;
A first introduction part for introducing ammoniacal nitrogen-containing water having an ammoniacal nitrogen concentration of 100 to 1000 mg / L into the culture tank;
A discharge section for discharging the nitrifying bacteria group cultured from the culture tank; and a nitrification tank connected to the discharge section;
A second introduction part for introducing ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L into the nitrification tank;
A discharge section for discharging the ammoniacal nitrogen-containing water treated from the nitrification tank,
Supplying the cultured nitrifying bacteria group from the culture tank to the nitrification tank via the discharge section;
In the nitrification tank, the ammoniacal nitrogen-containing water is treated at 0 ° C. or more and 15 ° C. or less.
 さらに本発明の別の態様に係るアンモニア性窒素含有水処理用の細菌保持担体は、
 担体と、
 前記担体に優先繁殖した硝化菌群であって、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群と
を含み、
 0℃以上15℃以下で1~300mg/Lのアンモニア性窒素含有水を処理する細菌保持担体である。
Furthermore, the bacteria holding carrier for the treatment of ammoniacal nitrogen-containing water according to another aspect of the present invention,
A carrier;
A group of nitrifying bacteria preferentially propagated on the carrier, which is detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks,
A bacterial carrier for treating 1 to 300 mg / L of ammoniacal nitrogen-containing water at a temperature of 0 ° C. to 15 ° C.
 本発明によれば、15℃以下の低水温で安定したアンモニア処理ができ、常時安定した良好な処理水を得ることができるアンモニア性窒素含有水の処理方法及び装置を提供することができる。 According to the present invention, it is possible to provide a method and an apparatus for treating ammonia nitrogen-containing water, which can perform stable ammonia treatment at a low water temperature of 15 ° C. or lower and can always obtain stable treated water.
本発明による硝化槽の模式図である。It is a schematic diagram of the nitrification tank by this invention. AH菌群培養槽を備える、本発明によるアンモニア性窒素含有水処理用装置を示す図である。It is a figure which shows the apparatus for ammonia nitrogen containing water treatment by this invention provided with an AH fungal group culture tank. 硝化槽が2つ以上連結された、本発明によるアンモニア性窒素含有水処理用装置を示す図である。It is a figure which shows the apparatus for water treatment of ammonia nitrogen containing water by this invention to which two or more nitrification tanks were connected. 本発明による多段処理型の応用例を示す図である。It is a figure which shows the example of application of the multistage processing type by this invention. 本発明によるAH菌群添加型の処理フローの応用例を示す図である。It is a figure which shows the example of application of the processing flow of the AH fungal group addition type by this invention. 硝化速度に及ぼす水温の影響を示す図である。It is a figure which shows the influence of the water temperature which acts on the nitrification rate. 本発明による処理特性の経日変化を示す図である。It is a figure which shows the daily change of the process characteristic by this invention. 本発明による負荷と硝化速度の関係を示す図である。It is a figure which shows the relationship between the load and nitrification speed by this invention. 従来法による処理特性の経日変化を示す図である。It is a figure which shows the daily change of the process characteristic by a conventional method. 従来法による負荷と硝化速度の関係を示す図である。It is a figure which shows the relationship between the load by a conventional method, and nitrification speed.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 <定義>
 本明細書において、「AH菌群」とは、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群のことをいい、「AL菌群」とは、濃度100mg/Lの低濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群のことを言う。したがって、このような条件で検出される菌であれば良く、特定の菌に限定されるものではない。AH菌群の具体的な例としては、ニトロソモナス(Nitrosomonas)属に属するものと考えられているが、分類学上定かではない。AH菌群からある単一の細菌を単離して用いることもできるが、AH菌群として複数種の細菌が共存している方が活性の安定性の面から好ましい。
 なお、本発明において、「濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される」とは、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で少なくとも8週間培養すればAH菌としての硝化菌が生じ、検出できるとの意味であり、8週間丁度の培養期間を意味するものではない。
 また、硫酸アンモニア溶液の上限濃度は規定しなかったが、硝化菌が培養可能な濃度限界が上限となる。
<Definition>
In the present specification, “AH fungal group” refers to a nitrifying bacterial group detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks, and “AL fungal group” This refers to a group of nitrifying bacteria detected by culturing in a low concentration ammonia sulfate solution having a concentration of 100 mg / L for 8 weeks. Therefore, any bacteria can be detected as long as it is detected under such conditions, and is not limited to a specific bacteria. As a specific example of the AH fungal group, it is considered that it belongs to the genus Nitrosomonas, but it is not determined taxonomically. A single bacterium from the AH fungal group can be isolated and used, but it is preferable from the viewpoint of stability of activity that a plurality of types of bacteria coexist as the AH fungal group.
In the present invention, “detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks” means at least 8 weeks in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more. This means that if cultured, nitrifying bacteria as AH bacteria are generated and can be detected, and it does not mean a culture period of just 8 weeks.
Moreover, although the upper limit concentration of the ammonium sulfate solution was not defined, the upper limit is the concentration limit at which nitrifying bacteria can be cultured.
 本明細書において、「硝化」とは、アンモニアから硝酸または亜硝酸を生ずることを言う。 In this specification, “nitrification” refers to the production of nitric acid or nitrous acid from ammonia.
 本明細書において、「微生物保持担体」とは、活性汚泥等を固定させた担体のことを言う。なお「微生物保持担体」には、包括固定化微生物担体も含まれる。 In this specification, “microorganism holding carrier” means a carrier on which activated sludge or the like is fixed. The “microorganism holding carrier” also includes a entrapping immobilization microorganism carrier.
 本明細書において、「濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群が優先繁殖した担体」とは、担体に保持される細菌の個体数に関して、AH菌群がAL菌群よりも多い担体のことを言う。AH菌群の数はAL菌群の数の2倍以上であるのが好ましく、10倍以上であるのがより好ましく、100倍以上であるのが更に好ましく、1000倍以上であるのが最も好ましい。また、本明細書中では「AH菌群優占の担体」も、同義に用いられる。 In the present specification, “the carrier on which the nitrifying bacteria group preferentially propagated by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks” means the number of bacteria retained on the carrier. , Refers to a carrier having more AH bacteria than AL bacteria. The number of AH fungal groups is preferably 2 times or more of the number of AL fungal groups, more preferably 10 times or more, still more preferably 100 times or more, and most preferably 1000 times or more. . Further, in the present specification, “a carrier dominant in AH bacteria group” is also used synonymously.
 本明細書において、「中~高濃度処理用硝化槽」と「AH菌群培養槽」は同義に用いられる。これは、中~高濃度処理用硝化槽が中~高濃度アンモニア性窒素含有水を処理する槽として働くと同時に、該槽内でAH菌群が培養されるからである。 In the present specification, “medium to high concentration nitrification tank” and “AH fungal culture tank” are used synonymously. This is because the nitrification tank for medium to high concentration treatment serves as a tank for treating water containing medium to high concentration ammoniacal nitrogen, and at the same time, the AH bacteria group is cultured in the tank.
 <活性汚泥>
 本発明に用いられるAH菌群は、一般的な活性汚泥や湖沼底泥などから馴養できる。したがって、AH菌群を得るためには何ら特別な手法または原料を必要とするものではなく、当業界において公知のいかなる方法を用いて調製しても良い。
<Activated sludge>
The AH fungal group used in the present invention can be acclimatized from general activated sludge, lake bottom mud and the like. Therefore, no special technique or raw material is required to obtain the AH bacteria group, and any method known in the art may be used.
 例えば、本発明に用いられるAH菌群はゲランガム培地(R. Takahashi, et al.: "Pure isolation of a new chemoautotrophic ammonia-oxidizing bacterium on gellan gum plate", J. Fermentation and Bioengineering, vol. 74, No. 1, pp. 52-54 (1992)参照)で純粋分離したものを用いることができる。また下水処理場の活性汚泥を固定化しアンモニア性窒素濃度100~1000mg/L含有する無機廃水で培養することにより、集積培養が可能である。 For example, the AH bacteria group used in the present invention is a gellan gum medium (R. Takahashi, et al .: "Pure isolation of a new chemoautotrophic ammonia-oxidizing bacterium on gellan gum plate", J. Fermentation and Bioengineering, vol. 74, No. 1, pp. 52-54 (1992)) can be used. Further, enrichment culture is possible by immobilizing activated sludge from a sewage treatment plant and culturing it in inorganic wastewater containing an ammoniacal nitrogen concentration of 100 to 1000 mg / L.
 <担体>
 菌を担体に保持させるには、(i)付着固定化、(ii)包括固定などの方法が用いることができる。(i)では球状や筒状などの担体、ひも状材料、ゲル状担体、不織布状材料など凹凸が多い材料が細菌の付着に好ましく、このような担体を用いるとアンモニア性窒素の除去率が向上する。(ii)では菌と固定化材料(モノマ、プレポリマ)を混合し、重合しゲルの内部に菌を包括固定化する。モノマー材料としてはアクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマールなどが好ましい。プレポリマ材料としてはポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートが好ましく、その誘導体も用いることができる。形状は球状、方形状および筒状などの包括担体、ひも状包括担体、不織布状など凹凸が多い包括担体が接触効率の面で好ましく、アンモニア性窒素の除去率が向上する。
<Carrier>
In order to retain the bacterium on the carrier, methods such as (i) adhesion immobilization and (ii) entrapping immobilization can be used. In (i), a material having many irregularities such as a spherical or cylindrical carrier, a string-like material, a gel-like carrier, or a nonwoven material is preferable for bacterial adhesion, and the use of such a carrier improves the removal rate of ammonia nitrogen. To do. In (ii), a bacterium and an immobilization material (monomer, prepolymer) are mixed, polymerized, and the bacterium is comprehensively immobilized inside the gel. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like are preferable. The prepolymer material is preferably polyethylene glycol diacrylate or polyethylene glycol methacrylate, and derivatives thereof can also be used. In terms of contact efficiency, inclusion shapes such as spherical, square, and cylindrical inclusion carriers, string inclusion carriers, and nonwoven inclusion inclusions with many irregularities are preferable, and the ammonia nitrogen removal rate is improved.
 <アンモニア性窒素含有水>
 本発明によって処理するアンモニア性窒素含有水は、生活排水、し尿、および工場排水などの廃水、ならびに家庭用水槽および水族館における水槽の水が挙げられるが、これらに限定されるものではない。また、アンモニア性窒素が含まれていれば、上水であっても本発明による方法または装置によって処理することができる。
<Ammonia nitrogen-containing water>
The ammoniacal nitrogen-containing water to be treated according to the present invention includes, but is not limited to, wastewater such as domestic wastewater, human waste, and factory wastewater, and water in a domestic water tank and aquarium. Moreover, if ammonia nitrogen is contained, even the water can be treated by the method or apparatus according to the present invention.
 本発明による方法および装置で処理するアンモニア性窒素含有水のアンモニア性窒素濃度は、1~1000mg/Lの範囲であるのが好ましい。具体的には、図1に示す単槽式の硝化槽を用いる態様においては、アンモニア性窒素濃度は、1~300mg/Lの範囲が好ましく、1~100mg/Lであるのが処理効率の観点からより好ましい。図2に示すAH菌群培養槽においては、100~1000mg/Lの範囲であるのが好ましく、200~500mg/Lの範囲であるのが処理効率の観点からより好ましい。図3に示す多段処理においては、50~500mg/Lの範囲であるのが好ましく、100~300mg/Lの範囲であるのが処理効率の観点からより好ましい。 The ammoniacal nitrogen concentration of the ammoniacal nitrogen-containing water treated by the method and apparatus according to the present invention is preferably in the range of 1 to 1000 mg / L. Specifically, in the embodiment using the single tank type nitrification tank shown in FIG. 1, the ammoniacal nitrogen concentration is preferably in the range of 1 to 300 mg / L, and 1 to 100 mg / L from the viewpoint of processing efficiency. To more preferable. In the AH fungus group culture tank shown in FIG. 2, it is preferably in the range of 100 to 1000 mg / L, and more preferably in the range of 200 to 500 mg / L from the viewpoint of treatment efficiency. In the multistage treatment shown in FIG. 3, it is preferably in the range of 50 to 500 mg / L, more preferably in the range of 100 to 300 mg / L from the viewpoint of treatment efficiency.
 本発明による方法および装置で処理するアンモニア性窒素含有水の温度は、0℃以上15℃以下が好ましく、従来の方法よりも特に優れた処理活性を示す点で0℃以上10℃以下がより好ましく、更に一段優れた処理活性を示す点を考慮して0℃以上5℃以下で用いるのが更に好ましい。すなわち、従来の方法によるアンモニア性窒素含有水の硝化処理は、10℃以下ではほとんど進行しないが、本発明による方法および装置によれば、10℃以下、さらには5℃以下であっても安定的に硝化処理を行うことができる。なお、方法および装置で処理する水温の下限値は特に設定しないが、本発明が水処理に関するものである以上、水の凝固点である0℃付近が下限となることが理解される。 The temperature of the ammoniacal nitrogen-containing water to be treated by the method and apparatus according to the present invention is preferably 0 ° C. or higher and 15 ° C. or lower, and more preferably 0 ° C. or higher and 10 ° C. or lower in view of particularly excellent treatment activity than the conventional method. Further, it is more preferable to use at 0 ° C. or higher and 5 ° C. or lower in consideration of the further excellent treatment activity. That is, nitrification of ammonia nitrogen-containing water by the conventional method hardly progresses at 10 ° C. or lower, but according to the method and apparatus of the present invention, it is stable even at 10 ° C. or lower, further 5 ° C. or lower. Nitrification treatment can be performed. In addition, although the lower limit of the water temperature processed with a method and an apparatus is not set in particular, it understands that 0 degreeC vicinity which is a freezing point of water becomes a minimum, since this invention is related to water treatment.
 以下に、本発明による方法および装置の具体的な態様について図を参照しつつ説明するが、本発明はこれらの態様に限定されるものではない。 Specific embodiments of the method and apparatus according to the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments.
 <硝化処理>
 本発明によるアンモニア性窒素含有水の硝化処理方法および装置を、図1を用いて説明する。硝化槽10内にAH菌群が保持された担体12が含まれており、アンモニア性窒素含有水導入部14からアンモニア性窒素含有水を導入することで、アンモニア性窒素含有水と該担体が接触し、担体に保持されたAH菌群がアンモニアを硝化して亜硝酸または硝酸を生じる。アンモニア性窒素含有水は硝化槽に一定時間滞留した後に、担体分離網18を通って処理水流出部16から処理水として流出する。流出した処理水は、次いで、脱窒槽(図示せず)に送られて処理水中の硝酸および亜硝酸が窒素ガスに変換されて除去される。
<Nitrification treatment>
A method and apparatus for nitrification of ammonia nitrogen-containing water according to the present invention will be described with reference to FIG. The nitrification tank 10 includes a carrier 12 in which AH bacteria are retained. By introducing ammonia nitrogen-containing water from the ammonia nitrogen-containing water introduction part 14, the ammonia nitrogen-containing water and the carrier come into contact with each other. The AH bacteria group retained on the carrier nitrifies ammonia to produce nitrous acid or nitric acid. The ammonia-containing nitrogen-containing water stays in the nitrification tank for a certain period of time and then flows out from the treated water outflow part 16 through the carrier separation network 18 as treated water. The treated water that has flowed out is then sent to a denitrification tank (not shown) where nitric acid and nitrous acid in the treated water are converted to nitrogen gas and removed.
 ここで、硝化槽は担体および廃水を一定時間保持できればどのようなものでもよく、硝化槽の材質および容積などは特に限定されるものではない。硝化槽内に含まれる担体の充填率は、1%~60%が好ましく、5%~20%がより好ましく、8%~15%であることが処理効率の点で最も好ましい。また、アンモニア性窒素含有水が硝化槽に滞留する時間は、処理すべき水のアンモニア性窒素含有量にもよるが、概ね0.3~24時間であるのが好ましく、0.5~12時間であるのがより好ましく、1~3時間であるのが、処理効率の面で最も好ましい。硝化槽でのNH-N負荷も処理すべき水のアンモニア性窒素含有量にもよるが、概ね0.01~1kg-N/m・dであるのが好ましく、0.1~0.5kg-N/m・dであるのがより好ましく、0.2~0.3kg-N/m・dであるのが、AH菌群の処理速度が向上するため最も好ましい。 Here, the nitrification tank may be anything as long as it can hold the carrier and waste water for a certain period of time, and the material and volume of the nitrification tank are not particularly limited. The filling rate of the carrier contained in the nitrification tank is preferably 1% to 60%, more preferably 5% to 20%, and most preferably 8% to 15% from the viewpoint of processing efficiency. Further, the time during which the ammonia nitrogen-containing water stays in the nitrification tank depends on the ammonia nitrogen content of the water to be treated, but is preferably about 0.3 to 24 hours, preferably 0.5 to 12 hours. More preferably, it is 1 to 3 hours, and most preferable in terms of processing efficiency. Depending on the NH 4 —N load in the nitrification tank and the ammoniacal nitrogen content of the water to be treated, it is preferably about 0.01-1 kg-N / m 3 · d, preferably 0.1-0. more preferably from 5kg-N / m 3 · d , in the range of 0.2 ~ 0.3kg-N / m 3 · d, the processing speed of the AH bacterial group is most preferable to increase.
 このような方法および装置によれば、寒冷地での廃水処理や、水族館などの低温水槽でのアンモニア除去が安定して行える。更に、一般的に廃水よりも温度の低い上水にアンモニアが混入している場合も、アンモニアの除去を効果的に行うことができる。また、寒冷地以外であっても、排水処理施設の断熱加工を施す必要性が低減するため、処理装置をよりコンパクト、かつ低コストに製造することができる。これらの利点は、以下に記載する本発明の他の態様においても得られるものである。 According to such a method and apparatus, wastewater treatment in a cold region and ammonia removal in a low temperature water tank such as an aquarium can be stably performed. In addition, ammonia can be effectively removed even when ammonia is mixed in clean water having a temperature lower than that of waste water. Moreover, even if it is other than a cold region, since the necessity to heat-treat a wastewater treatment facility reduces, a processing apparatus can be manufactured more compactly and at low cost. These advantages are also obtained in other embodiments of the invention described below.
 <AH菌群培養槽からAH菌群を供給する運転>
 下水処理場では汚泥脱水後の脱離液が中~高濃度アンモニアを含有している。そこでこの脱離液を用いてAH菌群を培養する装置を具備したフローが図2である。このような構成にすると、下水処理場で少量発生する中~高濃度アンモニアを含有した脱離液を処理しつつ、そこで培養されたAH菌群を硝化槽に供給することができる。その結果、硝化槽内で低濃度アンモニアを含む廃水の処理効率が上がるため、好ましい。AH菌群の培養に用いる微生物保持担体として、未馴養の担体を用いることが費用面から好ましい。また、図2のような構成にすることで、中~高濃度処理用硝化槽(培養槽)から硝化槽にAH菌群が順次供給されるため、硝化槽は従来の活性汚泥法、例えば浮遊型活性汚泥法、を用いた槽であってもよい。なお、硝化槽内には、AH菌群を保持させた担体が含まれていてもよい。硝化槽内にAH菌群を保持させた担体を含む態様は、より大量の廃水を、高速、かつ、安定的に処理することができる点で好ましい。
<Operation for supplying AH bacteria group from AH bacteria culture tank>
In the sewage treatment plant, the effluent after sludge dehydration contains medium to high concentration ammonia. Therefore, FIG. 2 shows a flow equipped with an apparatus for culturing AH bacteria using this detachment solution. With such a configuration, the AH bacteria group cultured there can be supplied to the nitrification tank while treating the detachment liquid containing medium to high concentration ammonia generated in a small amount at the sewage treatment plant. As a result, the treatment efficiency of wastewater containing low-concentration ammonia in the nitrification tank is increased, which is preferable. From the viewpoint of cost, it is preferable to use an unfamiliar carrier as the microorganism-retaining carrier used for culturing the AH bacteria group. Further, with the configuration as shown in FIG. 2, since the AH bacteria group is sequentially supplied from the nitrification tank (culture tank) for medium to high concentration treatment to the nitrification tank, the nitrification tank is used in the conventional activated sludge method, for example, floating A tank using a type activated sludge method may be used. The nitrification tank may contain a carrier holding the AH bacteria group. An embodiment including a carrier in which AH bacteria are held in a nitrification tank is preferable in that a larger amount of waste water can be treated at high speed and stably.
 ここで、図2の構成を詳しく説明する。AH菌培養槽20内には微生物を保持させた担体12が含まれており、ここに中~高濃度アンモニア性窒素含有水導入部24から中~高濃度のアンモニア性窒素を含む廃水(100~1000mg/L)が導入されて担体と接触し、担体にAH菌群が優先的に培養される。AH菌群の培養が進行すると、増殖したAH菌群の一部が担体から漏れ出すようになり、AH菌群放出部22を介して硝化槽100に供給される。槽の構成にもよるが、硝化槽に供給された菌は、硝化槽内に平均して数日~1ヶ月程度滞留する。この硝化槽100において、供給されたAH菌群は、図1の場合と同様にアンモニア性窒素含有水導入部14から導入されたアンモニア性窒素含有水と接触し、アンモニアを硝化して亜硝酸または硝酸を生じる。次いで、図1の場合と同様に、処理水流出部16から流出した処理水は、脱窒槽(図示せず)に送られて処理水中の硝酸および亜硝酸が窒素ガスに変換されて除去される。 Here, the configuration of FIG. 2 will be described in detail. The AH bacterium culture tank 20 contains a carrier 12 holding microorganisms, and the waste water containing medium to high concentration ammoniacal nitrogen (100 to 100%) from the medium to high concentration ammonia nitrogen containing water introduction section 24 is contained therein. 1000 mg / L) is introduced and brought into contact with the carrier, and the AH bacteria group is preferentially cultured on the carrier. As the culture of the AH fungal group proceeds, a part of the proliferated AH fungal group leaks from the carrier and is supplied to the nitrification tank 100 through the AH fungal group discharge unit 22. Depending on the configuration of the tank, the bacteria supplied to the nitrification tank stay in the nitrification tank on average several days to one month. In this nitrification tank 100, the supplied AH fungal group is contacted with the ammoniacal nitrogen-containing water introduced from the ammoniacal nitrogen-containing water introduction section 14 as in the case of FIG. This produces nitric acid. Next, similarly to the case of FIG. 1, the treated water flowing out from the treated water outflow part 16 is sent to a denitrification tank (not shown), and nitric acid and nitrous acid in the treated water are converted into nitrogen gas and removed. .
 <多段処理>
 本発明によるアンモニア性窒素含有水の多段処理を、図3を用いて説明する。この構成は、中濃度廃水において多段処理に構成することでAH菌群を保持しやすい環境を整え、低水温での処理能力を高めた例である。硝化槽が複数連なっているため、より高濃度のアンモニア性窒素を含む廃水を一度に処理することができる。図中28、30、32はそれぞれ第1硝化槽、第2硝化槽、第3硝化槽であり多段処理することにより各槽での濃度勾配ができ、第1硝化槽が最もNH-Nの濃度が高く、第2硝化槽、第3硝化槽の順でNH-Nの濃度が低くなる。AH菌群の増殖は雰囲気のNH-N濃度に依存し、濃度が高いほどAH菌群の増殖に適しているため、AH菌群は第1硝化槽で増殖しやすくなる。そして、第1硝化槽で増殖したAH菌群が第2硝化槽や第3硝化槽に供給されることとなる。これにより3段処理全体での処理性能が低温でも維持され、温度耐性が向上する。
<Multistage processing>
The multistage treatment of ammoniacal nitrogen-containing water according to the present invention will be described with reference to FIG. This configuration is an example in which an environment that easily retains the AH bacteria group is prepared by configuring the medium concentration wastewater in a multi-stage treatment, and the treatment capability at a low water temperature is enhanced. Since a plurality of nitrification tanks are connected, wastewater containing higher concentration ammoniacal nitrogen can be treated at a time. In the figure, 28, 30, and 32 are the first nitrification tank, the second nitrification tank, and the third nitrification tank, respectively, and the concentration gradient in each tank can be made by multi-stage treatment, and the first nitrification tank has the highest NH 4 -N. The concentration is high, and the concentration of NH 4 -N decreases in the order of the second nitrification tank and the third nitrification tank. The growth of the AH fungal group depends on the NH 4 -N concentration in the atmosphere, and the higher the concentration, the better the growth of the AH fungal group. Therefore, the AH fungal group easily grows in the first nitrification tank. And the AH bacteria group which proliferated in the 1st nitrification tank will be supplied to a 2nd nitrification tank or a 3rd nitrification tank. Thereby, the processing performance in the entire three-stage process is maintained even at a low temperature, and the temperature resistance is improved.
 アンモニア性窒素含有水の処理手順は、図1の場合とほぼ同様であり、中濃度アンモニア性窒素含有水導入部26から第1硝化槽28に導入された中濃度アンモニア性窒素含有水が、第1硝化槽28中で担体12に保持されたAH菌群と接触し、担体に保持されたAH菌群が該水中のアンモニアの一部を硝化して亜硝酸または硝酸を生じる。アンモニア性窒素含有水は第1硝化槽28に一定時間滞留した後に第2硝化槽30に導入される。ここで第1硝化槽の場合と同様に水中のアンモニアの消化が進行し、一定時間滞留した後にアンモニア性窒素含有水は第2硝化槽30から流出し、第3硝化槽32に移る。ここでも同様に硝化処理が行われ、最終的に第3硝化槽から流出した処理水は、次いで、脱窒槽(図示せず)に送られて処理水中の硝酸および亜硝酸が窒素ガスに変換されて除去される。 The treatment procedure of the ammonia nitrogen-containing water is substantially the same as that in FIG. 1, and the medium-concentration ammonia nitrogen-containing water introduced into the first nitrification tank 28 from the medium-concentration ammonia nitrogen-containing water introduction unit 26 is In contact with the AH bacteria group held on the carrier 12 in one nitrification tank 28, the AH bacteria group held on the carrier nitrifies a part of the ammonia in the water to produce nitrous acid or nitric acid. The ammoniacal nitrogen-containing water is introduced into the second nitrification tank 30 after having stayed in the first nitrification tank 28 for a certain period of time. Here, as in the case of the first nitrification tank, the digestion of ammonia in water proceeds, and after staying for a certain time, the ammoniacal nitrogen-containing water flows out of the second nitrification tank 30 and moves to the third nitrification tank 32. The nitrification treatment is similarly performed here, and the treated water finally flowing out from the third nitrification tank is then sent to a denitrification tank (not shown) to convert nitric acid and nitrous acid in the treated water into nitrogen gas. Removed.
 各硝化槽は容量、形状および材質が異なっていても良く、各槽で処理するアンモニア性窒素含有水のNH-Nの濃度および処理量に応じて、滞留時間や担体の充填量がそれぞれ異なっていても良い。また、処理するアンモニア性窒素含有水の性質に応じて、硝化槽の数を調節することもできる。 Each nitrification tank may have a different capacity, shape and material, and the residence time and the filling amount of the carrier differ depending on the concentration of NH 4 —N and the treatment amount of ammonia nitrogen-containing water to be treated in each tank. May be. Moreover, the number of nitrification tanks can also be adjusted according to the property of the ammoniacal nitrogen-containing water to be treated.
 <本発明の応用例>
 本発明の応用例として、図4および図5のフローを示す。図4は本法での脱窒装置を具備したもの、図5は循環変法の硝化槽に本法のAH菌群優先担体を投入するか又はAH菌群を投入する装置を具備したものである。
<Application example of the present invention>
The flow of FIG. 4 and FIG. 5 is shown as an application example of this invention. FIG. 4 is equipped with a denitrification device according to the present method, and FIG. 5 is equipped with a device for introducing the AH fungal group preferred carrier of the present method into the nitrification tank of the modified circulation method or introducing the AH fungal group. is there.
 次に、本発明を実施例により更に詳細に説明するが、本発明が実施例により限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
 <包括固定化微生物担体の作製>
 下水処理場の活性汚泥(群馬県T市終末処理場より入手)15部、ポリエチレングリコールジメタクリレート(「ライトエステル14EG(品番)」、共栄社化学株式会社製)15部、NNN’N’テトラメチルエチレンジアミン(「206-04006(品番)」、和光純薬工業株式会社製)0.5部、および水69.25部を混合して懸濁液とし、そこに過硫酸カリウム(「162-04235(品番)」、和光純薬工業株式会社製)0.25部を加えると重合が始まり、ゲル化した。得られたゲルを3mm角のペレット状に切断して以下の例において使用した。
<Production of entrapped immobilization microorganism carrier>
Activated sludge from sewage treatment plant (obtained from T city end treatment plant, Gunma Prefecture), 15 parts of polyethylene glycol dimethacrylate ("Light Ester 14EG (product number)", manufactured by Kyoeisha Chemical Co., Ltd.), NNN'N 'tetramethylethylenediamine ("206-04006 (product number)", Wako Pure Chemical Industries, Ltd.) 0.5 part and water 69.25 parts are mixed to form a suspension, and potassium persulfate ("162-04235 (product number) ) ", Manufactured by Wako Pure Chemical Industries, Ltd.) When 0.25 part was added, the polymerization started and gelled. The obtained gel was cut into 3 mm square pellets and used in the following examples.
実施例1
<AH菌群優占の担体の作製>
 上記ペレット状に切断した包括固定化微生物担体を、下記表1に示す無機合成廃水(NH-N:400mg/L)で馴養した。馴養は、図1に示す1.4Lの容積の硝化槽中で、負荷0.5kg-N/m・dで2ヶ月行った。上記条件で2ヶ月馴養したものをAH菌群優占の担体として用いた。
Figure JPOXMLDOC01-appb-T000001
Example 1
<Production of AH bacteria dominant carrier>
The entrapping immobilization microorganism carrier cut into pellets was conditioned with inorganic synthetic wastewater (NH 4 -N: 400 mg / L) shown in Table 1 below. The acclimatization was carried out in a nitrification tank having a volume of 1.4 L shown in FIG. 1 for 2 months with a load of 0.5 kg-N / m 3 · d. What was acclimatized for 2 months on the said conditions was used as a carrier of AH bacteria group predominance.
Figure JPOXMLDOC01-appb-T000001
 比較例1
 <AL菌群優占の担体の作製>
 上記無機合成廃水を水道水で10倍に希釈して用いた(NH-N:40mg/L)以外は、AH菌群優占の担体の場合と同様にして負荷0.5kg-N/m・dで馴養して作製し、AL菌群優占の担体として用いた。
Comparative Example 1
<Preparation of carrier dominant in AL fungus group>
A load of 0.5 kg-N / m was used in the same manner as in the case of the carrier dominant in the AH bacteria group, except that the inorganic synthetic wastewater was diluted 10-fold with tap water (NH 4 -N: 40 mg / L). It was prepared by acclimation at 3 · d and used as a carrier for the dominant AL fungus group.
 <AH菌群とAL菌群の菌数の測定>
 (前処理)
 得られたAH菌群優占の担体(実施例1)とAL菌群優占の担体(比較例1)において、AH菌群とAL菌群がそれぞれどれだけ含まれているのかを以下の方法で計測した。
<Measurement of the number of AH and AL bacteria>
(Preprocessing)
The following method was used to determine how much the AH fungal group and the AL fungal group were contained in the obtained carrier of the AH fungal group (Example 1) and the carrier of the AL fungal group (Comparative Example 1). Measured with.
 まず、前処理として担体の破砕及び細菌の分散を行った。9ml滅菌水に一定量の担体を採取し、破砕と分散を行った。破砕にはホモジナイザ(ホモジナイザPA型、池本理化工業株式会社製)を用い、分散には超音波処理装置(US300型、日本精機株式会社製)を用いた。前処理条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
First, as a pretreatment, the carrier was crushed and the bacteria were dispersed. A fixed amount of carrier was collected in 9 ml of sterilized water, and crushed and dispersed. A homogenizer (homogenizer PA type, manufactured by Ikemoto Rika Kogyo Co., Ltd.) was used for crushing, and an ultrasonic treatment device (US300 type, manufactured by Nippon Seiki Co., Ltd.) was used for dispersion. Table 2 shows pretreatment conditions.
Figure JPOXMLDOC01-appb-T000002
 (硝化細菌数の計測)
 前処理を終え、細菌が分散した液を用いてAH菌群およびAL菌群の数を最確値法に準じて計測した。まず、表3に示すAH菌群とAL菌群の菌数計測用培地を調製し、除菌濾過した後、約50mgのCaCOを入れて乾熱滅菌した複数の試験管に9mLずつ無菌分注した。次いで、測定用培地を入れたものとは別の試験管を用意し、そこに殺菌した水を9mL入れ、さらに上記の前処理した液を原液として1mL加えることによって10倍に希釈した。この10倍に希釈した液を1mL抜き取り、別の9mLの殺菌した水に加えることにより、原液を基準として100倍に希釈した希釈液を得た。この操作を繰り返し、1010倍まで希釈した希釈液を調製した。ここで、各希釈倍率の希釈液を1mLずつ、5本の計測用培地に接種した。したがって、1つの試料について合計50本の試験管に接種した。接種した試験管を2~3本の無接種の試験管と共に30℃で8週間培養した。
Figure JPOXMLDOC01-appb-T000003
(Measurement of the number of nitrifying bacteria)
After the pretreatment, the numbers of AH fungal group and AL fungal group were measured according to the most probable value method using a liquid in which bacteria were dispersed. First, the number of bacteria measuring medium AH bacteria group and AL bacteria group shown in Table 3 were prepared and after sterile filtration, sterile component into a plurality of test tubes put CaCO 3 to about 50mg and sterilized dry heat by 9mL Noted. Next, a test tube different from that containing the measurement medium was prepared, 9 mL of sterilized water was added thereto, and further 1 mL of the pretreated liquid was added as a stock solution to dilute 10 times. 1 mL of this 10-fold diluted solution was extracted and added to another 9 mL of sterilized water to obtain a diluted solution diluted 100 times based on the stock solution. This operation was repeated to prepare a diluted solution diluted 10 to 10 times. Here, 1 mL of the diluted solution at each dilution rate was inoculated into 5 measuring media. Therefore, a total of 50 tubes were inoculated for one sample. The inoculated tubes were cultured for 8 weeks at 30 ° C. with 2-3 uninoculated tubes.
Figure JPOXMLDOC01-appb-T000003
 培養後、Griess-Ilosvary試薬(調製法:土壌微生物研究会編、「土壌微生物実験法」、養賢堂、p.195、(昭和50年)参照)を1~2滴各試験官に滴下し、亜硝酸の蓄積の有無を判定した。赤または褐色の発色はAH菌群またはAL菌群の成育による亜硝酸の蓄積を意味する。2~3分後に未発色の試験管に微量の亜鉛粉末を加えて、新たに赤色が発色してくるか否かを、試験管を静置したまま観察する。亜鉛粉末添加後の発色は、一旦生成された亜硝酸が共存した亜硝酸酸化細菌によって硝酸まで酸化されていたことを意味する。亜鉛粉末無添加と添加で発色した試験管数を各希釈段階毎に記録した。 After incubation, drop 1 to 2 drops of Griess-Ilosvay reagent (preparation method: edited by Soil Microbial Research Association, “Soil Microbial Experiment Method”, Yokendo, p. 195). The presence or absence of nitrous acid accumulation was determined. Red or brown color development means accumulation of nitrite due to the growth of AH or AL fungal group. After a few minutes, add a small amount of zinc powder to the uncolored test tube and observe whether the red color develops anew while leaving the test tube still. Color development after the addition of zinc powder means that the nitrite once produced was oxidized to nitric acid by the nitrite-oxidizing bacteria. The number of test tubes that developed with and without zinc powder was recorded for each dilution step.
 AH菌群優占の担体については、H培地において、三次希釈水から5本、四次希釈水から5本、五次希釈水から4本、六次希釈水から2本、七次希釈水から0本であったため、(5、5、4、2、0)と記録した。この値からP=5、P=4、P=2とし、最確値表から最確値を得た後、これにPの希釈倍数をかけて、原液1mL当たりの生菌数を算出した。L培地においては、一次希釈水から5本、二次希釈水から3本、三次希釈水から2本、四次希釈水から0本、五次希釈水から0本であったため、(5、3、2、0、0)と記録し、同様に原液1mL当たりの生菌数を算出した。 For the carrier dominant in AH bacteria group, in H medium, 5 from the third dilution water, 5 from the fourth dilution water, 4 from the fifth dilution water, 2 from the sixth dilution water, from the seventh dilution water Since it was 0, it was recorded as (5, 5, 4, 2, 0). From this value, P 1 = 5, P 2 = 4, P 3 = 2, and after obtaining the most probable value from the most probable value table, multiply this by the dilution factor of P 2 to calculate the number of viable bacteria per mL of stock solution did. In the L medium, there were 5 from the primary dilution water, 3 from the secondary dilution water, 2 from the tertiary dilution water, 0 from the quaternary dilution water, and 0 from the quintic dilution water. 2, 0, 0), and the number of viable bacteria per mL of the stock solution was calculated in the same manner.
 AL菌群優占の担体についても同様にし、原液1mL当たりの生菌数を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
The number of viable bacteria per 1 mL of the stock solution was calculated in the same manner for the carrier dominant in the AL group. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 上記表から、実施例1および比較例1の担体が、それぞれAH菌群優占の担体とAL菌群優占の担体であることが分かる。図1に示す1.4Lの容積の硝化槽中、負荷0.5kg-N/m・dで2ヶ月間馴養した後に、連続運転での水質の収支から各担体の硝化速度を計測したところ、それぞれ0.45kg-N/m・dと0.46kg-N/m・dであり、ほぼ同等であった。なお、原水および処理水の水質としては、NH-N、NO-N、NO-Nを測定した。NH-Nはインドフェノール青比色法(JIS-K0102、ここで、JISは日本工業規格(Japanese Industrial Standards)の略)に準じ、NO-NとNO-Nはイオンクロマトアナライザー(「ICS-1600(品番)」、ダイオネックス社製)で分析した。また、処理水は浮遊物質が若干混在しているため、処理水の分析に際してはあらかじめ0.45μフィルター(「DISMIC-25cs(品番)」、アドバンテック株式会社製)でろ過した。 From the above table, it can be seen that the carriers of Example 1 and Comparative Example 1 are carriers of the AH group dominant and AL groups dominant, respectively. Nitrification tank volume of 1.4L shown in FIG. 1, after 2 months acclimatization load 0.5kg-N / m 3 · d , it was measured nitrification rate of the carrier from the balance of the water quality in continuous operation These were 0.45 kg-N / m 3 · d and 0.46 kg-N / m 3 · d, respectively, which were almost equal. Note that NH 4 —N, NO 3 —N, and NO 2 —N were measured as the quality of raw water and treated water. NH 4 -N conforms to the indophenol blue colorimetric method (JIS-K0102, where JIS is an abbreviation for Japanese Industrial Standards), and NO 3 -N and NO 2 -N represent ion chromatograph analyzers (" ICS-1600 (product number) ”(manufactured by Dionex). Further, since the suspended water in the treated water was slightly mixed, the treated water was filtered through a 0.45 μ filter (“DISMIC-25cs (product number)”, manufactured by Advantech Co., Ltd.) in advance.
 <各温度における硝化速度の測定>
 実施例2
 実施例1で作製した担体(AH菌群優占担体)を用いて、温度別硝化速度を測定した。評価は、図1に示す1.4Lの容積の硝化槽を用いて回分処理を行い硝化速度を求めた。原水は表1の無機合成廃水を10倍に希釈したNH-N40mg/Lを用いた。なお、硝化槽内での担体の充填量は8%とした。
<Measurement of nitrification rate at each temperature>
Example 2
Using the carrier prepared in Example 1 (AH bacteria group dominant carrier), the nitrification rate according to temperature was measured. For the evaluation, batch treatment was performed using a nitrification tank having a volume of 1.4 L shown in FIG. 1 to obtain a nitrification rate. As raw water, NH 4 -N 40 mg / L obtained by diluting the inorganic synthetic waste water shown in Table 1 10 times was used. The carrier filling amount in the nitrification tank was 8%.
 上記条件の下、温度を5、10、15および20℃と変化させて測定した結果を表5、および図6に示す。 Table 5 and FIG. 6 show the results of measurement under the above conditions with the temperature changed to 5, 10, 15 and 20 ° C.
 比較例2
 比較例1で作製した担体(AL菌優占の担体)を用いた以外は実施例2と同様にして、温度別硝化速度を測定した。結果を表5、および図6に示す。この結果から、AH菌群優占の担体はAL菌群優占の担体より低温耐性があることが分かる。特に、10℃以下の水温において、AH菌群優占の担体はAL菌群優占の担体に比べて顕著に高い硝化速度を得ることができることが分かる。
Comparative Example 2
The nitrification rate according to temperature was measured in the same manner as in Example 2 except that the carrier prepared in Comparative Example 1 (a carrier dominant in AL bacteria) was used. The results are shown in Table 5 and FIG. From this result, it can be seen that the carrier dominant in the AH group is more resistant to low temperature than the carrier dominant in the AL group. In particular, it can be seen that at a water temperature of 10 ° C. or less, the carrier predominantly AH group can obtain a significantly higher nitrification rate than the carrier predominantly AL group.
 <長期低水温測定>
 実施例3
 実施例1で作製した担体(AH菌群優占担体)を用いて、5℃で長期処理運転を行った。この処理には、図1の構成の硝化槽に合成無機廃水(NH-N濃度:48~66mg/L)を用いた。
 処理運転の条件を以下に示す。
硝化槽容積 1.4L
滞留時間 6~12時間
包括担体充填率 8%
NH-N負荷 0.07~0.24kg-N/m・d
運転期間 100日
 実施例3についての結果を図7および8に示す。
<Long-term low water temperature measurement>
Example 3
A long-term treatment operation was performed at 5 ° C. using the carrier prepared in Example 1 (AH group dominant carrier). In this treatment, synthetic inorganic wastewater (NH 4 -N concentration: 48 to 66 mg / L) was used in the nitrification tank having the configuration shown in FIG.
The conditions of the processing operation are shown below.
Nitrification tank volume 1.4L
Residence time 6 to 12 hours Comprehensive carrier filling rate 8%
NH 4 -N load 0.07 to 0.24 kg-N / m 3 · d
Operation period 100 days The results for Example 3 are shown in FIGS.
 比較例3
 比較例1で作製した担体(AL菌優占の担体)を用いた以外は実施例3と同様にして、5℃で長期処理運転を行った。比較例3についての結果を図9および10に示す。硝化能力の経日変化および容積負荷に対する硝化速度のいずれにおいても、本発明によるAH菌群優占担体が低水温で処理性能が優れていることが明らかである。
Comparative Example 3
A long-term treatment operation was carried out at 5 ° C. in the same manner as in Example 3 except that the carrier prepared in Comparative Example 1 (a carrier predominantly AL bacteria) was used. The results for Comparative Example 3 are shown in FIGS. It is clear that the AH bacteria-dominant carrier according to the present invention is excellent in treatment performance at low water temperature in both aging ability and nitrification rate against volumetric load.
 <AH菌群培養槽からAH菌群を供給する運転>
 実施例4
 図2のフローの装置を用いた。活性汚泥を用いて作製した未馴養の包括固定化微生物担体(活性汚泥固定化担体)を、中~高濃度アンモニア性窒素含有水(汚泥脱水後の脱離液)を用いた中~高濃度処理用硝化槽(培養槽)20に投入し、そこに中~高濃度アンモニアを含有する脱離液を流入させ、中~高濃度処理用硝化槽(培養槽)20内の担体内部でAH菌群を馴養培養した。AH菌群の一部は担体からリークし、硝化槽100に投入される。硝化槽100には活性汚泥が懸濁している。硝化槽100にアンモニア性窒素含有水導入部14から低濃度アンモニア性窒素含有水を流入させ、硝化処理を行った。
<Operation for supplying AH bacteria group from AH bacteria culture tank>
Example 4
The apparatus of the flow of FIG. 2 was used. Medium-to-high concentration treatment of unfamiliar entrapped immobilization microorganism carrier (activated sludge immobilization carrier) produced using activated sludge using medium-to-high concentration ammoniacal nitrogen-containing water (desorbed liquid after sludge dehydration) The nitrification tank (culture tank) 20 is used, and a leaching solution containing medium to high concentration ammonia is introduced into the nitrification tank (culture tank) 20, and the AH bacteria group inside the carrier in the medium to high concentration treatment nitrification tank (culture tank) 20. Was cultivated. A part of the AH bacteria group leaks from the carrier and is put into the nitrification tank 100. Activated sludge is suspended in the nitrification tank 100. Low concentration ammoniacal nitrogen-containing water was allowed to flow into the nitrification tank 100 from the ammoniacal nitrogen-containing water introduction section 14 to perform nitrification treatment.
 各種水質と装置の仕様を以下に示す。
各種アンモニア性窒素含有水のNH -N濃度
汚泥脱水後の脱離液 350~410mg/L
アンモニア性窒素含有水導入部14に導入される廃水 32~40mg/L
硝化槽100の仕様
硝化槽容積 10L
滞留時間 4時間
MLSS濃度 4,000mg/L
NH-N負荷 0.25~0.32kg-N/m・d
中~高濃度処理用硝化槽(培養槽)20の仕様
中~高濃度処理用硝化槽(培養槽)容積  0.5L
滞留時間 12時間
包括担体充填率 20%
NH-N負荷 0.7~0.8kg-N/m・d
Various water quality and equipment specifications are shown below.
NH 4 -N concentration of various ammoniacal nitrogen-containing waters Desorbed liquid after sludge dehydration 350-410 mg / L
Waste water to be introduced into the ammoniacal nitrogen-containing water introduction section 32 to 40 mg / L
Specifications of nitrification tank 100 <br/> Nitrification tank volume 10L
Residence time 4 hours MLSS concentration 4,000 mg / L
NH 4 -N load 0.25 to 0.32 kg-N / m 3 · d
Specification of nitrification tank (culture tank) 20 for medium to high concentration treatment <br/> Volume of nitrification tank (culture tank) for medium to high concentration treatment 0.5L
Residence time 12 hours Comprehensive carrier filling rate 20%
NH 4 -N load 0.7 to 0.8 kg-N / m 3 · d
 使用した担体は先に示した未馴養の包括固定化微生物担体(活性汚泥固定化担体)を用いた。固定化した活性汚泥としてはT下水処理場の活性汚泥を用いた。培養槽の担体にAH菌群が増殖し、担体からAH菌群がリークし、硝化槽に供給されることにより低水温で硝化が促進される。小規模の本発明による装置で冬場に運転したところ、水温が10~13℃であり、硝化槽100の処理水中のアンモニア性窒素濃度はNH-N:1mg/L以下であった。 As the carrier used, the unfamiliar entrapped immobilization microorganism carrier (activated sludge immobilization carrier) described above was used. As the immobilized activated sludge, activated sludge from the T sewage treatment plant was used. The AH bacteria group grows on the carrier in the culture tank, the AH bacteria group leaks from the carrier, and is supplied to the nitrification tank, whereby nitrification is promoted at a low water temperature. When operated in winter with a small-scale apparatus according to the present invention, the water temperature was 10 to 13 ° C., and the ammoniacal nitrogen concentration in the treated water of the nitrification tank 100 was NH 4 —N: 1 mg / L or less.
 比較例4
 中~高濃度処理用硝化槽(培養槽)20を具備しない従来法(浮遊型活性汚泥法)を用いた以外は実施例4と同様にして、NH-N32~40mg/Lを滞留時間4時間、MLSS濃度4000mg/Lで処理したところ、水温10~13℃で、処理水中にアンモニア性窒素が多く残留し、硝化槽から排出された処理水のアンモニア性窒素濃度はNH-N:9~35mg/Lであった。したがって、本発明による方法および装置での効果は明らかである。
Comparative Example 4
NH 4 -N32 to 40 mg / L was maintained at a residence time of 4 in the same manner as in Example 4 except that a conventional method (floating activated sludge method) not equipped with a nitrification tank (culture tank) 20 for medium to high concentration treatment was used. When treated with an MLSS concentration of 4000 mg / L for a time, a large amount of ammonia nitrogen remained in the treated water at a water temperature of 10 to 13 ° C., and the ammonia nitrogen concentration in the treated water discharged from the nitrification tank was NH 4 -N: 9 -35 mg / L. Thus, the effects of the method and apparatus according to the present invention are obvious.
 <多段処理>
 実施例5
 図3に示す多段処理で処理を行った。
水質と装置の仕様を以下に示す。
廃水中NH-N濃度 170~220mg/L
各硝化槽28、30、32の仕様
各槽の容積 2L
各槽の滞留時間 4時間
包括担体充填率 20%
<Multistage processing>
Example 5
Processing was performed by the multistage processing shown in FIG.
The water quality and equipment specifications are shown below.
Waste water NH 4 -N concentration 170-220mg / L
Specification of each nitrification tank 28, 30, 32 <br/> Volume of each tank 2L
Residence time of each tank 4 hours Comprehensive carrier filling rate 20%
 先に示した未馴養の包括固定化微生物担体(活性汚泥固定化担体)を用いて処理を行った。固定化した活性汚泥としてはT下水処理場の活性汚泥を用いた。本発明による装置で冬場に運転したところ、水温が8~13℃であり、処理水処理水中のアンモニア性窒素濃度はNH-N:1mg/L以下であった。したがって、本発明による方法および装置での効果が明らかである。 The treatment was performed using the previously unfamiliar entrapped immobilization microorganism carrier (activated sludge immobilization carrier). As the immobilized activated sludge, activated sludge from the T sewage treatment plant was used. When the apparatus according to the present invention was operated in winter, the water temperature was 8 to 13 ° C., and the ammoniacal nitrogen concentration in the treated water was NH 4 —N: 1 mg / L or less. Therefore, the effect of the method and apparatus according to the present invention is clear.
10 硝化槽
12 担体
14 アンモニア性窒素含有水導入部
16 処理水流出部
18 担体分離網
19 硝化液循環ライン
20 中~高濃度処理用硝化槽(AH菌群培養槽)
22 AH菌群放出部
24 中~高濃度アンモニア性窒素含有水導入部
26 中濃度アンモニア性窒素含有水導入部
28 第1硝化槽
30 第2硝化槽
32 第3硝化槽
100 従来の硝化槽
120 従来の担体
130 従来の担体
200 脱窒槽
310 脱窒菌付着充填材
500 有機物供給槽
DESCRIPTION OF SYMBOLS 10 Nitrification tank 12 Carrier 14 Ammonia nitrogen-containing water introduction part 16 Treated water outflow part 18 Carrier separation network 19 Nitrification liquid circulation line 20 Medium to high concentration treatment nitrification tank (AH fungus group culture tank)
22 AH fungus group release part 24 Medium to high concentration ammonia nitrogen containing water introduction part 26 Medium concentration ammonia nitrogen containing water introduction part 28 First nitrification tank 30 Second nitrification tank 32 Third nitrification tank 100 Conventional nitrification tank 120 Conventional Carrier 130 conventional carrier 200 denitrification tank 310 denitrifying bacteria adhesion filler 500 organic substance supply tank

Claims (11)

  1.  アンモニア性窒素含有水を処理する方法であって、
     アンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水と、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群が優先繁殖した担体とを、好気性雰囲気下、0℃以上15℃以下で接触させて前記アンモニア性窒素含有水中のアンモニアを硝化する硝化工程、
    を含む方法。
    A method for treating ammonia nitrogen-containing water,
    Ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L and a carrier on which a nitrifying bacteria group preferentially propagated by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks A nitrification step of nitrifying ammonia in the ammoniacal nitrogen-containing water by contacting at 0 ° C. or higher and 15 ° C. or lower in an aerobic atmosphere;
    Including methods.
  2.  アンモニア性窒素含有水を処理する方法であって、
     アンモニア性窒素濃度が100~1000mg/Lのアンモニア性窒素含有水と微生物保持担体とを接触させて、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群を優先培養する培養工程と、
     前記培養された硝化菌群と、アンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水とを、好気性雰囲気下、0℃以上15℃以下で接触させて前記アンモニア性窒素含有水中のアンモニアを硝化する硝化工程と
    を含む方法。
    A method for treating ammonia nitrogen-containing water,
    Nitrifying bacteria detected by contacting ammonia-containing nitrogen water having an ammonia nitrogen concentration of 100 to 1000 mg / L with a microorganism-supporting carrier and culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks. A culture process for preferentially culturing the group;
    The cultured nitrifying bacteria group is brought into contact with the ammoniacal nitrogen-containing water having an ammoniacal nitrogen concentration of 1 to 300 mg / L in an aerobic atmosphere at 0 ° C. or higher and 15 ° C. or lower to bring the ammoniacal nitrogen-containing water into contact. A nitrification step of nitrifying ammonia.
  3.  前記微生物保持担体が、未馴養の微生物保持担体である、請求項2に記載の方法。 The method according to claim 2, wherein the microorganism holding carrier is an unfamiliar microorganism holding carrier.
  4.  前記硝化工程に用いられる前記アンモニア性窒素含有水中のアンモニア性窒素濃度が1~100mg/Lである、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the ammoniacal nitrogen concentration in the ammoniacal nitrogen-containing water used in the nitrification step is 1 to 100 mg / L.
  5.  前記硝化工程において、前記アンモニア性窒素含有水と前記担体とを0℃以上10℃以下で接触させる、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein in the nitrification step, the ammoniacal nitrogen-containing water and the carrier are brought into contact at 0 ° C or higher and 10 ° C or lower.
  6.  1つ以上の追加の硝化工程をさらに含んでなる、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, further comprising one or more additional nitrification steps.
  7.  アンモニア性窒素含有水の処理装置であって、
     硝化槽と、
     前記硝化槽にアンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水を導入する導入部と、
     前記硝化槽から処理した前記アンモニア性窒素含有水を排出する排出部と
    を備え、
     前記硝化槽の中に濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群が優先繁殖した担体が含まれてなる、
     前記硝化槽では0℃以上15℃以下で、アンモニア性窒素含有水を処理する、処理装置。
    A treatment apparatus for water containing ammonia nitrogen,
    A nitrification tank,
    An introduction part for introducing ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L into the nitrification tank;
    A discharge section for discharging the ammoniacal nitrogen-containing water treated from the nitrification tank,
    In the nitrification tank, a carrier in which a nitrifying bacteria group preferentially propagated by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks is included,
    The processing apparatus which processes ammonia nitrogen containing water at 0 degreeC or more and 15 degrees C or less in the said nitrification tank.
  8.  アンモニア性窒素含有水の処理装置であって、
     濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群を培養する培養槽と、
     前記培養槽にアンモニア性窒素濃度が100~1000mg/Lのアンモニア性窒素含有水を導入する第1の導入部と、
     前記培養槽から培養された前記硝化菌群を放出する放出部と
     前記放出部に接続された硝化槽と、
     前記硝化槽にアンモニア性窒素濃度が1~300mg/Lのアンモニア性窒素含有水を導入する第2の導入部と、
     前記硝化槽から処理した前記アンモニア性窒素含有水を排出する排出部と
    を備え、
     前記培養槽から前記硝化槽に、前記放出部を介して、培養した前記硝化菌群を供給し、
     前記硝化槽では0℃以上15℃以下で、アンモニア性窒素含有水を処理する、処理装置。
    A treatment apparatus for water containing ammonia nitrogen,
    A culture tank for culturing a group of nitrifying bacteria detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks;
    A first introduction part for introducing ammoniacal nitrogen-containing water having an ammoniacal nitrogen concentration of 100 to 1000 mg / L into the culture tank;
    A discharge section for discharging the nitrifying bacteria group cultured from the culture tank; and a nitrification tank connected to the discharge section;
    A second introduction part for introducing ammonia nitrogen-containing water having an ammonia nitrogen concentration of 1 to 300 mg / L into the nitrification tank;
    A discharge section for discharging the ammoniacal nitrogen-containing water treated from the nitrification tank,
    Supplying the cultured nitrifying bacteria group from the culture tank to the nitrification tank via the discharge section;
    The processing apparatus which processes ammonia nitrogen containing water at 0 degreeC or more and 15 degrees C or less in the said nitrification tank.
  9.  前記培養槽に微生物保持担体が含まれている、請求項7に記載の装置。 The apparatus according to claim 7, wherein the culture vessel contains a microorganism holding carrier.
  10.  前記硝化槽に、さらに1つ以上の追加の硝化槽が連結されてなる、請求項7~9のいずれか一項に記載の装置。 The apparatus according to any one of claims 7 to 9, wherein one or more additional nitrification tanks are further connected to the nitrification tank.
  11.  担体と、
     前記担体に優先繁殖した硝化菌群であって、濃度5000mg/L以上の高濃度な硫酸アンモニア溶液中で8週間培養して検出される硝化菌群と
    を含み、
     0℃以上15℃以下で1~300mg/Lのアンモニア性窒素含有水を処理する細菌保持担体。
    A carrier;
    A group of nitrifying bacteria preferentially propagated on the carrier, which is detected by culturing in a high concentration ammonia sulfate solution having a concentration of 5000 mg / L or more for 8 weeks,
    A bacteria-retaining carrier for treating 1 to 300 mg / L of ammoniacal nitrogen-containing water at 0 to 15 ° C.
PCT/JP2013/069776 2012-07-26 2013-07-22 Method and device for treating ammonia nitrogen-containing water at low temperature WO2014017429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014526906A JP6161210B2 (en) 2012-07-26 2013-07-22 Method and apparatus for low temperature treatment of ammonia nitrogen containing water
KR20157002286A KR20150037909A (en) 2012-07-26 2013-07-22 Method and device for treating ammonia nitrogen-containing water at low temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-166093 2012-07-26
JP2012166093 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017429A1 true WO2014017429A1 (en) 2014-01-30

Family

ID=49997240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069776 WO2014017429A1 (en) 2012-07-26 2013-07-22 Method and device for treating ammonia nitrogen-containing water at low temperature

Country Status (3)

Country Link
JP (1) JP6161210B2 (en)
KR (1) KR20150037909A (en)
WO (1) WO2014017429A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226892A (en) * 2014-06-02 2015-12-17 株式会社ウェルシィ Ammonia nitrogen-containing water treatment method
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus
JP2016140824A (en) * 2015-02-02 2016-08-08 学校法人 東洋大学 Processing method and processing apparatus of ammonia-containing waste water
JP2017104818A (en) * 2015-12-11 2017-06-15 水ing株式会社 Operation control method of water treatment installation
CN111847807A (en) * 2020-08-26 2020-10-30 厚普环保科技(苏州)有限公司 Cruise type micro/eutrophic river and lake bottom mud surface layer dredging and water quality repairing device
CN113213644A (en) * 2021-04-20 2021-08-06 复旦大学 Method for treating high-concentration ammonia nitrogen wastewater by culturing nitrification combined flora
CN114315022A (en) * 2021-12-24 2022-04-12 江苏蓝必盛化工环保股份有限公司 Full biological treatment method for high-concentration formaldehyde wastewater
WO2022138981A1 (en) 2020-12-25 2022-06-30 株式会社クボタ Method for treating organic wastewater
WO2024047922A1 (en) * 2022-08-29 2024-03-07 株式会社クボタ Method for culturing cold-resistant nitrifying bacteria, method for treating nitrogen-containing water, and device for treating nitrogen-containing water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169090A (en) * 1991-12-24 1993-07-09 Meidensha Corp Device for supplying nitrification bacteria in biological activated carbon treatment tower
JPH0947787A (en) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JPH0975984A (en) * 1995-09-11 1997-03-25 Hitachi Plant Eng & Constr Co Ltd Biological nitrogen removing device
JP2000061494A (en) * 1998-08-25 2000-02-29 Hitachi Plant Eng & Constr Co Ltd Biological treatment of ammonia nitrogen
JP3252887B2 (en) * 1995-08-10 2002-02-04 日立プラント建設株式会社 Method and apparatus for biological oxidation of ammoniacal nitrogen
JP2004305816A (en) * 2003-04-02 2004-11-04 Hitachi Plant Eng & Constr Co Ltd Nitrification method and apparatus, and waste water treatment equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169090A (en) * 1991-12-24 1993-07-09 Meidensha Corp Device for supplying nitrification bacteria in biological activated carbon treatment tower
JPH0947787A (en) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JP3252887B2 (en) * 1995-08-10 2002-02-04 日立プラント建設株式会社 Method and apparatus for biological oxidation of ammoniacal nitrogen
JPH0975984A (en) * 1995-09-11 1997-03-25 Hitachi Plant Eng & Constr Co Ltd Biological nitrogen removing device
JP2000061494A (en) * 1998-08-25 2000-02-29 Hitachi Plant Eng & Constr Co Ltd Biological treatment of ammonia nitrogen
JP2004305816A (en) * 2003-04-02 2004-11-04 Hitachi Plant Eng & Constr Co Ltd Nitrification method and apparatus, and waste water treatment equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226892A (en) * 2014-06-02 2015-12-17 株式会社ウェルシィ Ammonia nitrogen-containing water treatment method
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus
JP2016140824A (en) * 2015-02-02 2016-08-08 学校法人 東洋大学 Processing method and processing apparatus of ammonia-containing waste water
JP2017104818A (en) * 2015-12-11 2017-06-15 水ing株式会社 Operation control method of water treatment installation
CN111847807A (en) * 2020-08-26 2020-10-30 厚普环保科技(苏州)有限公司 Cruise type micro/eutrophic river and lake bottom mud surface layer dredging and water quality repairing device
WO2022138981A1 (en) 2020-12-25 2022-06-30 株式会社クボタ Method for treating organic wastewater
CN113213644A (en) * 2021-04-20 2021-08-06 复旦大学 Method for treating high-concentration ammonia nitrogen wastewater by culturing nitrification combined flora
CN114315022A (en) * 2021-12-24 2022-04-12 江苏蓝必盛化工环保股份有限公司 Full biological treatment method for high-concentration formaldehyde wastewater
CN114315022B (en) * 2021-12-24 2023-12-22 江苏蓝必盛化工环保股份有限公司 Full biological treatment method for high-concentration formaldehyde wastewater
WO2024047922A1 (en) * 2022-08-29 2024-03-07 株式会社クボタ Method for culturing cold-resistant nitrifying bacteria, method for treating nitrogen-containing water, and device for treating nitrogen-containing water

Also Published As

Publication number Publication date
KR20150037909A (en) 2015-04-08
JP6161210B2 (en) 2017-07-12
JPWO2014017429A1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6161210B2 (en) Method and apparatus for low temperature treatment of ammonia nitrogen containing water
Singh et al. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor
Li et al. Aerobic sludge granulation in a full‐scale sequencing batch reactor
Jamshidi et al. Wastewater treatment using integrated anaerobic baffled reactor and Bio-rack wetland planted with Phragmites sp. and Typha sp.
Pan et al. Effects of the combination of aeration and biofilm technology on transformation of nitrogen in black-odor river
Świątczak et al. Treatment of the liquid phase of digestate from a biogas plant for water reuse
WO2010150691A1 (en) Method for treating wastewater containing ammonia nitrogen
Gupta et al. Simultaneous removal of organic matters and nutrients from high-strength wastewater in constructed wetlands followed by entrapped algal systems
CN101691569B (en) Bacillus cereus microbial preparation and method for treating nitrogenous waste water by using microbial preparation
Zayed et al. Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification
CN111117914B (en) Salt-tolerant heterotrophic aerobic nitrobacteria strain, culture method, bacterial liquid and application
Kouba et al. The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor
Van Den Brand et al. Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems
US10227246B2 (en) Method for the treatment of industrial waste
Arango et al. Effect of microalgae inoculation on the start-up of microalgae–bacteria systems treating municipal, piggery and digestate wastewaters
Bellucci et al. Disinfection and nutrient removal in laboratory‐scale photobioreactors for wastewater tertiary treatment
Mery et al. Evaluation of natural zeolite as microorganism support medium in nitrifying batch reactors: Influence of zeolite particle size
CN105112337B (en) One Enterobacter cloacae and its application
Chaiwong et al. Performance and kinetics of algal-bacterial photobioreactor (AB-PBR) treating septic tank effluent
Teles et al. Ecology of duckweed ponds used for nutrient recovery from wastewater
Arango et al. The potential of membrane-assisted microalgae-bacteria consortia for the treatment of real municipal sewage
Jiang et al. Immobilization of halophilic yeast for effective removal of phenol in hypersaline conditions
Yang et al. Bio-augmentation as a tool for improving the modified sequencing batch biofilm reactor
Wang et al. Vegetation effects on anammox spatial distribution and nitrogen removal in constructed wetlands treated with domestic sewage
Xie et al. Performance and bacterial community composition of volcanic scoria particles (VSP) in a biological aerated filter (BAF) for micro‐polluted source water treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157002286

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13822889

Country of ref document: EP

Kind code of ref document: A1