JPH10180292A - Method of removing nitrogen from waste water and device therefor - Google Patents

Method of removing nitrogen from waste water and device therefor

Info

Publication number
JPH10180292A
JPH10180292A JP34335596A JP34335596A JPH10180292A JP H10180292 A JPH10180292 A JP H10180292A JP 34335596 A JP34335596 A JP 34335596A JP 34335596 A JP34335596 A JP 34335596A JP H10180292 A JPH10180292 A JP H10180292A
Authority
JP
Japan
Prior art keywords
nitrous oxide
tank
nitrification
bacteria
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34335596A
Other languages
Japanese (ja)
Other versions
JP3374386B2 (en
Inventor
Takako Ogasawara
多佳子 小笠原
Tatsuo Sumino
立夫 角野
Nobuko Hashimoto
信子 橋本
Kazuhiko Noto
一彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP34335596A priority Critical patent/JP3374386B2/en
Publication of JPH10180292A publication Critical patent/JPH10180292A/en
Application granted granted Critical
Publication of JP3374386B2 publication Critical patent/JP3374386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress generation of nitrous oxide and to rapidly remove generated nitrous oxide by bringing ammonia-containing waste liquid into contact with nitrifica tion bacteria under an aerobic condition to be performed a nitrification treatment, and then bringing the resultant nitrification liquid into contact with nitrous oxide decomposition bacteria under an anaerobic condition. SOLUTION: The ammonia-containing waste water flowed in a nitrification tank 12 comes into contact with the nitrification bacteria at an aerobic condition to be performed a nitrification treatment, and the nitrification liquid flows out from an outflow part 20 into a nitrous oxide decomposition tank 14. In the nitrous oxide decomposition tank 14, floating sludge containing the nitrous oxide decomposition bacteria is housed and also air in the liquid is deaerated by stirring the liquid with an underwater agitator 24 provided at the bottom, thus the nitrification liquid comes into contact with the nitrous oxide decomposition bacteria under an anaerobic condition to be decomposed the nitrous oxide. Next, the treated liquid flows out in a solid-liquid separation tank 28, and here the floating sludge is settled and returned to the nitrous oxide decomposition tank 14 via a return sludge piping 30. Besides, the supernatant is discharged outside via a treated water piping 31 as the treated water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃水の窒素除去方法
及び装置に係り、特に、高濃度のアンモニア含有廃水を
高負荷で処理する場合の廃水中の窒素除去方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing nitrogen from wastewater, and more particularly, to a method and an apparatus for removing nitrogen from wastewater when treating wastewater containing high concentration of ammonia with a high load.

【0002】[0002]

【従来の技術】下水、し尿、産業廃水等の排水中に含ま
れるアンモニア窒素は、放流先の湖沼、内湾などの閉鎖
性水域における溶存酸素の低下や富栄養化現象の原因と
されている。従来、これらの廃水中から窒素成分を除去
する窒素除去技術としては、微生物を利用した生物学的
な硝化・脱窒処理が行われており、代表例としては活性
汚泥循環変法がある。この生物学的な硝化・脱窒処理
は、独立栄養菌である硝化細菌のアンモニア酸化能力を
利用して、廃水中のアンモニア性窒素を先ず好気性状態
で亜硝酸や硝酸に酸化する。その後、従属栄養細菌であ
る脱窒細菌の働により、排水中の有機物等を電子供与体
として亜硝酸や硝酸を嫌気性状態で窒素に還元すること
により廃水から窒素を除去するものである。この活性汚
泥循環変法が適用される廃水は主にアンモニア態窒素濃
度の比較的低濃度な下水であり、放流水の窒素濃度を数
mg/lにまで低減することができる。
2. Description of the Related Art Ammonia nitrogen contained in wastewater such as sewage, night soil, and industrial wastewater is considered to cause a decrease in dissolved oxygen and a eutrophication phenomenon in closed water bodies such as lakes and inner bays to which water is discharged. Conventionally, as a nitrogen removal technology for removing nitrogen components from these wastewaters, biological nitrification and denitrification treatment using microorganisms has been performed, and a representative example is a modified activated sludge circulation method. In this biological nitrification / denitrification treatment, ammonia nitrogen in wastewater is first oxidized to nitrite or nitric acid in an aerobic state by utilizing the ammonia oxidizing ability of nitrifying bacteria, which are autotrophic bacteria. Thereafter, nitrogen is removed from wastewater by reducing nitrous acid or nitric acid to nitrogen in an anaerobic state by using organic matter or the like in wastewater as an electron donor by the action of a denitrifying bacterium which is a heterotrophic bacterium. Wastewater to which the activated sludge circulation modification is applied is mainly sewage having a relatively low concentration of ammonia nitrogen, and the nitrogen concentration of the discharge water can be reduced to several mg / l.

【0003】しかし、例えば現像所廃水、化学工場廃
水、汚泥処理廃水等からの廃水のように、アンモニア態
窒素濃度が例えば400mg/lから数千mg/lの高
濃度なアンモニア含有廃水は活性汚泥循環変法では低減
されにくく廃水処理に苦労している。先に、本発明の発
明者等は、硝化細菌の包括固定化担体を用いた多段槽型
の硝化処理により、アンモニア態窒素濃度が500mg
/lの高濃度のアンモニア含有廃水を無希釈で高負荷運
転を行い、10mg/l程度まで低減できる方法を開発
した。
However, high-concentration ammonia-containing wastewater having an ammonia nitrogen concentration of, for example, 400 mg / l to several thousand mg / l, such as wastewater from a developer wastewater, a chemical factory wastewater, a sludge treatment wastewater, etc., is an activated sludge. It is difficult to reduce by the modified circulation method, and it is difficult to treat wastewater. First, the inventors of the present invention, by a multi-stage tank nitrification treatment using the entrapping immobilization carrier of nitrifying bacteria, ammonia nitrogen concentration is 500mg
/ L high concentration ammonia-containing wastewater was subjected to high-load operation without dilution, and a method capable of reducing the wastewater to about 10 mg / l was developed.

【0004】[0004]

【発明が解決しようとする課題】ところで、生物学的な
硝化処理において、硝化反応は好気的に行われ、通常N
4 −N→(NH2 OH)→NO2 −N→NO3 −Nの
順に進行するが、微生物活動や運転条件の変化等によ
り、反応副生成物として亜酸化窒素(N2 O)が生成さ
れる。特に、高濃度のアンモニア含有廃水を硝化処理し
た場合には、亜硝酸態窒素の生成が優先する亜硝酸型の
硝化反応が起こり易く、この亜硝酸型の硝化処理の場合
には亜酸化窒素の発生量が多くなる。
In a biological nitrification treatment, a nitrification reaction is performed aerobically, and usually, N
H 4 —N → (NH 2 OH) → NO 2 —N → NO 3 —N, but nitrous oxide (N 2 O) is produced as a reaction by-product due to microbial activity and changes in operating conditions. Generated. In particular, in the case of nitrification treatment of high-concentration ammonia-containing wastewater, nitrite-type nitrification reaction in which the production of nitrite nitrogen takes precedence is likely to occur, and in the case of this nitrite-type nitrification treatment, Generated amount increases.

【0005】近年、この亜酸化窒素は、二酸化炭素に次
ぐ温室効果ガスとして、更には成層圏オゾン層を破壊す
るオゾン層破壊ガスとして問題視されており、亜酸化窒
素の生成源の一つとして廃水処理施設が指摘されてい
る。このような背景から、廃水処理において亜酸化窒素
の発生を抑える必要があり、特に高濃度のアンモニア含
有廃水を処理する上での亜酸化窒素の問題を解決するこ
とが重要な課題となっている。
In recent years, this nitrous oxide has been regarded as a greenhouse gas next to carbon dioxide, and also as an ozone depleting gas that destroys the stratospheric ozone layer, and wastewater is one of the sources of nitrous oxide. Treatment facilities have been identified. From such a background, it is necessary to suppress the generation of nitrous oxide in wastewater treatment, and it is particularly important to solve the problem of nitrous oxide in treating high-concentration ammonia-containing wastewater. .

【0006】本発明のこのような事情に鑑みてなされた
もので、アンモニア含有廃水の硝化処理の反応副生成物
として生成される亜酸化窒素の発生を抑制すると共に、
発生した亜酸化窒素を速やかに除去することのできる廃
水の窒素除去方法及び装置を提供することを目的とす
る。
The present invention has been made in view of such circumstances, and suppresses the generation of nitrous oxide generated as a reaction by-product of the nitrification treatment of ammonia-containing wastewater.
It is an object of the present invention to provide a method and an apparatus for removing nitrogen from wastewater that can quickly remove generated nitrous oxide.

【0007】[0007]

【課題を解決する為の手段】本発明は前記目的を達成す
る為に、アンモニア含有廃水を、硝化細菌に好気性条件
下で接触させて硝化処理した硝化液を、亜酸化窒素分解
菌に嫌気性条件下で接触させることを特徴とする。ま
た、本発明は前記目的を達成する為に、高濃度のアンモ
ニア含有廃水と、該高濃度のアンモニア含有廃水に増殖
阻害を受けにくい硝化細菌を優先繁殖させた硝化細菌を
包括固定化した担体と、を好気性条件下で接触させる硝
化槽と、前記硝化槽からの流出液と亜酸化窒素分解菌と
を嫌気性条件下で接触させる亜酸化窒素分解槽と、から
成ることを特徴とする。
In order to achieve the above object, the present invention provides a nitrification solution obtained by contacting ammonia-containing wastewater with nitrifying bacteria under aerobic conditions, and converting the nitrifying solution to anaerobic nitrous oxide-decomposing bacteria. Contact under sexual conditions. Further, the present invention, in order to achieve the above object, a high-concentration ammonia-containing wastewater, and a carrier encapsulating and immobilizing nitrifying bacteria that preferentially propagate nitrifying bacteria that are less prone to growth inhibition in the high-concentration ammonia-containing wastewater. And a nitrite decomposing tank for contacting the effluent from the nitrification tank with nitrous oxide decomposing bacteria under anaerobic conditions.

【0008】また、本発明は前記目的を達成する為に、
高濃度のアンモニア含有廃水と、該高濃度のアンモニア
含有廃水に増殖阻害を受けにくい硝化細菌を優先繁殖さ
せた硝化細菌を包括固定化した担体と、を好気性条件下
で接触させる硝化槽と、前記硝化槽からの流出液と亜酸
化窒素分解菌とを嫌気性条件下で接触させる亜酸化窒素
分解槽と、脱窒細菌と前記亜酸化窒素分解槽からの流出
液とを嫌気性条件下で接触させる脱窒槽と、から成るこ
とを特徴とする。
[0008] In order to achieve the above object, the present invention provides:
A nitrification tank in which a high-concentration ammonia-containing wastewater and a carrier entrapping and immobilizing a nitrifying bacterium that preferentially proliferates nitrifying bacteria that are less likely to be inhibited by the high-concentration ammonia-containing wastewater under aerobic conditions, A nitrous oxide decomposing tank in which an effluent from the nitrification tank and nitrous oxide decomposing bacteria are brought into contact under anaerobic conditions, and a denitrifying bacterium and an effluent from the nitrous oxide decomposing tank under anaerobic conditions. And a denitrification tank to be contacted.

【0009】本発明によれば、アンモニア含有廃水を、
硝化細菌に好気性条件下で接触させて硝化処理した硝化
液を、亜酸化窒素分解菌に嫌気性条件下で接触させて亜
酸化窒素を分解する。また、硝化槽を多段式に設置し
て、亜酸化窒素分解槽を硝化槽同士の間に設置すること
により、亜酸化窒素分解槽の前段の硝化槽で生成された
亜酸化窒素を分解除去するだけでなく、亜酸化窒素分解
槽の後段の硝化槽での亜酸化窒素の生成を抑制する。
According to the present invention, the ammonia-containing wastewater is
A nitrification solution that has been subjected to nitrification treatment by contact with nitrifying bacteria under aerobic conditions is brought into contact with nitrous oxide decomposing bacteria under anaerobic conditions to decompose nitrous oxide. In addition, by installing a nitrification tank in a multi-stage manner, and installing a nitrous oxide decomposition tank between the nitrification tanks, the nitrous oxide generated in the nitrification tank preceding the nitrous oxide decomposition tank is decomposed and removed. In addition, the production of nitrous oxide in the nitrification tank located downstream of the nitrous oxide decomposition tank is suppressed.

【0010】特に、アンモニア態窒素の高濃度なアンモ
ニア含有廃水の硝化処理において亜酸化窒素が生成され
易いので、高濃度なアンモニア含有廃水の窒素除去方法
及び装置として特に有効である。
[0010] In particular, nitrous oxide is easily generated in the nitrification treatment of wastewater containing ammonia with a high concentration of ammonia nitrogen, so that it is particularly effective as a method and apparatus for removing nitrogen from wastewater containing a high concentration of ammonia.

【0011】[0011]

【発明の実施の形態】以下添付図面に従って本発明に係
る廃水の窒素除去方法及び装置の好ましい実施の形態に
ついて詳説する。図1は、本発明の廃水の窒素除去装置
の第1の実施の形態を説明する構成図であり、廃水中の
アンモニア濃度が中濃度以下の場合に適している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method and apparatus for removing nitrogen from wastewater according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a configuration diagram illustrating a first embodiment of a wastewater nitrogen removing apparatus according to the present invention, and is suitable when the ammonia concentration in the wastewater is equal to or lower than the medium concentration.

【0012】図1に示すように、第1の実施の形態で示
す廃水の窒素除去装置10は、主として、硝化槽12と
亜酸化窒素分解槽14との2槽で構成される。硝化槽1
2内には、硝化細菌を包括固定化した担体A(B)が収
納されると共に、硝化槽12の底部には、硝化槽12内
に好気性条件を形成する曝気装置16が配設される。担
体は、廃水の原水のアンモニア態窒素濃度に応じて、高
濃度のアンモニア態窒素に増殖阻害を受けにくい硝化細
菌を包括固定化した担体A、又は通常の硝化細菌を包括
固定化した担体Bが選択される。そして、原水流入管1
8を介して硝化槽12に流入したアンモニア含有廃水は
硝化細菌と好気性状態で接触される。次に、硝化槽12
で硝化処理された硝化液は流出部20から亜酸化窒素分
解槽14に流出する。流出部20には、担体防止用のス
クリーン22が配設され、硝化槽12の液は図示しない
開口を介して亜酸化窒素分解槽14に送水される。
As shown in FIG. 1, the nitrogen removal apparatus 10 for waste water shown in the first embodiment is mainly composed of a nitrification tank 12 and a nitrous oxide decomposition tank 14. Nitrification tank 1
A carrier A (B) containing and immobilizing nitrifying bacteria is accommodated in 2, and an aerator 16 for forming an aerobic condition in the nitrification tank 12 is provided at the bottom of the nitrification tank 12. . Depending on the ammonia nitrogen concentration of the raw water of the wastewater, the carrier is a carrier A encapsulating and immobilizing a nitrifying bacterium that is less likely to be inhibited by a high concentration of ammonia nitrogen, or a carrier B encapsulating and immobilizing a normal nitrifying bacterium. Selected. And raw water inflow pipe 1
The ammonia-containing wastewater that has flowed into the nitrification tank 12 through 8 is brought into contact with nitrifying bacteria in an aerobic state. Next, the nitrification tank 12
The nitrification liquid which has been subjected to the nitrification treatment flows out of the outflow portion 20 into the nitrous oxide decomposition tank 14. The outflow part 20 is provided with a screen 22 for carrier prevention, and the liquid in the nitrification tank 12 is sent to the nitrous oxide decomposition tank 14 through an opening (not shown).

【0013】亜酸化窒素分解槽14内には、亜酸化窒素
分解菌を含有する浮遊汚泥が収納されると共に、底部に
は水中攪拌機24が配設されて槽内の液をゆっくりと攪
拌して液中のエアを脱気し、槽内を嫌気性条件にする。
これにより、亜酸化窒素分解槽14に流入した硝化液
は、嫌気性条件下で亜酸化窒素分解菌に接触し、硝化槽
12で生成された亜酸化窒素(N2 O)を分解する。亜
酸化窒素分解槽14で処理された液は、送水管26固液
分離槽28に流出され、ここで浮遊汚泥が沈降されて返
送汚泥配管30を介して亜酸化窒素分解槽に返送され
る。一方、固液分離槽28の上澄液は処理水として処理
水配管31を介して装置外に排出される。
In the nitrous oxide decomposing tank 14, suspended sludge containing nitrous oxide decomposing bacteria is stored, and an underwater stirrer 24 is provided at the bottom to slowly stir the liquid in the tank. Degas the air in the liquid and make the tank anaerobic.
As a result, the nitrification liquid that has flowed into the nitrous oxide decomposition tank 14 comes into contact with nitrous oxide decomposing bacteria under anaerobic conditions, and decomposes nitrous oxide (N 2 O) generated in the nitrification tank 12. The liquid treated in the nitrous oxide decomposition tank 14 flows out of the water pipe 26 into the solid-liquid separation tank 28, where the suspended sludge is settled and returned to the nitrous oxide decomposition tank via the return sludge pipe 30. On the other hand, the supernatant liquid of the solid-liquid separation tank 28 is discharged out of the apparatus via the treated water pipe 31 as treated water.

【0014】亜酸化窒素分解槽14内に収納する亜酸化
窒素分解菌として、亜酸化窒素分解菌を含有した浮遊汚
泥に加えて、亜酸化窒素分解菌を包括固定化した担体を
併用すると亜酸化窒素分解菌を槽内に高濃度の保持でき
るので、更に好ましい。亜酸化窒素分解細菌としては、
通性嫌気性のPseudomonas、Microco
ccus、Spirillum、Achromobac
ter、Alcaligenes、独立栄養のAlca
ligenes eutrophus、Paracoc
cus denitrificans、Pseudom
onaspseudoflava、Micrococc
us denitrificans、Tiobacil
lus、Sulfolobusを用いることができる。
As the nitrous oxide-decomposing bacteria accommodated in the nitrous oxide-decomposing tank 14, in addition to the suspended sludge containing the nitrous oxide-decomposing bacteria, a carrier in which the nitrous oxide-decomposing bacteria are immobilized is used in combination. Nitrogen-decomposing bacteria can be maintained in the tank at a high concentration, which is more preferable. As nitrous oxide degrading bacteria,
Facultative anaerobic Pseudomonas, Microco
ccus, Spirillum, Achromobac
ter, Alcaligenes, autotrophic Alca
ricees eutrophus, Paracoc
cus denitrificans, Pseudom
onaspseudoflava, Micrococc
us denitrificans, Tiobacil
rus and Sulfolobus can be used.

【0015】本発明の第1の実施の形態によれば、生物
学的な硝化処理において、微生物活動や運転条件の変化
等により、反応副生成物として生成された亜酸化窒素
(N2O)を、亜酸化窒素分解槽14で速やかに分解除
去することができる。これにより、温室効果ガス或いは
成層圏オゾン層を破壊するオゾン層破壊ガスとして問題
視されている亜酸化窒素を大気に放出しないようにでき
る。
According to the first embodiment of the present invention, in a biological nitrification treatment, nitrous oxide (N 2 O) produced as a reaction by-product due to a change in microbial activity or operating conditions, etc. Can be quickly decomposed and removed in the nitrous oxide decomposition tank 14. This makes it possible to prevent nitrous oxide, which is regarded as a problem as a greenhouse gas or an ozone-depleting gas that destroys the stratospheric ozone layer, from being released into the atmosphere.

【0016】図2は、本発明の廃水の窒素除去装置の第
2の実施の形態を説明する構成図であり、高濃度のアン
モニア含有廃水に対応させるために、硝化槽を多段に設
けた場合である。尚、図1と同様の装置、部材について
は同符号を付すと共に説明は省略する。本発明の第2の
実施の形態の窒素除去装置10は、図2に示すように、
第1段目の硝化槽12Aと第2段目の硝化槽12Bとの
間に亜酸化窒素分解槽14が配設されて構成される。
FIG. 2 is a block diagram for explaining a second embodiment of the nitrogen removal apparatus for waste water of the present invention. In the case where a multi-stage nitrification tank is provided in order to cope with high-concentration ammonia-containing waste water. It is. The same reference numerals are given to the same devices and members as those in FIG. 1 and the description is omitted. The nitrogen removing device 10 according to the second embodiment of the present invention includes, as shown in FIG.
A nitrous oxide decomposition tank 14 is provided between the first-stage nitrification tank 12A and the second-stage nitrification tank 12B.

【0017】第1段目と第2段目の硝化槽12A、12
B及び亜酸化窒素分解槽14の構造は、第1の実施の形
態と同様であるが、第1段目の硝化槽12Aには、高濃
度のアンモニア態窒素に増殖阻害を受けにくい硝化細菌
を包括固定化した第1の担体Bが収納される。また、第
2段目の硝化槽12Bには、第2段目の硝化槽に流入す
るアンモニア濃度に応じて第1段目の硝化槽の担体B
か、或いは通常の硝化細菌を包括固定化した担体Aかの
何れかが選択される。
The first and second nitrification tanks 12A, 12A
The structure of the B and nitrous oxide decomposition tank 14 is the same as that of the first embodiment. However, nitrifying bacteria that are not easily inhibited by high-concentration ammonia-nitrogen are inhibited in the first-stage nitrification tank 12A. The first carrier B that has been comprehensively fixed is stored. The carrier B of the first-stage nitrification tank is provided in the second-stage nitrification tank 12B in accordance with the concentration of ammonia flowing into the second-stage nitrification tank.
Either the carrier A or the carrier A in which ordinary nitrifying bacteria are entrapped and immobilized.

【0018】本発明の第2の実施の形態によれば、硝化
槽12A、12Bを多段にすることにより高濃度のアン
モニア含有廃水の窒素除去率を向上させることができる
と共に、第1段目の硝化槽12Aで生成された亜酸化窒
素を亜酸化窒素分解槽14で分解除去することができ
る。更には、第2段目の硝化槽12Bの前段に亜酸化窒
素分解槽14を設けることにより、第2段目の硝化槽1
2Bでの亜酸化窒素の生成を抑制することができる。
According to the second embodiment of the present invention, the nitrogen removal rate of the high-concentration ammonia-containing wastewater can be improved by forming the nitrification tanks 12A and 12B in multiple stages, and the first stage can be improved. The nitrous oxide generated in the nitrification tank 12A can be decomposed and removed in the nitrous oxide decomposition tank 14. Further, by providing a nitrous oxide decomposition tank 14 in front of the second nitrification tank 12B, the second nitrification tank 1
The generation of nitrous oxide in 2B can be suppressed.

【0019】特に、現像所廃水、化学工場廃水、汚泥処
理廃水等からの廃水のように、高濃度なアンモニア含有
廃水の場合には、亜硝酸態窒素が多量に生成される亜硝
酸型の硝化処理が行われ易く、この時生成された硝酸態
窒素濃度と亜酸化窒素の生成量との間には密接な関係が
ある。従って、本発明の第2の実施の形態は、特に高濃
度のアンモニア含有廃水に有効である。
In particular, in the case of wastewater containing a high concentration of ammonia, such as wastewater from a developing lab wastewater, a chemical factory wastewater, a sludge treatment wastewater, etc., nitrite-type nitrification in which a large amount of nitrite nitrogen is generated. The treatment is easily performed, and there is a close relationship between the concentration of nitrate nitrogen produced at this time and the amount of nitrous oxide produced. Therefore, the second embodiment of the present invention is particularly effective for high-concentration ammonia-containing wastewater.

【0020】図3は、本発明の廃水の窒素除去装置の第
3の実施の形態を説明する構成図であり、高濃度のアン
モニア含有廃水の窒素除去率を更に向上させるために、
多段の硝化槽の後に脱窒槽を設けた場合である。尚、第
1及び第2の実施の形態と同様の装置、部材については
同符号を付すと共に説明は省略する。本発明の第3の実
施の形態の窒素除去装置10は、第2の実施の形態に脱
窒槽を組み合わせたもので、第1段目の硝化槽12A、
亜酸化窒素分解槽14、第2段目の硝化槽12B、脱窒
槽32の順に配設される。また、脱窒槽32内には、脱
窒細菌を含有する浮遊汚泥が収納されると共に、脱窒槽
32内の底部には亜酸化窒素分解槽14と同様に水中攪
拌機24が設けられる。これにより、第2段目の硝化槽
12Bから流入する液と脱窒細菌とが嫌気性条件下で接
触される。また、固液分離槽28で沈降した汚泥は、返
送汚泥配管30を介して亜酸化窒素分解槽14と脱窒槽
32の両方に返送される。
FIG. 3 is a block diagram illustrating a third embodiment of the wastewater nitrogen removing apparatus according to the present invention. In order to further improve the nitrogen removal rate of high-concentration ammonia-containing wastewater,
This is a case where a denitrification tank is provided after a multi-stage nitrification tank. The same devices and members as those in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted. A nitrogen removing apparatus 10 according to a third embodiment of the present invention is a combination of the second embodiment and a denitrification tank, and includes a first-stage nitrification tank 12A,
The nitrous oxide decomposition tank 14, the second-stage nitrification tank 12B, and the denitrification tank 32 are arranged in this order. In addition, suspended sludge containing denitrifying bacteria is stored in the denitrification tank 32, and an underwater agitator 24 is provided at the bottom of the denitrification tank 32, similarly to the nitrous oxide decomposition tank 14. Thus, the liquid flowing from the second-stage nitrification tank 12B is brought into contact with the denitrifying bacteria under anaerobic conditions. The sludge settled in the solid-liquid separation tank 28 is returned to both the nitrous oxide decomposition tank 14 and the denitrification tank 32 via the return sludge pipe 30.

【0021】本発明の第3の実施の形態によれば、第2
の実施の形態と同様の効果を奏することができる上に、
最終段の脱窒槽32において、第2段目の硝化槽12B
で生成された硝酸態窒素や亜硝酸態窒素を脱窒するの
で、窒素除去率を向上させることができる。
According to the third embodiment of the present invention, the second
In addition to achieving the same effects as the embodiment,
In the final stage of the denitrification tank 32, the second-stage nitrification tank 12B
Since the nitrate nitrogen and nitrite nitrogen generated in the above are denitrified, the nitrogen removal rate can be improved.

【0022】[0022]

【実施例】【Example】

(実施例1)実施例1は、図1で説明した硝化槽と亜酸
化窒素分解槽の2槽で構成した装置を使用して行った場
合である。硝化槽には、高濃度のアンモニア態窒素に増
殖阻害を受けにくい硝化細菌を包括固定化した包括固定
化担体を充填率20%で収納し、硝化槽の負荷は、1.
0kg-N/m3.日とした。亜酸化窒素分解槽には、亜酸
化窒素分解菌を含有する浮遊汚泥を用いた。
(Embodiment 1) Embodiment 1 is a case where the apparatus is formed by using an apparatus composed of two tanks of the nitrification tank and the nitrous oxide decomposition tank described with reference to FIG. In the nitrification tank, an entrapping immobilization carrier in which nitrifying bacteria which are hardly hindered by growth inhibition by high-concentration ammonia nitrogen is immobilized is stored at a filling rate of 20%.
0 kg-N / m 3. days. In the nitrous oxide decomposition tank, suspended sludge containing nitrous oxide decomposing bacteria was used.

【0023】比較例として、実施例1で用いた条件と同
じ硝化槽を3段直列に配設した多段硝化処理について行
った。試験に供したアンモニア含有廃水の原水は、実施
例1、比較例ともにアンモニア態窒素(NH4-N)濃度
が600mg/lの化学工場無機系廃水を使用した。表
1は実施例1及び比較例の結果である。表1の数値は、
各槽の流出液の測定値である。
As a comparative example, a multi-stage nitrification treatment in which three nitrification tanks having the same conditions as those used in Example 1 were arranged in series was performed. As the raw water of the ammonia-containing wastewater used in the test, inorganic wastewater of a chemical factory having an ammonia nitrogen (NH 4 —N) concentration of 600 mg / l was used in both Example 1 and Comparative Example. Table 1 shows the results of Example 1 and Comparative Example. The values in Table 1 are
It is a measured value of the effluent of each tank.

【0024】[0024]

【表1】 表1の結果から、実施例1、比較例ともに硝化槽(比較
例は第1段目)において原水中のNH4-Nのうち約70
%がNO2-Nに転換され、N2 Oが実施例では3.33
mg/l、比較例では3.69mg/l生成された。
[Table 1] From the results in Table 1, it was found that both of Example 1 and Comparative Example had about 70% of NH 4 —N in raw water in the nitrification tank (Comparative Example was the first stage).
% Is converted to NO 2 -N and N 2 O is 3.33 in the example.
mg / l, and 3.69 mg / l in the comparative example.

【0025】その後、比較例の場合には、2段目の硝化
槽でN2 Oは8.2mg/lに増加し、3段目の硝化槽
でのN2 Oは1.44mg/lであり、十分な低減がで
きなかった。これに対し、実施例1の場合には、亜酸化
窒素分解槽においてN2 Oは0.05mg/lまで除去
され、それと同時にNO2-Nが10mg/l以下に脱窒
された。
[0025] Then, in the comparative example, N 2 O in the nitrification tank of the second stage increases to 8.2 mg / l, N 2 O in the nitrification tank of the third stage is 1.44 mg / l There was no sufficient reduction. On the other hand, in Example 1, N 2 O was removed to 0.05 mg / l in the nitrous oxide decomposition tank, and at the same time, NO 2 -N was denitrified to 10 mg / l or less.

【0026】従って、本発明の第1の実施の形態の装置
を用いれば、硝化槽で生成された亜酸化窒素を低濃度に
レベルまで除去することができる。 (実施例2)実施例2は、高濃度のアンモニア含有廃水
に対応させるために、硝化槽を多段に設けた場合で、図
2で説明した第1段目の硝化槽と亜酸化窒素分解槽と第
2段目の硝化槽の3槽で構成した装置を使用して行った
ものである。
Therefore, the use of the apparatus according to the first embodiment of the present invention makes it possible to remove nitrous oxide generated in the nitrification tank to a low concentration. (Embodiment 2) In Embodiment 2, a multi-stage nitrification tank is provided to cope with high-concentration ammonia-containing wastewater. The first-stage nitrification tank and the nitrous oxide decomposition tank described with reference to FIG. And a second-stage nitrification tank.

【0027】第1段目と第2段目の硝化槽には、硝化細
菌を包括固定化した包括固定化担体を充填率20%で収
納し、硝化槽の負荷は、第1及び第2段目ともに1.0
kg-N/m3.日とした。亜酸化窒素分解槽には、亜酸化
窒素分解菌を含有する浮遊汚泥を用いた。比較例とし
て、実施例1と同じ硝化槽を3段処理する場合について
行った。
In the first and second nitrification tanks, an entrapping immobilization carrier in which nitrifying bacteria are entrapped and immobilized is accommodated at a filling rate of 20%, and the load of the nitrification tanks is set at the first and second stages. 1.0 for both eyes
kg-N / m 3. days. In the nitrous oxide decomposition tank, suspended sludge containing nitrous oxide decomposing bacteria was used. As a comparative example, the same nitrification tank as in Example 1 was subjected to three-stage treatment.

【0028】試験に供したアンモニア含有廃水の原水
は、実施例2、比較例ともにアンモニア態窒素(NH4-
N)濃度が1000mg/lの化学工場無機系廃水を使
用した。表2は実施例2及び比較例の結果である。表1
の数値は、各槽の流出液の測定値である。
The raw water of the ammonia-containing wastewater subjected to the test was prepared using ammonia nitrogen (NH 4 −) in both Example 2 and Comparative Example.
N) Chemical factory inorganic wastewater with a concentration of 1000 mg / l was used. Table 2 shows the results of Example 2 and Comparative Example. Table 1
Are the measured values of the effluent from each tank.

【0029】[0029]

【表2】 表2の結果から、実施例2、比較例ともに1段目の硝化
槽において原水中のNH4-Nのうち約70%がNO2-N
に転換され、N2 Oが実施例2では5.47mg/l、
比較例では5.12mg/l生成された。
[Table 2] From the results shown in Table 2, in both Example 2 and Comparative Example, about 70% of the NH 4 —N in the raw water was NO 2 —N in the first-stage nitrification tank.
Is converted to that, N 2 O is Example 2 in 5.47mg / l,
In the comparative example, 5.12 mg / l was produced.

【0030】その後、比較例の場合には、2段目の硝化
槽でN2 Oは48.2mg/lに顕著に増加し、3段目
の硝化槽でN2 Oは3.44mg/lであった。これに
対し、実施例2の場合には、亜酸化窒素分解槽において
2 Oは0.35mg/lに低減し、それと同時にNO
2-Nが10mg/lに脱窒された。そして、実施例2の
場合には、2段目の硝化槽において亜酸化窒素が殆ど増
加しなかった。
[0030] Then, in the comparative example, N 2 O in the nitrification tank of the second stage is significantly increased to 48.2 mg / l, N 2 O is 3.44mg / l in the nitrification tank in the third stage Met. In contrast, in the case of Example 2, N 2 O was reduced to 0.35 mg / l in the nitrous oxide decomposition tank, and
2- N was denitrified to 10 mg / l. In the case of Example 2, nitrous oxide hardly increased in the second-stage nitrification tank.

【0031】この結果から分かるように、第1段目の硝
化槽で生成された高濃度のNO2-Nがそのまま第2段目
の硝化槽に持ち越されると、N2 Oの顕著な増加が認め
られた。従って、亜酸化窒素分解槽を設けて亜酸化窒素
を分解除去すると同時に、NO2-Nの除去を行うことに
より、2段目以降の硝化槽でのN2 O生成を抑制するこ
とができる。
As can be seen from the results, when the high-concentration NO 2 —N generated in the first-stage nitrification tank is carried over to the second-stage nitrification tank as it is, a remarkable increase in N 2 O occurs. Admitted. Therefore, by providing a nitrous oxide decomposition tank to decompose and remove nitrous oxide and simultaneously removing NO 2 -N, it is possible to suppress the generation of N 2 O in the second and subsequent nitrification tanks.

【0032】従って、本発明の第2の実施の形態の装置
を用いれば、処理水のアンモニア態窒素濃度を低減でき
ると共に、亜酸化窒素の生成をも抑制することができ
る。 (実施例3)実施例3は、実施例2の第2段目の硝化槽
の後段に脱窒槽を設け、図3で説明した第1段目の硝化
槽、亜酸化窒素分解槽、第2段目の硝化槽、脱窒槽の4
槽で構成した装置を使用して行ったものである。
Therefore, by using the apparatus of the second embodiment of the present invention, the concentration of ammonia nitrogen in the treated water can be reduced and the generation of nitrous oxide can be suppressed. (Embodiment 3) In Embodiment 3, a denitrification tank is provided after the second nitrification tank of Embodiment 2, and the first nitrification tank, the nitrous oxide decomposition tank, and the second nitrification tank described in FIG. 4th stage nitrification tank and denitrification tank
This was performed using an apparatus constituted by a tank.

【0033】第1段目と第2段目の硝化槽には、硝化細
菌を包括固定化した包括固定化担体を充填率20%で収
納し、硝化槽の負荷は、第1及び第2段目ともに1.0
kg-N/m3.日とした。亜酸化窒素分解槽には、亜酸化
窒素分解菌を含有する浮遊汚泥を用いた。脱窒槽には、
脱窒細菌が含有された浮遊汚泥を用いた。比較例として
は実施例2における比較例の結果をそのまま用いた。
In the first and second nitrification tanks, an entrapping immobilization carrier entrapping and immobilizing nitrifying bacteria is stored at a filling rate of 20%, and the load of the nitrification tanks is reduced to the first and second stages. 1.0 for both eyes
kg-N / m 3. days. In the nitrous oxide decomposition tank, suspended sludge containing nitrous oxide decomposing bacteria was used. In the denitrification tank,
Suspended sludge containing denitrifying bacteria was used. As a comparative example, the result of the comparative example in Example 2 was used as it was.

【0034】試験に供したアンモニア含有廃水の原水
は、実施例2、比較例ともにアンモニア態窒素(NH4-
N)濃度が1000mg/lの化学工場無機系廃水を使
用した。表3は実施例3の結果であり、数値は、各槽の
流出液の測定値である。
The raw water of the ammonia-containing wastewater subjected to the test was ammonia nitrogen (NH 4 −) in both Example 2 and Comparative Example.
N) Chemical factory inorganic wastewater with a concentration of 1000 mg / l was used. Table 3 shows the results of Example 3, and the numerical values are the measured values of the effluent of each tank.

【0035】[0035]

【表3】 表3の結果から、実施例3の1段目の硝化槽において原
水中のNH4-Nのうち約70%がNO2-Nに転換され、
2 Oが5.30mg/l生成された。
[Table 3] From the results in Table 3, in the first nitrification tank of Example 3, about 70% of the NH 4 —N in the raw water was converted to NO 2 —N,
5.30 mg / l of N 2 O was produced.

【0036】その後、亜酸化窒素分解槽においてN2
は0.37mg/lに低減し、それと同時にNO2-Nが
10mg/lに脱窒された。そして、第2段目の硝化槽
において残りのNH4-Nが10mg/l以下まで低減さ
れる一方、N2 Oが1.63mg/lと若干増加する
が、次の脱窒槽において0.08mg/lまで低減され
ると同時に残りのNO2-Nも10mg/l以下に脱窒さ
れた。
Thereafter, N 2 O is placed in a nitrous oxide decomposition tank.
Is reduced to 0.37 mg / l, at the same NO 2 -N simultaneously it has been denitrified to 10 mg / l. Then, while the remaining NH 4 —N is reduced to 10 mg / l or less in the second-stage nitrification tank, the N 2 O slightly increases to 1.63 mg / l. / L, and the remaining NO 2 -N was also denitrified to 10 mg / l or less.

【0037】従って、本発明の第3の実施の形態の装置
を用いれば、窒素除去率を著しく高くでき、更には亜酸
化窒素の生成を抑制することができる。
Therefore, the use of the apparatus according to the third embodiment of the present invention makes it possible to significantly increase the nitrogen removal rate and further suppress the generation of nitrous oxide.

【0038】[0038]

【発明の効果】以上説明したように、本発明の廃水の窒
素除去方法及び装置によれば、アンモニア含有廃水の硝
化処理の反応副生成物として生成される亜酸化窒素の発
生を抑制すると共に、発生した亜酸化窒素を速やかに除
去することのできる。従って、温室効果ガス或いは成層
圏オゾン層を破壊するオゾン層破壊ガスとして問題視さ
れている亜酸化窒素を大気に放出しないようにできる。
As described above, according to the method and apparatus for removing nitrogen from wastewater of the present invention, it is possible to suppress the generation of nitrous oxide generated as a reaction by-product of the nitrification treatment of wastewater containing ammonia. The generated nitrous oxide can be quickly removed. Therefore, nitrous oxide, which is regarded as a problem as a greenhouse gas or an ozone layer-depleting gas that destroys the stratospheric ozone layer, can be prevented from being released to the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の窒素除去装置の第1の実施の
形態の構成を説明する断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a first embodiment of a nitrogen removing device of the present invention.

【図2】図2は、本発明の窒素除去装置の第2の実施の
形態の構成を説明する断面図
FIG. 2 is a cross-sectional view illustrating a configuration of a second embodiment of the nitrogen removing apparatus of the present invention.

【図3】図3は、本発明の窒素除去装置の第3の実施の
形態の構成を説明する断面図
FIG. 3 is a cross-sectional view illustrating a configuration of a third embodiment of the nitrogen removing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

10…窒素除去装置 12…硝化槽 12A…第1段目の硝化槽 12B…第2段目の硝化槽 14…亜酸化窒素分解槽 16…曝気装置 18…原水供給管 22…スクリーン 24…水中攪拌機 28…固液分離装置 30…返送汚泥配管 32…脱窒槽 DESCRIPTION OF SYMBOLS 10 ... Nitrogen removal apparatus 12 ... Nitrification tank 12A ... First-stage nitrification tank 12B ... Second-stage nitrification tank 14 ... Nitrous oxide decomposition tank 16 ... Aeration device 18 ... Raw water supply pipe 22 ... Screen 24 ... Underwater stirrer 28: solid-liquid separation device 30: return sludge piping 32: denitrification tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能登 一彦 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 ──────────────────────────────────────────────────の Continued from the front page (72) Inventor Kazuhiko Noto 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】アンモニア含有廃水を硝化細菌に好気性条
件下で接触させて硝化処理した硝化液を、亜酸化窒素分
解菌に嫌気性条件下で接触させることを特徴とする廃水
の窒素除去方法。
1. A method for removing nitrogen from wastewater, comprising: contacting nitrifying solution with nitrifying bacteria by contacting nitrifying bacteria with ammonia-containing wastewater under aerobic conditions, and contacting the nitrifying solution with nitrous oxide-decomposing bacteria under anaerobic conditions. .
【請求項2】前記アンモニア含有廃水は、前記硝化処理
により亜硝酸態窒素が生成され易い高濃度アンモニア含
有廃水であると共に、前記硝化細菌は、高濃度のアンモ
ニア態窒素に増殖阻害を受けにくい硝化細菌を優先繁殖
させた硝化細菌の包括固定化担体であることを特徴とす
る請求項1の廃水の窒素除去方法。
2. The ammonia-containing wastewater is a high-concentration ammonia-containing wastewater in which nitrite nitrogen is easily generated by the nitrification treatment, and the nitrifying bacteria is less susceptible to growth inhibition by a high-concentration ammonia-nitrogen. The method for removing nitrogen from wastewater according to claim 1, wherein the method is a carrier for entrapping and immobilizing nitrifying bacteria in which bacteria are preferentially propagated.
【請求項3】高濃度のアンモニア含有廃水と、該高濃度
のアンモニア含有廃水に増殖阻害を受けにくい硝化細菌
を優先繁殖させた硝化細菌を包括固定化した担体と、を
好気性条件下で接触させる硝化槽と、 前記硝化槽からの流出液と亜酸化窒素分解菌とを嫌気性
条件下で接触させる亜酸化窒素分解槽と、 から成ることを特徴とする廃水の窒素除去装置。
3. The method according to claim 1, wherein said high-concentration ammonia-containing wastewater is contacted with a carrier, on which a nitrifying bacterium which preferentially proliferates nitrifying bacteria which is hardly inhibited by the high-concentration ammonia-containing wastewater is immobilized and immobilized. A nitrogen nitrification tank, and a nitrous oxide decomposition tank for bringing an effluent from the nitrification tank into contact with nitrous oxide decomposing bacteria under anaerobic conditions.
【請求項4】前記硝化槽を複数段配設し、前記亜酸化窒
素分解槽を前記複数段に配設した硝化槽の少なくとも1
段目の硝化槽の後に配置したことを特徴とする請求項3
の廃水の窒素除去装置。
4. A nitrification tank having a plurality of nitrification tanks and a nitric oxide decomposition tank having at least one of the nitrification tanks arranged in the plurality of stages.
4. The method according to claim 3, wherein the step is disposed after the nitrification tank in the first stage.
Wastewater nitrogen removal equipment.
【請求項5】高濃度のアンモニア含有廃水と、該高濃度
のアンモニア含有廃水に増殖阻害を受けにくい硝化細菌
を優先繁殖させた硝化細菌を包括固定化した担体と、を
好気性条件下で接触させる硝化槽と、 前記硝化槽からの流出液と亜酸化窒素分解菌とを嫌気性
条件下で接触させる亜酸化窒素分解槽と、 前記亜酸化窒素分解槽からの流出液と脱窒細菌とを嫌気
性条件下で接触させる脱窒槽と、 から成ることを特徴とする廃水の窒素除去装置。
5. The method according to claim 1, wherein the high-concentration ammonia-containing wastewater is brought into contact with a carrier on which a nitrifying bacterium which preferentially proliferates nitrifying bacteria which is hardly inhibited by the high-concentration ammonia-containing wastewater is immobilized under aerobic conditions. A nitrification tank, a nitrite decomposing tank for bringing an effluent from the nitrification tank into contact with nitrous oxide decomposing bacteria under anaerobic conditions, and an effluent from the nitrous oxide decomposing tank and denitrifying bacteria. An apparatus for removing nitrogen from wastewater, comprising: a denitrification tank contacted under anaerobic conditions.
JP34335596A 1996-12-24 1996-12-24 Wastewater nitrogen removal method and apparatus Expired - Fee Related JP3374386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34335596A JP3374386B2 (en) 1996-12-24 1996-12-24 Wastewater nitrogen removal method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34335596A JP3374386B2 (en) 1996-12-24 1996-12-24 Wastewater nitrogen removal method and apparatus

Publications (2)

Publication Number Publication Date
JPH10180292A true JPH10180292A (en) 1998-07-07
JP3374386B2 JP3374386B2 (en) 2003-02-04

Family

ID=18360888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34335596A Expired - Fee Related JP3374386B2 (en) 1996-12-24 1996-12-24 Wastewater nitrogen removal method and apparatus

Country Status (1)

Country Link
JP (1) JP3374386B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396907B1 (en) * 2000-11-28 2003-09-02 에스케이건설 주식회사 Biological nitrogen wastewater treatment with porous media
JP2008253948A (en) * 2007-04-06 2008-10-23 Hiromi Ikechi High-degree treatment apparatus of sewage
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2012148217A (en) * 2011-01-17 2012-08-09 Toshiba Corp Biological treatment method of wastewater, and wastewater treatment apparatus
WO2013025792A3 (en) * 2011-08-15 2013-05-10 The Board Of Trustees Of The Leland Stanford Junior University Microbial production of nitrous oxide coupled with chemical reaction of gaseous nitrous oxide including phosphorus recovery and nitrite reduction to nitrous oxide
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396907B1 (en) * 2000-11-28 2003-09-02 에스케이건설 주식회사 Biological nitrogen wastewater treatment with porous media
JP2008253948A (en) * 2007-04-06 2008-10-23 Hiromi Ikechi High-degree treatment apparatus of sewage
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2012148217A (en) * 2011-01-17 2012-08-09 Toshiba Corp Biological treatment method of wastewater, and wastewater treatment apparatus
WO2013025792A3 (en) * 2011-08-15 2013-05-10 The Board Of Trustees Of The Leland Stanford Junior University Microbial production of nitrous oxide coupled with chemical reaction of gaseous nitrous oxide including phosphorus recovery and nitrite reduction to nitrous oxide
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Also Published As

Publication number Publication date
JP3374386B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
JP3531481B2 (en) Wastewater treatment method and apparatus
JP3374386B2 (en) Wastewater nitrogen removal method and apparatus
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP3202510B2 (en) Equipment for treating wastewater containing nitrogen and fluorine
JP2000061494A (en) Biological treatment of ammonia nitrogen
KR100419429B1 (en) Apparatus for treating highly concentrated nitrogenous waste water and method for treating highly concentrated nitrogenous waste water using the same
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP3345874B2 (en) Comprehensive immobilization carrier and treatment device for wastewater containing ammonia
JP3345873B2 (en) Ammonia-containing wastewater treatment equipment
JP2004305814A (en) Method for treating nitrogen-containing wastewater
JPS6055200B2 (en) Organic wastewater treatment method
JPH11156391A (en) Treating method for ethanolamine-containing waste water
JP2006088057A (en) Method for treating ammonia-containing water
JP3837757B2 (en) Method for treating selenium-containing water
JP3841446B2 (en) Treatment method for waste liquid containing organic nitrogen compounds
JP3837763B2 (en) Method for treating selenium-containing water
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JP3658802B2 (en) Method for treating selenium-containing water
JP3139337B2 (en) Method and apparatus for treating liquid waste containing high COD and high nitrogen compounds
JP2003053382A (en) Nitrification-denitrification treatment method
JP5076263B2 (en) Biological denitrification method
JPH09122687A (en) Treatment of selenium-containing water
JP3591031B2 (en) Biological nitrogen removal method of septic tank sludge
JPH03202195A (en) Waste water treatment method and apparatus
JPH03202196A (en) Waste water treatment apparatus having phosphorus releasing chamber and waste water treatment method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121129

LAPS Cancellation because of no payment of annual fees