JP2012148217A - Biological treatment method of wastewater, and wastewater treatment apparatus - Google Patents

Biological treatment method of wastewater, and wastewater treatment apparatus Download PDF

Info

Publication number
JP2012148217A
JP2012148217A JP2011006992A JP2011006992A JP2012148217A JP 2012148217 A JP2012148217 A JP 2012148217A JP 2011006992 A JP2011006992 A JP 2011006992A JP 2011006992 A JP2011006992 A JP 2011006992A JP 2012148217 A JP2012148217 A JP 2012148217A
Authority
JP
Japan
Prior art keywords
gas
tank
water
nitrification
nitrification tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011006992A
Other languages
Japanese (ja)
Other versions
JP5238830B2 (en
Inventor
Rie Ogi
理江 大給
Takumi Obara
卓巳 小原
Osamu Yamanaka
理 山中
Masaki Satake
正城 佐竹
Katsuya Yamamoto
勝也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011006992A priority Critical patent/JP5238830B2/en
Priority to CN201210014874.3A priority patent/CN102583735B/en
Publication of JP2012148217A publication Critical patent/JP2012148217A/en
Application granted granted Critical
Publication of JP5238830B2 publication Critical patent/JP5238830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method and system capable of effectively suppressing discharge of NO to the atmosphere using an existing facility or the like as much as possible.SOLUTION: Raw water is denitrified by denitrifying bacteria in a denitrification tank 11 under a non-oxygen state. The water to be treated in the denitrification tank 11 is aerated in a nitrification tank 12 and nitrified by aerobic microorganisms under an aerobic state. The nitrification liquid which is nitrified in the nitrification tank 12 is solid-liquid separated into treated water and an activated sludge. Gases containing NO generated from the denitrification tank 11 and the nitrification tank 12 in these steps are collected by a gas collecting mechanism 21. The collected gases are oxidized in a biological oxidation treatment section 22 and NO is changed into NO.

Description

本発明の実施形態は、生物反応装置により原水を生物学的に処理する廃水の生物学的処理方法及び廃水処理装置に関する。   Embodiments of the present invention relate to a biological treatment method and wastewater treatment apparatus for biologically treating raw water with a biological reaction apparatus.

廃水中の窒素成分を生物学的に処理する廃水の処理方法及び装置では、無酸素状態の脱窒槽で脱窒菌により還元処理した後、好気状態の硝化槽で硝化菌により生物酸化処理を行っている。これらの処理過程では、反応副産物としてNO(亜酸化窒素)ガスが発生することが知られている。NOガスは、二酸化炭素ガスの310倍の温室効果を有しているとされている。地球温暖化問題は国際的な問題となっており、温室効果ガスであるNOガスの削減は、二酸化炭素ガスやメタンガスの削減とともに重要である。このような背景から、NOの生成を抑制するための検討が行われてきた。 In the wastewater treatment method and device that biologically treats nitrogen components in wastewater, after reducing treatment with denitrifying bacteria in an oxygen-free denitrification tank, biooxidation treatment is performed with nitrifying bacteria in an aerobic nitrification tank ing. In these treatment processes, it is known that N 2 O (nitrous oxide) gas is generated as a reaction byproduct. N 2 O gas is said to have a greenhouse effect 310 times that of carbon dioxide gas. The global warming problem has become an international problem, and the reduction of N 2 O gas, which is a greenhouse gas, is important along with the reduction of carbon dioxide gas and methane gas. From such a background, studies for suppressing the generation of N 2 O have been made.

例えば、脱窒槽の前段に微好気性の生物反応槽を設け、硝化槽で発生するNO含有ガスを微好気槽に直接導入し、NOを還元処理するものがある(例えば、特許文献1参照)。また、硝化槽で発生したNO含有ガスを酸素除去装置に送気し、含有ガスに混在する酸素をあらかじめ除去した脱酸素ガスを脱窒槽の廃水中に導入し、還元処理するものもある(例えば、特許文献2参照)。さらに、硝化槽で発生したNO含有ガスを回収槽に送気し、硝化液循環ラインで回収槽内に送水された硝化液中に散気することで、NOガスを硝化液中に溶解させ、硝化液に溶解されたNOを脱窒槽に送水し、還元処理する方式もある(例えば、特許文献3参照)。 For example, there is a type in which a microaerobic biological reaction tank is provided in front of the denitrification tank, N 2 O-containing gas generated in the nitrification tank is directly introduced into the microaerobic tank, and N 2 O is reduced (for example, Patent Document 1). In addition, there is a type in which N 2 O-containing gas generated in a nitrification tank is sent to an oxygen removing device, and deoxygenated gas from which oxygen contained in the contained gas has been removed in advance is introduced into the wastewater of the denitrification tank for reduction treatment. (For example, refer to Patent Document 2). Further, the N 2 O-containing gas generated in the nitrification tank is sent to the recovery tank, and diffused into the nitrification liquid fed into the recovery tank through the nitrification liquid circulation line, so that the N 2 O gas is contained in the nitrification liquid. There is also a method in which N 2 O dissolved in the nitrification solution is fed to a denitrification tank for reduction treatment (see, for example, Patent Document 3).

特開2007−75821号公報JP 2007-75821 A 特開2000−246055号公報JP 2000-246055 A 特開平10−128389号公報JP-A-10-128389

しかし、微好気槽を用いる方法では、この微好気槽を新設する必要があり、限られたスペースしかない下水処理場においては新たに微好気槽を設置することは困難となる可能性がある。また、酸素除去装置を用いる場合、最適な酸素除去装置として分子ふるい活性炭やガス分離膜が推奨されている。しかし、これらの装置は高価であるうえ、定期的に活性炭もしくは分離膜を交換する必要があり、手間もかかる。   However, in the method using a microaerobic tank, it is necessary to newly install this microaerobic tank, and it may be difficult to newly install a microaerobic tank in a sewage treatment plant with limited space. There is. Moreover, when using an oxygen removal apparatus, molecular sieve activated carbon and a gas separation membrane are recommended as an optimal oxygen removal apparatus. However, these apparatuses are expensive, and it is necessary to periodically replace the activated carbon or the separation membrane, which is troublesome.

このため、既設設備などをできるだけ利用し、NOの大気への放出を効果的に抑止できる方法及びシステムが要望されてきた。 For this reason, there has been a demand for a method and system that can utilize existing equipment as much as possible and effectively suppress the release of N 2 O into the atmosphere.

本発明の実施の形態による廃水の生物学的処理方法では、原水を無酸素状態の脱窒槽にて脱窒菌により還元処理し、この脱窒槽を経た被処理水を好気状態の硝化槽にて好気性微生物により生物酸化処理を行うに際し、前記生物学的処理過程で生じたNOを含むガスをガス収集機構で収集し、このガス収集機構により収集されたガスを、生物酸化処理してNOをNOに変化させることを特徴とする。 In the biological treatment method of wastewater according to the embodiment of the present invention, raw water is reduced by denitrifying bacteria in an oxygen-free denitrification tank, and the treated water that has passed through this denitrification tank is in an aerobic nitrification tank. When performing a biooxidation treatment by an aerobic microorganism, a gas containing N 2 O generated in the biological treatment process is collected by a gas collection mechanism, and the gas collected by the gas collection mechanism is subjected to a biooxidation treatment. It is characterized by changing N 2 O to NO 3 .

本発明の実施の形態による廃水処理装置は、原水を無酸素状態にて脱窒菌により還元処理する脱窒槽と、この脱窒槽を経た被処理水を、曝気による好気状態にて硝化菌により生物酸化処理を行う硝化槽と、硝化処理された硝化液を処理水と活性汚泥とに固液分離する固液分離装置とを有し、前記脱窒槽及び硝化槽での生物学的処理過程で生じたNOを含むガスを収集し、NOを生物酸化処理する生物反応送へと送るガス収集機構と、このガス収集機構により収集されたガスを生物酸化処理し、NOをNOに変化させる生物酸化処理部とをさらに備えたことを特徴とする。 A wastewater treatment apparatus according to an embodiment of the present invention is a denitrification tank that reduces raw water by denitrifying bacteria in an oxygen-free state, and the treated water that has passed through this denitrifying tank is biologically treated by nitrifying bacteria in an aerobic state by aeration. It has a nitrification tank that performs oxidation treatment, and a solid-liquid separation device that separates the nitrified nitrification solution into treated water and activated sludge, and is generated in the biological treatment process in the denitrification tank and the nitrification tank. N collect gas containing 2 O were, a gas collection system for sending and the N 2 O to the feed biological response to biological oxidation process, the gas collection mechanism gases collected by processing the biological oxidation, N 2 O NO And a bio-oxidation treatment part to be changed to 3 .

本発明に係る廃水処理装置の第1の実施の形態を示す全体構成図である。1 is an overall configuration diagram showing a first embodiment of a wastewater treatment apparatus according to the present invention. 同上第1の実施の形態における生物酸化処理部に邪魔板を設けた変形例を示す部分構成図である。It is a partial block diagram which shows the modification which provided the baffle plate in the bio-oxidation process part in 1st Embodiment same as the above. 同上第1の実施の形態における生物酸化処理部に担体を設けた変形例を示す全体構成図である。It is a whole block diagram which shows the modification which provided the support | carrier in the biological oxidation process part in 1st Embodiment same as the above. 本発明に係る廃水処理装置の、硝化槽を複数に区分した第2の実施の形態の全体構成図である。It is a whole block diagram of 2nd Embodiment which divided the nitrification tank into several in the waste water treatment apparatus which concerns on this invention. 同上第2の実施の形態におけるガスの吸収部分とガス成分溶解液の戻し場所を変えた変形例の全体構成図である。It is a whole block diagram of the modification which changed the absorption part of the gas in 2nd Embodiment same as the above, and the return place of a gas component solution. 同上第2の実施の形態におけるガスの吸収部分とガス成分溶解液の戻し場所をそれぞれの場所に適用可能とした変形例の全体構成図である。It is the whole block diagram of the modification which made the absorption part of the gas in 2nd Embodiment same as the above, and the return place of a gas component solution applicable to each place. 図1で示した本発明の第1の実施の形態にNO測定装置を設けて測定値に応じた制御を可能とした変形例の全体構成図である。FIG. 5 is an overall configuration diagram of a modified example in which an N 2 O measurement device is provided in the first embodiment of the present invention illustrated in FIG. 1 and control according to a measurement value is enabled. 本発明に係る廃水処理装置の、生物酸化処理部として生物反応槽を用いた第3の実施の形態を示す全体構成図である。It is a whole block diagram which shows 3rd Embodiment using a biological reaction tank as a biological oxidation process part of the waste water treatment apparatus which concerns on this invention. 同上第3の実施の形態における生物反応槽の処理水の戻し場所を硝化槽に変えた変形例の全体構成図である。It is the whole block diagram of the modification which changed the return place of the treated water of the biological reaction tank in 3rd Embodiment same as the above into the nitrification tank. 同上第3の実施の形態における生物反応槽の処理水の戻し場所を原水槽に変えた変形例の全体構成図である。It is a whole block diagram of the modification which changed the return place of the treated water of the biological reaction tank in 3rd Embodiment same as the above to the raw water tank. 同上第3の実施の形態における生物反応槽として、担体を有する構造のものを用いた変形例の全体構成図である。It is a whole block diagram of the modification which used the thing of the structure which has a support | carrier as a biological reaction tank in 3rd Embodiment same as the above.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は、本発明の廃水処理装置の第1の実施の形態を説明する構成図である。この実施の形態の廃水処理装置は、脱窒槽11、硝化槽12、及び固液分離装置としての最終沈殿池13を備えている。脱窒槽11には、下水などの廃水が原水として導入され、この原水を無酸素状態にて脱窒菌により還元処理する。硝化槽12には、脱窒槽11を経た被処理水が導入され、その底部に設けられた散気管15によりブロワ16から供給される空気を曝気し、好気状態に保つ。そして、この好気状態において、硝化菌により酸化処理を行う。最終沈殿池13には、硝化槽12にて酸化処理された硝化液が導入され、この硝化液を処理水と活性汚泥とに固液分離する。なお、硝化液の一部はポンプ17により脱窒槽11に戻される。また、最終沈殿池13で固液分離された活性汚泥の一部はポンプ18により脱窒槽11に返送され、脱窒槽11内の生物量を維持する。なお、残りの活性汚泥は、余剰汚泥として排出管を介して装置外に排出される。   FIG. 1 is a configuration diagram illustrating a first embodiment of a wastewater treatment apparatus according to the present invention. The wastewater treatment apparatus of this embodiment includes a denitrification tank 11, a nitrification tank 12, and a final sedimentation tank 13 as a solid-liquid separation device. Waste water such as sewage is introduced into the denitrification tank 11 as raw water, and the raw water is reduced by denitrifying bacteria in an oxygen-free state. Water to be treated that has passed through the denitrification tank 11 is introduced into the nitrification tank 12, and the air supplied from the blower 16 is aerated by an air diffuser 15 provided at the bottom of the nitrification tank 12 to keep it in an aerobic state. In this aerobic state, oxidation treatment is performed with nitrifying bacteria. The final sedimentation basin 13 is introduced with the nitrification liquid oxidized in the nitrification tank 12, and the nitrification liquid is solid-liquid separated into treated water and activated sludge. A part of the nitrification liquid is returned to the denitrification tank 11 by the pump 17. Moreover, a part of the activated sludge separated into solid and liquid in the final sedimentation tank 13 is returned to the denitrification tank 11 by the pump 18 to maintain the biomass in the denitrification tank 11. In addition, the remaining activated sludge is discharged | emitted out of the apparatus through a discharge pipe as surplus sludge.

上記脱窒槽11及び硝化槽12に対しては、ガス収集機構21及び生物酸化処理部22が設けられている。ガス収集機構21は、脱窒槽11及び硝化槽12から、詳細を後述するNOを含むガスを収集する。生物酸化処理部22は、このガス収集機構21により収集されたガスを生物酸化処理し、NOをNOに変化させる。 For the denitrification tank 11 and the nitrification tank 12, a gas collection mechanism 21 and a biological oxidation treatment unit 22 are provided. The gas collection mechanism 21 collects a gas containing N 2 O, which will be described in detail later, from the denitrification tank 11 and the nitrification tank 12. The biological oxidation treatment unit 22 performs a biological oxidation treatment on the gas collected by the gas collection mechanism 21 to change N 2 O to NO 3 .

この実施の形態では、生物酸化処理部22として、ガス収集機構21により収集されたガスに散水してガス成分を水中に溶解させる散水装置23を有するものを用いている。そして、このガス成分を溶解した水を硝化槽12に戻すことにより酸化処理し、NOをNOに変化させる。 In this embodiment, as the biological oxidation treatment unit 22, a unit having a watering device 23 for watering the gas collected by the gas collecting mechanism 21 and dissolving the gas component in water is used. Then, the water dissolved the gas components to oxidation treatment by returning to the nitrification tank 12, changing the N 2 O into NO 3.

上記構成において、原水は無酸素状態の脱窒槽11に流入し、有機物が分解された後、好気状態の硝化槽12に送られる。この硝化槽12で処理された硝化液の一部は循環路を介して脱窒槽11に戻され、残りが最終沈殿池13に送られる。硝化槽12では、散気管15によりブロワ16から供給されたエアが散気され、好気性条件下で活性汚泥中の好気性微生物である硝化菌により廃水中のアンモニア性窒素が亜硝酸性窒素や硝酸性窒素に酸化処理される。また、脱窒槽11で処理しきれなかった廃水中の有機物が水と二酸化炭素に分解される。   In the above configuration, the raw water flows into the oxygen-free denitrification tank 11 and is decomposed and then sent to the aerobic nitrification tank 12. A part of the nitrification liquid treated in the nitrification tank 12 is returned to the denitrification tank 11 through the circulation path, and the rest is sent to the final sedimentation tank 13. In the nitrification tank 12, the air supplied from the blower 16 is diffused by the air diffuser 15, and ammonia nitrogen in the wastewater is converted into nitrite nitrogen or nitrous acid by nitrifying bacteria which are aerobic microorganisms in activated sludge under aerobic conditions. Oxidized to nitrate nitrogen. Moreover, the organic matter in the wastewater that could not be treated in the denitrification tank 11 is decomposed into water and carbon dioxide.

この硝化槽12からは、ポンプ17を有する循環路により前段の脱窒槽11に液が循環されるので、脱窒槽11では、亜硝酸性窒素及び硝酸性窒素が、脱窒菌により還元処理されて窒素ガスに還元する。   Since the liquid is circulated from the nitrification tank 12 to the preceding denitrification tank 11 through a circulation path having a pump 17, in the denitrification tank 11, nitrite nitrogen and nitrate nitrogen are reduced by the denitrifying bacteria to be nitrogen. Reduce to gas.

このような廃水処理の過程において、硝化槽12での酸化処理の反応副産物として、また脱窒槽11での還元処理の中間生成物として前述したNO(亜酸化窒素)が生成される。この中間生成物であるNOガスは、常時生成されているわけではなく、脱窒槽11では不完全脱窒(原因として、溶存酸素の混入、硝酸負荷が高すぎる、脱窒菌が利用する有機物不足、等で生じる。)が生じているときに発生する。また、硝化槽11では不完全硝化(アンモニア・有機物負荷が高いことによる酸素不足)が生じているときに発生する。他の要因でNOが生成される可能性はあるが、多くは上記2つが大きな要因であると考えられる。 In the process of such wastewater treatment, the aforementioned N 2 O (nitrous oxide) is produced as a reaction byproduct of the oxidation treatment in the nitrification tank 12 and as an intermediate product of the reduction treatment in the denitrification tank 11. The N 2 O gas, which is an intermediate product, is not always generated, but is incompletely denitrified in the denitrification tank 11 (caused by the incorporation of dissolved oxygen, the nitric acid load is too high, and the organic matter used by the denitrifying bacteria. Occurs when there is a shortage. It occurs when incomplete nitrification (oxygen shortage due to high ammonia / organic load) occurs in the nitrification tank 11. Although there is a possibility that N 2 O is generated by other factors, in many cases, the above two are considered to be large factors.

生成されたNOガスは硝化槽12および脱窒槽11のヘッドスペース部に空気、あるいは他の生成ガスと共に溜まる。このNOガスが大気にそのまま放出されると前述のように地球温暖化対策上問題が生じる。そこで、その抑止を図るため、ガス収集機構21により収集する。ガス収集機構21により脱窒槽11及び硝化槽12から収集されたNO含有ガスは、生物酸化処理部22へ送気される。 The generated N 2 O gas accumulates in the head space portion of the nitrification tank 12 and the denitrification tank 11 together with air or other generated gas. If this N 2 O gas is released into the atmosphere as it is, problems arise as a countermeasure against global warming as described above. Therefore, in order to suppress this, the gas is collected by the gas collecting mechanism 21. The N 2 O-containing gas collected from the denitrification tank 11 and the nitrification tank 12 by the gas collection mechanism 21 is sent to the biological oxidation treatment unit 22.

生物酸化処理部22は、NO含有ガスの流通経路に散水装置23を設置したものであり、この散水装置23には硝化槽12から排出される硝化液がポンプ24により供給され、散水されている。このため、収集されたNO含有ガスのガス成分は散水されている硝化液中に溶解され、硝化槽12に返送される。そして、この硝化槽12で生物酸化処理されNOとなる。 The biological oxidation treatment unit 22 is provided with a watering device 23 in the flow path of the N 2 O-containing gas. The watering device 23 is supplied with a nitrification liquid discharged from the nitrification tank 12 by a pump 24 and is watered. ing. For this reason, the gas component of the collected N 2 O-containing gas is dissolved in the nitrification liquid being sprinkled and returned to the nitrification tank 12. And it is biologically oxidized in this nitrification tank 12 and becomes NO 3 .

このように、脱窒槽11及び硝化槽12内で発生したNO含有ガスは、生物酸化処理部22を構成する散水装置23により散水された硝化液中に溶解された後、硝化槽12で再度硝化菌により酸化処理されることにより大幅に低減される。すなわち、ガス中のNOを硝化・脱窒の処理系内で処理することができる。これにより、廃水処理装置から発生するNOガスを無害化するための特別な装置を必要とすることなく、既存設備にガス収集機構21、生物酸化処理部22、および散水装置23を追加するだけの簡単な構成により、NOガスが大気に放出されるのを効果的に低減することができる。 As described above, the N 2 O-containing gas generated in the denitrification tank 11 and the nitrification tank 12 is dissolved in the nitrification liquid sprinkled by the water sprinkler 23 constituting the biological oxidation treatment unit 22, and then in the nitrification tank 12. It is greatly reduced by being oxidized again by nitrifying bacteria. That is, N 2 O in the gas can be treated in a nitrification / denitrification treatment system. Thereby, the gas collection mechanism 21, the biological oxidation treatment unit 22, and the watering device 23 are added to the existing equipment without requiring a special device for detoxifying the N 2 O gas generated from the wastewater treatment device. With this simple configuration, it is possible to effectively reduce the release of N 2 O gas to the atmosphere.

なお、生物酸化処理部22の散水装置23から散水された水と、ガス収集機構21によって収集されたガスとの接触部分に、これらの気液接触面積を増大させるため、例えば、図2で示すような邪魔板25を設けてもよい。このように構成すれば、気液の接触面積が増大することにより、NO含有ガスの硝化液への溶解効率を上げることができる。また、ガス収集機構21は、ガスをファンにより収集してもよい。さらに、散水する液体は硝化液に限らず、硝化液から固液分離された処理水、或いは通常の水道水でもよい。 In addition, in order to increase these gas-liquid contact areas in the contact part of the water sprinkled from the water sprinkling device 23 of the biological oxidation process part 22 and the gas collected by the gas collection mechanism 21, for example, it shows in FIG. Such a baffle plate 25 may be provided. According to this structure, by the contact area of the gas-liquid is increased, it is possible to increase the dissolution efficiency of the nitrification liquid N 2 O-containing gas. Moreover, the gas collection mechanism 21 may collect gas with a fan. Further, the liquid to be sprinkled is not limited to the nitrification liquid, but may be treated water separated from the nitrification liquid or normal tap water.

図3は上記第1の実施の形態の変形例であり、生物酸化処理部22は、散水装置23からの散水によりガス成分を溶解した水を硝化槽12に戻す経路中に、好気性微生物を付着させる担体26を配置している。すなわち、図示のように、散水装置23の下部に、好気性微生物を付着させるための担体26を配したものである。担体26の材質は何でもよく、例えば、表面を粗面に加工したプラスチック製小片の集合体ように、好気性微生物が効果的に付着される、通気性を有するものを用いるとよい。   FIG. 3 shows a modification of the first embodiment, in which the biological oxidation treatment unit 22 removes aerobic microorganisms in a path for returning water in which gas components are dissolved by watering from the watering device 23 to the nitrification tank 12. A carrier 26 to be attached is arranged. That is, as shown in the figure, a carrier 26 for attaching aerobic microorganisms is disposed at the lower part of the sprinkler 23. Any material may be used for the carrier 26, and for example, a material having air permeability to which aerobic microorganisms are effectively attached, such as an aggregate of plastic pieces whose surfaces are roughened, may be used.

このように構成すると、NO含有ガスを溶解した硝化液が担体26に接触することで、担体に付着した好気性微生物によりNOを処理することができ、NOの分解除去率を向上させることができる。なお、散水した水が担体26に接触する構成であれば、図示の構成によらずどのようであってもよい。 With this configuration, by nitrification prepared by dissolving the N 2 O-containing gas is brought into contact with the carrier 26, can process the N 2 O by aerobic microorganisms attached to the carrier, decomposition and removal rate of the N 2 O Can be improved. In addition, as long as the water sprayed contacts the support | carrier 26, what kind of thing may be sufficient irrespective of the structure of illustration.

図4及び図5は本発明の第2の実施の形態を示すものである。この実施の形態では、硝化槽12を、処理方向に対して複数に区分している。図の例では、処理方向に対して前後2つに区分したので前段部12A及び後段部12Bとする。これら前段部12A及び後段部12Bは、被処理水が流通可能に構成されている。また、散気管15は前段部12A及び後段部12Bに対して共通に設けている。   4 and 5 show a second embodiment of the present invention. In this embodiment, the nitrification tank 12 is divided into a plurality of sections in the processing direction. In the example shown in the figure, the front part 12A and the rear part 12B are divided into two in the front and rear with respect to the processing direction. These front-stage part 12A and rear-stage part 12B are comprised so that to-be-processed water can distribute | circulate. Further, the air diffuser 15 is provided in common for the front stage part 12A and the rear stage part 12B.

図4では、ガス収集機構21は硝化槽12の前段部12Aからガスを収集する。生物酸化処理部22は、収集されたガスに対して散水装置23により散水し、ガス成分を溶解させた後、このガス成分を溶解した水を硝化槽12の後段部12Bに戻すように構成している。また、図5では、ガス収集機構21は硝化槽12の後段部12Bからガスを収集する。生物酸化処理部22は、収集されたガスに対して散水装置23により散水し、ガス成分を溶解させた後、このガス成分を溶解した水を硝化槽12の前段部12Aに戻すように構成している。   In FIG. 4, the gas collection mechanism 21 collects gas from the front part 12 </ b> A of the nitrification tank 12. The biological oxidation processing unit 22 is configured to sprinkle the collected gas with the watering device 23 and dissolve the gas component, and then return the water in which the gas component is dissolved to the rear stage 12B of the nitrification tank 12. ing. In FIG. 5, the gas collection mechanism 21 collects gas from the rear stage 12 </ b> B of the nitrification tank 12. The biological oxidation treatment unit 22 is configured to sprinkle the collected gas with the water sprinkling device 23 and dissolve the gas component, and then return the water in which the gas component is dissolved to the front part 12A of the nitrification tank 12. ing.

ここで、図4のように硝化槽12の前段部12Aでガスを収集し、後段部12Bにガスを溶解した水を戻すのは、前段部12Aの方が後段部12BよりNO含有ガスの発生量が多い場合である。すなわち、脱窒槽11で不完全反応が起こっている場合、前述のようにNOが生成される。このNOの一部は被処理水中に溶解され、硝化槽12の前段部12Aに流入する。そして、この前段部12Aにおいては、水中に溶解していたNOが、散気管15によるバブリングにより気体中に放出され、NO含有ガスとなる。このため脱窒槽11に近い前段部12AからのNO含有ガスの発生量が多くなる。このような場合は、図4のような構成とすることで、脱窒反応過程で生じたNOを効率良く処理することが可能となり、NOの放出量を効果的に抑制できる。 Here, as shown in FIG. 4, the gas is collected in the front stage 12A of the nitrification tank 12, and the water in which the gas is dissolved is returned to the rear stage 12B. The front stage 12A is more N 2 O-containing than the rear stage 12B. This is a case where the amount of generation is large. That is, when an incomplete reaction occurs in the denitrification tank 11, N 2 O is generated as described above. A part of this N 2 O is dissolved in the water to be treated and flows into the front part 12 A of the nitrification tank 12. Then, in the front portion 12A, N 2 O that was dissolved in water, is released into a gas by bubbling by diffusing pipe 15, the N 2 O-containing gas. For this reason, the amount of N 2 O-containing gas generated from the front stage 12A close to the denitrification tank 11 increases. In such a case, the configuration as shown in FIG. 4 makes it possible to efficiently treat N 2 O generated in the denitrification reaction process, and the amount of N 2 O released can be effectively suppressed.

これに対して、図5のように硝化槽12の後段部12Bでガスを収集し、前段部12Aにガスを溶解した水を戻すのは、後段部12Bの方が前段部12AよりNO含有ガスの発生量が多い場合である。すなわち、硝化槽12においては有機物の酸化が生じ、後段に進むほど硝化反応が進む。この硝化反応の進行に伴ってNO含有ガスが発生することが報告されている(例えば、前記特許文献3等)。このため図5では、後段部12Bで生じたNOガスを集めて、前段部12Aに戻すことによって、NOの酸化を狙ったものである。この方式によれば、硝化過程で生じたNOを効率よく酸化処理することが可能となる。 On the other hand, as shown in FIG. 5, the gas is collected in the rear stage 12B of the nitrification tank 12, and the water in which the gas is dissolved is returned to the front stage 12A. The rear stage 12B is more N 2 O than the front stage 12A. This is a case where the amount of contained gas is large. That is, organic matter is oxidized in the nitrification tank 12, and the nitrification reaction progresses as it proceeds to the subsequent stage. It has been reported that N 2 O-containing gas is generated as the nitrification reaction proceeds (for example, Patent Document 3). Therefore, in FIG. 5, N 2 O gas generated in the rear stage portion 12B is collected and returned to the front stage portion 12A, thereby aiming at oxidation of N 2 O. According to this method, it is possible to efficiently oxidize N 2 O generated in the nitrification process.

上述した図4の構成及び図5の構成のいずれを採用するかは、廃水処理装置としての個々の特性に応じて決めればよい。いずれにおいても、NOを液中に溶解させ、硝化槽12に流下させることにより、再溶解させたNOを硝酸に酸化させることが可能となる。 Which of the configuration of FIG. 4 and the configuration of FIG. 5 described above is adopted may be determined according to individual characteristics as the wastewater treatment apparatus. In any case, it is possible to oxidize the re-dissolved N 2 O to nitric acid by dissolving N 2 O in the liquid and flowing it down to the nitrification tank 12.

なお、NOを液中に溶解させ硝化液を硝化槽12に流下させる管路には、図示のようにU字状部を設けて満水構造とし、流下側からのガスの逆流を防いでいる。 In addition, as shown in the figure, a U-shaped portion is provided in the pipeline for dissolving N 2 O in the liquid and allowing the nitrification liquid to flow down to the nitrification tank 12 to provide a water-filled structure so as to prevent backflow of gas from the downstream side. Yes.

なお、硝化槽12の、図4における後段部12B、及び図5における前段部12Aは、それぞれの図では密閉状態で描かれているが、実際には散気管15から噴出した空気を外部に逃がす逃げ部が形成されているものとする。   The rear stage part 12B in FIG. 4 and the front stage part 12A in FIG. 5 of the nitrification tank 12 are depicted in a sealed state in the respective drawings, but actually the air ejected from the air diffuser 15 is released to the outside. It is assumed that an escape portion is formed.

図6は、上述した第2の実施の形態の変形例を示すものである。この例でも硝化槽12は、処理方向に対して複数に区分され、前段部12Aと後段部12Bとを有するものとする。また、これら区分された前段部12Aと後段部12Bとは被処理水が流通可能に構成されている。   FIG. 6 shows a modification of the above-described second embodiment. Also in this example, the nitrification tank 12 is divided into a plurality of parts in the processing direction, and includes a front stage part 12A and a rear stage part 12B. In addition, the front-stage part 12A and the rear-stage part 12B thus divided are configured so that the water to be treated can flow.

これら前段部12A及び後段部12Bに対しては、それぞれガス収集機構21A,21Bを設けている。これらガス収集機構21A,21Bは、それぞれ対応する開閉弁31A,31Bを介して硝化槽12の区分された前段部12A及び後段部12Bにそれぞれ連結して、いずれかからもガスを収集可能に構成している。   Gas collecting mechanisms 21A and 21B are provided for the front stage 12A and the rear stage 12B, respectively. These gas collecting mechanisms 21A and 21B are connected to the divided front stage part 12A and rear stage part 12B of the nitrification tank 12 via the corresponding on-off valves 31A and 31B, respectively, so that gas can be collected from either of them. is doing.

生物酸化処理部22は、ガス収集機構21A,21Bのいずれかにより収集されたガスに散水する散水装置23を有する。この散水装置23の下流側は、満水部を経たのち、それぞれ対応する開閉弁32A,32Bを介して硝化槽12の後段部12B及び前段部12Bにそれぞれ連結している。つまり、これらのいずれにもガス成分を溶解した水を戻せるように構成している。また、この生物酸化処理部22の散水装置23を経た反対側は、それぞれ対応する排気弁33A,33Bを介して外部の脱臭設備などに通じている。   The biological oxidation treatment unit 22 includes a watering device 23 that sprinkles water collected by the gas collecting mechanism 21A or 21B. The downstream side of the watering device 23 is connected to the rear stage part 12B and the front stage part 12B of the nitrification tank 12 through corresponding on-off valves 32A and 32B after passing through the full water part. That is, the water in which the gas component is dissolved can be returned to any of these. In addition, the opposite side of the biological oxidation treatment unit 22 that has passed through the water sprinkler 23 communicates with an external deodorization facility or the like via the corresponding exhaust valves 33A and 33B.

さらに、硝化槽12の前段部12A及び後段部12Bから生じるガスに含まれるNO濃度を測定する測定装置35を設ける。この測定装置35は、前段部12Aからのガスに含まれるNO濃度が後段部12Bからのガスより高い場合は、図示しないコントローラにより、前段部12Aに通じるガス収集機構21Aの開閉弁31Aを開いて、前段部12Aからのガスを収集させる。また、生物酸化処理部22の、後段部12Bに通じる開閉弁32Aを開放して、この後段部12Bにガス成分を溶解した水を戻す。さらに対応する排気弁33Aを開き、散水装置23をとおり、ガス成分が溶出されたガスを脱臭装置などへ排気させる。 Furthermore, a measuring device 35 for measuring the N 2 O concentration contained in the gas generated from the front stage 12A and the rear stage 12B of the nitrification tank 12 is provided. When the N 2 O concentration contained in the gas from the front stage part 12A is higher than the gas from the rear stage part 12B, the measuring device 35 uses a controller (not shown) to open the on-off valve 31A of the gas collection mechanism 21A leading to the front stage part 12A. Open and collect gas from the front stage 12A. Moreover, the on-off valve 32A leading to the rear stage part 12B of the biological oxidation treatment part 22 is opened, and the water in which the gas component is dissolved is returned to the rear stage part 12B. Further, the corresponding exhaust valve 33A is opened, and the gas from which the gas component has been eluted is exhausted to the deodorizing device or the like through the watering device 23.

これに対して、後段部12Bからのガスに含まれるNO濃度が前段部12Aからのガスより高い場合、測定装置35は、図示しないコントローラにより、後段部12Bに通じるガス収集機構21Bの開閉弁31Bを開放して、後段部12Bからのガスを収集させる。また、生物酸化処理部22の、前段部12Aに通じる開閉弁32Bを開放して、この前段部12Aにガス成分を溶解した水を戻す。さらに対応する排気弁33Bを開き、散水装置23をとおり、ガス成分が溶出されたガスを脱臭装置などへ排気させる。 On the other hand, when the N 2 O concentration contained in the gas from the rear stage part 12B is higher than the gas from the front stage part 12A, the measuring device 35 opens and closes the gas collection mechanism 21B leading to the rear stage part 12B by a controller (not shown). The valve 31B is opened, and the gas from the rear stage 12B is collected. Moreover, the on-off valve 32B leading to the front stage part 12A of the biological oxidation treatment part 22 is opened, and the water in which the gas component is dissolved is returned to the front stage part 12A. Further, the corresponding exhaust valve 33B is opened, and the gas from which the gas component has been eluted is exhausted to the deodorizing device or the like through the watering device 23.

すなわち、前段の硝化槽12Aおよび後段の硝化槽12Bからの収集ガス中のNO濃度を測定し、測定値が高い方の硝化槽12A又は12Bより発生ガスを収集して液中に溶解させ、測定値が低い方の硝化槽12B又は12Aへ流下させるようにした。これにより、脱窒反応過程および硝化反応過程で発生するNOを効率良く処理することができる。 That is, the N 2 O concentration in the collected gas from the preceding nitrification tank 12A and the subsequent nitrification tank 12B is measured, and the generated gas is collected from the nitrification tank 12A or 12B having the higher measured value and dissolved in the liquid. The nitrification tank 12B or 12A having the lower measured value was allowed to flow down. Thereby, N 2 O generated in the denitrification reaction process and the nitrification reaction process can be treated efficiently.

なお、前段の硝化槽12Aおよび後段の硝化槽12Bからの収集ガス中のNO濃度を測定し、ガスの収集先と、散水した水の返送先を硝化槽の前段12Aと後段12Bのいずれかに決定する構成であれば図示構成に限らず、どのようなものであってもよい。 The N 2 O concentration in the collected gas from the nitrification tank 12A at the front stage and the nitrification tank 12B at the rear stage is measured, and the collection destination of the gas and the return destination of the sprinkled water are either the front stage 12A or the rear stage 12B. As long as the configuration is determined, the configuration is not limited to the illustrated configuration, and any configuration may be used.

上記実施の形態では、硝化槽12の区分数を2つとした場合を例示したが、もちろん3つ以上に区分してもよい。この場合、前段部とは、脱窒槽11に近い側の区分であればどこでもよく、必ずしも脱窒槽11に隣接した区分を指すものではない。同様に、後段部とは、前段部に対する後段部であればどこでもよく、必ずしも硝化槽12の排出部分を指すものではない。   In the said embodiment, although the case where the division | segmentation number of the nitrification tank 12 was two was illustrated, of course, you may divide into three or more. In this case, the preceding stage may be any section as long as it is a section close to the denitrification tank 11, and does not necessarily indicate a section adjacent to the denitrification tank 11. Similarly, the rear part may be any part as long as it is a rear part with respect to the front part, and does not necessarily indicate the discharge part of the nitrification tank 12.

また、この第2の実施形態では図示しなかったが、第1の実施の形態で変形例として説明した気液面積増大用の邪魔板25や、好気性微生物の担体26を、設置してもよいことは勿論である。   Although not shown in the second embodiment, the baffle plate 25 for increasing the gas-liquid area and the carrier 26 for aerobic microorganisms described as a modification in the first embodiment may be installed. Of course it is good.

図7は、前述した図1の実施形態の変形例であり、ガス収集機構21が収集するガスのNO濃度を測定する測定装置37を設けている。この測定装置37で測定されたNO濃度はコントローラ(制御部)38に入力され、予め設定した値(NO濃度目標値)と比較される。コントローラ38は、NO濃度測定値が、予め設定した値以上の場合、散水装置23による散水を実行させるべくポンプ24を起動制御する。すなわち、収集ガス中のNO濃度を測定し、測定値が設定した目標値よりも高いときのみ、散水用のポンプ24を作動させて、NOガスを再溶解させるものである。これにより、散水用のポンプ24のランニングコストを低減することができる。 FIG. 7 is a modification of the embodiment of FIG. 1 described above, and is provided with a measuring device 37 that measures the N 2 O concentration of the gas collected by the gas collecting mechanism 21. The N 2 O concentration measured by the measuring device 37 is input to a controller (control unit) 38 and compared with a preset value (N 2 O concentration target value). When the measured value of the N 2 O concentration is equal to or greater than a preset value, the controller 38 controls the activation of the pump 24 so as to execute watering by the watering device 23. That is, the N 2 O concentration in the collected gas is measured, and only when the measured value is higher than the set target value, the watering pump 24 is operated to redissolve the N 2 O gas. Thereby, the running cost of the pump 24 for watering can be reduced.

また、コントローラ38は、NOの測定値と目標値の偏差に応じて散水量を演算し、散水用のポンプ24を制御して、散水量を調整するものでもよい。さらに、測定されたNO濃度に応じて、ブロワ16を制御し、硝化槽12に対する曝気量を調整するようにしてもよい。 Further, the controller 38 may calculate the watering amount according to the deviation between the measured value of N 2 O and the target value, and control the watering pump 24 to adjust the watering amount. Further, the blower 16 may be controlled in accordance with the measured N 2 O concentration to adjust the amount of aeration with respect to the nitrification tank 12.

これらは、収集ガス中に含まれるNOの測定値に応じた制御を行うものであり、無駄な運転を防止して効率的な運用が可能となる。 These perform control according to the measured value of N 2 O contained in the collected gas, and can prevent wasteful operation and enable efficient operation.

図8は第3の実施の形態を示している。なお、前述した各実施の形態と同じ装置及び部材には同符号を付して説明する。   FIG. 8 shows a third embodiment. In addition, the same code | symbol is attached | subjected and demonstrated to the same apparatus and member as each embodiment mentioned above.

脱窒槽11、硝化槽12、固液分離装置としての最終沈殿池13、硝化槽12から脱窒槽11への循環路については、前述した各実施の形態と同様であり、これらと同じ装置及び部材には同符号を付している。   The denitrification tank 11, the nitrification tank 12, the final sedimentation basin 13 as a solid-liquid separation device, and the circulation path from the nitrification tank 12 to the denitrification tank 11 are the same as those of the above-described embodiments, and the same devices and members as these. Are given the same reference numerals.

この実施の形態では、生物酸化処理部22として、被処理水を生物学処理する生物反応槽22Aを用いている。この生物反応槽22Aの被処理水に対しては、槽内底部に設けられた散気管45により、ブロワ46から送風される空気が曝気される。   In this embodiment, a biological reaction tank 22 </ b> A for biologically treating the water to be treated is used as the biological oxidation treatment unit 22. The water to be treated in the biological reaction tank 22A is aerated by the air diffuser 45 provided at the bottom of the tank.

脱窒槽11及び硝化槽12から生じたガスは、ガス収集機構21により収集され、ファン48により生物反応槽22A内の被処理水中に吹き込まれる。なお、生物反応槽22A内の被処理水には、別途用意した被処理水や、図8で示すように脱窒槽11内の被処理水を、或いは、図9で示すように硝化槽12内の被処理液を、バッチ式で取り入れてもよい。   The gas generated from the denitrification tank 11 and the nitrification tank 12 is collected by the gas collection mechanism 21 and blown into the treated water in the biological reaction tank 22A by the fan 48. The treated water in the biological reaction tank 22A is treated water prepared separately, treated water in the denitrification tank 11 as shown in FIG. 8, or in the nitrification tank 12 as shown in FIG. The liquid to be treated may be introduced in a batch manner.

このように、硝化槽12での硝化反応、及び脱窒槽11での脱窒反応の中間物質として生成したNOガスならびに臭気ガスを、ガス収集機構21のガス経路を介して生物反応槽22Aに直接導入するようにした。また、生物反応槽22Aでの生物反応による処理水は、バッチ式で脱窒槽11又は硝化槽12へ戻すように構成した。 As described above, the N 2 O gas and the odor gas generated as intermediate substances of the nitrification reaction in the nitrification tank 12 and the denitrification reaction in the denitrification tank 11 are converted into the biological reaction tank 22A through the gas path of the gas collection mechanism 21. Was introduced directly. Further, the treated water by the biological reaction in the biological reaction tank 22A was configured to be returned to the denitrification tank 11 or the nitrification tank 12 in a batch type.

上記構成によると、生物反応槽22AではNOを酸化すると共に、発生した硫化水素ガスやアンモニアガス等の臭気ガスも酸化脱臭できる。これにより、NOの処理と臭気ガスの脱臭処理を同時に行うことができる。生物反応槽22Aの有機物負荷や窒素負荷は硝化槽12に比べて低いことから不完全酸化が起こりにくく、より完全なNOの酸化処理が期待できる。なお、処理水の返送場所は図10のように原水槽(図示せず)であってもよい。 According to the above configuration, the biological reaction tank 22A can oxidize N 2 O and oxidize and deodorize the generated odor gas such as hydrogen sulfide gas and ammonia gas. Thus, it is possible to perform deodorization treatment of N 2 O in the process and the odorous gas simultaneously. Since the organic substance load and nitrogen load of the biological reaction tank 22A are lower than those of the nitrification tank 12, incomplete oxidation hardly occurs, and more complete oxidation treatment of N 2 O can be expected. The place where the treated water is returned may be a raw water tank (not shown) as shown in FIG.

図11は上述した第3の実施の形態の変形例であり、生物酸化処理部22としての生物反応槽22Bは、槽内の高さ方向中間部に、好気生微生物を付着させた担体51を配置し、その上部に散水装置52を設けたものである。この散水装置52は、最終沈殿池13にて硝化液から分離された処理水を散水する。脱窒槽11及び硝化槽12から生じたガスは、ガス収集機構21により収集され、ファン48により担体51の下方空間に供給し、この担体51の配置部分を上向流で通過する。   FIG. 11 shows a modification of the above-described third embodiment. A biological reaction tank 22B as a biological oxidation treatment unit 22 is a carrier 51 in which aerobic microorganisms are attached to an intermediate part in the height direction in the tank. The watering device 52 is provided in the upper part. This watering device 52 sprinkles the treated water separated from the nitrification liquid in the final sedimentation basin 13. The gas generated from the denitrification tank 11 and the nitrification tank 12 is collected by the gas collecting mechanism 21, supplied to the lower space of the carrier 51 by the fan 48, and passes through the arrangement portion of the carrier 51 in an upward flow.

ここで、担体51は、前述のように硝化菌をはじめとする好気性微生物を付着させたものであり、収集したNO含有ガスを反応槽22Bの内部に上向流で通気させることにより、担体51に付着させた好気性微生物によりNOを効率良く酸化処理することができる。この場合、ガス収集機構21により収集されたガスは、担体51の下方空間に吹き込まれるので、液中に吹き込む場合に比べ、ファン48の容量を小さくでき、運転コストの低減が期待できる。 Here, as described above, the carrier 51 is made by adhering aerobic microorganisms such as nitrifying bacteria, and the collected N 2 O-containing gas is vented upward in the reaction tank 22B. In addition, N 2 O can be efficiently oxidized by the aerobic microorganism attached to the carrier 51. In this case, since the gas collected by the gas collecting mechanism 21 is blown into the lower space of the carrier 51, the capacity of the fan 48 can be reduced compared with the case of blowing into the liquid, and a reduction in operating cost can be expected.

なお、生物反応槽22Bで発生した処理水は脱窒槽11返送するように構成した。この他、処理水の返送場所は硝化槽や原水槽でも良い。   The treated water generated in the biological reaction tank 22B was configured to be returned to the denitrification tank 11. In addition, a nitrification tank or a raw water tank may be used as the place where the treated water is returned.

上述の各実施の形態では、硝化槽12で硝化菌により酸化処理された硝化液を、最終沈殿池13により処理水と活性汚泥とに固液分離していたが、最終沈殿池13を用いないで固液分離する膜分離活性汚泥法を用いてもよい。   In each of the above-described embodiments, the nitrification solution oxidized by nitrifying bacteria in the nitrification tank 12 is solid-liquid separated into treated water and activated sludge by the final sedimentation basin 13, but the final sedimentation basin 13 is not used. Alternatively, a membrane separation activated sludge method for solid-liquid separation may be used.

この膜分離活性汚泥法では、硝化槽12内の下流部分に膜ろ過装置を設け、この膜ろ過装置により硝化槽12内で固液分離を行い、分離された処理液を取り出すものである。この場合、硝化槽12からは前述した各実施の形態と同様に硝化液の一部が脱窒槽11に返送される。また、硝化槽12内には、膜ろ過装置により固液分離された活性汚泥が蓄積されるので、硝化槽12内から、この蓄積された活性汚泥を引き抜く。引き抜かれた活性汚泥は、前述した各実施の形態と同様に、その一部は脱窒槽11に返送され、残りは余剰汚泥として装置外に排出される。   In this membrane separation activated sludge method, a membrane filtration device is provided in the downstream portion in the nitrification tank 12, and solid-liquid separation is performed in the nitrification tank 12 by this membrane filtration device, and the separated treatment liquid is taken out. In this case, a part of the nitrification liquid is returned from the nitrification tank 12 to the denitrification tank 11 as in the above-described embodiments. Moreover, since the activated sludge solid-liquid separated by the membrane filtration device is accumulated in the nitrification tank 12, the accumulated activated sludge is extracted from the nitrification tank 12. A part of the extracted activated sludge is returned to the denitrification tank 11 and the rest is discharged out of the apparatus as excess sludge, as in the above-described embodiments.

このように、本発明の各実施の形態では、原水を無酸素状態の脱窒槽にて脱窒菌により還元処理し、この脱窒槽を経た被処理水を曝気され好気状態の硝化槽にて硝化菌により酸化処理を行うに際し、生物学的処理過程で生じたNOを含むガスをガス収集機構で収集し、このガス収集機構により収集されたガスを、酸化処理してNOをNOに変化させるので、既存設備の利用によりNOの大気への放出を効果的に抑制することができる。 As described above, in each embodiment of the present invention, raw water is reduced by denitrifying bacteria in an oxygen-free denitrification tank, and the treated water that has passed through the denitrification tank is aerated and nitrified in an aerobic nitrification tank. In performing oxidation treatment with bacteria, a gas containing N 2 O generated in the biological treatment process is collected by a gas collecting mechanism, and the gas collected by this gas collecting mechanism is oxidized to convert N 2 O into NO. since changing the 3, it is possible to effectively suppress the release into the atmosphere of N 2 O by use of existing facilities.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11・・・脱窒槽
12・・・硝化槽
21・・・ガス収集機構
22・・・生物酸化処理部
22A,22B・・・生物反応槽
23…散水装置
25…邪魔板
26…担体
DESCRIPTION OF SYMBOLS 11 ... Denitrification tank 12 ... Nitrification tank 21 ... Gas collection mechanism 22 ... Biological oxidation process part 22A, 22B ... Biological reaction tank 23 ... Sprinkler 25 ... Baffle plate 26 ... Carrier

Claims (18)

原水を無酸素状態の脱窒槽にて脱窒菌により還元処理し、この脱窒槽を経た被処理水を好気状態の硝化槽にて硝化菌により酸化処理を行う廃水の生物学的処理方法であって、
前記生物学的処理過程で生じたNOを含むガスをガス収集機構で収集し、このガス収集機構により収集されたガスを、液中に溶解させ酸化処理し、NOをNOに変化させる
ことを特徴とする廃水の生物学的処理方法。
This is a biological treatment method for wastewater in which raw water is reduced by denitrifying bacteria in an anaerobic denitrification tank, and the treated water passed through this denitrification tank is oxidized by nitrifying bacteria in an aerobic nitrification tank. And
A gas containing N 2 O generated in the biological treatment process is collected by a gas collecting mechanism, and the gas collected by the gas collecting mechanism is dissolved in a liquid and oxidized to convert N 2 O into NO 3 . Biological treatment method of wastewater characterized by changing.
原水を無酸素状態にて脱窒菌により還元処理する脱窒槽と、この脱窒槽を経た被処理水を、曝気による好気状態にて硝化菌により酸化処理を行う硝化槽と、酸化処理された硝化液を処理水と活性汚泥とに固液分離する固液分離装置とを有する廃水処理装置であって、
前記脱窒槽及び硝化槽での生物学的処理過程で生じたNOを含むガスを収集するガス収集機構と、
このガス収集機構により収集されたガスを液中に溶解させ酸化処理し、NOをNOに変化させる生物酸化処理部と、
を備えたことを特徴とする廃水処理装置。
A denitrification tank that performs reduction treatment of raw water with denitrifying bacteria in the absence of oxygen, a nitrification tank that oxidizes the treated water that has passed through this denitrification tank with nitrifying bacteria in an aerobic state by aeration, and an oxidized nitrification A wastewater treatment device having a solid-liquid separation device for solid-liquid separation of the liquid into treated water and activated sludge,
A gas collection mechanism for collecting a gas containing N 2 O generated in the biological treatment process in the denitrification tank and the nitrification tank;
A bio-oxidation unit that dissolves the gas collected by the gas collection mechanism in a liquid and oxidizes the gas to change N 2 O to NO 3 ;
A wastewater treatment apparatus characterized by comprising:
前記生物酸化処理部は、前記ガス収集機構により収集されたガスに散水してガス成分を水中に溶解させる散水装置を有し、このガス成分が溶解した水を前記硝化槽に戻し、硝化槽で酸化するように構成されたことを特徴とする請求項2に記載の廃水処理装置。   The biological oxidation treatment unit has a watering device that sprinkles the gas collected by the gas collecting mechanism and dissolves the gas component in water, and returns the water in which the gas component is dissolved to the nitrification tank. The wastewater treatment apparatus according to claim 2, wherein the wastewater treatment apparatus is configured to be oxidized. 前記硝化槽は、処理方向に対して複数に区分され、これら区分された処理方向に対する前段部及び後段部は、被処理水が流通可能に構成され、
前記ガス収集機構は硝化槽の前記前段部からガスを収集し、前記生物酸化処理部は、ガス成分を溶解した水を硝化槽の前記後段部に戻し、硝化槽で酸化する
ことを特徴とする請求項3に記載の廃水処理装置。
The nitrification tank is divided into a plurality of treatment directions, and the front and rear stages with respect to the divided treatment directions are configured to allow the water to be treated to flow,
The gas collecting mechanism collects gas from the front part of the nitrification tank, and the biological oxidation treatment part returns the water in which the gas component is dissolved to the rear part of the nitrification tank and oxidizes it in the nitrification tank. The wastewater treatment apparatus according to claim 3.
前記硝化槽は、処理方向に対して複数に区分され、これら区分された処理方向に対する前段部及び後段部は、被処理水が流通可能に構成され、
前記ガス収集機構は硝化槽の前記後段部からガスを収集し、前記生物酸化処理部は、ガス成分を溶解した水を硝化槽の前記前段部に戻し、硝化槽で酸化する
ことを特徴とする請求項3に記載の廃水処理装置。
The nitrification tank is divided into a plurality of treatment directions, and the front and rear stages with respect to the divided treatment directions are configured to allow the water to be treated to flow,
The gas collecting mechanism collects gas from the rear stage part of the nitrification tank, and the biological oxidation treatment part returns the water in which the gas component is dissolved to the front stage part of the nitrification tank, and oxidizes in the nitrification tank. The wastewater treatment apparatus according to claim 3.
前記硝化槽は、処理方向に対して複数に区分され、これら区分された処理方向に対する前段部及び後段部は、被処理水が流通可能に構成され、
前記ガス収集機構はそれぞれ開閉弁を介して前記硝化槽の前記前段部及び後段部にそれぞれ連結し、これらのいずれかからもガスを収集可能であり、前記生物酸化処理部はそれぞれ開閉弁を介して前記硝化槽の前記後段部及び前段部にそれぞれ連結し、これらのいずれにもガス成分を溶解した水を戻すことが可能な構成で、硝化槽で酸化する、
ことを特徴とする請求項3に記載の廃水処理装置。
The nitrification tank is divided into a plurality of treatment directions, and the front and rear stages with respect to the divided treatment directions are configured to allow the water to be treated to flow,
The gas collecting mechanisms are respectively connected to the front and rear stages of the nitrification tank via on-off valves, respectively, and can collect gas from either of them, and the biological oxidation treatment parts are respectively connected to the on-off valves. Connected to the rear stage and the front stage of the nitrification tank, respectively, and the structure that can return the water in which the gas component is dissolved to any of these, is oxidized in the nitrification tank.
The wastewater treatment apparatus according to claim 3.
前記硝化槽の前記前段部及び後段部から生じるガスのNO濃度を測定する測定装置を有し、この測定装置は、
前記硝化槽の前記前段部からのガスのNO濃度が前記後段部からのガスより高い場合は、前記前段部に通じる前記ガス収集機構の開閉弁を開いてこの前段部からのガスを収集させ、かつ前記生物酸化処理部は、前記後段部に通じる開閉弁を開いてこの後段部にガス成分を溶解した水を戻させ、
前記硝化槽の前記後段部からのガスのNO濃度が前記前段部からのガスより高い場合は、前記後段部に通じる前記ガス収集機構の開閉弁を開いてこの後段部からのガスを収集させ、かつ前記生物酸化処理部は、前記前段部に通じる開閉弁を開いてこの前段部にガス成分を溶解した水を戻させる
ことを特徴とする請求項6に記載の廃水処理装置。
The measuring device has a measuring device for measuring the N 2 O concentration of the gas generated from the front part and the rear part of the nitrification tank,
When the N 2 O concentration of the gas from the front stage part of the nitrification tank is higher than the gas from the rear stage part, the gas collecting mechanism opening / closing valve leading to the front stage part is opened to collect the gas from the front stage part And the biological oxidation treatment unit opens an on-off valve leading to the rear stage part to return water in which the gas component is dissolved to the rear stage part,
When the N 2 O concentration of the gas from the rear stage of the nitrification tank is higher than the gas from the front stage, the gas collection mechanism leading to the rear stage is opened to collect the gas from the rear stage The waste water treatment apparatus according to claim 6, wherein the biological oxidation treatment unit opens an on-off valve that communicates with the front stage and returns water in which the gas component is dissolved to the front stage.
前記生物酸化処理部は、散水された水と前記ガス収集機構によって収集されたガスとの接触部分に、これらの気液接触面積を向上させるための邪魔板を有することを特徴とする請求項3乃至請求項7のいずれかに記載の廃水処理装置。   4. The biological oxidation treatment unit has a baffle plate for improving a gas-liquid contact area at a contact portion between water sprayed and gas collected by the gas collecting mechanism. The wastewater treatment apparatus according to any one of claims 7 to 7. 前記生物酸化処理部は、ガス成分を溶解した水を硝化槽に戻す経路中に、好気性微生物を付着させる担体を配置したことを特徴とする請求項3乃至請求項7のいずれかに記載の廃水処理装置。   8. The biological oxidation treatment unit according to any one of claims 3 to 7, wherein a carrier for attaching aerobic microorganisms is disposed in a path for returning water in which gas components are dissolved to the nitrification tank. Waste water treatment equipment. 前記散水装置が散水する水は、前記硝化槽から取り出された硝化液であることを特徴とする請求項3乃至請求項9のいずれかに記載の廃水処理装置。   The wastewater treatment device according to any one of claims 3 to 9, wherein water sprayed by the watering device is a nitrification liquid taken out from the nitrification tank. 前記散水装置が散水する水は、前記硝化液から固液分離された処理水であることを特徴とする請求項3乃至請求項9のいずれかに記載の廃水処理装置。   The wastewater treatment apparatus according to any one of claims 3 to 9, wherein the water sprinkled by the watering apparatus is treated water that is solid-liquid separated from the nitrification liquid. 前記ガス収集機構が収集するガスのNO濃度を測定する測定装置を有し、測定されたNO濃度が予め設定した値以上の場合、前記散水装置による散水を実行させる制御部を有することを特徴とする請求項3乃至請求項11のいずれかに記載の廃水処理装置。 The gas collecting mechanism has a measuring device that measures the N 2 O concentration of the gas collected, and has a control unit that executes watering by the watering device when the measured N 2 O concentration is equal to or higher than a preset value. The wastewater treatment apparatus according to any one of claims 3 to 11, wherein 前記ガス収集機構が収集するガスのNO濃度を測定する測定装置を有し、測定されたNO濃度に応じて前記散水装置による散水量を調整する制御部を有することを特徴とする請求項3乃至請求項11のいずれかに記載の廃水処理装置。 It has a measuring device which measures N 2 O concentration of the gas which the gas collecting mechanism collects, and has a control part which adjusts the amount of watering by the watering device according to the measured N 2 O concentration. The wastewater treatment apparatus according to any one of claims 3 to 11. 前記ガス収集機構が収集するガス体のNO濃度を測定する測定装置を有し、測定されたNO濃度に応じて硝化槽に対する曝気量を調整する制御部を有することを特徴とする請求項3乃至請求項13のいずれかに記載の廃水処理装置。 It has a measuring device which measures the N 2 O concentration of the gas body which the gas collection mechanism collects, and has a control part which adjusts the amount of aeration to the nitrification tank according to the measured N 2 O concentration The wastewater treatment apparatus according to any one of claims 3 to 13. 前記生物酸化処理部として、被処理水を曝気して生物処理する生物反応槽を用い、前記ガス収集機構により収集されたガスは、この生物反応槽内の被処理水中に吹き込まれることを特徴とする請求項2に記載の廃水処理装置。   As the biological oxidation treatment unit, a biological reaction tank that performs biological treatment by aeration of water to be treated is used, and the gas collected by the gas collecting mechanism is blown into the water to be treated in the biological reaction tank. The wastewater treatment apparatus according to claim 2. 前記生物酸化処理部として用いられる生物反応槽の被処理水には、前記脱窒槽内の液体を用いることを特徴とする請求項15に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 15, wherein a liquid in the denitrification tank is used as water to be treated in a biological reaction tank used as the biological oxidation treatment unit. 前記生物酸化処理部として用いられる生物反応槽の被処理水には、前記硝化槽内の液体を用いることを特徴とする請求項15に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 15, wherein a liquid in the nitrification tank is used as water to be treated in a biological reaction tank used as the biological oxidation treatment unit. 前記生物酸化処理部として、槽内の高さ方向中間部に、好気性微生物を付着させた担体を配置し、前記硝化液から分離された処理水を上部から散水する散水装置を備えた生物反応槽を用い、前記ガス収集機構により収集したガスを、この生物反応槽内の前記担体の下方空間に供給し、この担体配置部分を上向流で通過させる構造であることを特徴とする請求項2に記載の廃水処理装置。   A biological reaction provided with a watering device that disperses the treated water separated from the nitrification liquid from above by arranging a carrier having aerobic microorganisms attached to the intermediate portion in the height direction in the tank as the biological oxidation treatment unit. The gas collected by the gas collecting mechanism using a tank is supplied to a lower space of the carrier in the biological reaction tank, and the carrier arrangement portion is passed upwardly. The waste water treatment apparatus according to 2.
JP2011006992A 2011-01-17 2011-01-17 Waste water treatment equipment Active JP5238830B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011006992A JP5238830B2 (en) 2011-01-17 2011-01-17 Waste water treatment equipment
CN201210014874.3A CN102583735B (en) 2011-01-17 2012-01-17 Biological treatment method for wastewater and wastewater treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006992A JP5238830B2 (en) 2011-01-17 2011-01-17 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2012148217A true JP2012148217A (en) 2012-08-09
JP5238830B2 JP5238830B2 (en) 2013-07-17

Family

ID=46473095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006992A Active JP5238830B2 (en) 2011-01-17 2011-01-17 Waste water treatment equipment

Country Status (2)

Country Link
JP (1) JP5238830B2 (en)
CN (1) CN102583735B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228646A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Biological water treating apparatus
CN106277570A (en) * 2016-08-10 2017-01-04 河南师范大学 A kind of sewage disposal and N2the coupling device of O reduction of discharging and operation method thereof
KR101870673B1 (en) 2018-02-27 2018-06-25 대가파우더시스템 주식회사 Bio filter system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922469B (en) * 2014-04-08 2016-01-13 北京工业大学 N in a kind of half short distance nitration/Anammox sewage water denitrification process 2the collection device that O produces and method
CN114538710A (en) * 2022-03-01 2022-05-27 桂林理工大学 N2O emission reduction sewage integrated treatment system and method

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193796A (en) * 1982-05-07 1983-11-11 Osaka Gas Co Ltd Biologically denitrifying method of waste water
JPH0261424U (en) * 1988-10-26 1990-05-08
JPH06190241A (en) * 1991-03-06 1994-07-12 Ebara Infilco Co Ltd Method and apparatus for biological treatment of dinitrogen oxide
JPH10128389A (en) * 1996-11-01 1998-05-19 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JPH10180292A (en) * 1996-12-24 1998-07-07 Hitachi Plant Eng & Constr Co Ltd Method of removing nitrogen from waste water and device therefor
JP2000246055A (en) * 1999-03-04 2000-09-12 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for biologically treating nitrous oxide gas
JP2000279752A (en) * 1999-03-30 2000-10-10 Mitsubishi Heavy Ind Ltd Nitrous oxide adsorbent, adsorption tower and waste water treatment
JP2002204926A (en) * 2001-01-12 2002-07-23 Kurabo Ind Ltd Method for removing nitrous oxide in gas and system for removing it
JP2003117337A (en) * 2001-10-12 2003-04-22 Kurita Water Ind Ltd Method for manufacturing ripe compost-like substance and manufacturing facility
WO2004074191A1 (en) * 2003-02-21 2004-09-02 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
JP2005177758A (en) * 2005-02-18 2005-07-07 Ebara Corp Biological deodorization method of odorant gas containing ammonia and apparatus
JP2007075821A (en) * 2006-12-22 2007-03-29 Hitachi Plant Technologies Ltd Biological treatment process and device of nitrous oxide gas
JP2009165958A (en) * 2008-01-16 2009-07-30 Panasonic Corp Treatment state judging method of aeration tank and wastewater treatment control system using it
WO2009140970A1 (en) * 2008-05-20 2009-11-26 Aarhus Universitet A method and a system for purifying and deodorising discharge gases from organic waste producing facilities
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2010099560A (en) * 2008-10-22 2010-05-06 Metawater Co Ltd Air supply system and air supply method
JP2010269255A (en) * 2009-05-22 2010-12-02 Hitachi Ltd Sewage treatment method
JP2011092831A (en) * 2009-10-28 2011-05-12 Metawater Co Ltd System and method for reducing amount of generated gas
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223803A1 (en) * 1985-05-25 1987-06-03 Hölter, Heinz, Dipl.-Ing. METHOD FOR SIMULTANEOUSLY REMOVING BY WASHING SO 2?, NO x? AND OPTIONALLY OTHER NOXIOUS SUBSTANCES CONTAINED IN FLUE GASES IN HEATING INSTALLATIONS SUPPLIED WITH FOSSILE FUELS
CN2912776Y (en) * 2006-01-22 2007-06-20 石建平 Recovering device with spraying function
CN1935708A (en) * 2006-10-19 2007-03-28 北京科技大学 Treatment device with bio-sludge degrading and denitrogenation, and its operating method
CN201093505Y (en) * 2007-06-08 2008-07-30 东莞丰裕电机有限公司 Environment protection type medical refuse incinerator
CN101139155B (en) * 2007-08-20 2010-08-11 北京科技大学 Non-excess activated sludge discharged printing and dyeing wastewater processing equipment and operation method thereof
CN201380044Y (en) * 2008-12-11 2010-01-13 浙江菲尔特环保工程有限公司 Waste gas purification device for spraying coating
CN201634652U (en) * 2009-11-13 2010-11-17 北京中环瑞德环境工程技术有限公司 High efficiency biogas biochemical combination desulfurization device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193796A (en) * 1982-05-07 1983-11-11 Osaka Gas Co Ltd Biologically denitrifying method of waste water
JPH0261424U (en) * 1988-10-26 1990-05-08
JPH06190241A (en) * 1991-03-06 1994-07-12 Ebara Infilco Co Ltd Method and apparatus for biological treatment of dinitrogen oxide
JPH10128389A (en) * 1996-11-01 1998-05-19 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for waste water treatment
JPH10180292A (en) * 1996-12-24 1998-07-07 Hitachi Plant Eng & Constr Co Ltd Method of removing nitrogen from waste water and device therefor
JP2000246055A (en) * 1999-03-04 2000-09-12 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for biologically treating nitrous oxide gas
JP2000279752A (en) * 1999-03-30 2000-10-10 Mitsubishi Heavy Ind Ltd Nitrous oxide adsorbent, adsorption tower and waste water treatment
JP2002204926A (en) * 2001-01-12 2002-07-23 Kurabo Ind Ltd Method for removing nitrous oxide in gas and system for removing it
JP2003117337A (en) * 2001-10-12 2003-04-22 Kurita Water Ind Ltd Method for manufacturing ripe compost-like substance and manufacturing facility
WO2004074191A1 (en) * 2003-02-21 2004-09-02 Kurita Water Industries Ltd. Method for treating water containing ammonia nitrogen
JP2005177758A (en) * 2005-02-18 2005-07-07 Ebara Corp Biological deodorization method of odorant gas containing ammonia and apparatus
JP2007075821A (en) * 2006-12-22 2007-03-29 Hitachi Plant Technologies Ltd Biological treatment process and device of nitrous oxide gas
JP2009165958A (en) * 2008-01-16 2009-07-30 Panasonic Corp Treatment state judging method of aeration tank and wastewater treatment control system using it
WO2009140970A1 (en) * 2008-05-20 2009-11-26 Aarhus Universitet A method and a system for purifying and deodorising discharge gases from organic waste producing facilities
JP2010094665A (en) * 2008-09-19 2010-04-30 Metawater Co Ltd Method for controlling emission of nitrous oxide associated with treatment of nitrogen-containing wastewater
JP2010099560A (en) * 2008-10-22 2010-05-06 Metawater Co Ltd Air supply system and air supply method
JP2010269255A (en) * 2009-05-22 2010-12-02 Hitachi Ltd Sewage treatment method
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2011092831A (en) * 2009-10-28 2011-05-12 Metawater Co Ltd System and method for reducing amount of generated gas
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228646A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Biological water treating apparatus
CN106277570A (en) * 2016-08-10 2017-01-04 河南师范大学 A kind of sewage disposal and N2the coupling device of O reduction of discharging and operation method thereof
KR101870673B1 (en) 2018-02-27 2018-06-25 대가파우더시스템 주식회사 Bio filter system
WO2019168337A1 (en) * 2018-02-27 2019-09-06 대가파우더시스템(주) Bio-filter system

Also Published As

Publication number Publication date
CN102583735B (en) 2014-06-11
CN102583735A (en) 2012-07-18
JP5238830B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
EP2012905B1 (en) Gas treatment systems and methods
JP5238830B2 (en) Waste water treatment equipment
KR101588829B1 (en) Deodorizing system using medicine fluid and single tower for acidic and alkaline gas
US20090090240A1 (en) Biofiltration process and apparatus for odour or voc treatment
JP4465628B2 (en) Biological treatment method and apparatus for nitrous oxide gas
CN103537188B (en) Integrated equipment and method for coprocessing methane and malodorous substances
CN104001421B (en) A kind of employing pretreated compound bio deodorization process of bubble-free aeration and device
UA113511C2 (en) METHOD AND DEVICES FOR BIOLOGICAL PURPOSE OF COXOCHEMICAL MANUFACTURING
CN113144832A (en) For treating H2Device for mixing S and ammonia gas and treatment method and application thereof
CN2558443Y (en) Washing-bio-filter bed filtering united deodorizing device
KR20100032223A (en) Biofilter system for offensive order treatment
JP5992807B2 (en) Waste water treatment apparatus and waste water treatment method
JP3918349B2 (en) Biological treatment method and apparatus for nitrous oxide gas
WO2016204616A1 (en) Method and apparatus for removal of hydrogen sulphide from gas mixtures with microorganisms
KR100288474B1 (en) Modular biofilter for filtering air comprising a bad smell and VOCs
JP2016123957A (en) Apparatus and method for treating waste water containing dissolved substance and volatile substance
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
Kiesewetter et al. Expanding the use of activated sludge at biological waste water treatment plants for odor control
KR101923992B1 (en) The self-sustaining biofiltration apparatus for removal of nitrous oxide and the method of its installation and operation at wasterwater treatment plants
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
JP6113611B2 (en) Organic wastewater treatment system
JPS602917B2 (en) Biological treatment method for wastewater
EP3673977B1 (en) Method for removal of harmful sulphurous compounds from gas mixtures
KR100446070B1 (en) Apparatus and method for removal of bad smell and volatile organic compounds
CN215027490U (en) For treating H2S and ammonia gas mixed waste gas device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5238830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3