JP2016123957A - Apparatus and method for treating waste water containing dissolved substance and volatile substance - Google Patents

Apparatus and method for treating waste water containing dissolved substance and volatile substance Download PDF

Info

Publication number
JP2016123957A
JP2016123957A JP2015001707A JP2015001707A JP2016123957A JP 2016123957 A JP2016123957 A JP 2016123957A JP 2015001707 A JP2015001707 A JP 2015001707A JP 2015001707 A JP2015001707 A JP 2015001707A JP 2016123957 A JP2016123957 A JP 2016123957A
Authority
JP
Japan
Prior art keywords
water
substance
volatile
wastewater
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015001707A
Other languages
Japanese (ja)
Inventor
田中 秀治
Shuji Tanaka
秀治 田中
英輔 田村
Eisuke Tamura
英輔 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2015001707A priority Critical patent/JP2016123957A/en
Publication of JP2016123957A publication Critical patent/JP2016123957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment apparatus and method using a water spray waste water treatment device, filled with microorganism holding carriers, to treat waste water containing odorants and volatile substances.SOLUTION: A waste water treatment apparatus includes: a closed or semi-closed tower having at a top thereof an introduction part of waste water containing dissolved substances and volatile substances and an introduction part of a gas containing oxygen and having a water tank at a bottom thereof; a water spraying chamber having a water spray device for spraying the waste water and installed in the tower to connect the waste water introduction part and the gas introduction part; a reaction part filled with microorganism holding carriers and disposed under the water spraying chamber in the tower; a space part located between the reaction part and the water tank and communicating with a blower sucking the gas and the volatile substances volatilized from the waste water so as to maintain the inside of the tower at a negative pressure; and a drainage device communicating with the water tank to discharge treated water. The waste water and the gas are made to pass through the microorganism holding carriers in the reaction part to oxidatively decompose the dissolved substances and the volatile substances in the waste water at the same time by microorganisms.SELECTED DRAWING: Figure 1

Description

本発明は、溶存性物質及び揮発性物質が含まれている廃水の処理と、同廃水から揮散した揮発性物質の無害化処理とを同時に行うことが可能な処理装置及び処理方法に関する。   The present invention relates to a treatment apparatus and a treatment method capable of simultaneously performing treatment of waste water containing dissolved substances and volatile substances and detoxification treatment of volatile substances volatilized from the waste water.

嫌気性微生物を用いた排水処理方法(以下、嫌気性処理法と称する)は、処理装置内への酸素の供給を行わなくて良い、余剰汚泥発生率が小さいなどのメリットがある。
一方で、嫌気性処理法の廃水中の有機物除去率は、60%程度に止まることが知られている。
このため、嫌気性処理法の二次処理に、好気性微生物を用いた処理法(以下、好気性処理法と称する)を適用する場合がある。
代表的な例として、高濃度の有機性廃水の高効率処理法である上向流嫌気性汚泥床(UASB:Upflow Anaerobic Sludge Blanket)法と、最も一般的な好気性処理法の標準活性汚泥法の組み合わせがある。
The wastewater treatment method using anaerobic microorganisms (hereinafter referred to as anaerobic treatment method) has advantages such as no need to supply oxygen into the treatment apparatus and a small excess sludge generation rate.
On the other hand, it is known that the organic matter removal rate in the wastewater of the anaerobic treatment method is limited to about 60%.
For this reason, a treatment method using an aerobic microorganism (hereinafter referred to as an aerobic treatment method) may be applied to the secondary treatment of the anaerobic treatment method.
Typical examples include the Upstream Anaerobic Sludge Blanket (UASB) method, which is a high-efficiency treatment method for high-concentration organic wastewater, and the standard activated sludge method for the most common aerobic treatment method. There are combinations.

ところで、UASBなどの嫌気性処理法では、廃水中の有機物の分解過程において、メタン、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチルなどの揮発性物質が発生し、処理水中に混入することが知られている。
メタンは温室効果ガスであり、大気への放散が好ましくなく、また、メチルメルカプタン、硫化メチル、二硫化メチルは排水処理における代表的な臭気物質として『防脱臭の手引き』(環境省、平成15年)にも取り上げられている。
By the way, in the anaerobic treatment method such as UASB, volatile substances such as methane, hydrogen sulfide, methyl mercaptan, methyl sulfide, and methyl disulfide are generated and decomposed into the treated water in the decomposition process of organic matter in the wastewater. Are known.
Methane is a greenhouse gas, and its emission to the atmosphere is not desirable. Methyl mercaptan, methyl sulfide, and methyl disulfide are “deodorant guides” (Ministry of the Environment, 2003) as typical odor substances in wastewater treatment. ).

従来、揮発性物質を含む廃水の処理法として、反応槽内を曝気する標準活性汚泥法による好気性処理法がある(例えば、特許文献1参照))。
標準活性汚泥法などの浮遊微生物を用いた方法では、バルキングの問題などがあるとして、処理水槽内に微生物保持担体を浸漬する固定床バイオリアクターが提案されている(例えば、特許文献2参照)。
Conventionally, as a method for treating waste water containing volatile substances, there is an aerobic treatment method using a standard activated sludge method in which the inside of a reaction tank is aerated (see, for example, Patent Document 1).
In a method using floating microorganisms such as a standard activated sludge method, a fixed bed bioreactor in which a microorganism holding carrier is immersed in a treated water tank has been proposed because there is a problem of bulking (see, for example, Patent Document 2).

しかしながら、これらの方法では、好気性処理をする反応槽である処理水槽内に被処理水である廃水を貯留し、酸素ガスなどを槽下部から曝気することとなる。処理水槽に水面上から被処理水を落下させて導入することとなり、例えば前段に嫌気性処理法の二次処理を設け前述の揮発性物質が被処理水中に混入していると、水槽の水面で飛沫を上げながら、槽中の循環流れに乗ってせいぜい水槽の上流端部の水面下数mのところまで空気をふくむ渦を起こして空気を巻き込んでくるので、被処理水中に微細気泡や溶解している揮発性物質の一部が揮発してしまう。前述のメタンなどの各揮発性物質の溶液が飛沫になって気中に分散する際の輸送速度は、気泡から水中に分散する際にガス界面から水中に分散する輸送速度よりも大きいことが知られているので、導入時に飛沫として水面上の気中に揮発性物質が分散されるのである。
また、被処理水中に溶け込んでいる残りの渾発性物質に対して、好気性微生物の活性付与のために曝気し、さらに曝気気泡による攪拌を行わなければならず、この曝気気泡により被処理水中に溶け込んでいて好気性微生物処理できるはずの揮発性物質を水中から積極的にたたき出し揮発させる効果を生んでしまう。また、曝気気泡が水槽を浮上する速度は速く、水槽深さ4m〜5mでも平均すると10秒、細かい泡でも30秒未満で水面に達してしまい、ひとつの気泡の好気性微生物との接触機会が少ないので、活性付与の制御が難しい。つまりなかなか増殖するまでいかないこともある好気性微生物と水中濃度の小さい揮発性物質との十分な接触時間を制御することが極めて難しい。
そして、曝気気泡は、水槽水面から気中に浮上する際に液表面から液滴を跳ね上げてくるので、前述のように揮発性物質の溶液が飛沫になって気中に分散する際の搬送速度は、気泡から水中に分散する際にガス界面から水中に分散する搬送速度よりも大きいので、その現象により反応槽下流側の水面からも飛沫として水面上の気中に揮発性物質がさらに分散される。
先ほどの水槽中に導入する際にたたき出された一部と併せて、揮発性物質は、反応槽で未処理、あるいは不完全な処理のまま、反応槽の水面から出てしまい、一旦揮発すると反応槽へ戻す機構はないので処理されず、処理水槽外に排出されてしまう。
そのため、例えば、特許文献1,2などの方法を適用する廃水処理システムでは、廃水処理装置とは別に、廃水処理装置から排出されるガスを処理するガス処理装置が必要である。
また、被処理水の水面から揮発せず反応槽内の被処理水中に留まった揮発性物質を、好気性微生物での完全な有機物の分解反応での無害化処理を行うには、前記のように水槽中を浮上する個々の気泡と被処理水中に薄く分散する好気性微生物との接触機会が少ないので、反応槽の下流堰までの滞留時間を稼ぐ反応槽長さが長くなくてはならず、施設が大掛かりになる。
However, in these methods, waste water that is to be treated is stored in a treated water tank that is a reaction tank that performs aerobic treatment, and oxygen gas or the like is aerated from the lower part of the tank. The treated water will be dropped and introduced into the treated water tank from the surface of the water.For example, when the secondary treatment of the anaerobic treatment method is provided in the previous stage and the aforementioned volatile substances are mixed in the treated water, the water surface of the water tank While raising the droplets in the tank, the vortex that engulfes the air up to several meters below the surface of the water at the upstream end of the aquarium is entrained and the air is entrained. Some of the volatile substances that have been evaporated. It is known that the transport speed when each volatile substance solution such as methane is dispersed in the air in the form of droplets is larger than the transport speed when the bubbles are dispersed in water from the gas interface. As a result, volatile substances are dispersed in the air on the surface of the water as splashes at the time of introduction.
Further, the remaining sporadic substances dissolved in the water to be treated must be aerated for imparting aerobic microorganism activity and further stirred with aerated bubbles. Volatile substances that are dissolved in water and should be able to be treated by aerobic microorganisms are positively struck out of water and volatilized. Moreover, the speed at which aeration bubbles rise in the water tank is fast, and even if the water tank depth is 4 m to 5 m, the water surface will reach the water surface in 10 seconds on average and fine bubbles in less than 30 seconds. Since there are few, control of activity provision is difficult. In other words, it is extremely difficult to control the sufficient contact time between aerobic microorganisms that sometimes do not readily grow and volatile substances having a low concentration in water.
And when the aeration bubbles rise from the water surface of the water tank to the air, the droplets bounce up from the surface of the liquid, and as described above, the volatile substance solution is transported when dispersed in the air as a droplet. Since the speed is higher than the transport speed that disperses from the gas interface into the water when dispersing from the bubbles into the water, the phenomenon further disperses volatile substances in the air above the water surface as splashes from the water surface downstream of the reaction tank. Is done.
Along with the part that was knocked out when introduced into the previous water tank, the volatile substance is left untreated or incomplete in the reaction tank, leaving the water surface of the reaction tank, and once volatilized. Since there is no mechanism to return to the reaction tank, it is not treated and discharged outside the treated water tank.
Therefore, for example, in a wastewater treatment system to which methods such as Patent Documents 1 and 2 are applied, a gas treatment device that treats gas discharged from the wastewater treatment device is required separately from the wastewater treatment device.
In order to detoxify a volatile substance that has not volatilized from the surface of the water to be treated and stayed in the water to be treated in the reaction tank in a complete organic substance decomposition reaction by an aerobic microorganism, as described above. Since there are few opportunities for contact between individual bubbles floating in the water tank and aerobic microorganisms that are thinly dispersed in the water to be treated, the reaction tank length that increases the residence time to the downstream weir of the reaction tank must be long. , The facility becomes a big deal.

特開平6−91289号公報JP-A-6-91289 特開平7−116681号公報Japanese Unexamined Patent Publication No. 7-116682

上記特許文献1,2などの既存技術の根本的な問題点は、嫌気性処理法の二次処理法としての好気性処理法において、揮発性物質を含む被処理水である廃水を反応槽である処理水槽に貯留して酸素ガスを含むガスを槽下部から曝気攪拌することにある。この方法では、曝気した後処理水槽内を浮上する空気は、廃水の一部に触れながら浮力で滞留時間が前述のように30秒未満という短時間で大部分が水面から放出され、処理水中に存在する好気性微生物の、廃水中の揮発性物質との十分な活性状態における接触や、接触時間を十分確保しての揮発性物質の好気性処理を制御することは難しい。
既存技術のもう一つの問題点とは、上記のような状況により、排水処理の二次汚染物として臭気などを含んだ排ガスが発生するため、廃水処理系とは別途ガス処理系が必要となることである。
The fundamental problem of the existing technologies such as the above Patent Documents 1 and 2 is that, in the aerobic treatment method as the secondary treatment method of the anaerobic treatment method, waste water that is treated water containing volatile substances is used in the reaction tank. The purpose is to aerate and stir a gas containing oxygen gas from a lower part of the tank stored in a certain water tank. In this method, the air floating in the treated water tank after aeration is mostly released from the surface of the water in a short time of less than 30 seconds as described above due to buoyancy while touching part of the wastewater, and into the treated water. It is difficult to control the aerobic microorganisms present in contact with the volatile substances in the wastewater in a sufficiently active state and the aerobic treatment of the volatile substances with sufficient contact time.
Another problem with existing technology is that exhaust gas containing odor is generated as a secondary pollutant in wastewater treatment due to the above situation, so a gas treatment system is required separately from the wastewater treatment system. That is.

本発明はこれらの問題を一挙に解決するために為されたもので、その目的は、溶存性物質及び揮発性物質を含む廃水処理に、微生物保持担体を空中に懸架するよう反応部に充填した散水式廃水処理装置を用いる処理装置及び処理方法を提案することにある。   The present invention has been made to solve these problems all at once. The purpose of the present invention is to fill a reaction part to suspend a microorganism holding carrier in the air in the treatment of waste water containing dissolved substances and volatile substances. The object is to propose a treatment apparatus and treatment method using a sprinkling wastewater treatment apparatus.

請求項1に係る発明は、溶存性物質及び揮発性物質を含む廃水の導入部と酸素を含むガスの導入部とを頂部に備えると共に、水槽を底部に備える密閉又は半密閉式の塔体と、前記廃水を散水する散水装置を備え、前記廃水の導入部と前記ガスの導入部に連接するように前記塔体内に設けられた散水室と、微生物保持担体を充填し、前記散水室の下方で前記塔体内に配置される反応部と、前記反応部と前記水槽との間に位置し、前記塔体内を負圧に保つように前記ガス及び前記廃水から揮散された揮発性物質を吸引する送風装置と連通する空間部と、前記水槽に連通し、処理水を排出する排水装置とを有し、前記廃水と前記ガスとを前記反応部の微生物保持担体を通過させることで、前記廃水中の溶存性物質及び揮発性物質の好気性微生物による同時酸化分解を行うことを特徴とする。   The invention according to claim 1 is a sealed or semi-enclosed tower having a top part of an introduction part of waste water containing dissolved substances and volatile substances and a part of introduction of gas containing oxygen, and a water tank at the bottom part. A water sprinkling device for sprinkling the waste water, filled with a water sprinkling chamber provided in the tower so as to be connected to the waste water introduction portion and the gas introduction portion, and a microorganism holding carrier, and below the water sprinkling chamber The reaction unit disposed in the tower body, and located between the reaction unit and the water tank, and sucks volatile substances volatilized from the gas and the waste water so as to keep the tower body at a negative pressure. The waste water by passing through the microorganism holding carrier of the reaction section through the waste water and the gas, having a space portion communicating with the blower, and a drainage device communicating with the water tank and discharging treated water. Of aerobic microorganisms of soluble and volatile substances And performing simultaneous oxidative degradation.

請求項2に係る発明は、請求項1記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、前記微生物保持坦体は、前記溶存性物質を好気的に酸化する従属栄養細菌と、アンモニア、硫黄系臭気、メタンを好気的に酸化する独立栄養細菌とを保持することを特徴とする。
請求項3に係る発明は、請求項1又は請求項2記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、前記微生物保持坦体は、保水性があり、水理学的滞留時間を確保しやすい、微生物の付着する空隙を多数有する多孔質材の樹脂製スポンジ塊であり、多数の前記樹脂製スポンジ塊は互いに少なくとも一部を空間を介して隣接されていることを特徴とする。
The invention according to claim 2 is the treatment apparatus of the wastewater containing the dissolved substance and the volatile substance according to claim 1, wherein the microorganism holding carrier is a heterotrophic bacterium that aerobically oxidizes the dissolved substance. It holds ammonia, sulfur odor, and autotrophic bacteria that aerobically oxidize methane.
The invention according to claim 3 is the wastewater treatment apparatus containing the soluble substance and the volatile substance according to claim 1 or claim 2, wherein the microorganism-retaining carrier has water retention and has a hydraulic retention time. It is a resin-made sponge lump made of a porous material having a large number of voids to which microorganisms adhere, which is easy to ensure, and a large number of the resin-made sponge lumps are adjacent to each other via a space.

請求項4に係る発明は、請求項3記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、前記微生物保持担体は、微生物の付着する空隙を多数有する多孔質材の樹脂製スポンジを円柱形状に形成された枠材の中に充填保持した樹脂製スポンジ塊とし、多数の前記樹脂製スポンジ塊を前記反応部の底部網部の上方にスタック充填する状態で空中に懸架されることを特徴とする。
請求項5に係る発明は、請求項3記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、前記微生物保持担体は、多孔質構造を持つ導水シートの両面に前記樹脂製スポンジ塊を三角柱状体にして並列に多数貼り付けた状態で浄化帯とし、前記反応部上方から複数の前記浄化帯を並べて空中に懸架されることを特徴とする。
According to a fourth aspect of the present invention, there is provided a treatment apparatus for wastewater containing a soluble substance and a volatile substance according to the third aspect, wherein the microorganism-supporting carrier is a porous sponge made of a resin having a large number of voids to which microorganisms adhere. A resin sponge lump filled and held in a columnar frame is formed, and a large number of the resin sponge lump is suspended in the air in a state of being stacked and filled above the bottom net of the reaction unit. Features.
According to a fifth aspect of the present invention, in the wastewater treatment apparatus containing the soluble substance and the volatile substance according to the third aspect, the microorganism holding carrier has the resin sponge mass on both surfaces of a water guide sheet having a porous structure. A purification zone is formed in a state where a large number of triangular prisms are attached in parallel, and a plurality of the purification zones are arranged from above the reaction unit and suspended in the air.

請求項6に係る発明は、請求項1乃至請求項5の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、前記ガスの導入部は、前記頂部に複数設けられていることを特徴とする。
請求項7に係る発明は、請求項1乃至請求項5の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、前記空間部は、前記送風装置に連通する導出部を複数設けていることを特徴とする。
請求項8に係る発明は、請求項1乃至請求項7の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、前記反応部は、複数の反応部に分割され、各前記反応部間には中間空間部が形成され、各前記中間空間部には酸素を含むガスの導入部が設けられていることを特徴とする。
The invention according to claim 6 is the wastewater treatment apparatus including the dissolved substance and the volatile substance according to any one of claims 1 to 5, wherein a plurality of the gas introduction parts are provided at the top part. It is characterized by that.
The invention according to claim 7 is the wastewater treatment apparatus including the soluble substance and the volatile substance according to any one of claims 1 to 5, wherein the space section includes a plurality of lead-out sections communicating with the blower. It is provided.
The invention according to claim 8 is the wastewater treatment apparatus including the soluble substance and the volatile substance according to any one of claims 1 to 7, wherein the reaction unit is divided into a plurality of reaction units, An intermediate space portion is formed between the reaction portions, and each of the intermediate space portions is provided with an introduction portion for a gas containing oxygen.

請求項9に係る発明は、請求項1乃至請求項8の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置の運転方法において、前記溶存性物質及び揮発性物質を含む廃水を前記廃水の導入部から供給しながら、前記送風装置によって酸素を含むガスを前記酸素を含むガスの導入部から吸引する工程と、前記廃水を前記散水装置によって前記散水室内に均一に散水する工程と、散水された前記廃水を前記反応部に向かって流下させると共に、前記廃水から前記散水室内に揮散した揮発性物質を前記送風装置の吸引によって前記廃水と並流状態で前記反応部に向かって流下させる工程と、前記反応部において、前記廃水を通過させることで、前記廃水中の溶存性物質及び揮発性物質の好気性微生物による同時酸化分解を行わせる工程と、前記揮発性物質が除去された前記ガスを前記空間部の排気部から前記送風装置によって排気ガスとして大気中へ放出する工程と、前記反応部から前記空間部内を流下して前記水槽内に溜められた処理水を前記排水装置によって排出する工程とを有することを特徴とする。   The invention according to claim 9 is the operation method of the wastewater treatment apparatus containing the soluble substance and the volatile substance according to any one of claims 1 to 8, wherein the wastewater containing the soluble substance and the volatile substance is disposed. A step of sucking oxygen-containing gas from the oxygen-containing gas introduction portion by the blower while supplying the wastewater from the wastewater introduction portion; and a step of uniformly spraying the wastewater into the watering chamber by the water spraying device; The sprinkled wastewater flows down toward the reaction section, and volatile substances volatilized from the wastewater into the sprinkling chamber flow down toward the reaction section in a state of co-current with the wastewater by suction of the blower. A step of allowing the waste water to pass through in the reaction section, thereby causing simultaneous oxidative decomposition of the dissolved substances and volatile substances in the waste water by aerobic microorganisms; The step of releasing the gas from which the volatile substances have been removed from the exhaust part of the space part into the atmosphere as exhaust gas by the blower, and the inside of the space part flowing down from the reaction part was stored in the water tank. And a step of discharging treated water by the drainage device.

本発明によれば、微生物保持担体を空中に懸架した散水式処理構造を用い、被処理物の酸化分解に必要な酸素を含むガスを、散水に対して並流に供給することで、装置内の反応部(微生物保持部)に溶存性物質と揮発性物質とを確実に通過させることができる。
本発明によれば、反応部に酸素を含む多量のガスを通過させることができるので、担体に付着している好気性微生物の、排水中から揮発しやすい臭気成分である揮発性物質との十分な活性状態における接触や、接触時間を十分確保しての揮発性物質の好気性処理を促進し処理することができる。
本発明によれば、微生物保持担体を空中に懸架した散水式処理構造として液を保持する面積が膨大に大きいことで大きな気液接触面積を有するDHS(Downflow Hanging Sponge)を用い、被処理物の酸化分解に必要な酸素を含むガスを散水に対して並流に供給することで、一旦微生物保持担体に散水することで多くがガス側に移動した揮発性物質を、好気性微生物に揮発性物質を溶解して与える被処理水を非常に大きな表面積にして蓄える微生物保持担体の表面において、担体に付着している好気性微生物の、排水中から揮発しやすい臭気成分である揮発性物質との十分な活性状態における直接接触及び被処理水膜を介しての接触や、接触時間を十分確保しての揮発性物質の好気性処理を促進し処理することができる。
本発明によれば、微生物保持担体を空気中に懸架した散水式処理構造として液を保持する面積が膨大に大きいことで大きな気液接触面積を有し保水性を示すDHSを用い、被処理物の酸化分解に必要な酸素を含むガスを散水に対して並流に供給することで、好気性微生物を保水と共に一所に留めて増殖させることで、好気性微生物の、排水中から揮発しやすい臭気成分である揮発性物質との十分な活性状態における接触を十分確保しつつ揮発性物質の好気性処理を促進し処理することができる。
According to the present invention, by using a sprinkling treatment structure in which a microorganism holding carrier is suspended in the air, a gas containing oxygen necessary for oxidative decomposition of an object to be treated is supplied in parallel to the sprinkling, thereby The dissolved substance and the volatile substance can be reliably passed through the reaction part (microorganism holding part).
According to the present invention, since a large amount of oxygen-containing gas can be passed through the reaction part, the aerobic microorganisms adhering to the carrier are sufficiently separated from volatile substances that are odorous components that easily volatilize from the waste water. In an active state and aerobic treatment of volatile substances with sufficient contact time can be promoted and treated.
According to the present invention, a DHS (Downflow Hanging Sponge) having a large gas-liquid contact area due to a huge area for holding liquid as a sprinkling treatment structure in which a microorganism holding carrier is suspended in the air is used. By supplying a gas containing oxygen necessary for oxidative decomposition in parallel to the water spray, the volatile substances that have moved to the gas side once sprinkled on the microorganism-supporting carrier are transferred to the aerobic microorganisms. Sufficient amount of aerobic microorganisms adhering to the carrier and volatile substances that are easily volatile from the wastewater on the surface of the microorganism-retaining carrier that stores the treated water with a very large surface area. It is possible to promote and treat the direct contact in the active state and the contact through the water film to be treated, and the aerobic treatment of the volatile substance with sufficient contact time.
According to the present invention, a DHS using a DHS that has a large gas-liquid contact area due to its enormously large area for holding liquid as a sprinkling type treatment structure in which a microorganism holding carrier is suspended in the air, By supplying a gas containing oxygen necessary for oxidative decomposition of water in parallel with the water spray, aerobic microorganisms can be easily volatilized from the wastewater by keeping them in one place with water retention. The aerobic treatment of the volatile substance can be promoted and processed while ensuring sufficient contact with the volatile substance as the odor component in a sufficient active state.

本発明によれば、装置内部が微負圧になるように酸素を含むガスを導入することで、例えば反応部上部などにある未処理の揮発性物質が装置外に漏洩することを確実に防ぐことができる。
本発明によれば、溶存性物質と揮発性物質との処理が単一の廃水の処理装置で行えるので、コンパクトかつ経済的である。
本発明によれば、装置内に酸素を供給するためのエネルギーが小さく済むので、従来法に比べ省エネルギーかつ経済的である。
According to the present invention, by introducing a gas containing oxygen so that the inside of the apparatus has a slight negative pressure, for example, untreated volatile substances in the upper part of the reaction unit or the like can be reliably prevented from leaking outside the apparatus. be able to.
According to the present invention, since the treatment of the dissolved substance and the volatile substance can be performed by a single wastewater treatment apparatus, it is compact and economical.
According to the present invention, since energy for supplying oxygen into the apparatus can be reduced, it is energy saving and economical as compared with the conventional method.

本発明の第一実施形態に係る反応槽を示す概要図である。It is a schematic diagram which shows the reaction tank which concerns on 1st embodiment of this invention. 本発明の第一実施形態で使用する微生物保持担体の正面図である。It is a front view of the microorganisms holding carrier used in 1st embodiment of this invention. 本発明の第一実施形態で使用する微生物保持担体の平面図である。It is a top view of the microorganisms holding carrier used in 1st embodiment of this invention. 本発明の第一実施形態で使用する微生物保持担体の斜視図である。It is a perspective view of the microorganisms holding carrier used by 1st embodiment of this invention. 本発明の第二実施形態に係る反応槽を示す概要図である。It is a schematic diagram which shows the reaction tank which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る反応槽を示す概要図である。It is a schematic diagram which shows the reaction tank which concerns on 3rd embodiment of this invention. 本発明の第一実施形態に係る反応槽を嫌気性処理水(被処理水)の二次処理装置に適用した例を示す概要図である。It is the schematic which shows the example which applied the reaction tank which concerns on 1st embodiment of this invention to the secondary treatment apparatus of anaerobic treated water (treated water).

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の溶存性物質及び揮発性物質を含む廃水の処理装置を適用した第一実施形態に係る反応槽10を示す。
反応槽10は、密閉式の塔体20で外形が形成されている。密閉式の塔体20は、溶存性物質及び揮発性物質を含んだ廃水(以下、被処理水と称する)の導入部22と、酸素を含むガスの導入部23とを頂部21に設けている。図1中では被処理水の導入部22は矢印で示されているが、酸素を含むガスの導入部23と同様なタッピングであり、後述の散水装置26の仕様に応じてタッピングだけか或いは散水室25内を配管されている場合もある。また、密閉式の塔体20は、底部側に水槽24を設けている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a reaction tank 10 according to a first embodiment to which a treatment apparatus for wastewater containing a soluble substance and a volatile substance of the present invention is applied.
The outer shape of the reaction vessel 10 is formed of a sealed tower body 20. The sealed tower body 20 is provided with an introduction part 22 for waste water containing dissolved substances and volatile substances (hereinafter referred to as treated water) and an introduction part 23 for gas containing oxygen at the top part 21. . In FIG. 1, the introduction portion 22 of the water to be treated is indicated by an arrow, but the tapping is similar to the introduction portion 23 of the gas containing oxygen, and only tapping or watering is performed depending on the specifications of the watering device 26 described later. The chamber 25 may be piped. Further, the sealed tower body 20 is provided with a water tank 24 on the bottom side.

廃水に含まれる溶存性物質は、例えば、有機物、アンモニア性窒素、硫化水素などである。また、廃水に含まれる揮発性物質は、NH3、H2S、メルカプタン類、CH4などである。
被処理水の導入部22とガスの導入部23とは、塔体20の頂部21の直下に設けた散水室25と連通している。散水室25は、被処理水の導入部22から導入される被処理水を散水する散水装置26を設けている。
Examples of the soluble substance contained in the wastewater include organic substances, ammoniacal nitrogen, hydrogen sulfide, and the like. Further, volatile substances contained in the wastewater are NH 3 , H 2 S, mercaptans, CH 4 and the like.
The introduction portion 22 of the water to be treated and the introduction portion 23 of the gas communicate with a sprinkling chamber 25 provided immediately below the top portion 21 of the tower body 20. The sprinkling chamber 25 is provided with a sprinkler 26 for sprinkling the water to be treated introduced from the introduction portion 22 of the water to be treated.

散水装置26は、被処理水の導入部22から供給される被処理水を散水室25内で平面的に均等に散水できるように、例えば、底面に多数の孔を設けた樋形状又は管形状、若しくは側面上端に堰を設けた樋形状の水路26aを備えている。水路26aは、固定式の場合は散水室25内を平面的に縦横に多数配設され、回転式の場合は、散水室25の平面中央を中心として一直線に、又は2本以上の場合放射状に延長されて配設される。回転式の場合は密閉式の塔体20は円筒の塔体であることが望ましい。
本実施形態では、散水装置26は被処理水の導入部22の近傍である散水室25の平面中央の中心上方にモーター26bを設け、被処理水の導入部22から導入される被処理水を、散水室25の中心から一直線に、又は2本以上の場合放射状に延長される水路26aに導き、水路26aを回転して被処理水を散水室25内に平面で均等に散水するように構成されている。回転式の場合、散水室25の平面中央近傍の被処理水の導入部22の下方に水平面に回転する水車を設置して、水車と水路26aとを連動するようにしておけば、モーター26bのような動力が無くても、落下する被処理水が水車を回転させることで回転散水ができる。
散水室25は、被処理水の導入部22から導入された被処理水が散水装置26によって散水された際に、被処理水から揮散した揮発性物質(以下、被処理ガスと称する)や被処理水が飛散しないように覆蓋する必要がある。そのため、本実施形態では、塔体20が密閉式の構造体で構成されている。
The sprinkler 26 is, for example, a bowl shape or a tube shape in which a large number of holes are provided on the bottom surface so that the water to be treated supplied from the introduction portion 22 of the water to be treated can be uniformly sprinkled in the water sprinkling chamber 25. Alternatively, a bowl-shaped water channel 26a provided with a weir at the upper end of the side surface is provided. In the fixed type, a large number of the water passages 26a are arranged vertically and horizontally in the water sprinkling chamber 25. In the case of the rotary type, the water passage 26a is arranged in a straight line around the center of the flat surface of the water sprinkling chamber 25, or radially when there are two or more. Extended and arranged. In the case of the rotary type, the sealed tower body 20 is preferably a cylindrical tower body.
In the present embodiment, the watering device 26 is provided with a motor 26b above the center of the plane center of the watering chamber 25, which is in the vicinity of the treated water introduction part 22, and the treated water introduced from the treated water introduction part 22 is supplied. In the case of two or more, it is guided to the water channel 26a that is extended radially, and the water channel 26a is rotated so that the water to be treated is uniformly sprayed in a plane in the water spray chamber 25. Has been. In the case of the rotary type, if a water turbine that rotates in a horizontal plane is installed below the introduction portion 22 of the water to be treated near the center of the water spray chamber 25 and the water turbine and the water channel 26a are linked, the motor 26b Even if there is no such power, the water to be treated that is falling can rotate the water wheel to rotate the water.
The water sprinkling chamber 25 has a volatile substance volatilized from the water to be treated (hereinafter referred to as the gas to be treated) and the water to be treated when the water to be treated introduced from the introduction portion 22 of the water to be treated is sprinkled by the water sprinkler 26. It is necessary to cover the treated water so that it does not scatter. Therefore, in this embodiment, the tower body 20 is comprised with the sealed structure.

散水室25の直下には、微生物保持担体29を充填する反応部28が塔体20内に配置されている。反応部28は、微生物保持担体29を空中に懸架した散水式処理構造となっている。微生物保持担体29は、例えば、ポリウレタン製などの樹脂製スポンジ塊などで構成されている。微生物保持担体29は、処理効率を上げるためには、多孔質で保水性のあるものが望ましい。多孔質で保水性のあるものは、微生物保持密度を高くでき、かつ、水理学的滞留時間を確保できる。微生物の付着する空隙を多数有する多孔質材の樹脂製スポンジ塊は、多数の樹脂製スポンジ塊を互いに少なくとも一部を空間を介して隣接されるように反応部28に充填や懸架されるようになっている。
微生物保持担体29は、例えば、図2、図3に示すように、樹脂製スポンジ塊50を円柱形状に形成されたプラスチック製の枠体51の中に充填保持して担体エレメント52とし、多数の担体エレメント52を反応部28の底部網部の上方にスタック充填する状態で空中に懸架されていても良い。
枠体51は、環状に形成された複数の環状体51a及び各環状体51aを一体的に接続するよう環状体51aの円周方向へ一定の間隔で配置された接続部材51b、枠体51の長手方向一端側に配置された環状体51aに径方向へ延在するよう十字状に取り付けられた多孔円筒体支持体51cを備えている。
而して、樹脂製スポンジ塊50は枠体51内に収納されて担体エレメント52が形成されており、担体エレメント52の長さLは約50mm、直径Dは約30mm程度である。
また、微生物保持担体29は、例えば、図4に示すように、多孔質構造を持つ網部材などの導水シート60の両面に樹脂製スポンジ塊61を三角柱状体にして並列に多数貼り付けた状態で浄化帯62とし、反応部28の上方から複数の浄化帯62を並べて浄化帯62に設けた垂下部材63を介して空中に懸架していても良い。
これらの樹脂製スポンジ塊50や浄化帯62を備えた微生物保持担体29を空中に懸架した散水式処理構造を、DHSと称している。
また、微生物保持坦体29は、溶存性物質を好気的に酸化する従属栄養細菌と、アンモニア、硫黄系臭気(硫化水素、硫化メチルなど)、メタンを好気的に酸化する独立栄養細菌とを保持している。
Immediately below the sprinkling chamber 25, a reaction unit 28 filled with a microorganism holding carrier 29 is arranged in the tower body 20. The reaction unit 28 has a watering treatment structure in which a microorganism holding carrier 29 is suspended in the air. The microorganism holding carrier 29 is made of, for example, a resin sponge lump made of polyurethane or the like. The microorganism holding carrier 29 is preferably porous and water-retaining in order to increase the processing efficiency. A porous and water-retaining material can increase the microorganism retention density and ensure the hydraulic residence time. Porous resin sponge lump having a large number of voids to which microorganisms adhere is filled or suspended in the reaction unit 28 such that at least part of the resin sponge lump is adjacent to each other through a space. It has become.
For example, as shown in FIGS. 2 and 3, the microorganism holding carrier 29 is filled and held in a plastic frame body 51 formed in a cylindrical shape with a resin sponge lump 50 to form a carrier element 52. The carrier element 52 may be suspended in the air in a state where the carrier element 52 is stacked and filled above the bottom net portion of the reaction unit 28.
The frame body 51 includes a plurality of annular bodies 51a formed in an annular shape, connecting members 51b arranged at regular intervals in the circumferential direction of the annular body 51a so as to integrally connect the annular bodies 51a, and the frame body 51 A porous cylindrical body support 51c attached in a cross shape so as to extend in the radial direction is provided on an annular body 51a disposed on one end side in the longitudinal direction.
Thus, the resin sponge mass 50 is accommodated in a frame 51 to form a carrier element 52, and the carrier element 52 has a length L of about 50 mm and a diameter D of about 30 mm.
Further, for example, as shown in FIG. 4, the microorganism holding carrier 29 is a state in which a large number of resin sponge lumps 61 are attached in parallel to each other on both surfaces of a water guide sheet 60 such as a net member having a porous structure. The purification zone 62 may be used, and a plurality of purification zones 62 may be arranged from above the reaction unit 28 and suspended in the air via a hanging member 63 provided in the purification zone 62.
A sprinkling treatment structure in which the microorganism holding carrier 29 provided with the resin sponge lump 50 and the purification zone 62 is suspended in the air is referred to as DHS.
The microorganism-supporting carrier 29 includes heterotrophic bacteria that aerobically oxidize dissolved substances, and autotrophic bacteria that aerobically oxidize ammonia, sulfur-based odors (hydrogen sulfide, methyl sulfide, etc.) and methane. Holding.

ここで、従属栄養細菌は、比較的増殖速度が速く、例えば、下水処理場から標準活性汚泥を分取し、微生物保持坦体29内に植種することで容易に利用できる。また、独立栄養細菌は、増殖速度が比較的遅いため、標準活性汚泥を植種した後ある程度の時間をかけて微生物保持担体29内に自然増殖させる。
反応部28と水槽24との間の塔体20内には、空間部30が設けられている。空間部30は、塔体20内を負圧に保つように酸素を含むガスを吸引するファンなどの送風装置32と連通する排気部31が設けられている。
Here, heterotrophic bacteria have a relatively high growth rate, and can be easily used by, for example, separating standard activated sludge from a sewage treatment plant and inoculating it in the microorganism holding carrier 29. In addition, since the autotrophic bacteria have a relatively slow growth rate, they are allowed to grow naturally in the microorganism-supporting carrier 29 after taking a certain amount of time after inoculating the standard activated sludge.
A space 30 is provided in the tower body 20 between the reaction unit 28 and the water tank 24. The space portion 30 is provided with an exhaust portion 31 that communicates with a blower 32 such as a fan that sucks a gas containing oxygen so as to keep the inside of the tower body 20 at a negative pressure.

水槽24内の被処理水は、ポンプなどの排水装置33を介して装置外へ排水される。
なお、本実施形態では、反応槽10内への酸素供給が吸引式であるため、塔体20内が負圧になるため被処理ガス27などのリークは起こらないから、完全密閉式とする必要はなく、密閉式又は半密閉式であれば良い。逆に、酸素供給が押込み式の場合(塔体20内が正圧)は、完全密閉式としなければならない。
また、本実施形態では、反応槽10の外部から酸素を含んだガスを供給するため、酸素を含むガスの導入部23と排気部31とを設けている。酸素を含むガスの導入部23と排気部31とは、供給酸素の偏流が起こりにくい配置であることが望ましい。
The water to be treated in the water tank 24 is drained outside the apparatus through a drain apparatus 33 such as a pump.
In the present embodiment, since the oxygen supply into the reaction vessel 10 is a suction type, the inside of the tower body 20 has a negative pressure, and thus leakage of the gas 27 to be processed does not occur. There is no problem as long as it is a sealed or semi-sealed type. Conversely, when the oxygen supply is a push-in type (the inside of the tower body 20 is positive pressure), it must be a completely sealed type.
Further, in the present embodiment, in order to supply a gas containing oxygen from the outside of the reaction vessel 10, a gas containing part 23 and an exhaust part 31 are provided. It is desirable that the oxygen-containing gas introduction section 23 and the exhaust section 31 are arranged so that supply oxygen hardly flows.

反応槽容積設計は、通常の生物学的廃水処理と同様に、TOD(Total Oxygen Demand)容積負荷(反応槽容積当たりの被処理物質負荷)で設計されている。例えば、TOD=cBOD+硫化酸素+硫黄酸化酸素+メタン酸化酸素+...として表される。本実施形態では、容積負荷(微生物保持担体有効容積当たりの負荷)は、例えば、≦3kg-TOD/m3/dayとした。ここで、微生物保持担体有効容積とは、使用する微生物保持担体29が被処理水を保持できる容積を意味する。前述の樹脂製スポンジ塊50や浄化帯62を備えた微生物保持担体29を空中に懸架した散水式処理構造であるDHSは、保水性を有し多孔質のためこの微生物保持担体有効面積が大きく、例えば、微生物保持担体29のかさ容積は1m3、そこに保持できる被処理水量が空中懸架にもかかわらず0.7m3となり、微生物保持担体有効容積は0.7m3と膨大である。水槽中を漂う他形式の微生物保持担体(例えばラシヒリング、ポールリングなどの硬い樹脂で保水性の少ない担体など)では、微生物保持担体有効容積はこれに比べて1/100〜1/1000未満である。 The reaction vessel volume design is designed with TOD (Total Oxygen Demand) volume load (substance load to be treated per reaction vessel volume) as in the case of normal biological wastewater treatment. For example, TOD = cBOD + oxygen sulfide + sulfur oxide oxygen + methane oxide oxygen +. In the present embodiment, the volume load (load per effective microbe holding carrier volume) is, for example, ≦ 3 kg-TOD / m 3 / day. Here, the effective volume of the microorganism holding carrier means a volume in which the microorganism holding carrier 29 to be used can hold the water to be treated. DHS, which is a sprinkling treatment structure in which the above-described resin sponge lump 50 and the microbial holding carrier 29 provided with the purification zone 62 are suspended in the air, has a water holding property and has a large effective area for the microbial holding carrier because of its porosity. For example, the bulk volume of the microorganism holding carrier 29 is 1 m 3 , the amount of water to be treated therein is 0.7 m 3 regardless of air suspension, and the effective volume of the microorganism holding carrier is 0.7 m 3 . In other types of microorganism-supporting carriers floating in the water tank (for example, carriers with low water retention such as hard resin such as Raschig rings and pole rings), the effective volume of the microorganism-supporting carrier is 1/100 to less than 1/1000 compared to this. .

本実施形態では、反応槽10内に送風するため、送風のLV(線速度)基準値に適した反応槽形状とする。送風のSV(空間速度)は、容積負荷とLVによって自ずと決定される。微生物保持担体29を空中に懸架した散水式処理装置であるDHSの装置実績値から、送風のLVであるLV(空気)は<5m/h、送風のSVであるSV(空気)は<5h-1であれば性能を発揮する。これらの値を参考値とするが、設計時に逸脱しないことを確認する。反応部及び空間部を持たせた高さを4m〜5mと設定すると、LV(空気)から、空気の滞留時間は約1時間以上が達成できる。これは、微生物保持担体29が被処理水を保持できる微生物保持担体有効容積の大きさと、保持する被処理水を稼ぐ多孔質の微生物保持担体29の孔を空気も小さく分かれて流れていることを示している。また、これにより酸素利用効率は≦10%ととても高効率である。
また、送風量は、表1に示す被処理物質毎の酸素要求量(被処理物質を完全酸化を想定した化学量論に基づく)と、表2に示す被処理水のTODの算出と、表3に示す必要酸素量(AOR(Actual Oxygen Requirement)の算出(一般的な好気性処理法におけるAORを引用)とで決定される。
表4は、必要総風量(Gs)の算出(供給酸素形態が大気の場合)を示す。
In this embodiment, since it blows in the reaction tank 10, it is set as the reaction tank shape suitable for the LV (linear velocity) reference value of ventilation. The SV (space velocity) of air blowing is naturally determined by the volume load and the LV. From the actual performance value of DHS, which is a sprinkling type processing apparatus in which the microorganism holding carrier 29 is suspended in the air, LV (air), which is the LV of the blowing, is <5 m / h, and SV (air), which is the blowing SV, is <5 h −. If it is 1 , performance will be demonstrated. These values are used as reference values, but it is confirmed that there is no deviation during the design. If the height of the reaction part and the space part is set to 4 m to 5 m, the air residence time can be about 1 hour or more from LV (air). This is because the microbe holding carrier 29 can hold the water to be treated, and the effective volume of the microbe holding carrier 29 and the pores of the porous microbe holding carrier 29 that earns the water to be treated are divided into small air flows. Show. This also makes the oxygen utilization efficiency very high, ≦ 10%.
Further, the blast volume is calculated based on the oxygen demand for each substance to be treated shown in Table 1 (based on the stoichiometry assuming that the substance to be treated is completely oxidized), the TOD of the water to be treated shown in Table 2, 3 is determined by calculating the required oxygen amount (AOR (Actual Oxygen Requirement)) (quoting AOR in a general aerobic treatment method).
Table 4 shows the calculation of the required total air volume (Gs) (when the supply oxygen form is air).

Figure 2016123957
Figure 2016123957

Figure 2016123957
Figure 2016123957

Figure 2016123957
Figure 2016123957

Figure 2016123957
Figure 2016123957

次に、本実施形態の作用を説明する。
先ず、例えば、UASB処理水などの嫌気性処理水を被処理水の導入部22から供給しながら、例えば、大気(O2濃度0.232kgO2/kgAir)を酸素を含むガスとして送風装置32によってガスの導入部23から吸引する。
なお、被処理水のpHは中性域が望ましい。導入する被処理水が例えば汚水や中温嫌気性処理水である場合はそのpHは中性域(pH6〜8程度)であるため、流入する被処理水のpH調整は不要である。また、水温は20℃〜39℃が望ましい。
Next, the operation of this embodiment will be described.
First, for example, while supplying anaerobic treated water such as UASB treated water from the introduction portion 22 of the water to be treated, for example, the air (O 2 concentration 0.232 kgO 2 / kgAir) is gas by the blower 32 as a gas containing oxygen. Is sucked from the introduction part 23.
The pH of the water to be treated is preferably in the neutral range. When the treated water to be introduced is, for example, sewage or medium-temperature anaerobic treated water, the pH is in a neutral range (about pH 6 to 8), and thus it is not necessary to adjust the pH of the incoming treated water. The water temperature is preferably 20 ° C to 39 ° C.

次に、被処理水を散水装置26によって散水室25内に均一に散水する。反応部28の微生物保持担体29に均一に分散させるため小さな水滴にして散水するので、この散水によって被処理水から揮発性物質の一部が積極的に被処理ガス27として揮発されることとなり、散水室25内にガス化して被処理ガス27が発生する。
次に、散水された被処理水は、反応部28に向かって流下する。同時に、送風装置32の吸引によって被処理ガス27が反応部28に向かって被処理水と並流状態で流下する。流下する被処理水は、多孔質の微生物保持担体29の表面や孔内を通過しながら、微生物保持担体29が有する保水性により被処理水の一部は、微生物保持担体29の面に留まることとなる。流下する被処理ガス27も、表面積を稼ぐ多孔質の微生物保持担体29の孔を通りながら、保持する被処理水の表面積を稼ぐ多孔質の微生物保持担体29の孔内などの被処理水を舐めながら揮発性物質の一部を被処理水側に移動させ溶解させることとなったり微生物の表面に接触することとなる。溶解した揮発性物質は、保水性を有する多孔質の微生物保持担体29の孔内にて増殖している独立栄養細菌を主とした働きにより酸化分解される。
次に、被処理物である溶存性物質と揮発性物質とが共に反応部28内を、溶存性物質は主に被処理水に同伴され、揮発性物質は被処理水注にも被処理ガス中にも含まれて同伴されて通過することで、また、被処理ガス中の揮発性物質が再度被処理水中に溶解したり、微生物の表面に触れたりすることで、好気性微生物である従属栄養細菌及び独立栄養細菌の働きにより、溶存性物質と揮発性物質とが同時に酸化分解される。
Next, the water to be treated is uniformly sprayed into the watering chamber 25 by the watering device 26. In order to uniformly disperse in the microorganism holding carrier 29 of the reaction unit 28, the water droplets are sprinkled as small water droplets, so that a part of the volatile substance is positively volatilized from the water to be treated as the gas 27 to be treated. A gas 27 to be processed is generated in the watering chamber 25 by gasification.
Next, the treated water sprayed flows down toward the reaction unit 28. At the same time, the to-be-treated gas 27 flows down toward the reaction section 28 in parallel with the to-be-treated water by the suction of the blower 32. The treated water that flows down passes through the surface and the pores of the porous microorganism holding carrier 29, and part of the treated water remains on the surface of the microorganism holding carrier 29 due to the water retention property of the microorganism holding carrier 29. It becomes. The gas 27 to be treated also licks the water to be treated such as in the pores of the porous microorganism holding carrier 29 that increases the surface area of the water to be treated while passing through the pores of the porous microorganism holding carrier 29 that increases the surface area. However, a part of the volatile substance is moved to the treated water side to be dissolved or comes into contact with the surface of the microorganism. The dissolved volatile substance is oxidatively decomposed mainly by the action of autotrophic bacteria growing in the pores of the porous microorganism holding carrier 29 having water retention.
Next, both the dissolved substance and the volatile substance, which are the objects to be treated, pass through the reaction part 28, the dissolved substances are mainly accompanied by the water to be treated, and the volatile substances are also treated with the water to be treated. The volatile substances in the gas to be treated are dissolved again in the water to be treated or the surface of the microorganisms are touched by the volatile substances in the gas to be treated. Due to the action of vegetative bacteria and autotrophic bacteria, dissolved substances and volatile substances are simultaneously oxidized and decomposed.

また、反応部28では、例えば、被処理ガス27が含む揮発性物質のうち硫化水素、メルカプタン類などの成分が、被処理水中に溶解した後微生物保持担体29上で増殖している独立栄養細菌の働きにより硫酸まで酸化分解される。被処理ガス27は、多孔質で保水性のある表面積を稼ぐ多孔質の微生物保持担体29の孔を通りながら、保持する被処理水の表面積を稼ぐ多孔質の微生物保持担体29の孔内などの被処理水面を舐めながら揮発性物質の一部を被処理水側に移動させ溶解させることとなる。被処理ガス27は、反応部28の微生物保持担体29のおかげで反応部28及び空間部30を併せた高さを4m〜5mに設定すると、LV(空気)つまり、空気の滞留時間は約1時間以上と大変長い時間をかけて、微生物保持担体29上で薄く延ばされた被処理水に接触するので、揮発性物質を被処理水中に溶解させることを促進できる。
また、被処理水中の溶解物及び同伴物の主成分である有機物成分の大半は被処理水を介して微生物保持担体29上に増殖している従属栄養細菌などの働きにより二酸化炭素にまで分解される。また、アンモニア性窒素は最終形態の硝酸性窒素にまで分解される。
次に、揮発性物質の成分が除去された被処理ガス27は空間部30の排気部31から送風装置32によって排気ガスとして大気中へ放出される。
次に、反応部28で酸化分解が行われた被処理水は空間部30内に処理水として流下し水槽24内に溜められ、排水装置33によって装置外へ排水される。
In the reaction unit 28, for example, autotrophic bacteria in which components such as hydrogen sulfide and mercaptans among volatile substances contained in the gas 27 to be treated are dissolved on the microorganism-supporting carrier 29 after being dissolved in the water to be treated. It is oxidized and decomposed to sulfuric acid by the action of. The gas 27 to be treated passes through the pores of the porous microorganism holding carrier 29 that obtains a porous and water-retaining surface area, and passes through the pores of the porous microorganism holding carrier 29 that obtains the surface area of the water to be treated. While licking the surface of the water to be treated, a part of the volatile substance is moved to the side of the water to be treated and dissolved. The gas 27 to be treated has an LV (air), that is, an air residence time of about 1 when the combined height of the reaction part 28 and the space part 30 is set to 4 to 5 m thanks to the microorganism holding carrier 29 of the reaction part 28. Since it takes a very long time and is in contact with the water to be treated thinly spread on the microorganism holding carrier 29, it is possible to promote the dissolution of the volatile substance in the water to be treated.
In addition, most of the dissolved organic matter in the water to be treated and the main component of the accompanying substances are decomposed to carbon dioxide by the action of heterotrophic bacteria growing on the microorganism holding carrier 29 via the water to be treated. The Ammonia nitrogen is also decomposed to the final form of nitrate nitrogen.
Next, the to-be-processed gas 27 from which the component of the volatile substance has been removed is released from the exhaust part 31 of the space part 30 into the atmosphere as exhaust gas by the blower 32.
Next, the water to be treated that has undergone oxidative decomposition in the reaction unit 28 flows down into the space 30 as treated water, is stored in the water tank 24, and is drained out of the apparatus by the drainage device 33.

以上のように、本実施形態によれば、被処理物の酸化分解に必要な酸素を含むガスを、散水に対して並流に供給することで、溶存性物質と揮発性物質とを反応部28内を確実に通過させることができる。
本実施形態によれば、反応槽10内部が微負圧になるように送風装置32の吸引によって酸素を含むガスを導入することで、未処理の揮発性物質が反応槽10外に漏洩することを確実に防ぐことができる。
本実施形態によれば、溶存性物質と揮発性物質との処理が単一の廃水の処理装置で行えるので、コンパクトかつ経済的である。
本実施形態によれば、反応槽10内に酸素を供給するためのエネルギーが小さく済むので、従来法に比べ省エネルギーかつ経済的である。
As described above, according to the present embodiment, the gas containing oxygen necessary for the oxidative decomposition of the object to be processed is supplied in parallel to the water spray, so that the dissolved substance and the volatile substance are reacted with the reaction unit. The inside of 28 can be reliably passed.
According to the present embodiment, untreated volatile substances leak out of the reaction tank 10 by introducing a gas containing oxygen by suction of the blower 32 so that the inside of the reaction tank 10 has a slight negative pressure. Can be surely prevented.
According to this embodiment, since processing of a soluble substance and a volatile substance can be performed with the processing apparatus of a single waste water, it is compact and economical.
According to the present embodiment, energy for supplying oxygen into the reaction vessel 10 can be reduced, which is energy saving and economical as compared with the conventional method.

図5は、本発明の廃水の処理装置を適用した第二実施形態に係る反応槽10Aを示す。
本実施形態では、酸素を含むガスの流入出口を増やして反応槽10A内の流れを均等にするために、酸素を含むガスの導入部23と排気部31とをそれぞれ2つ設けた点で、第一実施形態とは相違する。
本実施形態は、酸素を含むガスの導入部23と排気部31とは、第一実施形態より多くなっているので、反応槽10A内の均等な流れが確保しやすい。
なお、本実施形態では、酸素を含むガスの導入部23と排気部31とをそれぞれ2つ設けた場合について説明したが、本発明はこれに限らず、酸素を含むガスの導入部23と排気部31とをそれぞれ3つ以上設けるとさらに反応槽10A内の均等な流れが確保しやすい。
本実施形態においても、第一実施形態と同様の作用効果を奏することができる。
FIG. 5 shows a reaction tank 10A according to a second embodiment to which the wastewater treatment apparatus of the present invention is applied.
In the present embodiment, in order to increase the inflow / outlet of the gas containing oxygen and make the flow in the reaction tank 10A uniform, two oxygen introduction portions 23 and two exhaust portions 31 are provided, This is different from the first embodiment.
In the present embodiment, the oxygen-containing gas introduction section 23 and the exhaust section 31 are larger than those in the first embodiment, so that an even flow in the reaction vessel 10A can be easily ensured.
In the present embodiment, the case where two oxygen-containing gas introduction portions 23 and two exhaust portions 31 are provided has been described. However, the present invention is not limited to this, and the oxygen-containing gas introduction portion 23 and exhaust gas are provided. If three or more parts 31 are provided, it is easier to ensure an even flow in the reaction vessel 10A.
Also in this embodiment, the same operational effects as in the first embodiment can be achieved.

図6は、本発明の廃水の処理装置を適用した第三実施形態に係る反応槽10Bを示す。
本実施形態では、酸素を含むガスの導入部23を塔体20の側部から多段に設けた点で、第一実施形態とは相違する。
本実施形態では、反応部28を3つに分割し、各反応部28間には中間空間部34を形成して、酸素を含むガスの導入部23を各々追加で設けている。
本実施形態によれば、各反応部28において、被処理水と被処理ガス27とが並流状態で流下する流れが第一実施形態よりも促進される。反応部28の圧損は数Pa程度である。
なお、排気部31に近い酸素を含むガスの導入部23には、絞りを設けて、各酸素を含むガスの導入部23からのインプットが均等になるようにすることも可能である。
本実施形態においても、第一実施形態と同様の作用効果を奏することができる。
FIG. 6 shows a reaction tank 10B according to a third embodiment to which the wastewater treatment apparatus of the present invention is applied.
This embodiment is different from the first embodiment in that the oxygen-containing gas introduction portions 23 are provided in multiple stages from the side of the tower body 20.
In the present embodiment, the reaction unit 28 is divided into three, an intermediate space 34 is formed between the reaction units 28, and oxygen-containing gas introduction units 23 are additionally provided.
According to this embodiment, in each reaction part 28, the flow which the to-be-processed water and the to-be-processed gas 27 flow down in a cocurrent state is accelerated | stimulated rather than 1st embodiment. The pressure loss of the reaction unit 28 is about several Pa.
It is also possible to provide a throttle in the gas introduction part 23 near the exhaust part 31 so that the inputs from the respective gas introduction parts 23 are equalized.
Also in this embodiment, the same operational effects as in the first embodiment can be achieved.

図7は、第一実施形態に係る反応槽10を嫌気性処理水(被処理水)の二次処理装置に適用した例を示す。
嫌気性処理槽40に導入される原廃水は、糖蜜系廃水である。嫌気性処理槽40から導出される被処理水は、原廃水の嫌気性処理水である。反応槽10の容積は22m3である。
次に、図7に基づいて処理フローを説明する。
先ず、嫌気性処理槽40から導出される被処理水が、反応槽10の廃水の導入部22から散水室25内に供給されると共に、酸素を含むガスとして大気(O2濃度0.232kgO2/kgAir)が送風装置32によってガスの導入部23から反応槽10内に吸引される。
FIG. 7 shows an example in which the reaction tank 10 according to the first embodiment is applied to a secondary treatment apparatus for anaerobic treated water (treated water).
The raw wastewater introduced into the anaerobic treatment tank 40 is molasses wastewater. The treated water derived from the anaerobic treatment tank 40 is anaerobic treated water of raw waste water. The volume of the reaction vessel 10 is 22 m 3 .
Next, a processing flow will be described based on FIG.
First, the water to be treated derived from the anaerobic treatment tank 40 is supplied from the waste water introduction part 22 of the reaction tank 10 into the sprinkling chamber 25, and the atmosphere (O 2 concentration 0.232 kgO 2 / O 2) as a gas containing oxygen. kgAir) is sucked into the reaction vessel 10 from the gas inlet 23 by the blower 32.

次に、被処理水が散水装置26によって散水室25内に均一に散水され、この散水によって被処理水から被処理ガス27が散水室25内に発生する。
次に、散水された被処理水が、反応部28に向かって流下する。同時に、送風装置32の吸引によって被処理ガス27が反応部28に向かって被処理水と並流状態で流下する。
次に、被処理物である溶存性物質と揮発性物質とが共に反応部28内を通過することで、好気性微生物の働きにより溶存性物質と揮発性物質とが同時に酸化分解される。
Next, the water to be treated is uniformly sprinkled into the watering chamber 25 by the water sprinkler 26, and the water to be treated 27 is generated from the water to be treated in the watering chamber 25 by this watering.
Next, the water to be treated that has been sprinkled flows down toward the reaction unit 28. At the same time, the to-be-treated gas 27 flows down toward the reaction section 28 in parallel with the to-be-treated water by the suction of the blower 32.
Next, the dissolved substance and the volatile substance, which are the objects to be processed, pass through the reaction unit 28, so that the dissolved substance and the volatile substance are simultaneously oxidized and decomposed by the action of the aerobic microorganism.

次に、臭気成分が除去された被処理ガス27が空間部30の排気部31から送風装置32によって排気ガスとして大気中へ放出される。
次に、反応部28で酸化分解が行われた被処理水が空間部30内に処理水として流下し水槽24内に溜められ、排水装置33によって装置外へ送られる。
Next, the to-be-processed gas 27 from which the odor component is removed is released into the atmosphere as exhaust gas by the blower 32 from the exhaust part 31 of the space part 30.
Next, the water to be treated that has undergone oxidative decomposition in the reaction unit 28 flows down into the space 30 as treated water, is stored in the water tank 24, and is sent out of the apparatus by the drainage device 33.

本実施形態における処理能力は、表5に示す通りである。以下、表5に基づいて説明する。
被処理水の主成分は有機物(CODcr:化学的酸素要求量での有機物量で記した)、アンモニア性窒素、溶存性硫化水素である。被処理水中の溶存性硫化水素の直接測定は困難なため、反応槽10の散水室25内部雰囲気に揮散した硫化水素濃度(被処理ガス27の一つとして)を反応槽上部雰囲気として測定した。同様に代表的な臭気物質であるメルカブタン類も測定した。
The processing capability in this embodiment is as shown in Table 5. Hereinafter, a description will be given based on Table 5.
The main components of the water to be treated are organic matter (COD cr : expressed as the amount of organic matter in chemical oxygen demand), ammoniacal nitrogen, and dissolved hydrogen sulfide. Since it is difficult to directly measure dissolved hydrogen sulfide in the water to be treated, the concentration of hydrogen sulfide (as one of the gases to be treated 27) volatilized in the watering chamber 25 inside the reaction tank 10 was measured as the atmosphere in the upper part of the reaction tank. Similarly, mercabtans, which are representative odor substances, were also measured.

反応槽10に付随する散水装置26のモーター26bや送風装置32を運転させた後、図7の上流のUASB槽である嫌気性処理槽40から導出される被処理水が、被処理水の導入部22から供給され、散水室25内で平面的に均等に散水されると、それとほぼ同時に反応槽上部雰囲気が表5の反応槽上部雰囲気の欄にある、硫化水素62ppm、メルカプタン類0.45ppmまで値が上昇して検出されるが、反応部28下部の空間部30の空気をそのまま導出する送風装置32の下流排気ガスを採取する排気ガスの欄では硫化水素もメルカプタン類も0ppmと非常に良好に処理されている。
表5より、溶存性物質であるCODcrとアンモニア性窒素と共に、揮発性物質である硫化水素とメルカブタン類が酸化分解されたことが分かる(処理水中のCODcr濃度1,100mg/Lは当廃水特有の着色成分に由来する。生物分解は非常に難しい)。
CODcr成分の大半は二酸化炭素にまで、またアンモニア性窒素は最終酸化形態の硝酸性窒素にまで良好に分解されたことが分かる。
臭気成分である硫化水素やメルカブタン類は、硫酸まで酸化分解される。被処理水には検出されなかった硫酸性硫黄が処理水中に高濃度に出現したのは、硫化水素やメルカブタン類が適切に酸化分解されたことを示す。
After operating the motor 26b of the water sprinkler 26 and the blower 32 attached to the reaction tank 10, the water to be treated derived from the anaerobic treatment tank 40, which is the upstream UASB tank in FIG. When the water is supplied from the unit 22 and sprayed evenly in the water sprinkling chamber 25, the atmosphere at the upper part of the reaction tank is in the column of the upper atmosphere of the reaction tank in Table 5 and 62 ppm of hydrogen sulfide and 0.45 ppm of mercaptans. However, in the exhaust gas column for collecting the exhaust gas downstream of the blower 32 that directly derives the air in the space 30 below the reaction unit 28, both hydrogen sulfide and mercaptans are very low at 0 ppm. Treated well.
From Table 5, it can be seen that hydrogen sulfide and mercaptans, which are volatile substances, as well as COD cr and ammonia nitrogen, which are soluble substances, were oxidatively decomposed (COD cr concentration of 1,100 mg / L in treated water is the wastewater) Derived from unique coloring components, biodegradation is very difficult).
It can be seen that most of the COD cr component was successfully decomposed to carbon dioxide and ammoniacal nitrogen to the final oxidized form nitrate nitrogen.
Odorous components such as hydrogen sulfide and mercaptans are oxidatively decomposed to sulfuric acid. Sulfate sulfur, which was not detected in the water to be treated, appeared at a high concentration in the treated water, indicating that hydrogen sulfide and mercaptans were appropriately oxidized and decomposed.

Figure 2016123957
Figure 2016123957

10,10A,10B 反応槽
20 密閉式の塔体
21 密閉式の塔体20の頂部
22 被処理水の導入部
23 酸素を含むガスの導入部
24 水槽
25 散水室
26 散水装置
26a 水路
26b モーター
27 被処理ガス
28 反応部
29 微生物保持担体
30 空間部
31 排気部
32 送風装置
33 排水装置
40 嫌気性処理槽
10, 10A, 10B Reaction tank 20 Sealed tower body 21 Top 22 of sealed tower body 20 Introduced part 23 of water to be treated 23 Introduced part of gas containing oxygen 24 Water tank 25 Sprinkling chamber 26 Sprinkler 26a Water channel 26b Motor 27 Processed gas 28 Reaction part 29 Microorganism holding carrier 30 Space part 31 Exhaust part 32 Blower 33 Drainage device 40 Anaerobic treatment tank

Claims (9)

溶存性物質及び揮発性物質を含む廃水の導入部と酸素を含むガスの導入部とを頂部に備えると共に、水槽を底部に備える密閉又は半密閉式の塔体と、
前記廃水を散水する散水装置を備え、前記廃水の導入部と前記ガスの導入部に連接するように前記塔体内に設けられた散水室と、
微生物保持担体を充填し、前記散水室の下方で前記塔体内に配置される反応部と、
前記反応部と前記水槽との間に位置し、前記塔体内を負圧に保つように前記ガス及び前記廃水から揮散された揮発性物質を吸引する送風装置と連通する空間部と、
前記水槽に連通し、処理水を排出する排水装置と
を有し、
前記廃水と前記ガスとを前記反応部の微生物保持担体を通過させることで、前記廃水中の溶存性物質及び揮発性物質の好気性微生物による同時酸化分解を行う
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
A closed or semi-enclosed tower with a water tank at the bottom and a waste water introduction part containing dissolved substances and volatile substances at the top and a gas introduction part containing oxygen,
A watering device for sprinkling the wastewater, a watering chamber provided in the tower body so as to be connected to the introduction portion of the wastewater and the introduction portion of the gas;
A reaction part that is filled with a microorganism-retaining carrier and is arranged in the tower below the watering chamber;
A space part located between the reaction part and the water tank and communicating with a blower for sucking volatile substances volatilized from the gas and the waste water so as to keep the inside of the tower at a negative pressure;
A drainage device communicating with the water tank and discharging treated water;
By passing the waste water and the gas through the microorganism-supporting carrier in the reaction section, the dissolved substance and the volatile substance are subjected to simultaneous oxidative decomposition by aerobic microorganisms. Wastewater treatment equipment containing volatile substances.
請求項1記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、
前記微生物保持坦体は、前記溶存性物質を好気的に酸化する従属栄養細菌と、アンモニア、硫黄系臭気、メタンを好気的に酸化する独立栄養細菌とを保持する
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
In the processing apparatus of the wastewater containing the soluble substance and volatile substance of Claim 1,
The microorganism-retaining carrier retains heterotrophic bacteria that aerobically oxidize the dissolved substance and autotrophic bacteria that aerobically oxidize ammonia, sulfur-based odor, and methane. Wastewater treatment equipment containing volatile substances and volatile substances.
請求項1又は請求項2記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、
前記微生物保持坦体は、保水性があり、水理学的滞留時間を確保しやすい、微生物の付着する空隙を多数有する多孔質材の樹脂製スポンジ塊であり、多数の前記樹脂製スポンジ塊は互いに少なくとも一部を空間を介して隣接されている
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
In the processing apparatus of the wastewater containing the soluble substance and volatile substance of Claim 1 or Claim 2,
The microorganism-supporting carrier is a porous resin sponge lump having a large number of voids to which microorganisms adhere, which has water retention and facilitates a hydraulic retention time. An apparatus for treating wastewater containing dissolved substances and volatile substances, characterized in that at least a part thereof is adjacent to each other through a space.
請求項3記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、
前記微生物保持担体は、微生物の付着する空隙を多数有する多孔質材の樹脂製スポンジを円柱形状に形成された枠材の中に充填保持した樹脂製スポンジ塊とし、多数の前記樹脂製スポンジ塊を前記反応部の底部網部の上方にスタック充填する状態で空中に懸架される
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
In the processing apparatus of the wastewater containing the soluble substance and volatile substance of Claim 3,
The microorganism holding carrier is a resin sponge lump in which a porous resin sponge having a large number of voids to which microorganisms adhere is filled and held in a columnar frame material, and a large number of the resin sponge lump is formed. An apparatus for treating wastewater containing a soluble substance and a volatile substance, wherein the apparatus is suspended in the air in a state of being stacked and filled above the bottom net part of the reaction part.
請求項3記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、
前記微生物保持担体は、多孔質構造を持つ導水シートの両面に前記樹脂製スポンジ塊を三角柱状体にして並列に多数貼り付けた状態で浄化帯とし、前記反応部上方から複数の前記浄化帯を並べて空中に懸架される
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
In the processing apparatus of the wastewater containing the soluble substance and volatile substance of Claim 3,
The microorganism holding carrier is a purification zone in a state where a large number of the resin sponge masses are attached in parallel on both sides of a water guide sheet having a porous structure, and a plurality of the purification zones are formed from above the reaction part. A wastewater treatment apparatus containing dissolved substances and volatile substances characterized by being suspended in the air side by side.
請求項1乃至請求項5の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、
前記ガスの導入部は、前記頂部に複数設けられている
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
In the processing apparatus of the wastewater containing the soluble substance and volatile substance in any one of Claims 1 thru | or 5,
A plurality of the gas introduction sections are provided at the top. A treatment apparatus for wastewater containing a soluble substance and a volatile substance.
請求項1乃至請求項5の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、
前記空間部は、前記送風装置に連通する導出部を複数設けている
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
In the processing apparatus of the wastewater containing the soluble substance and volatile substance in any one of Claims 1 thru | or 5,
The space part is provided with a plurality of outlet parts communicating with the blower. A treatment apparatus for wastewater containing a soluble substance and a volatile substance.
請求項1乃至請求項7の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置において、
前記反応部は、複数の反応部に分割され、各前記反応部間には中間空間部が形成され、各前記中間空間部には酸素を含むガスの導入部が設けられている
ことを特徴とする溶存性物質及び揮発性物質を含む廃水の処理装置。
In the processing apparatus of the wastewater containing the soluble substance and volatile substance in any one of Claims 1 thru | or 7,
The reaction part is divided into a plurality of reaction parts, an intermediate space part is formed between the reaction parts, and an oxygen-containing gas introduction part is provided in each of the intermediate space parts. Wastewater treatment equipment containing dissolved and volatile substances.
請求項1乃至請求項8の何れか記載の溶存性物質及び揮発性物質を含む廃水の処理装置の運転方法において、
前記溶存性物質及び揮発性物質を含む廃水を前記廃水の導入部から供給しながら、前記送風装置によって酸素を含むガスを前記酸素を含むガスの導入部から吸引する工程と、
前記廃水を前記散水装置によって前記散水室内に均一に散水する工程と、
散水された前記廃水を前記反応部に向かって流下させると共に、前記廃水から前記散水室内に揮散した揮発性物質を前記送風装置の吸引によって前記廃水と並流状態で前記反応部に向かって流下させる工程と、
前記反応部において、前記廃水を通過させることで、前記廃水中の溶存性物質及び揮発性物質の好気性微生物による同時酸化分解を行わせる工程と、
前記揮発性物質が除去された前記ガスを前記空間部の排気部から前記送風装置によって排気ガスとして大気中へ放出する工程と、
前記反応部から前記空間部内を流下して前記水槽内に溜められた処理水を前記排水装置によって排出する工程と
を有することを特徴とする溶存性物質及び揮発性物質を含む廃水の処理方法。
In the operation method of the wastewater treatment apparatus containing the soluble substance and the volatile substance according to any one of claims 1 to 8,
Sucking a gas containing oxygen from the introduction part of the gas containing oxygen by the blower while supplying waste water containing the soluble substance and the volatile substance from the introduction part of the waste water;
Watering the wastewater uniformly into the watering chamber by the watering device;
The sprinkled waste water is caused to flow down toward the reaction section, and volatile substances volatilized from the waste water into the sprinkling chamber are caused to flow down toward the reaction section in parallel with the waste water by suction of the blower. Process,
In the reaction part, by allowing the wastewater to pass therethrough, simultaneous oxidative decomposition by aerobic microorganisms of the dissolved substances and volatile substances in the wastewater; and
Discharging the gas from which the volatile substances have been removed from the exhaust portion of the space portion into the atmosphere as exhaust gas by the blower;
And a step of discharging the treated water stored in the water tank by flowing down from the reaction section into the space section by the drainage device. A method for treating wastewater containing dissolved substances and volatile substances.
JP2015001707A 2015-01-07 2015-01-07 Apparatus and method for treating waste water containing dissolved substance and volatile substance Pending JP2016123957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001707A JP2016123957A (en) 2015-01-07 2015-01-07 Apparatus and method for treating waste water containing dissolved substance and volatile substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001707A JP2016123957A (en) 2015-01-07 2015-01-07 Apparatus and method for treating waste water containing dissolved substance and volatile substance

Publications (1)

Publication Number Publication Date
JP2016123957A true JP2016123957A (en) 2016-07-11

Family

ID=56357222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001707A Pending JP2016123957A (en) 2015-01-07 2015-01-07 Apparatus and method for treating waste water containing dissolved substance and volatile substance

Country Status (1)

Country Link
JP (1) JP2016123957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188966A1 (en) * 2018-03-27 2019-10-03 三機工業株式会社 Water purification element and water purification device
CN113443775A (en) * 2021-07-29 2021-09-28 潘雄兵 A sewage treatment system for handling volatile gaseous
WO2023053985A1 (en) * 2021-09-28 2023-04-06 日清紡ケミカル株式会社 Microorganism-immobilized carrier for water treatment
WO2023053984A1 (en) * 2021-09-28 2023-04-06 日清紡ケミカル株式会社 Microorganism-fixing carrier for water treatment, and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176392A (en) * 1990-11-08 1992-06-24 Ishikawajima Harima Heavy Ind Co Ltd Anaerobic wastewater treatment equipment
US5389248A (en) * 1993-05-21 1995-02-14 Bioremetek, Inc. Bioreactor for biological treatment of contaminated water
JPH10263578A (en) * 1997-03-27 1998-10-06 Tokyu Constr Co Ltd Cleaning zone, cleaning device and method for cleaning sewage
JP2003071478A (en) * 2001-09-05 2003-03-11 Hideki Harada Sewage cleaning element and sewage cleaning apparatus
JP2007307530A (en) * 2006-05-22 2007-11-29 Toshiba Corp Aerationless water treatment apparatus
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
JP2012192320A (en) * 2011-03-15 2012-10-11 Toshiba Corp Organic wastewater treatment apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176392A (en) * 1990-11-08 1992-06-24 Ishikawajima Harima Heavy Ind Co Ltd Anaerobic wastewater treatment equipment
US5389248A (en) * 1993-05-21 1995-02-14 Bioremetek, Inc. Bioreactor for biological treatment of contaminated water
US5389248B1 (en) * 1993-05-21 1998-09-29 Tour Mcgill College Bioreactor for biological treatment of contaminated water
JPH10263578A (en) * 1997-03-27 1998-10-06 Tokyu Constr Co Ltd Cleaning zone, cleaning device and method for cleaning sewage
JP2003071478A (en) * 2001-09-05 2003-03-11 Hideki Harada Sewage cleaning element and sewage cleaning apparatus
JP2007307530A (en) * 2006-05-22 2007-11-29 Toshiba Corp Aerationless water treatment apparatus
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
JP2012192320A (en) * 2011-03-15 2012-10-11 Toshiba Corp Organic wastewater treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188966A1 (en) * 2018-03-27 2019-10-03 三機工業株式会社 Water purification element and water purification device
JP2019171237A (en) * 2018-03-27 2019-10-10 三機工業株式会社 Water purification element and water purification apparatus
JP7175094B2 (en) 2018-03-27 2022-11-18 三機工業株式会社 Water purification element and water purification device
CN113443775A (en) * 2021-07-29 2021-09-28 潘雄兵 A sewage treatment system for handling volatile gaseous
WO2023053985A1 (en) * 2021-09-28 2023-04-06 日清紡ケミカル株式会社 Microorganism-immobilized carrier for water treatment
WO2023053984A1 (en) * 2021-09-28 2023-04-06 日清紡ケミカル株式会社 Microorganism-fixing carrier for water treatment, and method for producing same

Similar Documents

Publication Publication Date Title
CN104528932B (en) A kind of advanced treatment of wastewater denitrification bio-filter apparatus system and process technique
EP2719669A1 (en) Coupling bioreactor and method for purifying malodorous gases and wastewater
US9162909B2 (en) Method and apparatus for the bio-remediation of aqueous waste compositions
JP5326187B2 (en) Gas processing apparatus provided with gas pretreatment apparatus and cleaning method
CN103623693B (en) A kind of Efficient biological deodorization equipment
CN103588296A (en) Method for treating sewage by using anaerobic membrane bioreactor to remove sulphur and nitrogen
CN104001421B (en) A kind of employing pretreated compound bio deodorization process of bubble-free aeration and device
CN102503033A (en) Technique for treating pig raising liquid waste by circular anaerobic reactor, sequencing batch biofilm, constructed wetland and facultative lagoon
JP2016123957A (en) Apparatus and method for treating waste water containing dissolved substance and volatile substance
CN113144832A (en) For treating H2Device for mixing S and ammonia gas and treatment method and application thereof
CN103623680A (en) Low temperature organic malodorous gas treating system
JP5992807B2 (en) Waste water treatment apparatus and waste water treatment method
CN107021558A (en) A kind of method and apparatus using drop filter processing sewage and foul smell
CN106268291A (en) Biological desulfurization and deodorization trickling filter device and biological desulfurization and deodorization method
JP2012148217A (en) Biological treatment method of wastewater, and wastewater treatment apparatus
KR101549201B1 (en) Deodorizing system equipped with bio-filter
CN107265759A (en) The sewage disposal device and handling process of integration
CN110523243A (en) A device and method for optimizing the operation strategy based on real-time control and preventing the deodorization system of the sewage treatment plant from collapsing
CN104147919B (en) A kind of low pH exhaust gas biological purifyings reactor and its waste gas treatment process
JPH0699021A (en) Biological deodorization method
KR100260979B1 (en) A process of the treatment for waste smell by using microbe fixed cillium ball, and the bio-reactor therefor
KR101664910B1 (en) Device and method for ordor-free and high-level treatment using micro sand bio mass
KR100991403B1 (en) Wastewater treatment apparatus reducing a nasty smell and method thereof
CN111099727B (en) On-site sewage and odor treatment equipment in sewage treatment plants
CN204824322U (en) Coupling micropore aeration&#39;s microorganism bed processing apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507