JPS602917B2 - Biological treatment method for wastewater - Google Patents

Biological treatment method for wastewater

Info

Publication number
JPS602917B2
JPS602917B2 JP7681778A JP7681778A JPS602917B2 JP S602917 B2 JPS602917 B2 JP S602917B2 JP 7681778 A JP7681778 A JP 7681778A JP 7681778 A JP7681778 A JP 7681778A JP S602917 B2 JPS602917 B2 JP S602917B2
Authority
JP
Japan
Prior art keywords
tank
reaction
aerobic
state
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7681778A
Other languages
Japanese (ja)
Other versions
JPS553845A (en
Inventor
哲也 城口
孝 真下
彰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7681778A priority Critical patent/JPS602917B2/en
Publication of JPS553845A publication Critical patent/JPS553845A/en
Publication of JPS602917B2 publication Critical patent/JPS602917B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は有機化合物、窒素化合物などの汚濁物質を含有
する下水、尿尿、産物廃水、廃棄物理立浸出水などの汚
水を生物学的に浄化処理する汚水の生物学的処理方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a wastewater biology method that biologically purifies wastewater such as sewage, urine and urine, product wastewater, and waste physical leachate containing pollutants such as organic compounds and nitrogen compounds. This relates to a processing method.

さらに詳しくは、汚泥中に含まれる微生物によりBOD
成分の酸化分解(BOD成分→炭酸ガス、水)硝化(ア
ンモニア態窒素→硝酸態窒素、亜硝酸態窒素)および脱
窒(硝酸態窒素、亜硝酸態陸素→窒素ガス)を行なう方
法およびその装置であり、2基の反応槽を好気性状態(
酸素が存在する状態)と嫌気性状態(酸素が存在しない
状態)とに切り換えることを特徴とする汚水の生物学的
処理方法に関するものである。従来、下水などの汚水の
浄化処理、ことに窒素成分の生物学的処理方法に関して
は、下水などを活性汚泥などの二次処理によってBOD
成分を除去した後、または除去しないで、嫌気槽および
硝イ○糟を一系列ないしは複数系列、正1煩または逆願
で配列する方式、さらには嫌気または好気処理の一部の
液を前工程に戻すという循環方式などが提案されている
More specifically, BOD is caused by microorganisms contained in sludge.
A method for oxidative decomposition of components (BOD components → carbon dioxide, water), nitrification (ammonia nitrogen → nitrate nitrogen, nitrite nitrogen) and denitrification (nitrate nitrogen, nitrite terrestrial nitrogen → nitrogen gas), and its It is a device that maintains two reaction tanks in an aerobic state (
The present invention relates to a biological treatment method for wastewater, which is characterized by switching between a state in which oxygen is present) and an anaerobic state (a state in which oxygen is absent). Conventionally, in the purification of sewage and other sewage, especially with regard to biological treatment of nitrogen components, sewage and other wastewater has been treated with activated sludge and other secondary treatments to reduce BOD.
After or without removing the components, the anaerobic tank and the nitrous solution are arranged in one or more series, in a positive or negative manner, and some of the liquid in the anaerobic or aerobic treatment is Recycling methods have been proposed in which the waste is returned to the process.

これらの方式にしたがえば、たとえば第1図に示すよう
に、活性汚泥処理槽a(暖気槽)とは別に独立した複数
の糟、すなわち沈澱槽b,c、硝イQ書d、脱窒槽e、
再曝気槽hを必要とし、汚泥返送も別途独立して実施す
る必要がある。加えて硝化においては、アルカリ性にコ
ントロールするための薬剤(fはアルカリ供給槽)、あ
るいは脱窒槽でのメタノールなど水素受容体である有機
炭素源の添加が必要とされて(gはメタノール添加槽)
、建設費、運転費ともに高くなり、また運転操作、維持
管理が繁雑で手間を要するという欠点があり、実用化が
阻害されていた。このような情勢にあって、侍関昭49
‐51767号公報に示されるように、二つないしはそ
れ以上の反応槽を運通せしめ、原水の切換、最終沈澱槽
に接続する反応槽からの反応処理水の功襖、およびそれ
ぞれの反応槽の好気的状態、嫌気的状態の切襖などのシ
ステムの単位操作の循環、繰返し方式によって、窒素成
分を生物学的に浄化する方法が提案されている。
According to these methods, for example, as shown in Fig. 1, a plurality of independent slags are installed separately from the activated sludge treatment tank a (warming tank), namely settling tanks b and c, nitrification tank d, and denitrification tank. e,
A reaeration tank h is required, and sludge return must be carried out separately and independently. In addition, in nitrification, it is necessary to add an agent to control alkalinity (f is an alkali supply tank) or an organic carbon source that is a hydrogen acceptor such as methanol in a denitrification tank (g is a methanol addition tank).
However, there were disadvantages such as high construction and operating costs, and complicated and time-consuming operation and maintenance, which hindered its practical application. In this situation, Samurai Seki 49
As shown in Publication No. 51767, two or more reaction tanks are transported, switching of raw water, utilization of reaction treated water from the reaction tank connected to the final sedimentation tank, and control of each reaction tank. A method has been proposed for biologically purifying nitrogen components by circulating and repeating unit operations of systems such as Kirifusuma in aerobic and anaerobic conditions.

しかしながらこの提案によっても、嫌気処理後、好気性
状態が閉鎖状態で曝気ないいま沈降処理され、その後、
排出槽に切り換えられるため、反応処理水の水質を時間
的に追跡すると、好気的雰囲気過剰のときや、嫌気的雰
囲気処理のみの場合は、一糟を遊離した系で処理する間
、原水が好気、嫌気を充分受けられず硝酸成分が窒素に
還元されないままショートパスして流出して窒素成分除
去率が下がるという欠点がある。さらに都合の悪いこと
に、反応処理水の水質の時間的変動を小さくすることが
避けられず、不均質な処理水が生成する欠点がある。と
くに窒素成分や80D成分の変動、水量の負荷変動外乱
が大きいときには、処理効果を著しく阻害するという問
題点を有している。またこの袴関昭49−51767号
公報に示される方法は、各槽にせきを設けてこのせきを
上昇させたり下降させたりして処理水を糟間を流通させ
たり、あるいは糟間の処理水の流通を停止させたりする
ものであるので、運転操作が繁雑であるという問題点を
有している。本発明者らは、上記複数の切換自在の反応
槽を用いて汚水中の窒素成分、80D成分、COD成分
などを分解浄化する方法における欠点を解消すべく鋭意
研究を重ねた結果、本発明を完成するに至ったのである
However, even with this proposal, after the anaerobic treatment, the aerobic condition is aerated in a closed condition or sedimentation treatment is carried out, and then,
Since the water quality of the reaction treated water is tracked over time, it can be seen that when the aerobic atmosphere is excessive or when only anaerobic atmosphere treatment is performed, the raw water is There is a drawback that the nitrate component does not receive sufficient aerobic and anaerobic conditions, and the nitric acid component takes a short path and flows out without being reduced to nitrogen, resulting in a decrease in the nitrogen component removal rate. Even more inconveniently, it is unavoidable to reduce temporal fluctuations in the quality of the reaction-treated water, resulting in the production of non-uniform treated water. In particular, when fluctuations in nitrogen components and 80D components and disturbances in load fluctuations in water amount are large, there is a problem in that the treatment effect is significantly inhibited. In addition, the method disclosed in Hakama Seki Publication No. 49-51767 involves providing a weir in each tank and raising or lowering the weir to allow the treated water to flow between the tanks, or to distribute the treated water between the tanks. This poses a problem in that the operation and operation are complicated because the system halts the distribution of products. The present inventors have conducted intensive research to solve the drawbacks of the method of decomposing and purifying nitrogen components, 80D components, COD components, etc. in wastewater using the plurality of switchable reaction tanks, and as a result, they have developed the present invention. It was completed.

本発明は、汚水を生物学的に浄化する2基の反応槽を互
に接続し、原水(汚水)流入部を交互に切り換えて一方
の反応槽を嫌気性状機または好気性状態とし、他方の反
応糟を好気性状態または嫌気性状態とし、2基の反応糟
に沈降槽を接続するようにした汚水の生物学的処理方法
において、【1’一方の反応槽に原水を供給してこの反
応槽を嫌気性状態とし、他方の反応槽を好気性状態とし
てこの他方の反応槽から反応処理水を沈降槽に導入する
工程、‘2’ 一方の反応槽に原水を供給してこの反応
槽を好気性状態とし、他方の反応槽も好気性状態として
この他方の反応槽から反応処理水を沈降槽に導入する工
程、‘3’ 一方の反応槽と他方の反応槽との間、他方
の反応槽と沈降槽との間を常に反応処理水を流通させる
工程、とを少なくとも包含させることにより、昇降自在
のせきなどを設けることなく、簡単な操作で汚水を均一
に浄化処理することができる方法を提供せんとするもの
である。
The present invention connects two reaction tanks for biologically purifying sewage, alternately switches the raw water (sewage) inlet to make one reaction tank anaerobic or aerobic, and the other In a biological treatment method for wastewater in which the reaction vessels are brought into an aerobic state or an anaerobic state and a settling tank is connected to the two reaction vessels, [1' Raw water is supplied to one reaction tank and the reaction is carried out. A step of bringing the tank into an anaerobic state and the other reaction tank into an aerobic state and introducing the reaction treated water from the other reaction tank into the sedimentation tank, ``2'' Supplying raw water to one reaction tank and turning this reaction tank. A step of introducing the reaction treated water from the other reaction tank into the sedimentation tank with the other reaction tank also in the aerobic state, '3' between one reaction tank and the other reaction tank, A method that can uniformly purify wastewater with simple operations without providing a weir that can be raised and lowered by at least including a step of constantly circulating reaction treated water between a tank and a settling tank. We aim to provide the following.

すなわち本発明は第2図に示すように、相互に蓮題する
2個の反応槽1,2と、1個の沈降槽3とからなり、両
反応槽1,2は切換弁4を介して汚水供給槽5に接続さ
れ、かつ別の切換弁6を介して沈降槽3に接続されてな
る汚水の浄化装置において、ある一定期間では汚水は反
応槽1に供給され、同期間中反応処理水は汚水供給を受
けていない反応槽2の処理水出口から沈降槽3に接続し
て放出され、かつそれぞれの反応槽では好気性雰囲気ま
たは(および)嫌気性雰囲気を与えるに際し、{1’両
反応糟のうちいずれか一糟へ供艶溝汚水が導入され、他
の槽から反応処理水が沈降槽へ排出されるよう切り換え
られること、■ 両反応槽において好気性雰囲気、嫌気
性雰囲気が切り換えられること、‘3} 沈降槽に接続
される反応槽は常に好気性雰囲気であること、【4’両
反応槽における汚水の供V給、沈降槽への接続状態およ
び好気性、嫌気性雰囲気の状態が、時間順序に対して同
一で、かつ一定期間で繰り返し循環する形態をとり、か
つ両反応槽の状態において一循環単位に対する位相が1
/2偏位すること、を特徴としている。
That is, the present invention, as shown in FIG. In a sewage purification device that is connected to a supply tank 5 and to a settling tank 3 via another switching valve 6, sewage is supplied to the reaction tank 1 during a certain period of time, and during the same period, the reaction treated water is The treated water is discharged from the outlet of the reaction tank 2 which is not receiving waste water supply by connecting it to the sedimentation tank 3, and in each reaction tank, when providing an aerobic atmosphere or (and) an anaerobic atmosphere, (1) Switching is made so that the sewage water is introduced into one of the tanks, and the reaction treated water is discharged from the other tank to the sedimentation tank; ■ The aerobic atmosphere and anaerobic atmosphere are switched in both reaction tanks. , '3} The reaction tank connected to the settling tank must always be in an aerobic atmosphere, [4' The sewage supply in both reaction tanks, the state of connection to the settling tank, and the state of aerobic and anaerobic atmospheres. , the time order is the same, and the form is repeated in a certain period of time, and the phase for one circulation unit is 1 in the conditions of both reaction vessels.
/2 deviation.

なお第2図において、7は運速管、8は返送汚泥管を示
している。以下、本発明の構成を図面に示す実施態様に
基づいて詳細に説明する。
In FIG. 2, 7 indicates a transportation pipe, and 8 indicates a return sludge pipe. Hereinafter, the configuration of the present invention will be explained in detail based on embodiments shown in the drawings.

第3図は本発明の方法を実施する汚水処理装置を示すも
のである。1は第1反応槽、2は第2反応槽で、これら
の反応槽1,2はそれぞれ内部に縄梓手段10,1 1
および空気吹込手段12,13もし〈は酸素吹込手段(
以下、単に空気吹込手段12,13という)をそれぞれ
独立または一体化した機構として備えている。
FIG. 3 shows a sewage treatment apparatus implementing the method of the present invention. 1 is a first reaction tank, 2 is a second reaction tank, and each of these reaction tanks 1 and 2 has a rope tensioning means 10, 1 1 inside.
and air blowing means 12, 13 if < is oxygen blowing means (
Hereinafter, air blowing means 12 and 13) are provided as independent or integrated mechanisms.

反応槽1,2、原水入口14,15は原水供給管16と
三方切換弁4を介して切換自在に接続されている。また
反応槽1,2の反応処理水出口17,18は沈降槽3に
切操弁6a,6bを介して切換自在に接続されている。
さらに両反応槽1,2は蓮通管7により相互に蓬通、接
続されている。両反応槽に付帯する設備として、2川ま
陽気用ブロワ、21は原水供繋舎ポンプ、22は最初沈
澱槽、23は混合槽、24は処理水受槽、25は返送汚
泥ポンプ、26は余剰汚泥ポンプである。上記反応槽内
を好気性状態にする場合は、ブロ・ワ20を駆動してェ
アレーションを行なう。反応槽内を嫌気性状態にする場
合は、ェアレーションを停止し、糟内の水中でたとえば
プロペラ、タービン翼、パドル翼、耀型翼、門型翼など
の縄梓手段により汚泥を混合浮遊せしめる。なお別の嫌
気、好気処理方法として、ケスナーブラシ、水車型曝気
機などを用いてこの爆気機を高速運転することにより好
気性状態を得、低速運転することにより嫌気性状態を得
るようにすることができる。またこの曝気機の浸導水位
を変えることによって、適宜嫌気、好気の雰囲気を変え
てもよい。好気性雰囲気においては、ェアレーションに
空気、酸素または酸素含有ガスを用いる。上記のように
構成された装置において、反応槽の操作状態の−実施例
様を第4図に基づいて説明する。
The reaction vessels 1 and 2 and the raw water inlets 14 and 15 are switchably connected to a raw water supply pipe 16 via a three-way switching valve 4. Further, the reaction treated water outlets 17 and 18 of the reaction tanks 1 and 2 are connected to the sedimentation tank 3 via switching valves 6a and 6b so as to be freely switchable.
Further, both the reaction vessels 1 and 2 are connected to each other through a passage pipe 7. The equipment attached to both reaction tanks is 2 river blowers, 21 is a raw water supply pump, 22 is an initial settling tank, 23 is a mixing tank, 24 is a treated water receiving tank, 25 is a return sludge pump, and 26 is a surplus tank. It is a sludge pump. When the inside of the reaction tank is brought into an aerobic state, the blower 20 is driven to perform aeration. To make the inside of the reaction tank anaerobic, stop the aeration and mix and suspend the sludge in the water in the tank using rope means such as propellers, turbine blades, paddle blades, star blades, and portal blades. urge Another method of anaerobic and aerobic treatment is to use a Kessner brush, a water wheel type aerator, etc. to operate the aerator at high speed to obtain an aerobic state, and to operate at a low speed to obtain an anaerobic state. can do. Further, by changing the infiltration water level of this aerator, the anaerobic or aerobic atmosphere may be changed as appropriate. In an aerobic atmosphere, air, oxygen, or an oxygen-containing gas is used for aeration. In the apparatus constructed as described above, an embodiment of the operating state of the reaction tank will be described with reference to FIG.

斜線部は嫌気・性〕状態を示し、空白部は好気性状態を
示している。まず第4図1に示すように、槽1に切襖弁
を作動させて原水を供艶資してこの槽1を嫌気性状態と
する。糟1内では汚水中のBOD成分が有機炭素源とな
って脱窒が行なわれる。すなわち、2MM岬(Bo職分
)(盤@N2十岬20十20H‐ 20H‐十班十(BOD成分)−−−一N2十が20十
2N〇夕の反応が行なわれる。
The shaded area indicates the anaerobic condition, and the blank area indicates the aerobic condition. First, as shown in FIG. 4 1, a cut valve is operated in tank 1 to supply raw water to bring tank 1 into an anaerobic state. In the tank 1, denitrification is carried out using the BOD component in the wastewater as an organic carbon source. That is, the reaction of 2MM Misaki (Bo position) (board @ N2 10 Misaki 20 120H - 20H - 10 H - 10 (BOD component)) --- 1 N2 0 is 20 12 N 〇 evening is performed.

一方、糟2は好気性状態として沈降槽に接続され反応処
理水が導入される。糟2内ではBOD成分の酸化および
アンモニア機酸窒素の硝化が行なわれる。ついで第4図
2に示すように、糟1を好気性状態、糟2を好気性状態
として、すなわち両槽とも好気性枕態として糟2を沈降
槽に接続して反応処理水を導入する。糟1,2内では下
記のようにBOD成分の酸化およびアンモニア態窒素の
硝化が行なわれる。BOD成分(CxHy功)十02
−一 C02十日20N批幻2 −一 N
O夕十伍0十が十ついで第4図3に示すように、櫓1を
嫌気性状藤、糟2を好気性状態として槽2を沈降槽に接
続し、すなわち第4図1と同じ状態に戻すことによって
、糟1内の脱窒反応を完成せしめる。
On the other hand, the rice cake 2 is connected to a sedimentation tank in an aerobic state, and reaction treated water is introduced therein. In the tank 2, oxidation of BOD components and nitrification of ammonia nitrogen are carried out. Next, as shown in FIG. 4, the rice cake 1 is in an aerobic state and the rice cake 2 is in an aerobic state, that is, both tanks are in an aerobic pillow state, and the rice cake 2 is connected to a sedimentation tank, and the reaction treated water is introduced. In the tanks 1 and 2, oxidation of BOD components and nitrification of ammonia nitrogen are carried out as described below. BOD component (CxHy gong) 102
-1 C02 10th 20N Review 2 -1 N
As shown in Figure 4, 3, the tank 1 was placed in an anaerobic condition, the tank 2 was placed in an aerobic condition, and tank 2 was connected to the sedimentation tank, i.e., the same condition as in Figure 4 1 was established. By returning it, the denitrification reaction in the rice cake 1 is completed.

槽2内ではBOD成分の酸化およびアンモニア態窒素の
硝化が行なわれる。しかる後に、第4図4に示すように
、汚水の供v給が糟2に切り換えられ、櫓2を嫌気性状
態とするとともに、糟1を好気性状態、として沈降槽に
接続する。すなわち第4図1の状態が丁度逆転した形態
となり、糟2内で硝酸態窒素の脱窒が行なわれ、糟1内
でBOD成分の酸化およびアンモニア態窒素の硝化が行
なわれる。ついで第4図5に示すように、槽2を好気性
状態、糟1を好気性状態として、すなわち両櫓とも好気
性状態として槽1を沈降槽に接続する。糟1,2内では
BOD成分の酸化およびアンモニア態窒素の硝化が行な
われる。ついで第4図6に示すように、糟2を嫌気性、
状態、糟1を好気性状態として沈降槽に接続する。すな
わち第4図4と同じ状態に戻すことによって、糟2内の
脱窒反応を完成せしめる。糟1内では80D成分の酸化
およびアンモニア態窒素の硝化が行なわれる。しかる後
、原水(汚水)流入部を切り換えて槽1に汚水を供V給
して第4図1〜6の一連の操作を繰り返す。上記の実施
態様は6時相サイクルからなるものであるが、この他に
も第5図に示すような4時相サイクル、第6図に示すよ
うな6時相サイクル、第7図に示すような8時相サイク
ルなどを用いることもできる。なお第5図〜第7図は好
ましい実施態様の一例を示すもので、これらに限定され
るものではない。本発明の処理方法においては、常に反
応槽1,2が薫通して汚水は両反応槽で反応処理を均一
に受けることができる。
In tank 2, oxidation of BOD components and nitrification of ammonia nitrogen are performed. Thereafter, as shown in FIG. 4, the sewage supply is switched to the tank 2, and the tower 2 is placed in an anaerobic state, and the tank 1 is set in an aerobic state and connected to the sedimentation tank. In other words, the state shown in FIG. 41 is exactly reversed, and denitrification of nitrate nitrogen is carried out in the cage 2, and oxidation of BOD components and nitrification of ammonia nitrogen are carried out in the cage 1. Next, as shown in FIG. 4, tank 1 is connected to the sedimentation tank with tank 2 in an aerobic state and tank 1 in an aerobic state, that is, both towers in an aerobic state. Oxidation of BOD components and nitrification of ammonia nitrogen take place in the cassettes 1 and 2. Next, as shown in FIG.
Condition: Cement 1 is connected to a sedimentation tank in an aerobic condition. That is, by returning to the same state as in FIG. 4, the denitrification reaction in the rice cake 2 is completed. In the pot 1, oxidation of the 80D component and nitrification of ammonia nitrogen take place. Thereafter, the raw water (sewage) inlet is switched to supply sewage to the tank 1, and the series of operations shown in FIGS. 1 to 6 are repeated. The embodiment described above consists of a 6-time phase cycle, but there are also 4-time phase cycles as shown in FIG. 5, 6-time phase cycles as shown in FIG. 6, and 6-time phase cycles as shown in FIG. It is also possible to use an 8-temporal cycle or the like. Note that FIGS. 5 to 7 show examples of preferred embodiments, and the present invention is not limited thereto. In the treatment method of the present invention, the reaction tanks 1 and 2 are always fragrant, so that the wastewater can be uniformly subjected to reaction treatment in both reaction tanks.

このため窒素成分やBOD成分の変動、水量の負荷変動
に対処し得る。また前述した如く、脱窒工程に必要な脱
窒菌の有機炭素源として生下水中のBOD成分が利用さ
れるが、必要に応じてさらにメタノール、酢酸、蟻酸、
ァセトン、糖類などの一般有機炭素源を適宜添加供聯合
することにより、脱窒反応をより一層活発に行なわせて
もよい。本発明の処理方法において、水の流れ全体から
みて好気、嫌気の状態が一定周期を単位として実質的に
1回以上、平均数回繰り返されるのが好ましい。
Therefore, it is possible to cope with fluctuations in nitrogen components and BOD components, and fluctuations in water volume load. In addition, as mentioned above, the BOD component in raw sewage is used as an organic carbon source for denitrifying bacteria necessary for the denitrification process, but if necessary, methanol, acetic acid, formic acid, etc.
The denitrification reaction may be made more active by appropriately adding and combining general organic carbon sources such as acetone and saccharides. In the treatment method of the present invention, it is preferable that the aerobic and anaerobic conditions are repeated substantially once or more, or several times on average, in a fixed cycle unit, in view of the entire flow of water.

このため両反応槽での平均滞留時間は、籾換循環単位期
間の0.5〜2の音、望ましくは1〜5倍が好ましい。
これ以外の範囲であれば、NH;,NQ−の反応が充分
でなく、完全な脱窒性能が得られない。またたとえば一
循環系における単位ステップのとるべき時間配分は、嫌
気、好気の処理条件を最適に設定するため適宜選択すれ
ばよい。たとえば第1時相t時間、第2時相1′2t時
間、第3時相1/2t時間、第4時相t時間、第5時相
1/2t時間、第6時相1/2t時間とすることなどが
挙げられる。このとき両反応糟合わせて処理された水の
総合平均滞留時間TはT=4tとなり、この時間Tは2
〜20時間(温度、濃度などにより異なる)が適当であ
る。また原水のBOD成分/N比は2以上好ましくは5
以上がよい。この値以下では硝酸態窒素の脱窒化に必要
な有機炭素源が不足するから、メタノールなどの有機炭
素猿を嫌気糟に添加することが望ましい。本発明におい
ては、嫌気、好気条件に基づいて、脱窒菌、硝化菌およ
び800成分酸化菌が水の綾存酸素量、温度、餌などそ
れぞれの与えられた環境に適応して活動するわけである
から、嫌気、好気の単位作用時相は少なくとも最少単位
2び分程度とするのが望ましい。本発明によれば、従来
の脱窒方法で必要とされた脱窒菌の有機炭素源であるメ
タノールなどの添加の必要がなくとも本処理は可能で、
また装置として二つの反応槽と一つの沈降槽とがあれば
よく、したがって従来方法のように活性汚泥処理プロセ
ス、硝化プロセス、脱窒プロセスといったシステムに比
較して、とくに脱窒槽、硝イロ槽といった反応槽を設け
なくてよいから、装置構成数が少なく単純構造である。
Therefore, the average residence time in both reaction vessels is preferably 0.5 to 2 times, preferably 1 to 5 times, the unit period of paddy exchange circulation.
If it is in a range other than this, the reaction of NH;, NQ- will not be sufficient, and complete denitrification performance will not be obtained. Further, for example, the time allocation for each unit step in one circulation system may be appropriately selected in order to optimally set the anaerobic and aerobic processing conditions. For example, the first time phase t time, the second time phase 1'2t time, the third time phase 1/2t time, the fourth time phase t time, the fifth time phase 1/2t time, the sixth time phase 1/2t time Examples include: At this time, the overall average residence time T of water treated in both reactions is T = 4t, and this time T is 2
~20 hours (depending on temperature, concentration, etc.) is appropriate. In addition, the BOD component/N ratio of raw water is 2 or more, preferably 5.
The above is good. Below this value, there is a shortage of organic carbon sources necessary for denitrification of nitrate nitrogen, so it is desirable to add organic carbon sources such as methanol to the anaerobic tank. In the present invention, denitrifying bacteria, nitrifying bacteria, and 800-component oxidizing bacteria operate based on anaerobic and aerobic conditions, adapting to the given environment such as the amount of oxygen present in water, temperature, and food. Therefore, it is desirable that the unit action time phase of anaerobic and aerobic activities be at least about 2 minutes. According to the present invention, this treatment is possible without the need for adding methanol, which is an organic carbon source for denitrifying bacteria, which is required in conventional denitrification methods.
In addition, it is only necessary to have two reaction tanks and one sedimentation tank as equipment, so compared to the conventional system such as activated sludge treatment process, nitrification process, and denitrification process, it is especially necessary to use a denitrification tank and a nitrification tank. Since there is no need to provide a reaction tank, the number of device configurations is small and the structure is simple.

加えて本発明によれば、BOD成分、COD成分と窒素
除去が同時に達成され、メタノールなどの有機炭素源を
不可欠としないため、省資源、省エネルギーをはかるこ
とができる。このようにBOD成分、COD成分を脱窒
の際に有効に使用するから、発生余剰汚泥の量も20%
程度少なく、汚泥処理がきわめて容易になる。さらに水
質や負荷変動に対しては、反応槽の切換時間を自由に変
更することができ流入負荷量に対しても臨機に対応させ
ることができるとともに、両反応槽が蓮通して水が常に
流動しているので、汚水が両反応糟で均一に処理される
などの効果を奏する。すなわち、本発明は二槽間が常に
蓮適しているため、流入汚水中に含まれる濃いアンモニ
ア性窒素などの処理水へのショートパスを極力抑制する
ことができ、かつ負荷変動を均質にすることができる。
In addition, according to the present invention, the removal of BOD components, COD components, and nitrogen can be achieved simultaneously, and an organic carbon source such as methanol is not essential, so that resource and energy savings can be achieved. Since BOD and COD components are effectively used during denitrification, the amount of surplus sludge generated can be reduced by 20%.
To a lesser extent, sludge treatment becomes extremely easy. Furthermore, in response to changes in water quality and load, the switching time of the reaction tank can be changed freely, allowing for flexible response to the inflow load amount, and both reaction tanks are connected to each other so that water is constantly flowing. As a result, wastewater is treated uniformly with both reaction vessels. That is, in the present invention, since the distance between the two tanks is always suitable, it is possible to suppress as much as possible the short path of concentrated ammonia nitrogen contained in the inflowing wastewater to the treated water, and to make load fluctuations uniform. Can be done.

またこれらの効果のほか、‘aー 流入汚水が両槽によ
って処理される割合は、前記の袴開昭49−51767
号公報記載の非蓬通方式より大きく、したがって処理の
均質化に寄与する。
In addition to these effects, the rate at which inflowing sewage is treated by both tanks is the same as that of Hakama Kaisho 49-51767.
This is larger than the non-commercial method described in the publication, and therefore contributes to homogenization of processing.

‘b’流入汚水の経時変動や負荷変動に対して均質化す
るための調整機能を備えている。
'b' Equipped with an adjustment function to homogenize incoming sewage over time and load fluctuations.

‘c’両槽のMLSS量、汚濁量や均等になるので、負
荷率も安定する。
'c' Since the amount of MLSS and the amount of pollution in both tanks are equal, the load factor is also stable.

本発明によれば、少なくともBOD95%、アンモニア
態をはじめ、有機性、硝酸態、函硝酸態窒素などを合わ
せて90%以上が除去され、バルキングフアクタ−(S
VI)は常に150以下に保つことができ、低温での除
去効果も著しい。
According to the present invention, at least 95% of BOD and 90% or more of ammonia, organic, nitrate, and nitrate nitrogen are removed, and bulking factor (S
VI) can always be kept below 150, and the removal effect at low temperatures is also remarkable.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例 本中櫨群機およびディフューザー型ェアレータを設置し
た各30その容器2個と、20その円錐型沈降槽とを第
2図のように連接し、生活廃水を5そ/hの割合に流入
せしめ、両槽を合わせた平均滞留時間1幼時間として第
4図に示す工程で処理した。
Example Two containers of 30 units each equipped with a Honnakahashi machine and a diffuser type aerator were connected to a conical sedimentation tank of 20 units as shown in Figure 2, and domestic wastewater was inflowed at a rate of 5 units/h. The treatment was then carried out according to the process shown in FIG. 4, with an average residence time of 1 hour for both tanks combined.

条件および結果はつぎのとおりであった。原水の性状B
OD成分30Q風、全窒素4■柵、SS120脚、PH
7.&水温220設定条件汚泥MBS負荷0.1k9B
OD/SSk9day,MLSS400Q灘切換状態各
反応糟における滞留時間6時間、第1時相間、第2時相
0.5時間、第3時相0.虫篭間、第4時相1時 間、第5時相0.曲時間、第6時相 0.即時間 処理水の平均水質BOD成分7胸(除去率鱗%)全窒素
1胸(除去率97%)SVI90 比較例 比較対象として、第1図に示す従来の装置を用いて上記
と同じ原水を処理した。
The conditions and results were as follows. Raw water properties B
OD component 30Q wind, total nitrogen 4■ fence, SS120 legs, PH
7. &Water temperature 220 setting conditions Sludge MBS load 0.1k9B
OD/SSk9day, MLSS400Q Nada switching state Residence time in each reaction chamber 6 hours, 1st time phase interval, 2nd time phase 0.5 hour, 3rd time phase 0. Between insect cages, 4th phase 1 hour, 5th phase 0. Song time, 6th phase 0. Average water quality of immediately treated water BOD components: 7 (removal rate: %) Total nitrogen: 1 (removal rate: 97%) SVI: 90 Comparative Example For comparison, the same raw water as above was prepared using the conventional equipment shown in Figure 1. Processed.

条件および結果はつぎのとおりであった。設定条件通常
の活性汚泥法により予めBOD成分25跡、SS70脚
、全窒素30肌の処理水を得、これを使って第1図の プロセスで実施した。
The conditions and results were as follows. Setting Conditions Treated water containing 25 traces of BOD components, 70 traces of SS, and 30 traces of total nitrogen was obtained in advance by the usual activated sludge method, and using this, the process shown in Figure 1 was carried out.

硝化槽M山SS300Q風、N負荷0.1kg/れda
y、pH83(アルカリ添加)脱窒素M山SS3000
脚、メタ/−ル添加C/N=3、N負荷lk9/〆da
y処理水の水質BOD成分IQ血(除去率60%)全窒
素8脚(除去率73%)SVI 140 以上の結果から明らかなように、本発明の方法は従来法
に比べて窒素除去、BOD成分除去ともに良好な処理効
果を示している。
Nitrification tank M mountain SS300Q wind, N load 0.1kg/reda
y, pH 83 (alkali addition) denitrification Myama SS3000
Legs, metal/-le addition C/N=3, N load lk9/〆da
yWater quality of treated water BOD component IQ Blood (removal rate 60%) Total nitrogen 8 legs (removal rate 73%) SVI 140 As is clear from the above results, the method of the present invention has better nitrogen removal and BOD content than the conventional method. It shows good treatment effects in terms of component removal.

図面の脇単な説明 第1図は従来法による汚水の処理袋鷹の一例を示す説明
図、第2図は本発明の方法を実施する装置の概要を示す
説明図、第3図は本発明の方法を実施する装置の一例を
示す系統的説明図、第4図は本発明における反応槽の操
作状態の一実施態様を示す説明図、第5図〜第7図は本
発明における反応糟の操作状態の他の実施態様を示す説
明図である。
Brief description of the drawings: Fig. 1 is an explanatory diagram showing an example of a wastewater treatment bag hawk according to the conventional method, Fig. 2 is an explanatory diagram showing an outline of an apparatus for carrying out the method of the present invention, and Fig. 3 is an explanatory diagram showing an example of a wastewater treatment bag hawk according to the conventional method. FIG. 4 is an explanatory diagram showing one embodiment of the operating state of the reaction tank in the present invention, and FIGS. FIG. 6 is an explanatory diagram showing another embodiment of the operating state.

なお斜線部は嫌気性状機を、空白部は好気性状態を、矢
印は水の流れの方向を示す。1,2・・・・・・反応槽
、3・・…・沈降槽、4・・・・・・切換弁、5・・・
・・・汚水供給槽、6.6a,6b・・・・・・切換弁
、7・・・・・・連通管、8・・・・・・返送汚泥管、
10,11・・・…蝿梓手段、12,13・・・・・・
空気吹込手段、14,15…・・・原水入口、16…・
・・原水供g叢管、17.18・・・・・・反応処理水
出口、20・・…・擬気用プロワ、21・・…・原水供
繋舎ポンプ、22・・・・・・最初沈澱槽、23・・・
・・・混合槽、24・・・・・・処理水受槽、25・・
…・返送汚泥ポンプ、26・・・・・・余剰汚泥ポンプ
Note that the shaded area indicates the anaerobic condition, the blank area indicates the aerobic condition, and the arrow indicates the direction of water flow. 1, 2... Reaction tank, 3... Sedimentation tank, 4... Switching valve, 5...
...Sewage supply tank, 6.6a, 6b...Switching valve, 7...Communication pipe, 8...Return sludge pipe,
10, 11... Fly Azusa Means, 12, 13...
Air blowing means, 14, 15... Raw water inlet, 16...
...Raw water supply g-plex pipe, 17.18...Reaction treated water outlet, 20...Fake air blower, 21...Raw water supply building pump, 22... First sedimentation tank, 23...
... Mixing tank, 24 ... Treated water receiving tank, 25 ...
...Return sludge pump, 26... Surplus sludge pump.

第1図 第2図 第3図 第4図 第5図 第6図 第7図Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 汚水を生物学的に浄化する2基の反応槽を互に接続
し、原水流入部を交互に切り換えて一方の反応槽を嫌気
性状態または好気性状態とし、他方の反応槽を好気性状
態または嫌気性状態とし、2基の反応槽に沈降槽を接続
するようにした汚水の生物学的処理方法において、(1
) 一方の反応槽に原水を供給してこの反応槽を嫌気性
状態とし、他方の反応槽を好気性状態としてこの他方の
反応槽から反応処理水を沈降槽に導入する、(2) 一
方の反応槽に原水を供給してこの反応槽を好気性状態と
し、他方の反応槽も好気性状態としてこの他方の反応槽
から反応処理水を沈降槽に導入する、(3) 一方の反
応槽と他方の反応槽との間、他方の反応槽と沈降槽との
間を常に反応処理水を流通させる、工程を少なくとも包
含することを特徴とする汚水の生物学的処理方法。
1 Two reaction tanks for biologically purifying wastewater are connected to each other, and the raw water inlet is switched alternately to put one reaction tank in an anaerobic state or an aerobic state, and the other reactor in an aerobic state. Alternatively, in a biological treatment method for wastewater in which a sedimentation tank is connected to two reaction tanks in an anaerobic state, (1
) Supplying raw water to one reaction tank to make this reaction tank an anaerobic state, and making the other reaction tank an aerobic state and introducing the reaction treated water from this other reaction tank to the sedimentation tank, (2) one of the reaction tanks. Supplying raw water to the reaction tank to make this reaction tank an aerobic state, and also making the other reaction tank an aerobic state, introducing the reaction treated water from the other reaction tank into the sedimentation tank, (3) one reaction tank and 1. A biological treatment method for sewage comprising at least the step of constantly circulating reaction treated water between the other reaction tank and between the other reaction tank and the sedimentation tank.
JP7681778A 1978-06-23 1978-06-23 Biological treatment method for wastewater Expired JPS602917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7681778A JPS602917B2 (en) 1978-06-23 1978-06-23 Biological treatment method for wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7681778A JPS602917B2 (en) 1978-06-23 1978-06-23 Biological treatment method for wastewater

Publications (2)

Publication Number Publication Date
JPS553845A JPS553845A (en) 1980-01-11
JPS602917B2 true JPS602917B2 (en) 1985-01-24

Family

ID=13616216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7681778A Expired JPS602917B2 (en) 1978-06-23 1978-06-23 Biological treatment method for wastewater

Country Status (1)

Country Link
JP (1) JPS602917B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126491A (en) * 1980-03-08 1981-10-03 Kawasaki Heavy Ind Ltd Biological treatment of wastewater
JPS5861886A (en) * 1981-10-06 1983-04-13 Kubota Ltd Treatment for waste water
JPS607997A (en) * 1983-06-24 1985-01-16 Hanshin Doryoku Kikai Kk Process and apparatus for purifying filthy turbid water in anaerobic and aerobic treating tank using underwater stirring
JPS6049999U (en) * 1983-09-14 1985-04-08 株式会社 西原環境衛生研究所 Circulating waterway type activated sludge treatment equipment
JPH0691371B2 (en) * 1989-02-23 1994-11-14 松下電器産業株式会社 Signal processor
CN106007195A (en) * 2016-06-27 2016-10-12 浙江水利水电学院 Water quality treatment method applicable to artificial wetland landscape park

Also Published As

Publication number Publication date
JPS553845A (en) 1980-01-11

Similar Documents

Publication Publication Date Title
KR20220134057A (en) Wastewater treatment with primary treatment and mbr or mabr-ifas reactor
CN101767901B (en) Mobile sewage treatment device and waste water treatment method thereof
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
CN109354168B (en) Rapid starting method of MBBR (moving bed biofilm reactor) completely autotrophic nitrogen removal system
KR101292736B1 (en) Advanced wastewater treatment technology
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
KR100327151B1 (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
EP2049443B1 (en) A method and apparatus for simultaneous clarification and endogenous post denitrification
JPH07100486A (en) Method for treating drainage
CN210683343U (en) Rural domestic sewage MBR integration processing apparatus
JPS602917B2 (en) Biological treatment method for wastewater
CN111908735A (en) AAO process transformation method for urban sewage treatment plant based on anaerobic ammonia oxidation
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
EP2727886A1 (en) Methods for treating liquid waste with high purity oxygen
CN105984991B (en) A kind of sewerage advanced treatment process
KR20140132258A (en) Biological Advanced Wastewater Treatment Technology
CN206457319U (en) A kind of and oxygen MBR film domestic sewage treatment devices
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
CN208869379U (en) A kind of stainless steel acid cleaning waste water denitrogenation processing system
CN201325918Y (en) Mobile sewage treating device
CN208762233U (en) A kind of municipal sewage high efficiency nitrification and denitrification system
CN114230086A (en) Sewage treatment device and high-performance MBR (membrane bioreactor) combined process
JP2953835B2 (en) Biological nitrification and denitrification equipment
CN111892164A (en) Control method of integrated membrane biological reaction device based on short-cut nitrification and denitrification
JPH08108195A (en) Method and apparatus for removing nitrogen in water