JP2005177758A - Biological deodorization method of odorant gas containing ammonia and apparatus - Google Patents

Biological deodorization method of odorant gas containing ammonia and apparatus Download PDF

Info

Publication number
JP2005177758A
JP2005177758A JP2005041555A JP2005041555A JP2005177758A JP 2005177758 A JP2005177758 A JP 2005177758A JP 2005041555 A JP2005041555 A JP 2005041555A JP 2005041555 A JP2005041555 A JP 2005041555A JP 2005177758 A JP2005177758 A JP 2005177758A
Authority
JP
Japan
Prior art keywords
nitrification
circulating water
ammonia
buffer solution
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005041555A
Other languages
Japanese (ja)
Inventor
Toshio Tsukamoto
敏男 塚本
Shigeki Yamashita
茂樹 山下
Takanori Nishii
啓典 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005041555A priority Critical patent/JP2005177758A/en
Publication of JP2005177758A publication Critical patent/JP2005177758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological deodorization method and an apparatus therefor, wherein a deodorizing performance of an odorant gas containing NH<SB>3</SB>, of a high concentration with a large variation of concentration is easily stabilized with low cost and also a water quantity consumed and a water quantity discharged can be lowered. <P>SOLUTION: The biological deodorization method is composed of a circulation style of nitrification and denitrification method, wherein the odorant gas 1 containing NH<SB>3</SB>is contacted 7 with a circulation water 5 in a nitrification step 3 and NH<SB>3</SB>contained is absorbed to be biologically nitrification-treated by nitrifying bacteria, and also this nitrification liquid 5 is guided to a denitrification step 4 and the denitrification-treated liquid is again returned 9 as the circulation water 5 to the nitrification step . In this deodorization method, a pH buffer solution is used as the circulation water 5, wherein the pH buffer solution is a phosphate buffer solution or a carbonate buffer solution, and also the said pH buffer solution can be controlled by feeding a reagent such that a pH of the circulation water is in the range of 6.0 and 7.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、臭気ガスの生物学的脱臭方法に係り、特に、アンモニアを含む、堆
肥化施設、下水処理施設、し尿処理施設、ごみ処理施設、各種工場等から発生す
る臭気ガスを、生物学的に脱臭する方法と装置に関する。
The present invention relates to a method for biological deodorization of odor gas, and in particular, odor gas generated from composting facilities, sewage treatment facilities, human waste treatment facilities, waste treatment facilities, various factories, etc., containing ammonia, The present invention relates to a method and an apparatus for deodorizing.

近年、生ゴミや汚泥等の堆肥化処理への要求が高まりつつある中で、堆肥化施
設から発生するアンモニアを高濃度で含むガスの処理が問題となっている。
従来、アンモニア含有ガスの脱臭は、水や、酸等の薬液を吸収剤とする湿式洗
浄法で行われるのが一般的であった。しかし、この方法では、大量の水や薬剤が
必要であるばかりでなく、アンモニアを含有する排水が大量に排出されるといっ
た問題がある。
また、活性炭やゼオライト等の吸着剤による脱臭法が適用される場合もあるが
、これらの吸着剤はアンモニア吸着量が少ないために、アンモニアの負荷が高い
場合には大量の吸着剤が必要であると共に、吸着剤交換作業が煩雑であり、また
、使用済み吸着剤といった廃棄物が発生するという問題がある。
In recent years, the demand for composting treatment such as garbage and sludge has been increasing, and the processing of gas containing high concentration of ammonia generated from composting facilities has become a problem.
Conventionally, deodorization of ammonia-containing gas has been generally performed by a wet cleaning method using a chemical solution such as water or acid as an absorbent. However, this method not only requires a large amount of water and chemicals, but also has a problem that a large amount of wastewater containing ammonia is discharged.
In addition, deodorizing methods using adsorbents such as activated carbon and zeolite may be applied, but these adsorbents have a small amount of adsorbed ammonia, so a large amount of adsorbent is required when the load of ammonia is high. In addition, the adsorbent replacement operation is complicated, and there is a problem that waste such as used adsorbent is generated.

これらの脱臭方法に対して、硫黄系悪臭物質含有ガスの処理において、近年実
績を挙げ、注目されている充填塔式生物脱臭法は、維持管理が容易でランニング
コストが低いといった利点がある。しかし、この方法で、アンモニア含有臭気を
処理した場合、大きな問題点が二つある。まず、第一に、アンモニアが生物学的
に硝化されると、散水に用いる循環水中に硝酸性窒素が蓄積することである。硝
酸性窒素の過剰な蓄積は、処理性能に影響を与えるため、長期間脱臭性能を維持
することが困難となる。硝酸性窒素の蓄積を抑えるためには、これを希釈するた
めに大量の水が必要であると同時に、硝酸性窒素含有排水が大量に排出される。
したがって、堆肥化施設等のように使用水量及び排水量が制限される施設に適用
するのは困難であった。
Compared to these deodorization methods, the packed tower-type biological deodorization method which has recently gained attention in the treatment of sulfur-containing malodorous substance-containing gases has the advantages of easy maintenance and low running costs. However, when the ammonia-containing odor is treated by this method, there are two major problems. First, when ammonia is biologically nitrified, nitrate nitrogen accumulates in the circulating water used for watering. Since excessive accumulation of nitrate nitrogen affects the processing performance, it is difficult to maintain the deodorizing performance for a long time. In order to suppress the accumulation of nitrate nitrogen, a large amount of water is required to dilute it, and at the same time, a large amount of nitrate nitrogen-containing wastewater is discharged.
Therefore, it has been difficult to apply to facilities where the amount of water used and the amount of drainage are restricted, such as composting facilities.

この問題に対して、先に、前記アンモニア含有臭気ガスの生物脱臭方法におい
て、硝化工程と脱窒素工程とを組合せることによって、臭気中のアンモニアを窒
素ガスまで変換する方法を提案している。この方法では、水相への窒素成分の蓄
積が抑えられると共に、硝化反応と脱窒素反応がバランス良く進行することで、
循環水のpHは中性に維持されるため、水の再利用が可能である。したがって、
この方法によれば、使用水量及び排水量の問題は解決される。
第二の問題点は、一般的に、アンモニア含有臭気中のアンモニア濃度は、変動
が極めて大きいため、前記の方法を採用するだけでは、生物学的脱臭方法で安定
した性能を維持するのが困難ということにある。特に、アンモニア濃度が急激に
上昇すると、硝化反応が追いつかず、循環水に一時的にアンモニアが高濃度に蓄
積するため、循環水のpHが上昇する。その結果、臭気からのアンモニアの吸収
除去性能を低下させると共に、生物学的硝化脱窒素反応が阻害される。
To solve this problem, a method for converting ammonia in odor to nitrogen gas by combining a nitrification step and a denitrification step in the biological deodorization method for ammonia-containing odor gas has been proposed. In this method, accumulation of nitrogen components in the aqueous phase is suppressed, and the nitrification reaction and denitrification reaction proceed in a well-balanced manner,
Since the pH of the circulating water is maintained neutral, the water can be reused. Therefore,
According to this method, the problem of the amount of water used and the amount of drainage is solved.
The second problem is that, in general, the ammonia concentration in the ammonia-containing odor fluctuates significantly, and it is difficult to maintain stable performance with the biological deodorization method only by adopting the above method. That is to say. In particular, when the ammonia concentration rapidly rises, the nitrification reaction cannot catch up, and ammonia temporarily accumulates in the circulating water at a high concentration, so that the pH of the circulating water rises. As a result, the ability to absorb and remove ammonia from odors is reduced, and the biological nitrification denitrification reaction is inhibited.

さらに、pHが上昇すると、次の(1)式の様に、循環水に吸収されたアンモ
ニアの大部分が遊離のアンモニアとなり、この遊離のアンモニアは、高濃度にな
ると生物学的硝化反応を著しく阻害する。硝化菌は増殖速度が遅いため、一度、
遊離のアンモニア濃度が上昇すると、長期間にわたってアンモニア除去性能が低
下する。
NH4 + + OH- → NH3 + H2O (1)
また、このようなアンモニア負荷及び循環水pHの大幅な変動は、硝化反応と
脱窒素反応のバランスを崩すことにもつながる。その結果、循環水に硝酸性窒素
が蓄積してpHが過度に低下し、硝化脱窒素反応が阻害されるため、アンモニア
除去性能が低下することにもなる。
Furthermore, when the pH rises, as shown in the following formula (1), most of the ammonia absorbed in the circulating water becomes free ammonia, and when this free ammonia becomes high, the biological nitrification reaction is remarkably increased. Inhibit. Because nitrifying bacteria have a slow growth rate,
As the free ammonia concentration increases, the ammonia removal performance decreases over a long period of time.
NH 4 + + OH → NH 3 + H 2 O (1)
In addition, such large fluctuations in ammonia load and circulating water pH also lead to an imbalance between the nitrification reaction and the denitrification reaction. As a result, nitrate nitrogen accumulates in the circulating water, the pH is excessively lowered, and the nitrification / denitrification reaction is inhibited, resulting in a decrease in ammonia removal performance.

以上のように、生物脱臭法によるアンモニア含有臭気ガスの処理において、p
Hの安定化は、性能を維持するための最も重要な因子の一つである。
pHを安定させる方法としては、酸剤やアルカリ剤でpH制御する方法がある
。しかし、循環式硝化脱窒素処理においてこの方法を採用すると、次の問題が生
じる。
(1)アンモニアが蓄積した場合は、酸剤を添加するのに対して、硝酸が蓄積
した場合は、アルカリ剤を添加する必要があるため、中和剤の添加量が膨大とな
る。
(2)硝化・脱窒素反応が完了した際には、前記(1)で添加した中和剤は残
留物となるため、これを再度中和しなければならな場合があるため、中和剤の添
加量が膨大となる。
(3)pHが至適域に維持されても、添加した中和剤に起因する塩濃度の上昇
が、硝化脱窒素反応を阻害する。
As described above, in the treatment of ammonia-containing odor gas by the biological deodorization method, p
H stabilization is one of the most important factors for maintaining performance.
As a method for stabilizing the pH, there is a method of controlling the pH with an acid agent or an alkali agent. However, when this method is adopted in the circulation type nitrification denitrification treatment, the following problems occur.
(1) Where ammonia accumulates, an acid agent is added, whereas when nitric acid accumulates, an alkali agent needs to be added, so the amount of neutralizing agent added becomes enormous.
(2) When the nitrification / denitrogenation reaction is completed, the neutralizing agent added in the above (1) becomes a residue, which may have to be neutralized again. The amount of added becomes enormous.
(3) Even if the pH is maintained in the optimum range, the increase in the salt concentration caused by the added neutralizing agent inhibits the nitrification / denitrification reaction.

また、これらの方法の問題点を解決するために、微生物担体にカルシウム分を
含む無機多孔質担体硬化体を用いると共に、循環水をリン酸含有水とするアンモ
ニア含有排ガスの生物脱臭方法が提案されている。この方法では、アンモニアと
リン酸との反応により、リン酸がアンモニアを固定するため、装置立ち上時にお
ける微生物の硝化反応が不充分な場合でも、臭気を無臭化できるとされている。
また、次の(2)式の様に、リン酸水素カルシウムは、アンモニアの作用により
水酸リン灰石となってリン酸放出するため、このリン酸によって中和されるとし
ている。
10CaHPO4 + 2H2O → Ca10(PO46(OH)2
4H3PO4 (2)
In addition, in order to solve the problems of these methods, a biological deodorization method of ammonia-containing exhaust gas using a porous inorganic carrier cured body containing calcium as a microorganism carrier and using circulating water as phosphoric acid-containing water has been proposed. ing. In this method, phosphoric acid fixes ammonia by the reaction between ammonia and phosphoric acid, so that it is possible to odorlessly odor even when the nitrification reaction of microorganisms at the time of starting the apparatus is insufficient.
Further, as shown in the following equation (2), calcium hydrogen phosphate is converted to apatite hydroxide by the action of ammonia, and phosphoric acid is released, so that it is neutralized by this phosphoric acid.
10CaHPO 4 + 2H 2 O → Ca 10 (PO 4 ) 6 (OH) 2 +
4H 3 PO 4 (2)

一方、アンモニアが生物学的に分解除去されると逆の反応がおこる可能性もあ
り、再びリン酸は、リン酸カルシウムとし固定されることもある。つまり、系内
のアンモニア濃度に応じて、リン酸の水相への放出反応と固相への回収反応が起
こる可能性がある。したがって、薬品使用量の削減及び水相の塩濃度の上昇を防
止することができる。
しかし、処理対象臭気のアンモニア濃度が高濃度で、かつ濃度変動が大きい場
合は、次の理由により、アンモニア濃度変動に追随してpH変動を抑えることが
できないため、処理性能を安定させるのが難しい。
(1)前記(2)式の反応速度が遅い。
(2)循環水のpHが中性の条件で、カルシウムとリン酸が共存している場合
、その主な形態はリン酸水素カルシウムと考えられ、この塩は水に対する溶解度
が極めて小さいことから、液相に存在しているリン酸又はリン酸塩濃度は極めて
低い。
特開昭57−180421号公報
On the other hand, when ammonia is biologically decomposed and removed, the reverse reaction may occur, and phosphoric acid may be fixed as calcium phosphate again. That is, there is a possibility that a release reaction of phosphoric acid into the aqueous phase and a recovery reaction into the solid phase occur depending on the ammonia concentration in the system. Therefore, it is possible to prevent the amount of chemicals used and the increase of the salt concentration of the aqueous phase.
However, when the ammonia concentration of the odor to be treated is high and the concentration fluctuation is large, it is difficult to stabilize the processing performance because the pH fluctuation cannot be suppressed following the ammonia concentration fluctuation for the following reason. .
(1) The reaction rate of the formula (2) is slow.
(2) When the pH of the circulating water is neutral and calcium and phosphoric acid coexist, the main form is considered to be calcium hydrogen phosphate, and this salt has extremely low solubility in water. The concentration of phosphoric acid or phosphate present in the liquid phase is very low.
JP-A-57-180421

本発明は、上記の問題点を解決し、高濃度かつ濃度変動が大きいアンモニア含
有臭気ガスの脱臭性能を、低コストかつ極めて簡便な方法で安定させることがで
き、かつ、使用水量及び排水量を低減できる生物脱臭方法と装置を提供すること
を課題とする。
The present invention solves the above-mentioned problems, can stabilize the deodorization performance of ammonia-containing odor gas having a high concentration and a large concentration variation by a low-cost and extremely simple method, and reduces the amount of water used and the amount of drainage. It is an object of the present invention to provide a biological deodorization method and apparatus that can be used.

上記の課題を解決するために、本発明では、アンモニア含有臭気ガスを、硝化
工程で循環水と接触させて含有するアンモニアを吸収し、硝化菌によって生物学
的に硝化処理すると共に、該硝化液を脱窒素工程に導き、該脱窒素処理液を再び
硝化工程に循環水として返送する循環式硝化脱窒素方式の生物脱臭法において、
該循環水にpH緩衝溶液を用いることとしたものである。
前記脱臭方法において、pH緩衝溶液は、リン酸塩緩衝溶液とするか、炭酸塩
緩衝溶液とすることができ、また、pH緩衝溶液は、薬剤を供給して、循環水の
pHが6.0〜7.5の範囲となるようにpH制御することができる。
また、本発明では、内部に、アンモニア含有臭気ガスを通す硝化菌を担持させ
た充填層と、該充填層に循環水を散水する散水装置と、循環水を貯留する循環水
槽とを有する硝化脱臭塔と、該硝化脱臭塔からの硝化液を脱窒素処理する脱窒素
槽と、該脱窒素槽と前記硝化脱臭塔とを循環水が循環する経路とを有する生物脱
臭装置において、前記循環水にpH緩衝溶液を用いることとしたものである。
In order to solve the above problems, in the present invention, ammonia containing odorous gas is brought into contact with circulating water in the nitrification step to absorb the ammonia contained therein, and biologically nitrified by nitrifying bacteria, and the nitrifying solution In the biological deodorization method of the circulation type nitrification / denitrogenation method, which leads to the denitrification process and returns the denitrification treatment liquid to the nitrification process again as circulating water,
A pH buffer solution is used for the circulating water.
In the deodorization method, the pH buffer solution may be a phosphate buffer solution or a carbonate buffer solution, and the pH buffer solution may supply a drug and have a circulating water pH of 6.0. The pH can be controlled to be in the range of ˜7.5.
Further, in the present invention, nitrification deodorization having a packed bed in which nitrifying bacteria that pass ammonia-containing odor gas are supported, a watering device for spraying circulating water in the packed bed, and a circulating water tank for storing the circulating water. In a biological deodorization apparatus having a tower, a denitrification tank for denitrifying nitrification liquid from the nitrification deodorization tower, and a path for circulating water to circulate between the denitrification tank and the nitrification deodorization tower, A pH buffer solution is used.

本発明の方法では、アンモニア含有臭気ガスを硝化工程に導き、硝化菌によっ
て生物学的に硝化処理すると共に、該硝化液を脱窒素工程に導き、該脱窒素処理
液を再び硝化工程に返送する循環式硝化脱窒素方式の生物脱臭法において、該循
環水にpH緩衝溶液を用いることで、アンモニア負荷の変動が大きくかつ、使用
水量及び排水量が制限される場合でも、低コストかつ簡単な方法で、循環水pH
を硝化菌及び脱窒素菌に適した中性域に維持できるため、生物脱臭法によるアン
モニアの安定除去が可能である。
In the method of the present invention, the ammonia-containing odor gas is guided to the nitrification step, biologically nitrified by nitrifying bacteria, the nitrification solution is guided to the denitrification step, and the denitrification solution is returned to the nitrification step again. In the biological deodorization method of the circulatory nitrification and denitrification method, by using a pH buffer solution for the circulating water, even when the fluctuation of ammonia load is large and the amount of water used and the amount of drainage are limited, it is a low cost and simple method. , Circulating water pH
Can be maintained in a neutral range suitable for nitrifying bacteria and denitrifying bacteria, so that ammonia can be stably removed by biological deodorization.

本発明は、循環式硝化脱窒素方式の生物脱臭法によるアンモニアの処理に関し
て、次の点に着目し、循環水に単なる生物処理水を用いる代わりに、pHを安定
させる目的で工業的に汎用されているpH緩衝溶液を利用したものである。
(1)循環式硝化脱窒素処理では、反応が過不足なく行われれば、本来pH調
整は不要である。したがって、アンモニア濃度が高く変動が大きい場合は、アン
モニアや硝酸の蓄積に起因する一時的なpH変動さえ防止すれば良い。
(2)生物脱臭法においては、水は、処理対象物ではなく、生物学的硝化脱窒
素反応を進行させるための単なる媒体であり、循環式硝化脱窒素反応が過不足な
く行われれば、水質変化を生じないことから、系外に排水せず何度でも循環再利
用できる。
The present invention focuses on the following points regarding the treatment of ammonia by the biological deodorization method of the circulatory nitrification and denitrification method, and is widely used industrially for the purpose of stabilizing the pH instead of simply using biologically treated water for the circulating water. The pH buffer solution is used.
(1) In the circulatory nitrification denitrification treatment, if the reaction is carried out without excess or deficiency, pH adjustment is essentially unnecessary. Therefore, when the ammonia concentration is high and the fluctuation is large, it is only necessary to prevent even a temporary pH fluctuation caused by the accumulation of ammonia or nitric acid.
(2) In the biological deodorization method, water is not an object to be treated, but a mere medium for proceeding with biological nitrification / denitrification reaction. Since no change occurs, it can be reused any number of times without draining outside the system.

循環式硝化脱窒素方式の生物脱臭法によるアンモニア含有臭気ガスの処理は、
次の(3)式〜(5)式に従って進行する。
NH3 + H2O → NH4 + + OH- (3)
NH4 + +2O2 → NO3 - +2H+ + H2O (4)
2NO3 - + 5H2 → N2 + 2OH- + 4H2O (5)
該処理においては、(3)式のアンモニアの蓄積と(5)式の脱窒素反応によ
り、水酸化物イオン濃度が上昇してpHが上昇するのに対して、(4)式の硝化
反応により、水素イオン濃度が上昇してpHが低下する。(3)〜(5)式の反
応が完結して、アンモニアが窒素ガスまで変換されると、pHの上昇分と低下分
が相殺されて、pHは一定となる。
Treatment of ammonia-containing odor gas by the biological deodorization method of circulatory nitrification and denitrification method
The process proceeds according to the following formulas (3) to (5).
NH 3 + H 2 O → NH 4 + + OH (3)
NH 4 + + 2O 2 → NO 3 + 2H + + H 2 O (4)
2NO 3 + 5H 2 → N 2 + 2OH + 4H 2 O (5)
In the treatment, the accumulation of ammonia in the formula (3) and the denitrification reaction in the formula (5) increase the hydroxide ion concentration and increase the pH, whereas the nitrification reaction in the formula (4) The hydrogen ion concentration increases and the pH decreases. When the reactions of formulas (3) to (5) are completed and ammonia is converted to nitrogen gas, the pH increase and decrease are offset, and the pH becomes constant.

しかし、アンモニア負荷の変動により、これらの反応のバランスが崩れると、
アンモニアや硝酸の蓄積によりpHの変動が生じる。適切なpH域以外では、臭
気からのアンモニアの吸収除去性能を低下させるだけでなく、生物学的硝化脱窒
素反応が阻害されるため、一度適切なpH域を外れると、その後pHを調整して
も生物学的反応はすぐには回復しない。したがって、長期間にわたってアンモニ
ア除去性能が低下する。
本発明においては、前記の如く、アンモニア含有臭気を処理する生物脱臭装置
の循環水にpH緩衝溶液を用いているため、一時的にアンモニアや硝酸イオンが
蓄積しても、水酸化物イオン濃度と水素イオン濃度を一定に維持させるpH緩衝
作用が直ちに働くためpHが一定に保たれる。pH緩衝溶液としてリン酸塩緩衝
液を用いた場合のpH緩衝作用は、(6)式及び(7)式で示される。
HPO4 2- + H+ → H2PO4 - (6)
2PO4 - + OH- → HPO4 2- + H2O (7)
However, if the balance of these reactions is lost due to fluctuations in the ammonia load,
Variations in pH occur due to the accumulation of ammonia and nitric acid. Outside the appropriate pH range, not only the ability to absorb and remove ammonia from odors is lowered, but also biological nitrification denitrification reaction is inhibited, so once out of the appropriate pH range, the pH is adjusted thereafter. But the biological response does not recover immediately. Therefore, the ammonia removal performance decreases over a long period of time.
In the present invention, as described above, since the pH buffer solution is used in the circulating water of the biological deodorization apparatus for treating the ammonia-containing odor, even if ammonia or nitrate ions temporarily accumulate, the hydroxide ion concentration Since the pH buffering action that maintains the hydrogen ion concentration constant immediately works, the pH is kept constant. The pH buffering action when a phosphate buffer is used as the pH buffering solution is expressed by equations (6) and (7).
HPO 4 2- + H + → H 2 PO 4 - (6)
H 2 PO 4 - + OH - HPO 4 2- + H 2 O (7)

したがって、一時的にアンモニアや硝酸イオンが蓄積しても、pH変動による
硝化脱窒素反応の阻害が無いため、一時的に蓄積したアンモニアや硝酸は、処理
を継続していくうちにいずれ窒素ガスに変換される。また、アルカリ剤や酸剤を
用いた場合は、pH調整効果は一過性であるのに対して、pH緩衝液を利用した
場合のpH調整効果は、アンモニアや硝酸イオンが窒素ガスまで変換されること
によってpH緩衝能が復活する持続性のものである。前記のとおり、生物脱臭法
では、水は処理対象ではなく、微生物反応を進行させるための媒体であるから、
系外に排出する量を極力少なくして循環再利用できる。したがって、使用水量の
削減や、排水量を低減あるいは無排水方式にできるばかりでなく、循環水をpH
緩衝液とするために添加する薬剤(以下、pH緩衝剤とする)の量も少なくて良
い。無排水方式の場合のpH緩衝剤の主な損失は、ミストとして処理ガスに同伴
して排出される分、及び微生物の栄養源として消費される分のみである。
Therefore, even if ammonia or nitrate ions temporarily accumulate, there is no inhibition of the nitrification and denitrification reaction due to pH fluctuations. Therefore, the temporarily accumulated ammonia and nitric acid will eventually be converted to nitrogen gas as processing continues. Converted. In addition, when an alkali agent or acid agent is used, the pH adjustment effect is transient, whereas when a pH buffer solution is used, the pH adjustment effect is that ammonia and nitrate ions are converted to nitrogen gas. By doing so, the pH buffering capacity is restored. As described above, in the biological deodorization method, water is not a treatment target, but is a medium for causing a microbial reaction to proceed.
Recycling can be done by reducing the amount discharged outside the system as much as possible. Therefore, not only can the amount of water used be reduced, the amount of drainage can be reduced or no drainage can be achieved,
The amount of a drug (hereinafter referred to as a pH buffering agent) to be added to make a buffer solution may be small. The main loss of the pH buffering agent in the case of the non-drainage system is only the part that is discharged as a mist accompanying the processing gas and the part that is consumed as a nutrient source for microorganisms.

pH緩衝剤は、これらの損失分を計算した量を適宜供給しても良いが、循環水
のpHを測定し、その測定値によってpH緩衝剤の供給量を制御することもでき
る。pH制御注入の方法は、pH緩衝剤の濃厚溶液を直接注入して行うことがで
きる。また、pH緩衝剤は一般的に、アルカリ性の成分と酸性の成分の二成分で
構成されていることが多いので、これらの成分を循環水に別々に注入してpH制
御しても良い。なお、循環水のpHは、6.0〜7.5の範囲で制御することが
好適である。
The pH buffering agent may be appropriately supplied in an amount calculated for these losses, but the pH of the circulating water can be measured and the supply amount of the pH buffering agent can be controlled by the measured value. The method of pH control injection can be performed by directly injecting a concentrated solution of pH buffer. Further, since the pH buffer is generally composed of two components, an alkaline component and an acidic component, these components may be separately injected into the circulating water to control the pH. In addition, it is suitable to control the pH of circulating water in the range of 6.0-7.5.

本発明で用いるpH緩衝溶液としては、リン酸塩緩衝液、炭酸塩緩衝液等の、
生物学的硝化脱窒素反応に影響を与えないものが良い。この場合のpH緩衝剤の
組み合わせとしては、緩衝溶液自体のpHが中性となるものが良く、例えば、リ
ン酸二水素カリウム+リン酸水素二カリウム、リン酸二水素ナトリウム+リン酸
水素ニナトリウム、リン酸三カリウム+リン酸、リン酸三ナトリウム+リン酸、
リン酸三カリウム+硫酸、リン酸三ナトリウム+硫酸、リン酸三カリウム+塩酸
、リン酸三ナトリウム+塩酸、リン酸二水素カリウム+硫酸、リン酸二水素ナト
リウム+硫酸、リン酸二水素カリウム+水酸化カリウム、リン酸二水素ナトリウ
ム+水酸化ナトリウム、リン酸+リン酸水素二カリウム、リン酸+リン酸水素二
ナトリウム、リン酸+リン酸二水素カリウム、リン酸+リン酸二水素ナトリウム
、炭酸カリウム+硫酸、炭酸カリウム+塩酸、炭酸ナトリウム+硫酸、炭酸ナト
リウム+塩酸、炭酸水素カリウム+硫酸、炭酸水素カリウム+塩酸、炭酸水素ナ
トリウム+硫酸、炭酸水素ナトリウム+塩酸等の組合せを、pHが中性となる混
合比で用いる。また、臭気ガス中に炭酸ガスを高濃度で含む場合には、循環水中
に、炭酸水素ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸ナトリウム、
水酸化カリウム、水酸化ナトリウム等のアルカリ剤を添加して、臭気ガス中の炭
酸ガスを吸収させれば良い。
Examples of the pH buffer solution used in the present invention include a phosphate buffer solution and a carbonate buffer solution.
Those that do not affect biological nitrification and denitrification are good. As a combination of pH buffering agents in this case, those in which the pH of the buffer solution itself is neutral are good. For example, potassium dihydrogen phosphate + dipotassium hydrogen phosphate, sodium dihydrogen phosphate + disodium hydrogen phosphate , Tripotassium phosphate + phosphate, trisodium phosphate + phosphate,
Tripotassium phosphate + sulfuric acid, trisodium phosphate + sulfuric acid, tripotassium phosphate + hydrochloric acid, trisodium phosphate + hydrochloric acid, potassium dihydrogen phosphate + sulfuric acid, sodium dihydrogen phosphate + sulfuric acid, potassium dihydrogen phosphate + Potassium hydroxide, sodium dihydrogen phosphate + sodium hydroxide, phosphoric acid + dipotassium hydrogen phosphate, phosphoric acid + disodium hydrogen phosphate, phosphoric acid + potassium dihydrogen phosphate, phosphoric acid + sodium dihydrogen phosphate, Combinations of potassium carbonate + sulfuric acid, potassium carbonate + hydrochloric acid, sodium carbonate + sulfuric acid, sodium carbonate + hydrochloric acid, potassium hydrogen carbonate + sulfuric acid, potassium hydrogen carbonate + hydrochloric acid, sodium hydrogen carbonate + sulfuric acid, sodium hydrogen carbonate + hydrochloric acid, etc. Use at a neutral mixing ratio. If the odor gas contains carbon dioxide at a high concentration, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium carbonate, sodium carbonate,
An alkaline agent such as potassium hydroxide or sodium hydroxide may be added to absorb the carbon dioxide gas in the odor gas.

本発明の方法において、臭気ガスが導入される硝化工程の形態は、曝気水槽等
を用いたガス分散方式でもよいが、臭気中のアンモニアは水に極めて吸収されや
すいため、充填塔、スプレー塔、ベンチュリースクラバー、サイクロンスクラバ
ー等の液分散方式でも良い。
また、脱窒素工程は、無酸素状態に維持する必要があるため、反応相を水没式
にする必要があるが、その形態は、活性汚泥方式、流動床方式、固定床方式のい
ずれでも良い。また、硝化工程が、液分散型方式の場合は、循環水槽を脱窒素槽
と兼用しても良い。脱窒素反応速度を高めたい場合は、適宜、水素供与体を脱窒
素工程に供給すれば良い。水素供与体は、使用水量及び排水量削減の観点から、
分解生成物が循環水中に残留しないものを用いるのが好ましい。このような水素
供与体の例としては、メタノール、エタノール、酢酸、アセトン、グルコース等
の有機化合物や水素ガス等が挙げられる。
In the method of the present invention, the form of the nitrification step into which the odor gas is introduced may be a gas dispersion method using an aeration water tank or the like, but ammonia in the odor is very easily absorbed by water, so a packed tower, a spray tower, A liquid dispersion method such as a venturi scrubber or a cyclonic scrubber may be used.
Moreover, since it is necessary to maintain an oxygen-free state in a denitrification process, it is necessary to make a reaction phase into a submerged type, but the form may be any of an activated sludge system, a fluidized bed system, and a fixed bed system. Further, when the nitrification step is a liquid dispersion type, the circulating water tank may be used also as the denitrification tank. In order to increase the denitrification reaction rate, a hydrogen donor may be appropriately supplied to the denitrification step. From the viewpoint of reducing the amount of water used and the amount of wastewater,
It is preferable to use a decomposition product that does not remain in the circulating water. Examples of such a hydrogen donor include organic compounds such as methanol, ethanol, acetic acid, acetone and glucose, hydrogen gas, and the like.

以下に、本発明を図面を参照して詳細に説明する。
図1は本発明の脱臭方法に用いる装置の一例を示す概略構成図である。
硝化工程である硝化・脱臭塔3は、微生物を担持させるための充填材を充填し
た充填層7と、充填層7に散水するための散水部6と、散水するための散水ポン
プ8と、循環水を貯留するための循環水槽5を備える。また、脱窒素工程の脱窒
素槽4は、微生物を担持させるための充填材を充填した充填層10と脱窒素処理
液を硝化工程に返送する処理液循環ポンプ9を備える。なお、脱窒素工程に供給
される硝化液には、水素供与体貯留槽12より水素供与体を水素供与体供給ポン
プ13で供給する。
循環水槽5に微生物を含む活性汚泥等の種汚泥を添加し、循環水ポンプ8で散
水部6から充填層7に対して循環散水すると共に、処理液循環ポンプ9で充填層
10に種汚泥を供給する。同時にアンモニアを含む臭気ガス1を硝化・脱臭塔3
に導入し、アンモニアを除去するための脱臭を行う。なお、循環水には、アンモ
ニア及び硝酸性窒素が蓄積しても、pHを6.0〜7.5に維持できるように、
循環水にpH緩衝剤を添加しておく。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used in the deodorization method of the present invention.
The nitrification / deodorization tower 3, which is a nitrification process, includes a packed bed 7 filled with a filler for supporting microorganisms, a sprinkling unit 6 for sprinkling water into the packed bed 7, a sprinkling pump 8 for sprinkling water, and circulation. A circulating water tank 5 for storing water is provided. The denitrification tank 4 in the denitrification process includes a packed bed 10 filled with a filler for supporting microorganisms and a treatment liquid circulation pump 9 that returns the denitrification treatment liquid to the nitrification process. Note that a hydrogen donor is supplied from the hydrogen donor reservoir 12 by the hydrogen donor supply pump 13 to the nitrification liquid supplied to the denitrification step.
Seed sludge such as activated sludge containing microorganisms is added to the circulating water tank 5, and the circulating water pump 8 circulates water from the sprinkling unit 6 to the packed bed 7, and the treated liquid circulating pump 9 applies seed sludge to the packed bed 10. Supply. At the same time, odor gas 1 containing ammonia is nitrified and deodorized tower 3
And deodorized to remove ammonia. In addition, even if ammonia and nitrate nitrogen accumulate in circulating water, so that pH can be maintained at 6.0-7.5,
A pH buffer is added to the circulating water.

図2は本発明の脱臭方法に用いる装置の他の例を示す概略構成図である。
硝化工程である硝化・脱臭塔3は、微生物を担持させるための充填材を充填し
た充填層7と、充填層7に散水するための散水部6と、散水するための散水ポン
プ8と、循環水を貯留するための循環水槽5を備える。また、脱窒素工程の脱窒
素槽4は、微生物を担持させるための充填材を充填した充填層10と、脱窒素処
理液を硝化工程に返送するための処理液循環ポンプ9を備える。なお、脱窒素工
程に供給される硝化液には、水素供与体貯留槽12より水素供与体を水素供与体
供給ポンプ13で供給する。
循環水槽5に微生物を含む活性汚泥等の種汚泥を添加し、循環水ポンプ8で散
水部6から充填層7に対して循環散水すると共に、処理液循環ポンプ9で充填層
10に種汚泥を供給する。同時にアンモニアを含む臭気ガス1を硝化脱臭塔3に
導入し、アンモニアを除去するための脱臭を行う。なお、循環水のpHは、循環
水槽に設置されたpH計16からの信号17をもとに、pH緩衝剤14をpH緩
衝剤供給ポンプ15でpH制御注入する。
FIG. 2 is a schematic configuration diagram showing another example of an apparatus used in the deodorization method of the present invention.
The nitrification / deodorization tower 3, which is a nitrification process, includes a packed bed 7 filled with a filler for supporting microorganisms, a sprinkling unit 6 for sprinkling water into the packed bed 7, a sprinkling pump 8 for sprinkling water, and circulation. A circulating water tank 5 for storing water is provided. The denitrification tank 4 in the denitrification step includes a packed bed 10 filled with a filler for supporting microorganisms, and a treatment liquid circulation pump 9 for returning the denitrification treatment liquid to the nitrification step. Note that a hydrogen donor is supplied from the hydrogen donor reservoir 12 by the hydrogen donor supply pump 13 to the nitrification liquid supplied to the denitrification step.
Seed sludge such as activated sludge containing microorganisms is added to the circulating water tank 5, and the circulating water pump 8 circulates water from the sprinkling unit 6 to the packed bed 7, and the treated liquid circulating pump 9 applies seed sludge to the packed bed 10. Supply. At the same time, the odor gas 1 containing ammonia is introduced into the nitrification deodorization tower 3 to perform deodorization for removing ammonia. In addition, the pH of circulating water is pH-controlled injection of the pH buffering agent 14 with the pH buffering agent supply pump 15 based on the signal 17 from the pH meter 16 installed in the circulating water tank.

以下、本発明を実施例により具体的に説明するが、本発明はこの実施例こ限定
されない。
実施例1
図1に示す構造の装置を用いた。
堆肥化施設から発生するアンモニア含有臭気ガスを対象とした。なお、臭気ガ
ス中のアンモニア濃度は、堆肥化の状態及び堆肥の耕転工程等に影響を受けて激
しく変動する。
実験条件は次のとおりである。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Example 1
An apparatus having the structure shown in FIG. 1 was used.
Ammonia-containing odorous gas generated from composting facilities was targeted. In addition, the ammonia concentration in odor gas fluctuates violently by being affected by composting conditions, composting process and the like.
The experimental conditions are as follows.

臭気ガス中のアンモニア濃度 :5〜500ppm
臭気ガス温度 :30〜40℃
処理風量 :40m3/min
硝化工程の空塔速度 :200h-1
硝化工程の散水量(単位処理ガス量あたりの散水量):3リットル/m3
硝化工程の循環水槽容量 :10m3
補給水量 :50リットル/日
硝化・脱窒素循環水量 :2リットル/分
脱窒素槽の充填層容量 :10m3
水素供与体の種類 :メタノール
循環水の種類 :リン酸塩緩衝溶液
Ammonia concentration in odor gas: 5 to 500 ppm
Odor gas temperature: 30-40 ° C
Processed air volume: 40 m 3 / min
Superficial velocity of nitrification process: 200h -1
Sprinkling amount in the nitrification process (sprinkling amount per unit processing gas amount): 3 liters / m 3
Circulating water tank capacity for nitrification process: 10m 3
Replenishment water volume: 50 liters / day Nitrification / denitrogenation circulation water volume: 2 liters / minute Denitrification tank packed bed capacity: 10 m 3
Type of hydrogen donor: Methanol Type of circulating water: Phosphate buffer solution

循環水をpH緩衝溶液とするための薬剤の注入方法 :定量注入
循環水槽に濃度約1.2g/Lの硝化槽汚泥1m3を投入後、循環水を連続的
に散水しながら、臭気ガスを連続的に通気した。通気開始直後からアンモニア除
去率は90%以上であり、以後安定した除去率を示した。なお、1日あたりのp
H緩衝剤添加量は、リン酸二水素カリウム0.68kg、リン酸水素二カリウム
0.88kgであった。運転開始から約1か月経過時までのアンモニア除去性能
を表1に示す。
Method of injecting chemicals to make circulating water into pH buffer solution: Fixed injection After charging 1m 3 of nitrification tank sludge with a concentration of about 1.2g / L into the circulating water tank, the odorous gas is sprinkled while continuously circulating the circulating water. Aerated continuously. Immediately after the start of aeration, the ammonia removal rate was 90% or more, and showed a stable removal rate thereafter. In addition, p per day
The amount of H buffer added was 0.68 kg of potassium dihydrogen phosphate and 0.88 kg of dipotassium hydrogen phosphate. Table 1 shows the ammonia removal performance from the start of operation to about 1 month.

実施例2
図2に示す構造の実験装置を用いた。運転条件は、pH緩衝剤の供給方法を循
環水に定量注入するのではなく、循環水pHが6.0〜7.5となるようにpH
制御注入したこと以外は実施例1と同じである。
循環水槽に濃度約1.2g/Lの硝化槽汚泥1m3を投入後、循環水を連続的
に散水しながら、臭気ガスを連続的に通気した。通気開始直後からアンモニア除
去率は90%以上であり、以後安定した除去率を示した。なお、1日あたりのp
H緩衝剤添加量は、リン酸二水素カリウム0.27kg、リン酸水素二カリウム
0.35kgであった。運転開始から約1か月経過時までのアンモニア除去性能
を表1に示す。
Example 2
An experimental apparatus having the structure shown in FIG. 2 was used. The operating conditions are not to inject the pH buffering agent into the circulating water, but to adjust the pH of the circulating water to 6.0 to 7.5.
Example 1 is the same as Example 1 except that control injection is performed.
After adding 1 m 3 of nitrification tank sludge having a concentration of about 1.2 g / L to the circulating water tank, the odor gas was continuously vented while continuously circulating the circulating water. Immediately after the start of aeration, the ammonia removal rate was 90% or more, and showed a stable removal rate thereafter. In addition, p per day
The amount of H buffer added was 0.27 kg of potassium dihydrogen phosphate and 0.35 kg of dipotassium hydrogen phosphate. Table 1 shows the ammonia removal performance from the start of operation to about 1 month.

比較例1
実施例1と同じ構造の装置を用いた。運転条件は、循環水にpH緩衝剤を注入
しなかったこと以外は実施例1と同じである。
循環水槽に濃度約1.2g/Lの硝化槽汚泥1m3を投入後、循環水を連続的
に散水しながら、臭気ガスを連続的に通気した。通気開始直後はアンモニア除去
率は90%以上であったものの、アンモニアの負荷変動により循環水pHが変動
し、アンモニア除去性能は不安定であった。運転開始から約1か月経過時までの
アンモニア除去性能を表1に示す。
Comparative Example 1
An apparatus having the same structure as in Example 1 was used. The operating conditions are the same as in Example 1 except that no pH buffer was injected into the circulating water.
After adding 1 m 3 of nitrification tank sludge having a concentration of about 1.2 g / L to the circulating water tank, the odor gas was continuously vented while continuously circulating the circulating water. Immediately after the start of aeration, the ammonia removal rate was 90% or more, but the circulating water pH fluctuated due to fluctuations in the ammonia load, and the ammonia removal performance was unstable. Table 1 shows the ammonia removal performance from the start of operation to about 1 month.

比較例2
実施例2と同じ構造の装置を用いた。運転条件は、循環水pHの制御を、pH
緩衝剤ではなく、硫酸及び水酸化ナトリウム水溶液といった中和剤を注入して行
ったこと以外は実施例2と同じである。
循環水槽に濃度約1.2g/Lの硝化槽汚泥1m3を投入後、循環水を連続的
に散水しながら、臭気ガスを連続的に通気した。通気開始直後はアンモニア除去
率は90%以上であったものの、循環水中の塩濃度が徐々に上昇し、硝化性能が
低下した。さらに、硝化工程の充填層にスケールが発生してガスの偏流が生じ、
臭気中のアンモニア吸収除去性能も低下した。運転開始から約1か月経過時まで
のアンモニア除去性能を表1に示す。
Comparative Example 2
An apparatus having the same structure as in Example 2 was used. Operating conditions include control of circulating water pH, pH
Example 2 is the same as Example 2 except that a neutralizing agent such as sulfuric acid and an aqueous sodium hydroxide solution was injected instead of a buffering agent.
After adding 1 m 3 of nitrification tank sludge having a concentration of about 1.2 g / L to the circulating water tank, the odor gas was continuously vented while continuously circulating the circulating water. Immediately after the start of aeration, the ammonia removal rate was 90% or more, but the salt concentration in the circulating water gradually increased and the nitrification performance decreased. Furthermore, a scale is generated in the packed bed in the nitrification process, resulting in gas drift,
The ability to absorb and remove ammonia in odors also declined. Table 1 shows the ammonia removal performance from the start of operation to about 1 month.

実施例3
pH緩衝溶液として、炭酸水素ナトリウム及び硫酸を用いた以外は実施例2と
同様に行った。
運転開始から約1か月経過時までのアンモニア除去性能を表1に示す。
Example 3
The same procedure as in Example 2 was performed except that sodium bicarbonate and sulfuric acid were used as the pH buffer solution.
Table 1 shows the ammonia removal performance from the start of operation to about 1 month.

Figure 2005177758
Figure 2005177758

本発明の脱臭方法に用いる装置の一例を示す概略構成図。The schematic block diagram which shows an example of the apparatus used for the deodorizing method of this invention. 本発明の脱臭方法に用いる装置の他の例を示す概略構成図。The schematic block diagram which shows the other example of the apparatus used for the deodorizing method of this invention.

符号の説明Explanation of symbols

1:臭気ガス、2:処理ガス、3:硝化・脱臭塔、4:脱窒素槽、5:循環水槽
、6:散水部、7:充填層、8:散水ポンプ、9:処理液循環ポンプ、10:充
填層、11:排水、12:水素供与体貯留槽、13:水素供与体供給ポンプ、1
4:pH緩衝剤貯留槽、15:pH緩衝剤供給ポンプ、16:pH計、17:制
御信号
1: Odor gas, 2: Treatment gas, 3: Nitrification / deodorization tower, 4: Denitrification tank, 5: Circulating water tank, 6: Sprinkling part, 7: Packing bed, 8: Sprinkling pump, 9: Treating liquid circulation pump, 10: packed bed, 11: drainage, 12: hydrogen donor reservoir, 13: hydrogen donor supply pump, 1
4: pH buffer storage tank, 15: pH buffer supply pump, 16: pH meter, 17: Control signal

Claims (5)

アンモニア含有臭気ガスを、硝化工程で循環水と接触させて含有するアンモニアを吸収し、硝化菌によって生物学的に硝化処理すると共に、該硝化液を脱窒素工程に導き、該脱窒素処理液を再び硝化工程に循環水として返送する循環式硝化脱窒素方式の生物脱臭法において、該循環水にpH緩衝溶液を用いることを特徴とする脱臭方法。   Ammonia-containing odorous gas is brought into contact with circulating water in the nitrification process to absorb the ammonia contained therein, and biologically nitrified by nitrifying bacteria, and the nitrification liquid is guided to the denitrification process. A deodorizing method characterized by using a pH buffer solution for circulating water in a biological deodorization method of circulating nitrification and denitrification, which is returned to the nitrification step as circulating water. 前記pH緩衝溶液が、リン酸塩緩衝溶液であることを特徴とする請求項1記載の脱臭方法。   The deodorizing method according to claim 1, wherein the pH buffer solution is a phosphate buffer solution. 前記pH緩衝溶液が、炭酸塩緩衝溶液であることを特徴とする請求項1記載の脱臭方法。   The deodorizing method according to claim 1, wherein the pH buffer solution is a carbonate buffer solution. 前記pH緩衝溶液は、薬剤を供給して、循環水のpHが6.0〜7.5の範囲となるようにpH制御することを特徴とする請求項1、2又は3記載の脱臭方法。   The deodorizing method according to claim 1, 2 or 3, wherein the pH buffer solution is supplied with a chemical to control the pH of the circulating water to be in the range of 6.0 to 7.5. 内部に、アンモニア含有臭気ガスを通す硝化菌を担持させた充填層と、該充填層に循環水を散水する散水装置と、循環水を貯留する循環水槽とを有する硝化脱臭塔と、該硝化脱臭塔からの硝化液を脱窒素処理する脱窒素槽と、該脱窒素槽と前記硝化脱臭塔とを循環水が循環する経路とを有する生物脱臭装置において、前記循環水にpH緩衝溶液を用いることを特徴とする脱臭装置。   A nitrification deodorization tower having a packed bed carrying nitrifying bacteria that pass ammonia-containing odor gas inside, a sprinkling device for sprinkling circulating water in the packed bed, a circulating water tank for storing the circulating water, and the nitrification deodorization In a biological deodorization apparatus having a denitrification tank for denitrating nitrification liquid from a tower and a path for circulating water to circulate between the denitrification tank and the nitrification deodorization tower, a pH buffer solution is used for the circulating water. Deodorizing device characterized by.
JP2005041555A 2005-02-18 2005-02-18 Biological deodorization method of odorant gas containing ammonia and apparatus Pending JP2005177758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041555A JP2005177758A (en) 2005-02-18 2005-02-18 Biological deodorization method of odorant gas containing ammonia and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041555A JP2005177758A (en) 2005-02-18 2005-02-18 Biological deodorization method of odorant gas containing ammonia and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000351305A Division JP4021142B2 (en) 2000-11-17 2000-11-17 Biological deodorization method and apparatus for ammonia-containing odor gas

Publications (1)

Publication Number Publication Date
JP2005177758A true JP2005177758A (en) 2005-07-07

Family

ID=34792798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041555A Pending JP2005177758A (en) 2005-02-18 2005-02-18 Biological deodorization method of odorant gas containing ammonia and apparatus

Country Status (1)

Country Link
JP (1) JP2005177758A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248018A (en) * 2008-04-08 2009-10-29 Tosetsu:Kk Wet detoxification method and its apparatus
WO2011019854A2 (en) * 2009-08-11 2011-02-17 Kinder Morgan Operating L.P."C" A bio-denitrification apparatus and method for making and using same
JP2012148217A (en) * 2011-01-17 2012-08-09 Toshiba Corp Biological treatment method of wastewater, and wastewater treatment apparatus
KR101780126B1 (en) 2015-12-23 2017-09-20 에이티이 주식회사 Media for removing odor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248018A (en) * 2008-04-08 2009-10-29 Tosetsu:Kk Wet detoxification method and its apparatus
WO2011019854A2 (en) * 2009-08-11 2011-02-17 Kinder Morgan Operating L.P."C" A bio-denitrification apparatus and method for making and using same
WO2011019854A3 (en) * 2009-08-11 2011-06-16 Kinder Morgan Operating L.P."C" A bio-denitrification apparatus and method for making and using same
JP2012148217A (en) * 2011-01-17 2012-08-09 Toshiba Corp Biological treatment method of wastewater, and wastewater treatment apparatus
KR101780126B1 (en) 2015-12-23 2017-09-20 에이티이 주식회사 Media for removing odor

Similar Documents

Publication Publication Date Title
JP5197223B2 (en) Water treatment system
JP2006122771A (en) Fluid treatment method and fluid treatment system
JP2005177758A (en) Biological deodorization method of odorant gas containing ammonia and apparatus
JP4021142B2 (en) Biological deodorization method and apparatus for ammonia-containing odor gas
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
US20220323901A1 (en) Nitrogen recovery method, nitrogen recovery device, and product obtained by same
KR20010067159A (en) Process and apparatus for treating exhaust gases containing nitrides
JP2005161258A (en) Nitrite-formation method for high concentration ammonia-containing gas and device therefor
JP5008249B2 (en) Deodorization method and apparatus
JP6161472B2 (en) Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method
JP2010022978A (en) Method for purifying contaminated soil or ground water
JP3985886B2 (en) Method and apparatus for treating exhaust gas containing nitrogen compounds
JP2001232142A (en) Biological deodorizing method
JP4614062B2 (en) Method and apparatus for treating ammonia in air
JP3518857B2 (en) Simple method for deodorizing organic sludge concentrated exhaust gas
JP2005161257A (en) Treatment method for ammonia-containing gas and device
JP2010274160A (en) Deodorization apparatus
JPH06285331A (en) Wet denitrification method for no containing gas of low concentration
JP2000233114A (en) Biological deodorization apparatus, biological deodorization method, and culture method of biological deodorization apparatus
JP2000210074A (en) Acclimation of degrading microorganism, obtaining of acclimated microorganism and degradation of organic compound
JP2005125146A (en) Deodorizing method and deodorizing liquid
JP4660298B2 (en) Deodorizing apparatus and deodorizing method
JP3815439B2 (en) Deodorizing device and deodorizing method
JP3008968B2 (en) Operation method of packed biological deodorization tower
JP2005022928A (en) Compost manufacturing unit and manufacturing method of compost