JP2006122771A - Fluid treatment method and fluid treatment system - Google Patents

Fluid treatment method and fluid treatment system Download PDF

Info

Publication number
JP2006122771A
JP2006122771A JP2004311843A JP2004311843A JP2006122771A JP 2006122771 A JP2006122771 A JP 2006122771A JP 2004311843 A JP2004311843 A JP 2004311843A JP 2004311843 A JP2004311843 A JP 2004311843A JP 2006122771 A JP2006122771 A JP 2006122771A
Authority
JP
Japan
Prior art keywords
fluid
nitrogen
anaerobic
aerobic
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004311843A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
隆司 山口
Shinya Maki
慎也 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuden Kankyo Technos Co Ltd
Original Assignee
Chuden Kankyo Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuden Kankyo Technos Co Ltd filed Critical Chuden Kankyo Technos Co Ltd
Priority to JP2004311843A priority Critical patent/JP2006122771A/en
Publication of JP2006122771A publication Critical patent/JP2006122771A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid treatment method and a fluid treatment system which enable the removal of nitrogen from a nitrogen compound-containing fluid in a shorter time and at a lower cost than before. <P>SOLUTION: The fluid treatment method comprises a process where desulfurized wastewater containing ammonia nitrogen (NH<SB>3</SB>-N) is supplied to a microorganism holding carrier (2) made of sponge holding nitrifying bacteria, and the ammonia nitrogen (NH<SB>3</SB>-N) contained in the desulfurized wastewater is nitrified by the action of the nitrifying bacteria, and a process where the desulfurized wastewater containing nitrite nitrogen (NO<SB>2</SB>-N) or nitrate nitrogen (NO<SB>3</SB>-N) generated by the nitrification of the ammonia nitrogen (NH<SB>3</SB>-N), and elemental sulfur (S<SP>0</SP>) are supplied to an upflow anaerobic sludge bed (7) holding sulfur oxidizing denitrifying bacteria consuming the elemental sulfur (S<SP>0</SP>), and the nitrite nitrogen (NO<SB>2</SB>-N) or nitrate nitrogen (NO<SB>3</SB>-N) in the desulfurized wastewater is decomposed by the action of the sulfur oxidizing denitrifying bacteria to generate nitrogen gas (N<SB>2</SB>). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体を再利用又は放流等するために処理する方法及びシステムに関する。   The present invention relates to a method and system for processing a fluid for reuse, discharge or the like.

火力発電所その他の各種プラントでは、純水を生成するためのイオン交換樹脂をpH調整する際にアンモニア水を用いるため、高濃度(例えば、数千ppm)のアンモニア態窒素(NH−N)含有排水が出る。アンモニア態窒素は、アンモニウム塩を、これに含まれる窒素で表したもの、即ちアンモニアの形態をした窒素のことである。また、火力発電所の排煙脱硫装置から出る脱硫排水には、脱硝工程で用いた還元剤としてのアンモニア態窒素が脱硫装置へリークするため、低濃度(例えば、50ppm以下)のアンモニア態窒素が含まれている。これらのアンモニア態窒素含有排水は、再利用又は放流などの目的で日々大量に処理される。 In thermal power plants and other various plants, ammonia water is used to adjust the pH of an ion exchange resin for producing pure water, so ammonia nitrogen (NH 3 -N) with a high concentration (for example, several thousand ppm) is used. Contains wastewater. Ammonia nitrogen is an ammonium salt represented by nitrogen contained therein, that is, nitrogen in the form of ammonia. In addition, in the desulfurization effluent discharged from the flue gas desulfurization unit of the thermal power plant, ammonia nitrogen as a reducing agent used in the denitration process leaks to the desulfurization unit, so low concentration (for example, 50 ppm or less) of ammonia nitrogen is present. include. These ammonia-nitrogen-containing wastewater is treated in large quantities every day for the purpose of reuse or release.

しかし、こうした排水処理においては、国等の排水規制の下、処理後の排水に含まれる各種成分の濃度や排出量が厳しく制限されている。特に、アンモニア態窒素などの窒素化合物については、窒素が、富栄養化の原因物質として排水規制の対象となること、好気的環境下において酸化されて有害な亜硝酸態窒素(NO−N)又は硝酸態窒素(NO−N)を生ずること、及び好気的環境下で酸素を消費して排水規制の対象である化学的酸素要求量(COD)の増大の原因となること等の理由から、放流前に除去しなければならない。亜硝酸態窒素(NO−N)又は硝酸態窒素(NO−N)は、アンモニア態窒素(NH−N)と同様に、亜硝酸又は硝酸の形態をした窒素のことである。また、亜硝酸態窒素は、気体としての亜硝酸(HNO)と、水溶液中で存在しうる硝酸イオン(NO )を含み、硝酸態窒素も、硝酸(HNO)と硝酸イオン(NO 2−)を含む。 However, in such wastewater treatment, the concentration and discharge amount of various components contained in the treated wastewater are severely restricted under national wastewater regulations. In particular, for nitrogen compounds such as ammonia nitrogen, nitrogen is subject to wastewater regulation as a causative substance of eutrophication, and nitrite nitrogen (NO 2 -N) that is oxidized and harmful in an aerobic environment. ) Or nitrate nitrogen (NO 3 -N), and the consumption of oxygen in an aerobic environment may cause an increase in chemical oxygen demand (COD), which is the subject of wastewater regulations. For reasons, it must be removed before discharge. Nitrite nitrogen (NO 2 —N) or nitrate nitrogen (NO 3 —N) is nitrogen in the form of nitrous acid or nitric acid, as is ammonia nitrogen (NH 3 —N). Nitrite nitrogen includes nitrous acid (HNO 2 ) as a gas and nitrate ions (NO 2 ) that may exist in an aqueous solution, and nitrate nitrogen also includes nitric acid (HNO 3 ) and nitrate ions (NO 3 2- ).

アンモニア態窒素含有排水の処理方法としては、物理化学的処理方法又は生物化学的処理方法が用いられる。   A physicochemical treatment method or a biochemical treatment method is used as a treatment method of the ammonia nitrogen-containing waste water.

物理化学的処理方法としては、アルカリ性の水溶液等を使用して排水のpHを12程度に上げた後、排水を空気又は酸素で曝気し、ガス化させたアンモニア態窒素を除去するアンモニア・ストリッピング法が知られている。この処理方法は、主に高濃度のアンモニア態窒素含有排水に適用される。しかしながら、この処理方法には、
(1)放流可能な濃度にまでアンモニア態窒素を処理することが困難である、
(2)曝気のための設備と電力に大きなコストが掛かる、
(3)排水を中和するために添加する薬剤に大きなコストが掛かる
といった問題がある。従って、今後、排水規制の強化が予想されることを踏まえると、火力発電所その他の各種プラントにおけるアンモニア態窒素含有排水処理への早急な対策が必要である。
As the physicochemical treatment method, the pH of the waste water is raised to about 12 using an alkaline aqueous solution or the like, and then the waste water is aerated with air or oxygen to remove the gasified ammonia nitrogen. The law is known. This treatment method is mainly applied to wastewater containing ammonia nitrogen having a high concentration. However, this processing method includes
(1) It is difficult to treat ammonia nitrogen to a concentration that can be released;
(2) Large cost for aeration equipment and power,
(3) There is a problem that the chemical added to neutralize the wastewater is expensive. Therefore, in light of the fact that effluent regulations are expected to be strengthened in the future, it is necessary to take immediate measures for the treatment of wastewater containing ammonia nitrogen in thermal power plants and other various plants.

また、生物化学的処理方法としては、排水を好気性処理槽と嫌気性処理槽の順に流して生物学的処理を行う好気嫌気順送生物法が広く用いられており、アンモニア態窒素を分解して窒素ガス(N)を生じさせる、いわゆる脱窒を行うことができる。 In addition, as a biochemical treatment method, an aerobic anaerobic progressive biological method in which wastewater flows through an aerobic treatment tank and an anaerobic treatment tank in order and performs biological treatment is widely used. Thus, so-called denitrification that generates nitrogen gas (N 2 ) can be performed.

従来の好気性処理としては、導入される排水を曝気して好気性微生物(例えば、硝化細菌)による活性汚泥を生成させ、これを沈殿させる活性汚泥法が知られている。この方法では、排水中のアンモニア態窒素は、硝化細菌の働きによって酸化されて亜硝酸態窒素(NO−N)を生じ、更に酸化されて硝酸態窒素(NO−N)を生ずる。従って、排水中には、亜硝酸態窒素と硝酸態窒素の一方又は両方が、硝化による生成物として含まれることになる。 As a conventional aerobic treatment, an activated sludge method is known in which the introduced waste water is aerated to generate activated sludge by aerobic microorganisms (for example, nitrifying bacteria) and precipitate this. In this method, ammonia nitrogen in waste water is oxidized by the action of nitrifying bacteria to produce nitrite nitrogen (NO 2 -N), and further oxidized to produce nitrate nitrogen (NO 3 -N). Accordingly, in the waste water, one or both of nitrite nitrogen and nitrate nitrogen are contained as a product of nitrification.

また、後段の嫌気性処理としては、前段の好気性処理(硝化)による生成物を、嫌気条件下において嫌気性微生物の働きにより窒素ガスに還元する方法がある。しかしながら、脱硫排水など、有機物を殆ど含んでいない流体を処理する場合には、嫌気性処理槽では、脱窒反応における電子供与体として有機物(例えば、メタノール[CHOH]など)を添加する必要がある。 Further, as the latter-stage anaerobic treatment, there is a method in which the product of the first-stage aerobic treatment (nitrification) is reduced to nitrogen gas by the action of anaerobic microorganisms under anaerobic conditions. However, when processing a fluid containing almost no organic matter such as desulfurization effluent, it is necessary to add organic matter (for example, methanol [CH 3 OH], etc.) as an electron donor in the denitrification reaction in an anaerobic treatment tank. There is.

上記好気嫌気順送生物法は、低濃度のアンモニア態窒素含有排水に適用され、生物学的処理された排水は、再利用又は放流等の目的に応じた排水規制に従って、高度処理が適宜施される。   The aerobic and anaerobic progressive biological method is applied to low-concentration ammonia nitrogen-containing wastewater, and biologically treated wastewater is appropriately subjected to advanced treatment according to wastewater regulations according to the purpose of reuse or release. Is done.

しかしながら、前段の好気性処理には、
(1)硝化反応速度が遅く、特に低温時には硝化が起きないため、排水を貯留するための大規模なタンクが必要である、
(2)硝化反応が起きない場合、後段の嫌気性処理にて脱窒を行うことができなくなる、
(3)曝気のための設備とこれの消費電力に大きなコストが掛かる
といった問題があり、後段の嫌気性処理にも、添加する有機物量が多いことから、非常に大きなコストが掛かるという問題がある。
However, for the aerobic treatment in the previous stage,
(1) The nitrification reaction rate is slow, and nitrification does not occur especially at low temperatures, so a large tank for storing wastewater is required.
(2) When nitrification reaction does not occur, denitrification cannot be carried out by anaerobic treatment at the later stage.
(3) There is a problem that a large cost is required for the equipment for aeration and the power consumption thereof, and there is a problem that a large amount of organic matter is added to the anaerobic treatment in the subsequent stage, so that a very large cost is required. .

下記特許文献1には、地下水等の原水中の硝酸態窒素を安定させながら効率よく除去処理することができる嫌気性処理手段としての脱窒処理装置及び脱窒処理方法が記載されている。   Patent Document 1 below describes a denitrification treatment apparatus and a denitrification treatment method as anaerobic treatment means that can efficiently remove nitrate nitrogen in raw water such as groundwater while stabilizing it.

特開2004−154700号公報JP 2004-154700 A

しかしながら、火力発電所その他の各種プラントから出る排水から脱窒を行うためには、これらの排水が亜硝酸態窒素(NO−N)や硝酸態窒素(NO−N)等を含んでいない場合、前段処理として原水中の窒素化合物(アンモニア態窒素など)を硝酸態窒素(NO−N)等に分解する硝化工程を行う必要がある。従って、上記文献の脱窒処理装置及び脱窒処理方法を適用しても、前段の硝化工程における処理速度が遅ければ、全体として脱窒に長時間を要することとなる。 However, in order to perform denitrification from wastewater from thermal power plants and other various plants, these wastewaters do not contain nitrite nitrogen (NO 2 -N), nitrate nitrogen (NO 3 -N), etc. In this case, it is necessary to perform a nitrification step of decomposing nitrogen compounds (such as ammonia nitrogen) in raw water into nitrate nitrogen (NO 3 -N) or the like as a pretreatment. Therefore, even if the denitrification treatment apparatus and the denitrification treatment method of the above-mentioned document are applied, if the treatment speed in the previous nitrification step is slow, denitrification takes a long time as a whole.

本発明は、以上の状況に鑑みてなされたものであり、窒素化合物を含む流体から従来より短時間且つ低コストで脱窒することができる流体処理方法及び流体処理システムを提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a fluid treatment method and a fluid treatment system that can denitrify a fluid containing a nitrogen compound in a shorter time and at a lower cost than conventional ones. To do.

本発明の流体処理方法は、窒素化合物を含む流体を、好気性微生物を保持する好気性処理手段に供給し、前記好気性微生物の働きにより該流体中の窒素化合物を硝化する工程と、前記窒素化合物の硝化による生成物を含む流体及び還元状態の硫黄成分を、該硫黄成分を消費する嫌気性微生物を保持する嫌気性処理手段へ供給し、前記嫌気性微生物の働きにより前記生成物を分解して窒素を生じさせる工程とから成り、前記好気性処理手段として、前記好気性微生物を保持する多孔性材料で作られた微生物保持担体を用いることを特徴とする。   The fluid treatment method of the present invention comprises supplying a fluid containing a nitrogen compound to an aerobic treatment means that retains aerobic microorganisms, and nitrifying the nitrogen compound in the fluid by the action of the aerobic microorganisms; Supplying the fluid containing the product from the nitrification of the compound and the reduced sulfur component to the anaerobic treatment means holding the anaerobic microorganism consuming the sulfur component, and decomposing the product by the action of the anaerobic microorganism And a step of generating nitrogen, and as the aerobic treatment means, a microorganism holding carrier made of a porous material holding the aerobic microorganisms is used.

上記方法の具体的態様では、前記生成物は、亜硝酸態窒素(NO−N)と硝酸態窒素(NO−N)の一方又は両方である。 In a specific embodiment of the above method, the product is one or both of nitrite nitrogen (NO 2 —N) and nitrate nitrogen (NO 3 —N).

更に具体的な態様では、前記流体に含まれる有機物の質量は、前記窒素化合物を構成する窒素の質量の2.85倍以下である。   In a more specific aspect, the mass of the organic substance contained in the fluid is 2.85 times or less of the mass of nitrogen constituting the nitrogen compound.

また、還元状態の硫黄成分としては、硫黄含有燃料の精製又は燃焼時の副産物を利用することができる。   Moreover, as a sulfur component in a reduced state, a by-product during purification or combustion of the sulfur-containing fuel can be used.

或いは、前記嫌気性処理手段としては、処理対象の流体を底部から供給して上昇させる上昇流嫌気性汚泥床を用いることができる。   Alternatively, as the anaerobic treatment means, an upflow anaerobic sludge bed that supplies and raises a fluid to be treated from the bottom can be used.

更に、発電所その他の各種プラントから出る窒素化合物含有排水を処理対象とすることができる。この場合、上記プラントで使用される復水脱塩装置若しくは純水生成装置に備えられたイオン交換樹脂のpH調整時に出る排水、又は電気集塵機から出る排水を脱窒処理することができる。   Furthermore, nitrogen compound-containing wastewater from power plants and other various plants can be treated. In this case, it is possible to denitrify wastewater that comes out when adjusting the pH of the ion-exchange resin provided in the condensate demineralizer or pure water generator used in the plant, or wastewater that comes out of the electric dust collector.

本発明の流体処理システムは、窒素化合物を含む流体が供給されたとき、該流体中の窒素化合物を硝化させる好気性微生物を保持する好気性処理手段と、前記窒素化合物の硝化による生成物を含む流体及び還元状態の硫黄成分が供給されたとき、該硫黄成分を消費するとともに前記生成物を分解して窒素を生じさせるように働く嫌気性微生物を保持する嫌気性処理手段と、前記生成物を含む流体及び前記硫黄成分を前記嫌気性処理手段に供給する手段とを備え、前記好気性処理手段は、前記好気性微生物を保持する多孔性材料で作られた微生物保持担体であることを特徴とする。   The fluid treatment system of the present invention includes an aerobic treatment means for retaining an aerobic microorganism that nitrifies a nitrogen compound in the fluid when a fluid containing the nitrogen compound is supplied, and a product obtained by nitrification of the nitrogen compound. Anaerobic treatment means for holding anaerobic microorganisms that consume the sulfur component and decompose the product to produce nitrogen when the fluid and reduced sulfur component are supplied; and And a means for supplying the sulfur component to the anaerobic treatment means, wherein the aerobic treatment means is a microorganism holding carrier made of a porous material for holding the aerobic microorganisms. To do.

上記システムの具体的態様では、前記生成物は、亜硝酸態窒素(NO−N)と硝酸態窒素(NO−N)の一方又は両方である。 In a specific embodiment of the above system, the product is one or both of nitrite nitrogen (NO 2 —N) and nitrate nitrogen (NO 3 —N).

更に具体的な態様では、前記流体に含まれる有機物の質量は、前記窒素化合物を構成する窒素の質量の2.85倍以下である。   In a more specific aspect, the mass of the organic substance contained in the fluid is 2.85 times or less of the mass of nitrogen constituting the nitrogen compound.

また、還元状態の硫黄成分としては、硫黄含有燃料の精製又は燃焼時の副産物を利用することができる。   Moreover, as a sulfur component in a reduced state, a by-product during purification or combustion of the sulfur-containing fuel can be used.

或いは、前記嫌気性処理手段は、処理対象の流体を底部から供給して上昇させる上昇流嫌気性汚泥床を用いることができる。   Alternatively, the anaerobic treatment means can use an upflow anaerobic sludge bed that feeds and raises the fluid to be treated from the bottom.

更に、発電所その他の各種プラントから出る窒素化合物含有排水を処理対象とすることができる。この場合、上記プラントで使用される復水脱塩装置若しくは純水生成装置に備えられたイオン交換樹脂のpH調整時に出る排水、又は電気集塵機から出る排水を脱窒修理することができる。   Furthermore, nitrogen compound-containing wastewater from power plants and other various plants can be treated. In this case, it is possible to denitrify and repair the waste water that comes out when adjusting the pH of the ion exchange resin provided in the condensate demineralizer or the pure water generator used in the plant or the waste water that comes out of the electric dust collector.

本発明によれば、多孔性材料で作られた微生物保持担体を好気性処理手段として用いることにより、微生物を高濃度(例えば、20,000〜40,000mg/L)で保持することができるため、前段の硝化工程の高速化を図ることができ、全体として短時間で脱窒処理を行うことができる。また、後段の脱窒工程では、還元状態の硫黄成分を消費する嫌気性微生物の働きにより脱窒を行うため、安価な硫黄成分を添加するだけで脱窒処理を行うことができる。   According to the present invention, a microorganism can be retained at a high concentration (for example, 20,000 to 40,000 mg / L) by using a microorganism-supporting carrier made of a porous material as an aerobic treatment means. The speed of the nitrification process in the previous stage can be increased, and the denitrification treatment can be performed in a short time as a whole. In the subsequent denitrification step, denitrification is performed by the action of anaerobic microorganisms that consume the reduced sulfur component, and therefore, the denitrification treatment can be performed simply by adding an inexpensive sulfur component.

前段処理の硝化による生成物は、亜硝酸態窒素(NO−N)と硝酸態窒素(NO−N)の一方又は両方であり、これにより、硝化工程では、亜硝酸態窒素を含む流体を処理対象の流体として硝酸態窒素を生成させてもよいし、後段の脱窒工程では、亜硝酸態窒素又は硝酸態窒素のいずれか一方を含む流体を供給して脱窒処理を行うことができる。 The product of nitrification in the pre-treatment is one or both of nitrite nitrogen (NO 2 -N) and nitrate nitrogen (NO 3 -N), so that in the nitrification step, a fluid containing nitrite nitrogen Nitrate nitrogen may be generated as a fluid to be treated, and in the subsequent denitrification step, a fluid containing either nitrite nitrogen or nitrate nitrogen may be supplied to perform denitrification treatment. it can.

また、一般に、脱窒反応を維持するためには、脱窒反応における電子供与体となる有機物の質量が窒素化合物を構成する窒素の質量の少なくとも2.85倍以上必要であるが、還元状態の硫黄成分が電子供与体となるため、処理対象流体中の有機物量が上記量より少なくても、還元状態の硫黄成分の質量が窒素の質量の約6.86倍以上存在すれば、更に有機物を添加することなく確実に脱窒することができる。   In general, in order to maintain the denitrification reaction, the mass of the organic substance serving as the electron donor in the denitrification reaction is required to be at least 2.85 times the mass of nitrogen constituting the nitrogen compound. Since the sulfur component becomes an electron donor, even if the amount of organic matter in the fluid to be treated is less than the above amount, if the mass of the reduced sulfur component is about 6.86 times the mass of nitrogen, further organic matter is added. Denitrification can be reliably carried out without addition.

更に、還元状態の硫黄成分として、硫黄含有燃料の精製又は燃焼時の副産物を利用することにより、一層低コストで脱窒を行うことができる。   Furthermore, denitrification can be performed at a lower cost by using a by-product during purification or combustion of sulfur-containing fuel as the sulfur component in the reduced state.

上記いずれの場合においても、嫌気性処理手段として上昇流嫌気性汚泥床を採用することにより、低温時においても安定した嫌気性処理が維持され、脱窒処理を確実に行うことができる。この上昇流嫌気性汚泥床では、自己固定化作用により還元状態の硫黄成分に付着して増殖する嫌気性微生物の生物膜(例えば、「グラニュール」と呼ばれるもの)を、処理対象の流体或いは生成ガス(例えば窒素ガス、メタンガスなど)で攪拌或いは混合することにより、微生物の働きが活性化されるとともに、微生物と流体との接触面積が大きくなるため、脱窒処理の高速化を図ることができる。   In any of the above cases, by employing an upflow anaerobic sludge bed as an anaerobic treatment means, a stable anaerobic treatment can be maintained even at low temperatures, and a denitrification treatment can be performed reliably. In this upflow anaerobic sludge bed, a biofilm of anaerobic microorganisms that grow by adhering to a reduced sulfur component by self-immobilization (for example, what is called “granule”) is produced as a fluid to be treated or generated. By stirring or mixing with gas (for example, nitrogen gas, methane gas, etc.), the action of microorganisms is activated and the contact area between the microorganisms and the fluid increases, so that the denitrification process can be accelerated. .

更に、発電所その他の各種プラントから出る窒素化合物含有排水を脱窒処理することができるため、各種プラントにおいて排水処理に掛かるコストを低減することができる。具体的には、復水脱塩装置若しくは純水生成装置に備えられたイオン交換樹脂をアンモニア水でpH調整する際に出るアンモニア態窒素含有排水、又は電気集塵機から排出されるアンモニア態窒素含有排水を脱窒処理することができる。更に詳細には、電気集塵機では、燃焼装置の排出ガスを通す煙道(管路など)内にアンモニア水を供給し、排出ガス中の硫化物と反応させて硫化アンモニウム[(NHSO]の結晶を生成させ、これを回収しているため、供給したアンモニア水が未反応ままアンモニア態窒素含有排水として流出したり、電気集塵機内をアンモニア水で洗浄する際にもアンモニア態窒素含有排水が出る。本発明の流体処理方法又はシステムでは、これらのアンモニア態窒素含有排水を脱窒処理することができる。 Furthermore, since the nitrogen compound containing waste water from a power plant and other various plants can be denitrified, the cost for waste water treatment in various plants can be reduced. Specifically, ammonia nitrogen-containing wastewater discharged when adjusting the pH of the ion exchange resin provided in the condensate demineralizer or pure water generator with ammonia water, or ammonia nitrogen-containing wastewater discharged from the electric dust collector Can be denitrified. More specifically, in an electrostatic precipitator, ammonium water is supplied into a flue (pipe, etc.) through which the exhaust gas of the combustion device passes, and reacted with sulfides in the exhaust gas to produce ammonium sulfide [(NH 4 ) 2 SO 4 ] crystals are produced and recovered, so that the supplied ammonia water flows out as unreacted ammonia nitrogen-containing wastewater, or even when the inside of the electrostatic precipitator is washed with ammonia water. Drainage comes out. In the fluid processing method or system of the present invention, these ammonia nitrogen-containing wastewater can be denitrified.

図1は、実施例の脱窒方法を実施するための脱窒システム1を示す。   FIG. 1 shows a denitrification system 1 for carrying out the denitrification method of the embodiment.

この脱窒システム1は、石炭火力発電所の脱硫装置から出るいわゆる脱硫排水から脱窒するためのシステムであり、具体的には、脱硫排水に含まれるアンモニア態窒素(NH−N)を前段の硝化工程と後段の脱窒工程とを通じて分解し、無害な窒素ガス(N)を生じさせる。 This denitrification system 1 is a system for denitrification from so-called desulfurization effluent discharged from a desulfurization device of a coal-fired power plant. Specifically, ammonia nitrogen (NH 3 -N) contained in the desulfurization effluent is pre-staged. This is decomposed through the nitrification step and the denitrification step in the subsequent stage to generate harmless nitrogen gas (N 2 ).

脱窒システム1は、上記脱窒処理を行うための具体的手段として、
多孔性材料(例えば、化成品のスポンジ)で作られ、硝化細菌を高濃度(例えば、20,000〜40,000mg/L)で保持可能な複数の微生物保持担体2を備え、排水が微生物保持担体2に供給されたとき、硝化細菌の働きにより排水中のアンモニア態窒素を硝化させる好気性処理槽3と、
好気性処理槽3で処理された排水に還元状態の硫黄成分を供給する手段としての硫黄成分貯留タンク4及びポンプ5と、
還元状態の硫黄成分を消費するとともに、好気性処理槽3で処理された脱硫排水が供給されたとき、該排水に含まれる硝化による生成物を還元して窒素ガス6を生じさせるように働く嫌気性微生物(例えば、硫黄酸化脱窒菌)を保持する嫌気性処理槽7と、
好気性処理槽3で処理された排水を嫌気性処理槽7へ供給する手段としてのポンプ9と
を備えている。
The denitrification system 1 is a specific means for performing the denitrification process,
It is made of a porous material (for example, a chemical sponge) and includes a plurality of microorganism holding carriers 2 that can hold nitrifying bacteria at a high concentration (for example, 20,000 to 40,000 mg / L). An aerobic treatment tank 3 for nitrifying ammonia nitrogen in wastewater by the action of nitrifying bacteria when supplied to the carrier 2;
A sulfur component storage tank 4 and a pump 5 as means for supplying a reduced sulfur component to the wastewater treated in the aerobic treatment tank 3,
Anaerobic which consumes the reduced sulfur component and acts to reduce the product of nitrification contained in the wastewater and generate nitrogen gas 6 when the wastewater treated in the aerobic treatment tank 3 is supplied. An anaerobic treatment tank 7 that retains anaerobic microorganisms (eg, sulfur-oxidizing denitrifying bacteria);
A pump 9 is provided as means for supplying the wastewater treated in the aerobic treatment tank 3 to the anaerobic treatment tank 7.

上記硝化による生成物は、亜硝酸態窒素(NO−N)と硝酸態窒素(NO−N)の一方又は両方を含み、亜硝酸態窒素は、気体としての亜硝酸(HNO)と液体中で存在しうる亜硝酸イオン(NO )を含み、硝酸態窒素も、気体としての硝酸(HNO)と液体中で存在しうる硝酸イオン(NO 2−)を含む。 The product of the nitrification contains one or both of nitrite nitrogen (NO 2 -N) and nitrate nitrogen (NO 3 -N), and the nitrite nitrogen is nitrous acid (HNO 2 ) as a gas. Nitrite ions (NO 2 ) that can exist in the liquid are included, and nitrate nitrogen also includes nitric acid (HNO 3 ) as a gas and nitrate ions (NO 3 2− ) that can exist in the liquid.

前段の硝化工程を行う好気性処理槽3は、排水を微生物保持担体2に噴霧又は滴下する複数のノズル8を備えた管路が配されており、このノズル8から供給される排水が微生物保持担体2の表面又は内部を流下するようになっている。これにより、排水中のアンモニア態窒素は、微生物保持担体2に保持されている硝化細菌により酸化され、硝化による生成物として亜硝酸態窒素(NO−N)と硝酸態窒素(NO−N)の一方又は両方に変化する。 The aerobic treatment tank 3 for performing the nitrification process in the previous stage is provided with a pipe line provided with a plurality of nozzles 8 for spraying or dripping the waste water onto the microorganism holding carrier 2, and the waste water supplied from the nozzle 8 is retained by the microorganism. It flows down on the surface or inside of the carrier 2. As a result, the ammonia nitrogen in the waste water is oxidized by the nitrifying bacteria held in the microorganism holding carrier 2, and nitrite nitrogen (NO 2 -N) and nitrate nitrogen (NO 3 -N) are produced as products by nitrification. ) Or both.

また、この好気性処理槽3は、スポンジ等で作られた微生物保持担体2と硝化細菌が生物膜を形成することにより、従来のいわゆる完全混合型リアクタの約20倍以上の高濃度で微生物を保持することができ、硝化工程の高速化を図ることができる。更に、スポンジ等で作られた微生物保持担体2は、酸素溶解能力が高いため、好気性処理槽3の上部及び下部に通気孔10を設けて通気可能にすることにより、流体中へのエアレーション(曝気)を行わなくても良好な好気的環境を維持することができる。また、好気性処理槽3において、下部に設けた通気孔10には吸気のため、また、上部に設けた通気孔10には排気のため、それぞれ通気装置(例えば、換気扇など)を設けてもよい。   In addition, the aerobic treatment tank 3 is configured so that the microorganism holding carrier 2 made of sponge and the like and the nitrifying bacteria form a biofilm, thereby allowing microorganisms to be present at a concentration about 20 times higher than that of a conventional so-called complete mixing reactor. The nitrification process can be speeded up. Furthermore, since the microorganism-retaining carrier 2 made of sponge or the like has a high oxygen dissolving ability, aeration (in a fluid) can be achieved by providing ventilation holes 10 in the upper and lower parts of the aerobic treatment tank 3 to allow ventilation. A good aerobic environment can be maintained without performing aeration. Further, in the aerobic treatment tank 3, a ventilation device (for example, a ventilation fan) may be provided for the ventilation hole 10 provided in the lower part for intake and the ventilation hole 10 provided for the upper part for exhaustion, respectively. Good.

好気性処理された排水に供給される還元状態の硫黄成分(具体的には、硫酸イオン[SO 2−]以外の硫黄成分)としては、硫黄含有燃料の精製又は燃焼時の副産物である固体又は液体の硫黄成分を用いることができ、具体的には硫化水素イオン(HS)、チオ硫酸イオン(S 2−)、単体硫黄(S)、又は亜硫酸イオン(SO )などの還元状態の各種硫黄成分を用いることができる。これらの硫黄成分は、例えば、硫黄成分貯留タンク4内に水と混合した状態で貯留され、好気性処理された排水にポンプ5によって適宜供給される。また、還元状態の硫黄成分は、実施例のように後段の脱窒工程へ送る排水に供給するほか、後段の嫌気性処理槽7へ直接供給することもできる。 As a reduced sulfur component (specifically, a sulfur component other than sulfate ion [SO 4 2− ]) supplied to the aerobic treated wastewater, a solid which is a by-product during purification or combustion of the sulfur-containing fuel Alternatively, a liquid sulfur component can be used. Specifically, hydrogen sulfide ion (HS ), thiosulfate ion (S 2 O 3 2− ), elemental sulfur (S 0 ), or sulfite ion (SO 3 ) Various sulfur components in a reduced state such as can be used. These sulfur components are stored in the sulfur component storage tank 4 in a state of being mixed with water, for example, and appropriately supplied to the aerobic treated waste water by the pump 5. Further, the sulfur component in the reduced state can be directly supplied to the anaerobic treatment tank 7 in the subsequent stage as well as supplied to the waste water sent to the subsequent denitrification process as in the embodiment.

後段の脱窒工程を行う嫌気性処理槽7は、硫黄脱窒菌の持つ自己固定化作用によって形成される生物膜(例えば、直径1〜3mmのグラニュールなど)12を保持し、槽の底部に設けた複数のノズル13から処理対象の排水及び還元状態の硫黄成分を供給して通水処理を行う上昇流嫌気性汚泥床である。上昇流嫌気性汚泥床では、嫌気性微生物が自己固定化作用によってグラニュールを形成することにより該微生物を高濃度(例えば、50,000mg/L)で保持することができ、脱窒工程の高速化を図ることができる。また、槽の底部から供給される排水が、槽内で高濃度の嫌気性微生物により処理されるため、汚泥排出作業の頻度を低減させることができるとともに、脱窒反応も促進される。この嫌気性処理槽7内の上部には、脱窒工程で生ずる窒素ガス6を捕集して大気中へ排出するフード14が設けられている。   The anaerobic treatment tank 7 that performs the subsequent denitrification process holds a biofilm (for example, a granule having a diameter of 1 to 3 mm) 12 formed by the self-immobilization action of the sulfur denitrifying bacteria, and is placed at the bottom of the tank. It is an upflow anaerobic sludge bed in which wastewater to be treated and sulfur components in a reduced state are supplied from a plurality of nozzles 13 to perform water flow treatment. In an upflow anaerobic sludge bed, anaerobic microorganisms can form granules by self-immobilizing action, so that the microorganisms can be maintained at a high concentration (for example, 50,000 mg / L), and the denitrification process can be performed at high speed. Can be achieved. In addition, since the wastewater supplied from the bottom of the tank is treated with high-concentration anaerobic microorganisms in the tank, the frequency of sludge discharge work can be reduced and the denitrification reaction is also promoted. A hood 14 that collects the nitrogen gas 6 generated in the denitrification process and discharges it into the atmosphere is provided in the upper portion of the anaerobic treatment tank 7.

還元状態の硫黄成分(例えば、単体硫黄[S])を電子供与体とする脱窒反応は、次式で表される。 A denitrification reaction using a sulfur component in a reduced state (for example, elemental sulfur [S 0 ]) as an electron donor is represented by the following formula.

Figure 2006122771
Figure 2006122771

この反応式が示すとおり、脱窒工程では硫酸イオン(SO 2−)が生成される。この硫酸イオンは、例えば、脱硫排水に含まれる硫黄酸化物を石膏として取り出す吸収塔へ送ることにより、無害な石膏を作ることができ、セメントや石膏ボード用材料等に有効利用することができる。 As this reaction formula shows, sulfate ions (SO 4 2− ) are generated in the denitrification step. For example, the sulfate ion can be made harmless gypsum by sending it to an absorption tower that takes out sulfur oxides contained in the desulfurization effluent as gypsum, and can be effectively used for materials such as cement and gypsum board.

更に、嫌気性処理された排水は、再利用や放流等の目的に応じた排水規制に従って、pH調整等の高度処理が適宜施される。   Furthermore, the anaerobic treated waste water is appropriately subjected to advanced treatment such as pH adjustment in accordance with waste water regulations according to the purpose of reuse or discharge.

図2は、実施例の脱窒方法のフローチャートである。   FIG. 2 is a flowchart of the denitrification method of the embodiment.

脱窒システム1では、アンモニアを含有する脱硫排水を好気性処理槽3へ送り、排水中のアンモニアを分解・酸化して硝酸イオンを生成する硝化工程を行う(ステップ[以下、STと表記する]1)。具体的には、好気性処理槽3の上部に設けたノズル8から微生物保持担体2に向けて排水を散布することにより、排水は、微生物保持担体2の表面又は内部を流下する。微生物保持担体2を流下する排水は、微生物保持担体2に保持されている硝化細菌の働きによって分解・酸化されて亜硝酸態窒素(NO−N)を生じ、更に酸化されて硝酸態窒素(NO−N)を生ずる。そして、排水は微生物保持担体2を更に流下して好気性処理槽3の底部に達し、後段の嫌気性処理槽7側へ供給される。 In the denitrification system 1, desulfurization effluent containing ammonia is sent to the aerobic treatment tank 3, and a nitrification process is performed in which ammonia in the effluent is decomposed and oxidized to generate nitrate ions (step [hereinafter referred to as ST]). 1). Specifically, the waste water flows down on the surface or inside of the microorganism holding carrier 2 by spraying the waste water toward the microorganism holding carrier 2 from the nozzle 8 provided in the upper part of the aerobic treatment tank 3. The waste water flowing down the microorganism holding carrier 2 is decomposed and oxidized by the action of nitrifying bacteria held in the microorganism holding carrier 2 to produce nitrite nitrogen (NO 2 -N), and further oxidized to nitrate nitrogen ( NO 3 -N) produce. Then, the wastewater further flows down the microorganism holding carrier 2, reaches the bottom of the aerobic treatment tank 3, and is supplied to the anaerobic treatment tank 7 side in the subsequent stage.

次に、上記好気性処理された排水に還元状態の硫黄成分を供給する(ST2)。これにより、処理対象の排水に含まれる有機物量が、脱窒反応における電子供与体として足りなくても、所定の量の硫黄成分(具体的には、窒素の質量の約6.85倍以上の硫黄成分)が存在すれば確実に脱窒を行うことができる。   Next, a reduced sulfur component is supplied to the aerobic treated waste water (ST2). Thus, even if the amount of organic matter contained in the wastewater to be treated is not sufficient as an electron donor in the denitrification reaction, a predetermined amount of sulfur component (specifically, about 6.85 times the mass of nitrogen or more) If the sulfur component is present, denitrification can be performed reliably.

上記硫黄成分と窒素の質量の関係は、次式により表される。   The relationship between the sulfur component and the mass of nitrogen is expressed by the following equation.

Figure 2006122771
Figure 2006122771

この式(2)より、処理対象流体中の全ての硝酸イオン(NO 2−)が反応して窒素ガス(N)になるためには、窒素(N)のモル質量が24g/molで、硫黄(S)のモル質量が32g/molであることから、両者の比を求めると「(6×32)/(2×14)≒6.85」となり、窒素の質量の約6.85倍以上の硫黄成分が必要であることがわかる。 From this formula (2), in order for all the nitrate ions (NO 3 2− ) in the fluid to be treated to react and become nitrogen gas (N 2 ), the molar mass of nitrogen (N 2 ) is 24 g / mol. Since the molar mass of sulfur (S) is 32 g / mol, the ratio between the two is “(6 × 32) / (2 × 14) ≈6.85”, which is about 6. It can be seen that a sulfur component of 85 times or more is necessary.

最後に、好気性処理槽3からの排水及びこれに添加した還元状態の硫黄成分を嫌気性処理槽7へ供給し、脱窒工程を行う(ST3)。   Finally, the waste water from the aerobic treatment tank 3 and the reduced sulfur component added thereto are supplied to the anaerobic treatment tank 7 to perform a denitrification step (ST3).

ここで、実施例の脱窒方法における処理対象の排水に含まれる有機物量について説明する。この脱窒方法及び脱窒システムでは、処理対象の流体が有機物を含有していない又は含有量が極めて少ない場合でも、還元状態の硫黄成分を脱窒反応における電子供与体として供給することにより、脱窒処理を維持できるようになっている。脱窒工程を維持するのに必要な処理対象流体中の有機物量は、有機物を電子供与体とする脱窒反応を表す次式に基づいて求めることができる。   Here, the amount of organic matter contained in the wastewater to be treated in the denitrification method of the example will be described. In this denitrification method and denitrification system, even when the fluid to be treated does not contain organic substances or has a very low content, desulfurization is achieved by supplying the reduced sulfur component as an electron donor in the denitrification reaction. Nitrogen treatment can be maintained. The amount of organic matter in the treatment target fluid necessary to maintain the denitrification step can be determined based on the following equation representing the denitrification reaction using the organic matter as an electron donor.

Figure 2006122771
Figure 2006122771

具体的には、上記脱窒反応が成り立つためには、一般に、硝酸イオン(NO 2−)に含まれる硝酸態窒素成分1g・Nに対し、CODの対象成分である有機物(C)が2.85g・COD必要であることが知られている。即ち、この脱窒方法によれば、従来の方法では電子供与体として有機物を添加しなければ脱窒されなかった流体、即ち含有する有機物の質量が窒素成分の質量の約2.85倍以下の流体であっても、有機物を添加せずに安価な還元状態の硫黄成分を添加するだけで脱窒することができる。尚、処理対象流体中の有機物又は窒素の量は、液体クロマトグラフ等の測定装置を用いて測定することができる。 Specifically, in order for the denitrification reaction to be established, in general, 2 g of the organic substance (C) that is a target component of COD is 2 parts per 1 g · N of nitrate nitrogen contained in nitrate ions (NO 3 2− ). It is known that .85 g · COD is necessary. That is, according to this denitrification method, in the conventional method, the fluid that was not denitrified unless an organic substance was added as an electron donor, that is, the mass of the organic substance contained was about 2.85 times or less the mass of the nitrogen component. Even a fluid can be denitrified by adding an inexpensive reduced sulfur component without adding an organic substance. The amount of organic matter or nitrogen in the fluid to be treated can be measured using a measuring device such as a liquid chromatograph.

また、前記式(1)のとおり、排水中の硝酸イオン(NO 2−)は、硫黄酸化脱窒菌の働きにより還元されて無害な窒素ガス6を生じ、嫌気性処理槽7のフード14で捕集されて大気中に排出される。そして、嫌気性処理後の排水は、放流や再利用等の目的に応じた排水規制に従ってpH調整等の高度処理が適宜施されるとともに、含有する硫酸イオンを石膏として取り出すために吸収塔へも供給される。 Further, as shown in the above formula (1), nitrate ions (NO 3 2− ) in the waste water are reduced by the action of sulfur oxidative denitrifying bacteria to produce harmless nitrogen gas 6, and in the hood 14 of the anaerobic treatment tank 7. It is collected and discharged into the atmosphere. The wastewater after anaerobic treatment is appropriately subjected to advanced treatment such as pH adjustment in accordance with wastewater regulations according to the purpose of discharge and reuse, and also to the absorption tower to take out the contained sulfate ions as gypsum. Supplied.

更に、図2のフローチャートでは、脱窒処理の一連の流れを示しているが、実際的には、処理対象の流体を連続的に供給し、これに伴って硝化工程及び脱窒工程を連続的に行うことができる。   Furthermore, although the flow chart of FIG. 2 shows a series of flow of denitrification treatment, in practice, the fluid to be treated is continuously supplied, and the nitrification step and the denitrification step are continuously carried out accordingly. Can be done.

以上、実施例の脱窒方法及び脱窒システムについて説明したが、処理対象の窒素化合物含有排水は、石炭火力発電所に備えられた脱硫装置から出る脱硫排水に限らず、各種プラントから出る窒素化合物含有排水を処理対象とすることができる。上記プラントから出る脱硫排水以外の窒素化合物含有排水としては、例えば、上記各種プラントで使用される復水脱塩装置若しくは純水生成装置に備えられたイオン交換樹脂のpH調整時に出る排水、又は電気集塵機から出る排水を脱窒処理することができる。   As mentioned above, although the denitrification method and the denitrification system of an Example were demonstrated, the nitrogen compound containing waste_water | drain to process is not restricted to the desulfurization waste_water | drain which comes out from the desulfurization apparatus with which the coal-fired power station was equipped, The nitrogen compound which comes out from various plants Contained wastewater can be treated. Examples of the nitrogen compound-containing wastewater other than the desulfurization wastewater discharged from the plant include wastewater discharged at the time of pH adjustment of the ion exchange resin provided in the condensate demineralizer or pure water generator used in the various plants, or electricity Drainage from the dust collector can be denitrified.

また、本発明の脱窒システムは、石炭火力発電所における排水処理工程の一部に組み込むことができ、処理対象となる排水の流量や含有する窒素化合物の濃度等に合わせて、好気性処理槽3及び嫌気性処理槽7の処理速度等を調整するのがよい。   In addition, the denitrification system of the present invention can be incorporated into a part of the wastewater treatment process in a coal-fired power plant, and in accordance with the flow rate of wastewater to be treated, the concentration of nitrogen compounds contained, etc. 3 and the processing speed of the anaerobic processing tank 7 should be adjusted.

更に、微生物保持担体2は、不織布やポリウレタン製等のスポンジ状の素材で作ることができるほか、セラミックス等の保水性のある材料で作ることもできる。   Furthermore, the microorganism holding carrier 2 can be made of a sponge-like material such as a nonwoven fabric or polyurethane, or can be made of a water-retaining material such as ceramics.

また、実施例では、嫌気性処理槽7として上昇流嫌気性汚泥床を採用したが、上昇流を用いない一般的な嫌気性反応槽を採用することも可能である。   Moreover, although the upward flow anaerobic sludge bed was employ | adopted as the anaerobic processing tank 7 in the Example, it is also possible to employ | adopt the general anaerobic reaction tank which does not use an upward flow.

実施例の脱窒システムを示す図。The figure which shows the denitrification system of an Example. 実施例の脱窒方法のフローチャート。The flowchart of the denitrification method of an Example.

符号の説明Explanation of symbols

1…脱窒システム、2…微生物保持担体、3…好気性処理槽、4…硫黄成分貯留タンク、5,9…ポンプ、6…窒素ガス、7…嫌気性処理槽、8,13…ノズル、10…通気孔、12…生物膜、14…フード。
DESCRIPTION OF SYMBOLS 1 ... Denitrification system, 2 ... Microbe holding carrier, 3 ... Aerobic processing tank, 4 ... Sulfur component storage tank, 5,9 ... Pump, 6 ... Nitrogen gas, 7 ... Anaerobic processing tank, 8, 13 ... Nozzle, 10 ... vent, 12 ... biofilm, 14 ... hood.

Claims (14)

窒素化合物を含む流体を、好気性微生物を保持する好気性処理手段に供給し、前記好気性微生物の働きにより該流体中の窒素化合物を硝化する工程と、
前記窒素化合物の硝化による生成物を含む流体及び還元状態の硫黄成分を、該硫黄成分を消費する嫌気性微生物を保持する嫌気性処理手段へ供給し、前記嫌気性微生物の働きにより前記生成物を分解して窒素を生じさせる工程とから成り、
前記好気性処理手段として、前記好気性微生物を保持する多孔性材料で作られた微生物保持担体を用いることを特徴とする流体処理方法。
Supplying a fluid containing a nitrogen compound to an aerobic treatment means holding aerobic microorganisms, and nitrifying the nitrogen compound in the fluid by the action of the aerobic microorganisms;
Supplying a fluid containing a product obtained by nitrification of the nitrogen compound and a sulfur component in a reduced state to an anaerobic treatment means holding an anaerobic microorganism that consumes the sulfur component, and the product is produced by the action of the anaerobic microorganism. A process of decomposing and generating nitrogen,
A fluid processing method comprising using a microorganism holding carrier made of a porous material holding the aerobic microorganism as the aerobic processing means.
請求項1記載の流体処理方法において、前記生成物は、亜硝酸態窒素(NO−N)と硝酸態窒素(NO−N)の一方又は両方であることを特徴とする流体処理方法。 The fluid treatment method according to claim 1, wherein the product is one or both of nitrite nitrogen (NO 2 —N) and nitrate nitrogen (NO 3 —N). 請求項1又は2記載の流体処理方法において、前記流体に含まれる有機物の質量は、前記窒素化合物を構成する窒素の質量の2.85倍以下であることを特徴とする流体処理方法。   3. The fluid processing method according to claim 1, wherein the mass of the organic substance contained in the fluid is 2.85 times or less of the mass of nitrogen constituting the nitrogen compound. 請求項1乃至3のいずれか記載の流体処理方法において、前記還元状態の硫黄成分は、硫黄含有燃料の精製又は燃焼時に生成されることを特徴とする流体処理方法。   4. The fluid processing method according to claim 1, wherein the sulfur component in the reduced state is generated during purification or combustion of the sulfur-containing fuel. 請求項1乃至4のいずれか記載の流体処理方法において、前記嫌気性処理手段は、処理対象の流体を底部から供給して上昇させる上昇流嫌気性汚泥床であることを特徴とする流体処理方法。   5. The fluid treatment method according to claim 1, wherein the anaerobic treatment means is an upflow anaerobic sludge bed that feeds and raises a fluid to be treated from the bottom. . 請求項1乃至5のいずれか記載の流体処理方法において、前記好気性処理手段に供給する流体は、発電所その他の各種プラントから出る窒素化合物含有排水であることを特徴とする流体処理方法。   6. The fluid treatment method according to claim 1, wherein the fluid supplied to the aerobic treatment means is nitrogen compound-containing wastewater from a power plant or other various plants. 請求項6記載の流体処理方法において、前記窒素化合物含有排水は、前記プラントで使用される復水脱塩装置若しくは純水生成装置に備えられたイオン交換樹脂のpH調整時に出る排水、又は電気集塵機から出る排水であることを特徴とする流体処理方法。   The fluid treatment method according to claim 6, wherein the nitrogen compound-containing wastewater is drainage discharged at the time of pH adjustment of an ion exchange resin provided in a condensate demineralizer or a pure water generator used in the plant, or an electric dust collector A fluid treatment method characterized by being drained from a wastewater. 窒素化合物を含む流体が供給されたとき、該流体中の窒素化合物を硝化させる好気性微生物を保持する好気性処理手段と、
前記窒素化合物の硝化による生成物を含む流体及び還元状態の硫黄成分が供給されたとき、該硫黄成分を消費するとともに前記生成物を分解して窒素を生じさせるように働く嫌気性微生物を保持する嫌気性処理手段と、
前記生成物を含む流体及び前記硫黄成分を前記嫌気性処理手段に供給する手段とを備え、
前記好気性処理手段は、前記好気性微生物を保持する多孔性材料で作られた微生物保持担体であることを特徴とする流体処理システム。
An aerobic treatment means for holding aerobic microorganisms that nitrify the nitrogen compound in the fluid when a fluid containing the nitrogen compound is supplied;
When a fluid containing a product obtained by nitrification of the nitrogen compound and a sulfur component in a reduced state are supplied, the sulfur component is consumed, and anaerobic microorganisms that act to decompose the product to generate nitrogen are retained. Anaerobic treatment means,
A fluid containing the product and a means for supplying the sulfur component to the anaerobic treatment means,
The fluid processing system, wherein the aerobic processing means is a microorganism holding carrier made of a porous material that holds the aerobic microorganisms.
請求項8記載の流体処理方法において、前記生成物は、亜硝酸態窒素(NO−N)と硝酸態窒素(NO−N)の一方又は両方であることを特徴とする流体処理方法。 The fluid processing method according to claim 8, wherein the product is a fluid processing method is characterized in that one or both of nitrite nitrogen (NO 2 -N) and nitrate nitrogen (NO 3 -N). 請求項8又は9記載の流体処理システムにおいて、前記流体に含まれる有機物の質量は、前記窒素化合物を構成する窒素の質量の2.85倍以下であることを特徴とする流体処理システム。   10. The fluid treatment system according to claim 8, wherein a mass of an organic substance contained in the fluid is 2.85 times or less of a mass of nitrogen constituting the nitrogen compound. 請求項8乃至10のいずれか記載の流体処理システムにおいて、前記還元状態の硫黄成分は、硫黄含有燃料の精製又は燃焼時に生成されることを特徴とする流体処理システム。   The fluid processing system according to claim 8, wherein the sulfur component in the reduced state is generated during purification or combustion of the sulfur-containing fuel. 請求項8乃至11のいずれか記載の流体処理システムにおいて、前記嫌気性処理手段は、処理対象の流体を底部から供給して上昇させる上昇流嫌気性汚泥床であることを特徴とする流体処理システム。   12. The fluid treatment system according to claim 8, wherein the anaerobic treatment means is an upflow anaerobic sludge bed that feeds and raises a fluid to be treated from the bottom. . 請求項8乃至12のいずれか記載の流体処理システムにおいて、前記好気性処理手段に供給される流体は、発電所その他の各種プラントから出る窒素化合物含有排水であることを特徴とする流体処理システム。   13. The fluid treatment system according to claim 8, wherein the fluid supplied to the aerobic treatment means is nitrogen compound-containing waste water from a power plant or other various plants. 請求項13記載の流体処理システムにおいて、前記窒素化合物含有排水は、前記プラントで使用される復水脱塩装置若しくは純水生成装置に備えられたイオン交換樹脂のpH調整時に出る排水、又は電気集塵機から出る排水であることを特徴とする流体処理システム。
14. The fluid treatment system according to claim 13, wherein the nitrogen compound-containing wastewater is drainage discharged at the time of pH adjustment of an ion exchange resin provided in a condensate demineralizer or a pure water generator used in the plant, or an electric dust collector. A fluid treatment system characterized by being drained from water.
JP2004311843A 2004-10-27 2004-10-27 Fluid treatment method and fluid treatment system Pending JP2006122771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311843A JP2006122771A (en) 2004-10-27 2004-10-27 Fluid treatment method and fluid treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311843A JP2006122771A (en) 2004-10-27 2004-10-27 Fluid treatment method and fluid treatment system

Publications (1)

Publication Number Publication Date
JP2006122771A true JP2006122771A (en) 2006-05-18

Family

ID=36718008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311843A Pending JP2006122771A (en) 2004-10-27 2004-10-27 Fluid treatment method and fluid treatment system

Country Status (1)

Country Link
JP (1) JP2006122771A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036497A (en) * 2006-08-03 2008-02-21 Chugoku Electric Power Co Inc:The Wastewater treatment method
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
WO2010016268A1 (en) * 2008-08-08 2010-02-11 株式会社 東芝 Water treatment system and water treatment method
CN101830617A (en) * 2010-02-26 2010-09-15 浙江大学 Methane production, desulfuration and denitrification integrated device
JP2011062657A (en) * 2009-09-18 2011-03-31 Chugoku Electric Power Co Inc:The Nitrification apparatus and biological nitrification and denitrification apparatus
KR101060832B1 (en) 2006-07-10 2011-08-30 도요타지도샤가부시키가이샤 Map information distribution center and map information distribution method
CN102491535A (en) * 2011-12-15 2012-06-13 南京大学 Method using sulfate-reducing bacteria for demineralization of lakes and rivers
KR101179049B1 (en) * 2009-06-04 2012-09-03 한양대학교 산학협력단 Nitrite removal processes from waters using sulfur-oxidizing denitrifying bacteria
CN103265121A (en) * 2013-05-10 2013-08-28 杭州师范大学 Method for starting half short-cut nitrification technology
KR101345642B1 (en) 2011-05-19 2013-12-27 한양대학교 에리카산학협력단 Method for removing nitrogen in waste water
CN103601289A (en) * 2013-11-01 2014-02-26 东北师范大学 Device and method for realization of partially denitrified synchronous autotrophic nitrogen removal by sludge fermentation coupled denitrification
CN103864206A (en) * 2014-03-21 2014-06-18 北京工业大学 Device and method for sludge digestive juice semi-partial nitrification anaerobic ammonia oxidation denitrification and denitrifying phosphorus removal coupling system
CN103896410A (en) * 2014-04-21 2014-07-02 中国海洋大学 Biofilm-based mariculture wastewater treatment system
CN104276656A (en) * 2014-10-12 2015-01-14 北京工业大学 Method for treating high-concentration nitrate waste water and municipal sewage through denitrification anaerobic ammonium oxidation SBR
CN104276657A (en) * 2014-10-12 2015-01-14 北京工业大学 Device and method for synchronous treatment of high-nitrogen wastewater and municipal sewage by employing ANAMMOX-PD
CN104402165A (en) * 2014-09-30 2015-03-11 北京城市排水集团有限责任公司 Apparatus and method for treating city sewage by coupling inner carbon source denitrification and anaerobic ammonium oxidation
CN104817172A (en) * 2015-04-22 2015-08-05 广东联泰环保股份有限公司 Activated suspended filler and in-situ enhanced nitrogen removal water treatment method using same
CN105293693A (en) * 2015-11-26 2016-02-03 中国矿业大学 Anaerobic ammonium oxidation bacteria culture method based on anion and cation resin
JP2016101538A (en) * 2014-11-27 2016-06-02 新日鐵住金株式会社 Method for biologically treating waste water
CN106045032A (en) * 2016-07-10 2016-10-26 北京工业大学 Method for synchronously removing ammonia nitrogen and nitrate nitrogen in continuous flow USB reactor through short-range denitrification reinforcement DEAMOX technology
CN106115920A (en) * 2016-08-31 2016-11-16 北京工业大学 Fermented sludge is utilized to realize municipal sewage part short distance nitration and the method and apparatus of Anammox
CN108862622A (en) * 2018-06-25 2018-11-23 苏州科技大学 A kind of method of ammonia-containing water denitrogenation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936600A (en) * 1982-08-25 1984-02-28 Ebara Infilco Co Ltd Treatment of waste water
JPS61230792A (en) * 1985-04-03 1986-10-15 Nippon Kokan Kk <Nkk> Method for nitrating and denitriding coke oven gas liquid
JPH05115897A (en) * 1991-10-29 1993-05-14 Meidensha Corp Waste water treatment using sulfur bacteria and device therefor
JP2000005795A (en) * 1998-06-19 2000-01-11 Daiwa Kogyo Kk Water treatment device having denitrogen performance
JP2000117291A (en) * 1998-10-14 2000-04-25 Tokki Kk Treatment of waste water and waste water treating device
JP2000126448A (en) * 1998-10-26 2000-05-09 Square Co Ltd Game device, decision of character's action, and mechanically readable data recording medium in which program is recorded
JP2000189995A (en) * 1999-01-05 2000-07-11 Ebara Corp Method and device for removing nitrogen in waste water
JP2001096294A (en) * 1999-10-01 2001-04-10 Nishihara Environ Sanit Res Corp Device for removing nitrogen oxide
JP2003071490A (en) * 2001-09-06 2003-03-11 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936600A (en) * 1982-08-25 1984-02-28 Ebara Infilco Co Ltd Treatment of waste water
JPS61230792A (en) * 1985-04-03 1986-10-15 Nippon Kokan Kk <Nkk> Method for nitrating and denitriding coke oven gas liquid
JPH05115897A (en) * 1991-10-29 1993-05-14 Meidensha Corp Waste water treatment using sulfur bacteria and device therefor
JP2000005795A (en) * 1998-06-19 2000-01-11 Daiwa Kogyo Kk Water treatment device having denitrogen performance
JP2000117291A (en) * 1998-10-14 2000-04-25 Tokki Kk Treatment of waste water and waste water treating device
JP2000126448A (en) * 1998-10-26 2000-05-09 Square Co Ltd Game device, decision of character's action, and mechanically readable data recording medium in which program is recorded
JP2000189995A (en) * 1999-01-05 2000-07-11 Ebara Corp Method and device for removing nitrogen in waste water
JP2001096294A (en) * 1999-10-01 2001-04-10 Nishihara Environ Sanit Res Corp Device for removing nitrogen oxide
JP2003071490A (en) * 2001-09-06 2003-03-11 Nippon Steel Corp Method for removing nitrogen from wastewater
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101060832B1 (en) 2006-07-10 2011-08-30 도요타지도샤가부시키가이샤 Map information distribution center and map information distribution method
JP4671928B2 (en) * 2006-08-03 2011-04-20 中国電力株式会社 Wastewater treatment method
JP2008036497A (en) * 2006-08-03 2008-02-21 Chugoku Electric Power Co Inc:The Wastewater treatment method
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
JP2010042327A (en) * 2008-08-08 2010-02-25 Toshiba Corp Water treatment system
WO2010016268A1 (en) * 2008-08-08 2010-02-11 株式会社 東芝 Water treatment system and water treatment method
KR101179049B1 (en) * 2009-06-04 2012-09-03 한양대학교 산학협력단 Nitrite removal processes from waters using sulfur-oxidizing denitrifying bacteria
JP2011062657A (en) * 2009-09-18 2011-03-31 Chugoku Electric Power Co Inc:The Nitrification apparatus and biological nitrification and denitrification apparatus
CN101830617A (en) * 2010-02-26 2010-09-15 浙江大学 Methane production, desulfuration and denitrification integrated device
KR101345642B1 (en) 2011-05-19 2013-12-27 한양대학교 에리카산학협력단 Method for removing nitrogen in waste water
CN102491535A (en) * 2011-12-15 2012-06-13 南京大学 Method using sulfate-reducing bacteria for demineralization of lakes and rivers
CN103265121B (en) * 2013-05-10 2014-10-15 杭州师范大学 Method for starting half short-cut nitrification technology
CN103265121A (en) * 2013-05-10 2013-08-28 杭州师范大学 Method for starting half short-cut nitrification technology
CN103601289A (en) * 2013-11-01 2014-02-26 东北师范大学 Device and method for realization of partially denitrified synchronous autotrophic nitrogen removal by sludge fermentation coupled denitrification
CN103864206A (en) * 2014-03-21 2014-06-18 北京工业大学 Device and method for sludge digestive juice semi-partial nitrification anaerobic ammonia oxidation denitrification and denitrifying phosphorus removal coupling system
CN103896410A (en) * 2014-04-21 2014-07-02 中国海洋大学 Biofilm-based mariculture wastewater treatment system
CN103896410B (en) * 2014-04-21 2016-05-25 中国海洋大学 A kind of based on biomembranous culturing wastewater processing system
CN104402165A (en) * 2014-09-30 2015-03-11 北京城市排水集团有限责任公司 Apparatus and method for treating city sewage by coupling inner carbon source denitrification and anaerobic ammonium oxidation
CN104276656A (en) * 2014-10-12 2015-01-14 北京工业大学 Method for treating high-concentration nitrate waste water and municipal sewage through denitrification anaerobic ammonium oxidation SBR
CN104276657A (en) * 2014-10-12 2015-01-14 北京工业大学 Device and method for synchronous treatment of high-nitrogen wastewater and municipal sewage by employing ANAMMOX-PD
JP2016101538A (en) * 2014-11-27 2016-06-02 新日鐵住金株式会社 Method for biologically treating waste water
CN104817172A (en) * 2015-04-22 2015-08-05 广东联泰环保股份有限公司 Activated suspended filler and in-situ enhanced nitrogen removal water treatment method using same
CN105293693A (en) * 2015-11-26 2016-02-03 中国矿业大学 Anaerobic ammonium oxidation bacteria culture method based on anion and cation resin
CN106045032A (en) * 2016-07-10 2016-10-26 北京工业大学 Method for synchronously removing ammonia nitrogen and nitrate nitrogen in continuous flow USB reactor through short-range denitrification reinforcement DEAMOX technology
CN106115920A (en) * 2016-08-31 2016-11-16 北京工业大学 Fermented sludge is utilized to realize municipal sewage part short distance nitration and the method and apparatus of Anammox
CN108862622A (en) * 2018-06-25 2018-11-23 苏州科技大学 A kind of method of ammonia-containing water denitrogenation

Similar Documents

Publication Publication Date Title
JP2006122771A (en) Fluid treatment method and fluid treatment system
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
WO2010016268A1 (en) Water treatment system and water treatment method
JP5355459B2 (en) Organic wastewater treatment system
KR20000006206A (en) Water treatment system based on denitrification
JP2000015288A (en) Waste water treatment method and apparatus
JPWO2004074191A1 (en) Ammonia nitrogen-containing water treatment method
JP4106203B2 (en) How to remove nitrogen from water
JP2007125484A (en) Nitrogen-containing wastewater treatment method
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
TWI689470B (en) Integrated processing system and method for biogas desulfurization and bio-slurry denitrification
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP2003126886A (en) Biological denitrification method and device of the same
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
KR100857887B1 (en) Wastewater treatment apparatus of denitrification and wastewater treatment method thereof
KR200412168Y1 (en) sewage and waste water treatment system using the packed media
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
JP2005288371A (en) Wastewater treatment method
JP2000189995A (en) Method and device for removing nitrogen in waste water
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
JP2011062657A (en) Nitrification apparatus and biological nitrification and denitrification apparatus
JP4671928B2 (en) Wastewater treatment method
JP2006088057A (en) Method for treating ammonia-containing water
JP2001252690A (en) Nitrite forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518