JP6161472B2 - Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method - Google Patents

Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method Download PDF

Info

Publication number
JP6161472B2
JP6161472B2 JP2013182104A JP2013182104A JP6161472B2 JP 6161472 B2 JP6161472 B2 JP 6161472B2 JP 2013182104 A JP2013182104 A JP 2013182104A JP 2013182104 A JP2013182104 A JP 2013182104A JP 6161472 B2 JP6161472 B2 JP 6161472B2
Authority
JP
Japan
Prior art keywords
solution
polysulfide
gas containing
containing oxygen
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013182104A
Other languages
Japanese (ja)
Other versions
JP2015047580A (en
Inventor
清孝 島津
清孝 島津
Original Assignee
大阪ガスエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪ガスエンジニアリング株式会社 filed Critical 大阪ガスエンジニアリング株式会社
Priority to JP2013182104A priority Critical patent/JP6161472B2/en
Priority to KR20130113595A priority patent/KR20150026671A/en
Priority to CN201410409609.4A priority patent/CN104418449A/en
Publication of JP2015047580A publication Critical patent/JP2015047580A/en
Application granted granted Critical
Publication of JP6161472B2 publication Critical patent/JP6161472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Description

本発明は、シアンを含む溶液の処理設備及び処理方法、並びに該方法によるシアンイオンを低減した溶液の製造方法に関する。   The present invention relates to a treatment facility and a treatment method for a solution containing cyan, and a method for producing a solution with reduced cyan ions by the method.

廃液中のシアンイオンを低減する方法としては、種々の方法が知られているが、短所も伴う。   Various methods are known as methods for reducing cyanide ions in the waste liquid, but they also have disadvantages.

例えば、アルカリ塩素法の場合は、廃液に次亜塩素酸塩を添加する必要があり、塩素濃度が上昇するため、廃液の種類によっては、装置の材質が限定されて、高価な材料が必要となる。また、廃液の組成に応じて反応条件を調整する必要があり、シアン以外の成分濃度が高い廃液の場合、調整に困難を極める。   For example, in the case of the alkali chlorine method, it is necessary to add hypochlorite to the waste liquid, and the chlorine concentration increases. Therefore, depending on the type of the waste liquid, the material of the apparatus is limited and an expensive material is required. Become. Moreover, it is necessary to adjust the reaction conditions according to the composition of the waste liquid, and in the case of a waste liquid having a high concentration of components other than cyan, adjustment is extremely difficult.

また、オゾン分解法の場合は、廃液中のシアン以外の被酸化性成分の濃度が高い場合には処理効果が十分に得られない。   In the case of the ozonolysis method, the treatment effect cannot be sufficiently obtained when the concentration of oxidizable components other than cyanide in the waste liquid is high.

蒸留法の場合は、廃液に溶解物が含まれる場合、特殊な蒸留装置を用いなければ蒸発乾固により装置が閉塞し、運転困難に陥る。また、蒸発のためエネルギー消費が多い。   In the case of the distillation method, when the waste liquid contains a dissolved product, if a special distillation apparatus is not used, the apparatus is blocked by evaporation to dryness, resulting in operation difficulty. In addition, energy consumption is high due to evaporation.

燃焼法の場合は、廃液に灰分が含まれる場合、発生する灰の処理のため特殊な大型の燃焼炉が必要となる。また、燃焼のために非常に大きなエネルギーを消費する。   In the case of the combustion method, when ash is contained in the waste liquid, a special large-sized combustion furnace is required for processing the generated ash. In addition, very large energy is consumed for combustion.

一方、廃液中のシアンイオンを低減する方法としては、廃液中のシアンイオンを、四硫化ナトリウム等の多硫化物と反応させて毒性のないロダン(チオシアン酸)イオンに変える、ロダン化処理も知られている。   On the other hand, as a method of reducing cyanide ions in waste liquid, there is also known a dandanization process in which cyanide ions in waste liquid are reacted with polysulfides such as sodium tetrasulfide to change to non-toxic rhodan (thiocyanate) ions. It has been.

このロダン化処理においては、例えば、以下の反応式:
CN + Na → SCN + Na
等により、シアンイオンをロダンイオンに変えている。上記の反応式は、多硫化物として四硫化ナトリウムを用いる場合について例示したが、他の多硫化物を用いた場合も同様に反応が起こる。
In this rodanization treatment, for example, the following reaction formula:
CN + Na 2 S 4 → SCN + Na 2 S 3
For example, cyan ion is changed to rhodan ion. Although the above reaction formula illustrates the case where sodium tetrasulfide is used as the polysulfide, the reaction occurs similarly when other polysulfides are used.

しかしながら、上記の反応にしたがって、廃液中のシアンイオンを除去するためには、四硫化ナトリウム等の多硫化物を過剰に投入する必要がある。また、シアンイオンの濃度が変動する場合であって、その濃度を直ちに計測することが困難である場合には、その最大値にあわせて四硫化ナトリウム等の多硫化物を投入する必要がある。   However, in order to remove cyan ions in the waste liquid according to the above reaction, it is necessary to add an excessive amount of polysulfide such as sodium tetrasulfide. Further, when the concentration of cyanide ions fluctuates and it is difficult to measure the concentration immediately, it is necessary to add a polysulfide such as sodium tetrasulfide according to the maximum value.

その結果、ロダン化処理された廃液中には、余剰分の多硫化物が発生することが避けられない。   As a result, it is inevitable that excessive polysulfides are generated in the waste liquid that has been subjected to the rodanization treatment.

多硫化物は、以下の反応式:
Na → 2Na + S −−
−− → S−− + 3S
等により、硫化物と硫黄に分解し、発生する硫化物に由来する硫化水素臭を伴う。上記の反応式は、多硫化物として四硫化ナトリウムを用いる場合について例示したが、他の多硫化物を用いた場合も同様に反応が起こる。
Polysulfides have the following reaction formula:
Na 2 S 4 → 2Na + + S 4 −−
S 4 −− → S −− + 3S
It decomposes into sulfide and sulfur due to the above, accompanied by hydrogen sulfide odor derived from the generated sulfide. Although the above reaction formula illustrates the case where sodium tetrasulfide is used as the polysulfide, the reaction occurs similarly when other polysulfides are used.

このようにして発生する多硫化物や硫化物からは、pHの変化等にともなって以下の反応式:
−− + H → HS
HS + H → H
により、硫化水素ガスが発生する。
From the polysulfides and sulfides generated in this way, the following reaction formulas are obtained as the pH changes:
S −− + H + → HS
HS + H + → H 2 S
As a result, hydrogen sulfide gas is generated.

このため、ロダン化処理後に発生する多硫化物や、多硫化物の分解により発生する硫化物は、臭気をともなう有害物質であるため、これらの多硫化物や硫化物を速やかに除去する必要があるが、現時点では有毒なガスや、金属を含むスラッジの発生を伴うことなく、ロダン化処理後に発生する多硫化物や硫化物を除去する方法は見当たらなかった。そのため、ロダン化単独ではシアンの処理を完結させることができなかった。   For this reason, the polysulfides generated after the rhoddanation treatment and the sulfides generated by the decomposition of the polysulfides are harmful substances with odors, so it is necessary to remove these polysulfides and sulfides promptly. However, at present, there has been no method for removing the polysulfides and sulfides generated after the rhodanation process without generating toxic gases and sludge containing metals. Therefore, cyanidation alone could not complete the cyan treatment.

そこで、本発明は、シアンイオンを含む溶液に対して、ロダン化処理と、これにより発生する多硫化物や硫化物の効果的な処理を組合せた方法及び設備を提供することを目的とする。   Therefore, an object of the present invention is to provide a method and equipment in which a solution containing cyan ions is combined with a dandanation treatment and an effective treatment of polysulfides and sulfides generated thereby.

本発明者は、鋭意研究を重ねた結果、ロダン化処理と、当処理後に、酸化還元触媒の存在下、酸素を含む気体を吹き込む操作を組合せることにより、簡便にシアンイオンを低減し、残存する多硫化物や硫化物も効果的に低減できることを見出した。本発明は、このような知見に基づき、さらに研究を重ね、完成したものである。すなわち、本発明は、以下の構成を包含する。
項1.(1)シアンイオンを含む溶液に多硫化物を添加する手段、及び
(2)その後、酸化還元触媒の存在下、酸素を含む気体を吹き込む手段
を備える、溶液処理設備であって、
前記手段(1)は、前記シアンイオンを含む溶液の酸化還元電位Aを測定しつつ、該酸化還元電位Aにより多硫化物の添加量を調整する手段を備え、且つ、
前記手段(2)は、前記手段(1)で調整した多硫化物の添加量1モルに対して、0.5モルの酸素を供給する酸素を含む気体の流量を最低値とするように、制御回路に制限を設けて酸素を含む気体の流量を調整する手段を備える、溶液処理設備
項2.前記シアンイオンを含む溶液が、産業廃液である、項1に記載の溶液処理設備。
項3.前記酸化還元触媒が、ピクリン酸及び/又はキノンである、項1又は2に記載の溶液処理設備。
項4.前記シアンイオンを含む溶液が、前記酸化還元触媒を添加する脱硫工程を経た産業廃液であり、且つ、前記手段(2)は、前記酸化還元触媒を別途添加する手段を有しない、項1〜3のいずれかに記載の溶液処理設備。
.前記手段(2)は、
前記多硫化物を添加した後の溶液の酸化還元電位Bを測定し、且つ、該酸化還元電位Bにより酸素を含む気体の流量を調整する手段を備える、
項1〜のいずれかに記載の溶液処理設備。
.前記手段(2)は、
前記多硫化物を添加した後の溶液と酸素を含む気体とを予め混合し、且つ、予混合ノズルにより激しく噴出する手段を備える、
項1〜のいずれかに記載の溶液処理設備。
.(1)シアンイオンを含む溶液に多硫化物を添加する工程、及び
(2)その後、酸化還元触媒の存在下、酸素を含む気体を吹き込む工程
を備える、シアンイオンを低減した溶液の処理方法であって、
前記工程(1)は、前記シアンイオンを含む溶液の酸化還元電位Aを測定しつつ、該酸化還元電位Aにより多硫化物の添加量を調整し、且つ、
前記工程(2)は、前記工程(1)で調整した多硫化物の添加量1モルに対して、0.5モルの酸素を供給する酸素を含む気体の流量を最低値とするように、制御回路に制限を設けて酸素を含む気体の流量を調整する、溶液の処理方法
.前記シアンイオンを含む溶液が、産業廃液である、項に記載の処理方法。
.前記酸化還元触媒が、ピクリン酸及び/又はキノンである、項又はに記載の処理方法。
10.前記シアンイオンを含む溶液が、前記酸化還元触媒を添加する脱硫工程を経た産業廃液であり、且つ、工程(2)において前記酸化還元触媒を別途添加しない、項のいずれかに記載の処理方法。
11.前記工程(2)において、前記溶液の酸化還元電位Bを測定し、且つ、該酸化還元電位Bにより酸素を含む気体の流量を調整する、項10のいずれかに記載の処理方法。
12.前記工程(2)において、前記溶液と酸素を含む気体とを予め混合し、激しく噴出する、項11のいずれかに記載の処理方法。
As a result of extensive research, the present inventor has successfully reduced cyanide ions by combining the dandanization treatment and the operation of blowing a gas containing oxygen in the presence of the oxidation-reduction catalyst after the treatment. It has been found that polysulfides and sulfides can be effectively reduced. The present invention has been completed by further research based on such knowledge. That is, the present invention includes the following configurations.
Item 1. (1) A solution processing facility comprising means for adding polysulfide to a solution containing cyanide, and (2) means for blowing a gas containing oxygen in the presence of a redox catalyst thereafter .
The means (1) comprises means for adjusting the addition amount of polysulfide by the oxidation-reduction potential A while measuring the oxidation-reduction potential A of the solution containing cyanide, and
The means (2) has a minimum flow rate of a gas containing oxygen for supplying 0.5 mol of oxygen with respect to 1 mol of the polysulfide added in the means (1). A solution processing facility comprising means for limiting a control circuit and adjusting a flow rate of a gas containing oxygen .
Item 2. Item 2. The solution processing facility according to Item 1, wherein the solution containing cyanide is an industrial waste solution.
Item 3. Item 3. The solution processing facility according to Item 1 or 2, wherein the redox catalyst is picric acid and / or quinone.
Item 4. The solution containing the cyanide is an industrial waste liquid that has undergone a desulfurization step in which the redox catalyst is added, and the means (2) does not have a means for separately adding the redox catalyst. The solution processing equipment in any one of.
Item 5 . The means (2)
A means for measuring the oxidation-reduction potential B of the solution after adding the polysulfide and adjusting the flow rate of the gas containing oxygen by the oxidation-reduction potential B;
Item 5. The solution processing facility according to any one of Items 1 to 4 .
Item 6 . The means (2)
A means for premixing a solution containing oxygen after addition of the polysulfide and a gas containing oxygen and ejecting vigorously by a premixing nozzle,
Item 6. The solution processing facility according to any one of Items 1 to 5 .
Item 7 . (1) A method for treating a solution with reduced cyan ions, comprising: adding a polysulfide to a solution containing cyan ions; and (2) then blowing a gas containing oxygen in the presence of a redox catalyst. There,
The step (1) adjusts the amount of polysulfide added by the redox potential A while measuring the redox potential A of the solution containing the cyan ion, and
In the step (2), with respect to 1 mol of the polysulfide added in the step (1), the flow rate of the gas containing oxygen for supplying 0.5 mol of oxygen is set to the minimum value. A method for treating a solution, wherein a control circuit is limited to adjust a flow rate of a gas containing oxygen .
Item 8 . Item 8. The processing method according to Item 7 , wherein the solution containing cyanide is an industrial waste solution.
Item 9 . Item 9. The treatment method according to Item 7 or 8 , wherein the redox catalyst is picric acid and / or quinone.
Item 10 . Item 10. The solution according to any one of Items 7 to 9 , wherein the solution containing cyanide is an industrial waste liquid that has undergone a desulfurization step in which the oxidation-reduction catalyst is added, and the oxidation-reduction catalyst is not added separately in step (2). Processing method.
Item 11 . Item 11. The processing method according to any one of Items 7 to 10 , wherein in the step (2), the oxidation-reduction potential B of the solution is measured and the flow rate of the gas containing oxygen is adjusted by the oxidation-reduction potential B.
Item 12 . Item 12. The processing method according to any one of Items 7 to 11 , wherein in the step (2), the solution and a gas containing oxygen are mixed in advance and ejected vigorously.

本発明によれば、シアンを含む溶液中のシアンイオンを簡便に低減し、ロダン化処理により発生した多硫化物や硫化物を効果的に低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cyanide ion in the solution containing cyan can be reduced simply and the polysulfide and sulfide which generate | occur | produced by the rhodanation process can be reduced effectively.

本発明の溶液処理設備を示す概略図である。It is the schematic which shows the solution processing equipment of this invention. 循環攪拌ポンプを用いる本発明の溶液処理設備を示す概略図である。It is the schematic which shows the solution processing equipment of this invention using a circulation stirring pump. スタティックミキサーを用いる本発明の溶液処理設備を示す概略図である。It is the schematic which shows the solution processing equipment of this invention using a static mixer. ロダン化中の溶液の酸化還元電位Aを測定しつつ、該酸化還元電位Aにより、多硫化物の添加量を調整する本発明の溶液処理設備を示す概略図である。It is the schematic which shows the solution processing equipment of this invention which adjusts the addition amount of a polysulfide with this oxidation-reduction potential A, measuring the oxidation-reduction potential A of the solution in the rhoddanation. 予混合ノズルを用いる本発明の溶液処理設備を示す概略図である。It is the schematic which shows the solution processing equipment of this invention using a premixing nozzle. ロダン化を経た原料溶液の、酸化処理中の酸化還元電位Bを測定しつつ、該酸化還元電位Bにより、酸素を含む気体の流量を調整する本発明の溶液処理設備を示す概略図である。It is the schematic which shows the solution processing equipment of this invention which adjusts the flow volume of the gas containing oxygen with this oxidation-reduction potential B, measuring the oxidation-reduction potential B in the oxidation process of the raw material solution which passed through the rhandanization. ロダン化中の溶液の酸化還元電位Aを測定しつつ、該酸化還元電位Aにより、多硫化物の添加量を調整する手段と、ロダン化を経た原料溶液の、酸化処理中の酸化還元電位Bを測定しつつ、該酸化還元電位Bにより、酸素を含む気体の流量を調整するとともに、前記調整した多硫化物の添加量1モルに対して、0.5モルの酸素を供給する酸素を含む気体の流量を最低値とするように、制御回路で制限を設けた本発明の溶液処理設備を示す概略図である。Means for adjusting the addition amount of polysulfide with the redox potential A while measuring the redox potential A of the solution undergoing rhodanation, and the redox potential B during the oxidation treatment of the raw material solution that has undergone rhodanation. In addition to adjusting the flow rate of the gas containing oxygen by the redox potential B, the oxygen containing 0.5 mol of oxygen is added to 1 mol of the adjusted polysulfide added. It is the schematic which shows the solution processing equipment of this invention which provided the restriction | limiting in the control circuit so that the flow volume of gas might be set to the minimum value.

本発明の溶液処理設備は、
(1)シアンイオンを含む溶液に多硫化物を添加する手段、及び
(2)その後、酸化還元触媒の存在下、酸素を含む気体を吹き込む手段
を備える。
The solution processing equipment of the present invention is
(1) A means for adding polysulfide to a solution containing cyanide, and (2) a means for blowing a gas containing oxygen in the presence of a redox catalyst.

このような本発明の溶液処理設備としては、例えば、図1に示されるもの等が挙げられる。   Examples of the solution processing equipment of the present invention include those shown in FIG.

1.手段(1)
<シアンイオンを含む溶液>
本発明の溶液処理設備において処理する「シアンイオンを含む溶液」(以下、「原料溶液」と言うことがある)としては、通常は、シアンイオンの濃度は1mg/Lを超えると放流できないため、3.8×10−5mol/L以上のものが典型的な対象である。
1. Means (1)
<Solution containing cyanide>
As the “solution containing cyan ions” (hereinafter sometimes referred to as “raw material solution”) to be processed in the solution processing facility of the present invention, normally, if the concentration of cyan ions exceeds 1 mg / L, it cannot be discharged. A typical target is 3.8 × 10 −5 mol / L or more.

このような原料溶液としては、通常は、産業廃液があてはまるが、具体的には、例えば、シアン化水素を含む燃料ガスを処理した産業廃液が挙げられる。中でも、燃料ガス中にシアン化水素だけでなく硫化水素も含む場合に施される、酸化還元触媒を添加する脱硫処理を経た産業廃液を用いると、別途酸化還元触媒を添加する手段を設けなくてもよい点において好ましい。   As such a raw material solution, an industrial waste liquid is usually applied. Specifically, for example, an industrial waste liquid obtained by treating a fuel gas containing hydrogen cyanide can be mentioned. In particular, when industrial waste liquid that has been subjected to desulfurization treatment that adds a redox catalyst, which is applied when the fuel gas contains not only hydrogen cyanide but also hydrogen sulfide, there is no need to separately provide a means for adding the redox catalyst. It is preferable in terms.

なお、燃料ガス中にシアン化水素だけでなく硫化水素も含む場合に施される、酸化還元触媒を用いる脱硫処理とは、例えば、炭酸ソーダ水溶液、苛性ソーダ、アンモニア性アルカリ水溶液等に微量のピクリン酸やキノン等の酸化還元触媒を溶解させた溶液を、吸収塔に循環させて硫化水素を吸収し、これを再生塔に送り、ピクリン酸やキノン等の酸化還元触媒としての触媒作用により硫化水素を空気酸化して硫黄や水溶性の塩として除去するプロセス挙げられる。   The desulfurization treatment using a redox catalyst performed when the fuel gas contains not only hydrogen cyanide but also hydrogen sulfide is, for example, a small amount of picric acid or quinone in sodium carbonate aqueous solution, caustic soda, ammoniacal alkaline aqueous solution or the like. A solution in which an oxidation-reduction catalyst such as benzene is dissolved is circulated to an absorption tower to absorb hydrogen sulfide, and this is sent to a regeneration tower, where the hydrogen sulfide is oxidized by air by catalytic action as an oxidation-reduction catalyst such as picric acid or quinone. And a process of removing it as sulfur or a water-soluble salt.

<多硫化物>
多硫化物の種類は、水溶性が良く、重金属を含まず、一分子中に2個以上の硫黄原子が鎖状に結合する化合物であれば特に制限されず、二硫化物〜五硫化物等が挙げられ、例えば、溶液として工業的に入手しやすい三硫化ナトリウムや四硫化ナトリウム、固形で入手可能な二硫化ナトリウム等が挙げられる。また、ナトリウム塩だけに限定されず、三硫化カルシウム、四硫化カルシウム、二硫化カルシウム等のカルシウム塩、三硫化カリウム、四硫化カリウム、二硫化カリウム等のカリウム塩、三硫化アンモニウム、四硫化アンモニウム、二硫化アンモニウム等のアンモニウム塩でもよい。また、これらの混合物であってもよい。
<Polysulfides>
The type of polysulfide is not particularly limited as long as it is a compound that has good water solubility, does not contain heavy metals, and has two or more sulfur atoms bonded in a chain form in one molecule, such as disulfide to pentasulfide. Examples thereof include sodium trisulfide and sodium tetrasulfide which are industrially easily available as a solution, and sodium disulfide which is available as a solid. Moreover, it is not limited only to sodium salt, calcium trisulfide, calcium tetrasulfide, calcium disulfide and other calcium salts, potassium trisulfide, potassium tetrasulfide, potassium disulfide and other potassium salts, ammonium trisulfide, ammonium tetrasulfide, An ammonium salt such as ammonium disulfide may be used. Moreover, these mixtures may be sufficient.

多硫化物の添加量は、シアン1モルに対し、0.3〜5モル(特に、四硫化ナトリウムの場合は0.3〜3モル、三硫化ナトリウムの場合は0.5〜5モル)とし、原料溶液中のシアンイオンの濃度が変動する場合は、その最大濃度に応じて添加量を調整することが好ましい。ただし、余剰の多硫化物や硫化物が残存することは避けがたい。   The amount of polysulfide added is 0.3 to 5 mol (especially 0.3 to 3 mol for sodium tetrasulfide and 0.5 to 5 mol for sodium trisulfide) with respect to 1 mol of cyanide. When the concentration of cyanide ions in the raw material solution varies, it is preferable to adjust the addition amount according to the maximum concentration. However, it is unavoidable that surplus polysulfide and sulfide remain.

<その他>
手段(1)は、原料溶液と多硫化物とを混合攪拌する手段を備えることが好ましい。これにより、より確実に、原料溶液中のシアンイオンを除去し、ロダンイオンに変換することができる。
<Others>
The means (1) preferably includes means for mixing and stirring the raw material solution and the polysulfide. Thereby, cyan ions in the raw material solution can be more reliably removed and converted to rhodan ions.

混合攪拌手段としては、特に制限はなく、攪拌機を用いて攪拌する手段(図1)、循環攪拌ポンプを用いて攪拌槽で攪拌する手段(図2)、スタティックミキサーを用いる手段(図3)等のいずれも可能である。   The mixing and stirring means is not particularly limited, and means for stirring using a stirrer (FIG. 1), means for stirring in a stirring tank using a circulating stirring pump (FIG. 2), means using a static mixer (FIG. 3), etc. Either of these is possible.

また、手段(1)は、原料溶液のロダン化反応後に残存する多硫化物や硫化物の還元性により低下する酸化還元電位Aを測定しつつ、該酸化還元電位Aにより、多硫化物の添加量を調整する手段を備えると、より好ましい(図4)。添加量の調整は、添加流量をカスケード制御しても、調節弁を直接制御して行ってもよい。これにより、多硫化物を必要以上に添加することを抑制できる。   Further, the means (1) measures the oxidation-reduction potential A that decreases due to the reducibility of the polysulfide and sulfide remaining after the rhandidation reaction of the raw material solution, and adds the polysulfide by the oxidation-reduction potential A. It is more preferable to provide means for adjusting the amount (FIG. 4). The addition amount may be adjusted by controlling the addition flow rate in cascade or by directly controlling the control valve. Thereby, adding polysulfide more than necessary can be suppressed.

上記説明した手段(1)を備えることにより、原料溶液中のシアンイオンをロダンイオンに変換することができる。つまり、本発明の製造方法又は処理方法における工程(1)を実行することができる。   By providing the means (1) described above, cyan ions in the raw material solution can be converted to rhodan ions. That is, step (1) in the manufacturing method or processing method of the present invention can be performed.

2.手段(2)
上記のロダン化により、原料溶液中のシアンイオンを低減することができるが、使用した多硫化物に由来する多硫化物イオンや硫化物イオンが残存するため、これを低減する手段と組合せなければ、実用には問題が残る。そのため、本発明の溶液処理設備は、上記の手段(2)を備える。この処理により、多硫化物や硫化物を無害な単体硫黄に変えることができる。
2. Means (2)
By the above rhandanization, cyanide ions in the raw material solution can be reduced. However, since polysulfide ions and sulfide ions derived from the used polysulfide remain, it must be combined with means for reducing this. The problem remains in practical use. Therefore, the solution processing facility of the present invention includes the above means (2). By this treatment, polysulfides and sulfides can be converted into harmless elemental sulfur.

<酸化還元触媒>
酸化還元触媒としては、燃料ガスの脱硫に使用可能なものがよい。つまり、燃料ガスを洗浄し、硫化水素を、酸素を含む気体により、酸化させられるものであればこの用途に応用でき、ピクリン酸、キノン、これらの誘導体等が好ましい。これらの酸化還元触媒は、1種単独で用いてもよいし、二種以上を組合せて用いてもよい。
<Redox catalyst>
A redox catalyst that can be used for desulfurization of fuel gas is preferable. That is, it can be applied to this application as long as it can clean the fuel gas and oxidize hydrogen sulfide with a gas containing oxygen, and picric acid, quinone, and derivatives thereof are preferable. These redox catalysts may be used singly or in combination of two or more.

なお、原料溶液が、酸化還元触媒を添加する脱硫工程を経た産業廃液である場合には、原料溶液中に既に含まれている酸化還元触媒をそのまま使用することができる。このため、この場合には、酸化還元触媒を別途添加しないことが好ましい。   When the raw material solution is an industrial waste liquid that has undergone a desulfurization step in which a redox catalyst is added, the redox catalyst already contained in the raw material solution can be used as it is. For this reason, in this case, it is preferable not to add a redox catalyst separately.

酸化還元触媒を別途添加する場合、酸化還元触媒の添加量は、ピクリン酸を使用する場合を例に取ると、ロダン化を経た原料溶液中に含まれる多硫化物イオン及び硫化物イオンのイオン換算での合計1モルに対して0.002〜0.3モル程度とすることが好ましい。この範囲の量とすることで、より確実に、多硫化物イオン及び硫化物イオンを低減し、悪臭も抑制することができる。なお、原料溶液が、酸化還元触媒を用いる脱硫工程からの産業廃液である場合には、通常、酸化還元触媒は、前記範囲の添加量含まれている。   When a redox catalyst is added separately, the amount of redox catalyst added is the equivalent of polysulfide ions and sulfide ions contained in the raw material solution that has undergone rhodanation, for example when picric acid is used. It is preferable to set it as about 0.002-0.3 mol with respect to 1 mol in total. By setting it as the quantity of this range, a polysulfide ion and sulfide ion can be reduced more reliably, and a malodor can also be suppressed. When the raw material solution is an industrial waste liquid from a desulfurization process using a redox catalyst, the redox catalyst is usually included in an addition amount in the above range.

<酸素を含む気体>
酸素を含む気体としては、有害物を含まないものであれば特に制限はなく、酸素を20モル%以上含む気体が好ましい。このような酸素を含む気体としては、空気、酸素富化空気等が好ましい。
<Gas containing oxygen>
The gas containing oxygen is not particularly limited as long as it does not contain harmful substances, and a gas containing 20 mol% or more of oxygen is preferable. As such a gas containing oxygen, air, oxygen-enriched air, or the like is preferable.

この酸素を含む気体を吹き込む際の流量は、残存多硫化物及び硫化物のイオウ換算での1モル当たり、酸素の量において0.5〜200モル程度が好ましく、2〜10モル程度がより好ましい。   The flow rate when the gas containing oxygen is blown is preferably about 0.5 to 200 mol, more preferably about 2 to 10 mol in terms of the amount of oxygen per mol of residual polysulfide and sulfide in terms of sulfur. .

また、酸素を含む気体を吹き込む時間は、上記の酸化還元触媒の存在下、ロダン化を経た原料溶液中の多硫化物イオン及び硫化物イオンを酸化除去できれば特に制限はないが、10分〜10時間程度が好ましい。   The time for blowing oxygen-containing gas is not particularly limited as long as the polysulfide ions and sulfide ions in the raw material solution that has undergone rhodadation can be oxidized and removed in the presence of the oxidation-reduction catalyst. About hours are preferred.

<その他>
ロダン化を経る前又は経た原料溶液に、酸化還元触媒は、別途添加してもよいが、上記のとおり、酸化還元触媒がロダン化を経た原料溶液に含まれている場合は別途添加しなくてもよい。
<Others>
The redox catalyst may be added separately to the raw material solution before or after undergoing rhodanation, but as described above, if the redox catalyst is contained in the raw material solution that has undergone rhodadanization, it may not be added separately. Also good.

また、酸素を含む気体を吹き込む手段としては、特に制限されない。   Further, the means for blowing the gas containing oxygen is not particularly limited.

例えば、気泡塔や気泡攪拌槽に酸素を含む気体を吹き込む手段であってもよいし(図1等)、循環攪拌ポンプで攪拌しつつ気泡攪拌層に酸素を含む気体を吹き込む手段であってもよい(図2)。また、ロダン化を経た原料溶液と酸素を含む気体とを、例えば予混合ノズル等を用いて予め混合し、激しく噴出する(図5)と、単に吹き込む場合よりも気液の接触効果が促進されるため好ましい。特に、設置場所の制限等から大型設備を設置できない場合には小型であることが好ましく、この場合循環攪拌ポンプで攪拌しつつ気泡攪拌層に酸素を含む気体を吹き込む手段、ロダン化を経た原料溶液と酸素を含む気体とを予混合ノズル等を用いて予め混合して激しく噴出する手段等が好ましい。   For example, a means for blowing a gas containing oxygen into a bubble column or a bubble stirring tank (FIG. 1 etc.) or a means for blowing a gas containing oxygen into a bubble stirring layer while stirring with a circulating stirring pump Good (Figure 2). Further, when the raw material solution that has undergone rhodanidization and a gas containing oxygen are mixed in advance using, for example, a premixing nozzle and ejected vigorously (FIG. 5), the contact effect between the gas and liquid is promoted more than when it is simply blown. Therefore, it is preferable. In particular, when large equipment cannot be installed due to restrictions on the installation location, etc., it is preferable that it is small. In this case, a means for blowing a gas containing oxygen into a bubble stirring layer while stirring with a circulating stirring pump, a raw material solution that has undergone rhodanation It is preferable to use a premixing nozzle or the like that premixes the gas containing oxygen and the gas with vigorous ejection.

酸化還元触媒を別途添加する場合には、手段(2)は、ロダン化を経た原料溶液の酸化により上昇していく酸化還元電位Bを測定しつつ、該酸化還元電位Bにより、酸素を含む気体の流量を調整する手段を備えると、より好ましい(図6)。気体の流量の調整は、気体の流量をカスケード制御しても、調節弁を直接制御して行ってもよい。これにより、より適切な流量の酸素を含む気体を吹き込むことができる。   When the oxidation-reduction catalyst is added separately, the means (2) measures the oxidation-reduction potential B that rises due to the oxidation of the raw material solution that has undergone rhodanation, and the oxygen-reduction potential B causes a gas containing oxygen. It is more preferable to provide a means for adjusting the flow rate of (Fig. 6). The adjustment of the gas flow rate may be performed by cascade control of the gas flow rate or by directly controlling the control valve. As a result, a gas containing oxygen at a more appropriate flow rate can be blown.

さらに、手段(2)は、手段(1)で調整した多硫化物の添加量1モルに対して、0.5モルの酸素を供給する酸素を含む気体の流量を最低値とするように、制御回路に制限を設けて酸素を含む気体の流量を調整する手段を備えると、より好ましい(図7)。これにより、酸素を含む気体の供給量をより適切に調節でき、手段(1)における多硫化物の添加量が変動しても、酸素の著しい不足や、それに伴う処理の悪化をより効果的に抑制することができる。   Furthermore, the means (2) is such that the flow rate of the gas containing oxygen for supplying 0.5 mol of oxygen is the minimum value with respect to 1 mol of the polysulfide added in the means (1). It is more preferable to provide means for adjusting the flow rate of the gas containing oxygen by limiting the control circuit (FIG. 7). Thereby, the supply amount of the gas containing oxygen can be adjusted more appropriately, and even if the addition amount of polysulfide in the means (1) fluctuates, a significant shortage of oxygen and the accompanying deterioration of treatment are more effectively performed. Can be suppressed.

上記説明した手段(2)を備えることにより、ロダン化を経た原料溶液中の多硫化物イオン及び硫化物イオンを低減することができ、悪臭も抑制することができる。つまり、本発明の製造方法又は処理方法における工程(2)を実行することができる。   By providing the above-described means (2), polysulfide ions and sulfide ions in the raw material solution that has undergone rhodanation can be reduced, and malodor can also be suppressed. That is, step (2) in the manufacturing method or processing method of the present invention can be executed.

このように、本発明によれば、シアンイオンを含む溶液から、多硫化物や硫化物の残留を抑制しつつ、また、臭気発生を防ぎつつ簡便に、シアンイオンを低減することができる。また、水分とシアン化水素を含むガスは、温度の変化等により凝縮水を発生することが多いが、当該ガスの輸送管道等で発生する凝縮水に含まれるシアン化水素を、本発明の溶液処理設備、溶液処理方法で処理した後に、生物処理等で処理することにより、被毒や臭気を抑制することができる。   As described above, according to the present invention, cyan ions can be easily reduced from a solution containing cyan ions while suppressing the remaining of polysulfides and sulfides and preventing the generation of odors. Further, a gas containing moisture and hydrogen cyanide often generates condensed water due to a change in temperature or the like, but the hydrogen cyanide contained in the condensed water generated in the gas transport pipe or the like is converted into the solution processing equipment, solution of the present invention. After processing with the processing method, poisoning and odor can be suppressed by processing with biological processing or the like.

なお、上記の手段(2)において、酸化還元触媒を用いた酸化除去の代わりに、多硫化物や硫化物を除去できる手法は種々挙げられるが、酸分解法を採用すると、酸性にするために大量の酸とその後の中和のためにやはり大量のアルカリを消費する、有害な硫化水素ガスの発生を伴う、原料溶液中に含まれるシアンイオン以外の成分によっては同時に分解して別の有毒ガスや沈殿物が発生することがある等の短所がある。   In the above-mentioned means (2), there are various methods for removing polysulfides and sulfides instead of oxidation removal using a redox catalyst. Another toxic gas that decomposes at the same time depending on components other than cyanide ions contained in the raw material solution, accompanied by generation of harmful hydrogen sulfide gas, which consumes a large amount of acid and also a large amount of alkali for subsequent neutralization And there are disadvantages such as precipitation.

また、金属塩を用いた沈殿分離法を採用する場合には、金属を含む有害なスラッジの発生を伴う等の短所がある。   Further, when the precipitation separation method using a metal salt is employed, there are disadvantages such as accompanied by generation of harmful sludge containing metal.

本発明では、上記のような短所はなく、簡便に処理することが可能である。特に、有毒ガスの発生や有害なスラッジの発生を引起こすことなく、簡便に原料溶液中のシアンイオンを除去することができる。   In the present invention, there is no shortcoming as described above, and it is possible to process easily. In particular, cyan ions in the raw material solution can be easily removed without causing generation of toxic gas or generation of harmful sludge.

実施例に基づいて、本発明を具体的に説明するが、本発明は、これらのみに限定されるものではない。   The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

[実施例1]
ロダン化工程
シアン化ナトリウム(NaCN)を1037mg/L含むモデル廃液100mLに、多硫化物として30重量%の四硫化ナトリウム水溶液を0.47mL(シアンイオンに対するモル比率:0.5)投入した。
[Example 1]
Rodanization Step To 100 mL of a model waste solution containing 1037 mg / L sodium cyanide (NaCN), 0.47 mL (molar ratio to cyan ion: 0.5) of a 30 wt% sodium tetrasulfide aqueous solution as a polysulfide was charged.

その結果、ロダン化工程後のシアン化ナトリウムの濃度は、0.08mg/Lに大きく低減した。   As a result, the sodium cyanide concentration after the rhodanation step was greatly reduced to 0.08 mg / L.

触媒酸化工程
シアン化ナトリウムを含む脱硫工程からの廃液であって、当該廃液に酸化還元触媒であるピクリン酸を約0.0003mol/L含むものを上記と同様の方法でロダン化処理した。
Catalytic oxidation step A waste liquid from a desulfurization step containing sodium cyanide and containing about 0.0003 mol / L of picric acid as a redox catalyst in the waste solution was subjected to a rhodanation treatment in the same manner as described above.

ロダン化工程後の硫化物イオンの濃度(多硫化物イオン及び硫化物イオンの合計)は691mg/Lであった。   The concentration of sulfide ions (total of polysulfide ions and sulfide ions) after the rodanization step was 691 mg / L.

ロダン化工程を経た廃液を通気瓶に採り、中和等の処理を施すことなく、空気で20L/hの流量で30分間曝気し、多硫化物イオン及び硫化物イオンを除去した。その結果、硫化物イオンの濃度は188mg/Lに大きく低減した。   The waste liquid that had undergone the rhoddanization step was taken into an aeration bottle and aerated with air at a flow rate of 20 L / h for 30 minutes without being subjected to treatment such as neutralization to remove polysulfide ions and sulfide ions. As a result, the concentration of sulfide ions was greatly reduced to 188 mg / L.

[実施例2]
ロダン化工程において、四硫化ナトリウム水溶液の投入量を0.70当量mLとしたこと以外は実施例1と同様にした。その結果、ロダン化工程後のシアン化ナトリウムの濃度は実施例1と同様、0.08mg/Lに大きく低減した。その他の結果も、実施例1と同様であった。
[Example 2]
In the rodanization step, the same procedure as in Example 1 was conducted except that the amount of sodium tetrasulfide aqueous solution added was 0.70 equivalent mL. As a result, the sodium cyanide concentration after the dandanization step was greatly reduced to 0.08 mg / L, as in Example 1. Other results were the same as in Example 1.

[比較例1]
実施例1で用いたモデル廃液に何らの処理も施さないものを比較例1とした。
[Comparative Example 1]
The model waste liquid used in Example 1 was treated as Comparative Example 1 without any treatment.

[比較例2]
実施例1において、触媒酸化工程の代わりに、硫酸添加による中和と硫化物の分解(生成する硫化水素は別途処理した)を行ったところ、中和による炭酸水素ナトリウムの析出により、熱交換器、計器等の閉塞を起こした。
[Comparative Example 2]
In Example 1, instead of the catalytic oxidation step, neutralization by addition of sulfuric acid and decomposition of sulfide (the generated hydrogen sulfide was treated separately) were carried out. Occurrence of blockage of the instrument, etc.

Claims (12)

(1)シアンイオンを含む溶液に多硫化物を添加する手段、及び
(2)その後、酸化還元触媒の存在下、酸素を含む気体を吹き込む手段
を備える、溶液処理設備であって、
前記手段(1)は、前記シアンイオンを含む溶液の酸化還元電位Aを測定しつつ、該酸化還元電位Aにより多硫化物の添加量を調整する手段を備え、且つ、
前記手段(2)は、前記手段(1)で調整した多硫化物の添加量1モルに対して、0.5モルの酸素を供給する酸素を含む気体の流量を最低値とするように、制御回路に制限を設けて酸素を含む気体の流量を調整する手段を備える、溶液処理設備
(1) A solution processing facility comprising means for adding polysulfide to a solution containing cyanide, and (2) means for blowing a gas containing oxygen in the presence of a redox catalyst thereafter .
The means (1) comprises means for adjusting the addition amount of polysulfide by the oxidation-reduction potential A while measuring the oxidation-reduction potential A of the solution containing cyanide, and
The means (2) has a minimum flow rate of a gas containing oxygen for supplying 0.5 mol of oxygen with respect to 1 mol of the polysulfide added in the means (1). A solution processing facility comprising means for limiting a control circuit and adjusting a flow rate of a gas containing oxygen .
前記シアンイオンを含む溶液が、産業廃液である、請求項1に記載の溶液処理設備。 The solution processing facility according to claim 1, wherein the solution containing cyanide is an industrial waste liquid. 前記酸化還元触媒が、ピクリン酸及び/又はキノンである、請求項1又は2に記載の溶液処理設備。 The solution processing facility according to claim 1 or 2, wherein the redox catalyst is picric acid and / or quinone. 前記シアンイオンを含む溶液が、前記酸化還元触媒を添加する脱硫工程を経た産業廃液であり、且つ、前記手段(2)は、前記酸化還元触媒を別途添加する手段を有しない、請求項1〜3のいずれかに記載の溶液処理設備。 The solution containing cyanide is an industrial waste liquid that has undergone a desulfurization step of adding the oxidation-reduction catalyst, and the means (2) does not have means for separately adding the oxidation-reduction catalyst. 4. The solution processing facility according to any one of 3. 前記手段(2)は、
前記多硫化物を添加した後の溶液の酸化還元電位Bを測定し、且つ、該酸化還元電位Bにより酸素を含む気体の流量を調整する手段を備える、
請求項1〜のいずれかに記載の溶液処理設備。
The means (2)
A means for measuring the oxidation-reduction potential B of the solution after adding the polysulfide and adjusting the flow rate of the gas containing oxygen by the oxidation-reduction potential B;
The solution treatment facility according to any one of claims 1-4.
前記手段(2)は、
前記多硫化物を添加した後の溶液と酸素を含む気体とを予め混合し、且つ、予混合ノズルにより激しく噴出する手段を備える、
請求項1〜のいずれかに記載の溶液処理設備。
The means (2)
A means for premixing a solution containing oxygen after addition of the polysulfide and a gas containing oxygen and ejecting vigorously by a premixing nozzle,
The solution treatment facility according to any one of claims 1-5.
(1)シアンイオンを含む溶液に多硫化物を添加する工程、及び
(2)その後、酸化還元触媒の存在下、酸素を含む気体を吹き込む工程
を備える、シアンイオンを低減した溶液の処理方法であって、
前記工程(1)は、前記シアンイオンを含む溶液の酸化還元電位Aを測定しつつ、該酸化還元電位Aにより多硫化物の添加量を調整し、且つ、
前記工程(2)は、前記工程(1)で調整した多硫化物の添加量1モルに対して、0.5モルの酸素を供給する酸素を含む気体の流量を最低値とするように、制御回路に制限を設けて酸素を含む気体の流量を調整する、溶液の処理方法
(1) A method for treating a solution with reduced cyan ions, comprising: adding a polysulfide to a solution containing cyan ions; and (2) then blowing a gas containing oxygen in the presence of a redox catalyst. There,
The step (1) adjusts the amount of polysulfide added by the redox potential A while measuring the redox potential A of the solution containing the cyan ion, and
In the step (2), with respect to 1 mol of the polysulfide added in the step (1), the flow rate of the gas containing oxygen for supplying 0.5 mol of oxygen is set to the minimum value. A method for treating a solution, wherein a control circuit is limited to adjust a flow rate of a gas containing oxygen .
前記シアンイオンを含む溶液が、産業廃液である、請求項に記載の処理方法。 The processing method according to claim 7 , wherein the solution containing cyanide is an industrial waste liquid. 前記酸化還元触媒が、ピクリン酸及び/又はキノンである、請求項又はに記載の処理方法。 The processing method according to claim 7 or 8 , wherein the redox catalyst is picric acid and / or quinone. 前記シアンイオンを含む溶液が、前記酸化還元触媒を添加する脱硫工程を経た産業廃液であり、且つ、工程(2)において前記酸化還元触媒を別途添加しない、請求項のいずれかに記載の処理方法。 Solution containing the cyanide ion is a industrial effluent through the desulfurization step of adding the redox catalyst, and, not separately adding the redox catalyst in the step (2), according to any one of claims 7-9 Processing method. 前記工程(2)において、前記溶液の酸化還元電位Bを測定し、且つ、該酸化還元電位Bにより酸素を含む気体の流量を調整する、請求項10のいずれかに記載の処理方法。 In the step (2), measuring the redox potential B of the solution, and to adjust the flow rate of gas containing oxygen by redox potential B, processing method according to any one of claims 7-10. 前記工程(2)において、前記溶液と酸素を含む気体とを予め混合し、激しく噴出する、請求項11のいずれかに記載の処理方法。 The processing method according to any one of claims 7 to 11 , wherein in the step (2), the solution and a gas containing oxygen are mixed in advance and ejected vigorously.
JP2013182104A 2013-09-03 2013-09-03 Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method Active JP6161472B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013182104A JP6161472B2 (en) 2013-09-03 2013-09-03 Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method
KR20130113595A KR20150026671A (en) 2013-09-03 2013-09-25 Processing method and processing equipment of a solution containing cyanide, and a method of producing a solution that reduces the cyanide ions by the method
CN201410409609.4A CN104418449A (en) 2013-09-03 2014-08-19 Processing device and processing method for cyanide-containing solution and method for manufacturing solution with less cyanic ion by use of method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182104A JP6161472B2 (en) 2013-09-03 2013-09-03 Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method

Publications (2)

Publication Number Publication Date
JP2015047580A JP2015047580A (en) 2015-03-16
JP6161472B2 true JP6161472B2 (en) 2017-07-12

Family

ID=52698058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182104A Active JP6161472B2 (en) 2013-09-03 2013-09-03 Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method

Country Status (3)

Country Link
JP (1) JP6161472B2 (en)
KR (1) KR20150026671A (en)
CN (1) CN104418449A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107126828A (en) * 2017-06-16 2017-09-05 长春黄金研究院 A kind of method of comprehensive utilization of solution of gold smelting plant relieving haperacidity flue gas
CN109336288A (en) * 2018-11-02 2019-02-15 长春黄金研究院有限公司 A kind of method that cyanide wastewater recycles
CN111983134B (en) * 2019-05-24 2022-08-05 中国石油天然气股份有限公司 Method for measuring contents of hydrogen sulfide and hydrogen polysulfide in liquid sulfur

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863966A (en) * 1971-12-09 1973-09-05
JPS523499B2 (en) * 1972-05-22 1977-01-28
JPS55106591A (en) * 1979-02-13 1980-08-15 Toray Ind Inc Method of treating coke-oven gas desulfurization waste liquid
JPS58289A (en) * 1981-06-25 1983-01-05 Sumikin Coke Co Ltd Removing method for hydrogen sulfide and hydrogen cyanide from gas liquor
US4737289A (en) * 1986-11-26 1988-04-12 Radian Corporation Process for wastewater treatment
JPH01123692A (en) * 1987-11-03 1989-05-16 Radian Corp Treatment of waste water
US5015396A (en) * 1990-09-11 1991-05-14 The Boc Group, Inc. Removal of cyanide from aqueous streams
JPH05285491A (en) * 1992-04-14 1993-11-02 Nippon Steel Corp Treatment of ammonical liquor of coke oven
DE4344598A1 (en) * 1993-12-24 1995-06-29 Degussa Method for controlling the detoxification of cyanide effluents
JP4043648B2 (en) * 1999-06-29 2008-02-06 Jfeケミカル株式会社 Coke oven gas desulfurization liquid regeneration method and waste air treatment method and coke oven gas desulfurization equipment
JP2004025039A (en) * 2002-06-26 2004-01-29 Jfe Chemical Corp Method for removing hydrogen sulfide from gas containing hydrogen sulfide
CN103253755A (en) * 2013-05-17 2013-08-21 招金矿业股份有限公司金翅岭金矿 Method for removing cyanide out of gold concentrate cyaniding waste water

Also Published As

Publication number Publication date
JP2015047580A (en) 2015-03-16
CN104418449A (en) 2015-03-18
KR20150026671A (en) 2015-03-11

Similar Documents

Publication Publication Date Title
TWI430833B (en) Treatment of waste gas
US8562828B2 (en) Wastewater treatment apparatus
CA1238995A (en) Process for waste treatment
US20040005262A1 (en) Process for reducing NOx in waste gas streams using chlorine dioxide
JP6161472B2 (en) Cyanogen-containing solution treatment equipment and treatment method, and method for producing a solution with reduced cyan ion by the method
KR102119234B1 (en) How to treat cyanide-containing wastewater
WO2016158781A1 (en) Wet flue gas desulfurization device and method of operating wet flue gas desulfurization device
JP6145682B2 (en) Method of treating complex cyanide-containing wastewater and treating agent used therefor
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP5637797B2 (en) Method and apparatus for treating wastewater containing persistent materials
RU2550189C1 (en) Method for deactivating cyano-containing solutions and pulps
JP2021053620A (en) Treatment method for cyanide-containing wastewater
KR20210033016A (en) Biological treatment of industrial alkaline streams
JP2021506563A (en) Wastewater treatment method
JP6578561B2 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP5990717B1 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP2005177758A (en) Biological deodorization method of odorant gas containing ammonia and apparatus
JP5160107B2 (en) Flue gas treatment method
JP4399854B2 (en) Treatment method of waste water containing hydrazine
JP4862876B2 (en) Method and apparatus for decomposing and removing ammonia nitrogen
JP4862234B2 (en) Method for treating waste water containing hydrazine and chelating organic compound
JPH11267666A (en) Treatment of water containing hydrogen peroxide and peracetic acid
JP2021192895A (en) Decomposition treatment method of hydrogen peroxide
JP5405164B2 (en) Method for treating wastewater containing nitrogen components
JP2022117162A (en) Waste water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250