JPH05285491A - Treatment of ammonical liquor of coke oven - Google Patents
Treatment of ammonical liquor of coke ovenInfo
- Publication number
- JPH05285491A JPH05285491A JP4094170A JP9417092A JPH05285491A JP H05285491 A JPH05285491 A JP H05285491A JP 4094170 A JP4094170 A JP 4094170A JP 9417092 A JP9417092 A JP 9417092A JP H05285491 A JPH05285491 A JP H05285491A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- activated sludge
- treatment
- treated water
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コークス炉で発生する
安水中のCOD成分を活性汚泥とオゾンを用いることに
より効率的に低減する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently reducing the COD component in the safe water generated in a coke oven by using activated sludge and ozone.
【0002】[0002]
【従来の技術】近年、表面化してきた地球環境問題は、
オゾン層の破壊、地球温暖化、酸性雨等の大気問題から
海洋汚染等水質問題、有害廃棄物問題と多岐に渡ってき
ている。特に水質汚染は、その基準達成率の遅れから最
近その対応策がクローズアップされてきている。2. Description of the Related Art In recent years, the global environmental problems that have come to the fore are:
From ozone depletion, global warming, acid rain and other atmospheric problems to ocean pollution such as water quality problems and hazardous waste problems. Especially for water pollution, countermeasures have recently been focused on due to the delay of the standard achievement rate.
【0003】鉄鋼業においても水質対応策は多数存在し
ているが、コークス炉で発生する安水は、その処理量の
多さ、石炭乾留物であることから多成分混在物であり、
その処理方法が難しいことから生物処理である活性汚泥
処理、濾過処理、凝集沈殿処理等の方法で対応してきて
いる。There are many water quality countermeasures in the steel industry as well, but the ammonium hydroxide produced in the coke oven is a multi-component mixture due to the large amount of treatment and coal dry distillation.
Since the treatment method is difficult, biological sludge treatment, filtration treatment, coagulation sedimentation treatment and the like have been adopted.
【0004】上記活性汚泥処理は、生物の酸化反応を利
用して処理することから反応時間が長く、かつ生物の順
応性から変動に弱いことから、処理槽の大型化、細かい
制御が非常に難しい等の問題点がある。従来からもこの
活性汚泥能力向上として、「コークスサンキュラー」第
36巻、第1号、1987年に、汚泥槽内での酸化還元
電位、溶存酸素を制御して活性汚泥の沈降性を制御する
方法が開示されている。また、「化学装置」10月号1
991年に、生物単体処理では難しい水質規制への対応
として、活性炭吸着により脱色、COD低減を行う方法
が開示されている。また、特開昭49−70457号
に、活性汚泥後の処理水へのオゾン吹き込みによる脱色
への利用方法が開示されており、「三菱電気技法」第4
6巻、第5号1972年にはシアン、フェノール排水へ
のオゾン吹き込みによる除去方法が開示されている。The above-mentioned activated sludge treatment requires a long reaction time because it uses the oxidation reaction of living organisms and is weak to fluctuations due to the adaptability of living organisms. Therefore, it is very difficult to make the treatment tank large and finely control it. There are problems such as. In order to improve the activated sludge capacity, the coke sanctuary, Vol. 36, No. 1, 1987 has been used to control the redox potential and dissolved oxygen in the sludge tank to control the sedimentation of the activated sludge. A method is disclosed. Also, "Chemical Equipment" October issue 1
In 991, a method of decolorizing and reducing COD by adsorbing activated carbon was disclosed as a measure to comply with water quality regulations that are difficult to treat with a simple organism. Further, Japanese Patent Laid-Open No. 49-70457 discloses a method of utilizing for decolorization by blowing ozone into the treated water after activated sludge, and "Mitsubishi Electric Technique", No. 4
Volume 6, No. 5, 1972 discloses a removal method by blowing ozone into cyan and phenol wastewater.
【0005】[0005]
【発明が解決しようとする課題】上記従来の方法におい
て記載されている活性汚泥を用いた生物処理では、導入
処理水の水質の大きな変動、つまり急激な環境変化には
活性汚泥の処理能力が追従ができないこと、環境順応が
遅れ、場合によっては死滅すること、また多成分系の同
時処理では処理値に限界が生じる等の問題が生じてい
る。In the biological treatment using activated sludge described in the above conventional method, the treatment capacity of activated sludge follows large fluctuations in the water quality of the introduced treated water, that is, rapid environmental changes. However, there are problems such as the inability to do so, the slow adaptation to the environment and the death in some cases, and the simultaneous treatment of multi-component systems, which limits the treated value.
【0006】この対応への一環として、例えば処理水を
活性汚泥処理後に活性炭で吸着処理する等の複合処理が
なされているが、いずれにしても処理能力が固定的な除
去法となるため、過渡的な最大処理値に対応するために
は大型な設備になったり、安水のような高分子を多量に
含んだ処理水を対象とする場合、細孔内の表面への物理
的な吸着を原理とする活性炭法においては、特に大きな
分子量のものは分子径も大きく吸着できない場合も生じ
る。[0006] As a part of this countermeasure, for example, a combined treatment such as treatment of the treated water with activated carbon after adsorption with activated sludge has been carried out. In order to support the maximum treatment value, large equipment is required, and when treating treated water containing a large amount of macromolecules such as cheap water, physical adsorption to the surface inside the pores should be avoided. In the activated carbon method, which is the principle, there is a case where particularly large molecular weight particles cannot be adsorbed due to their large molecular diameter.
【0007】また単純に活性汚泥処理後の処理水とか原
安水にオゾンを用いて酸化処理する場合、COD成分以
外のロダン、アンモニア等にオゾンが消費されたり、ま
た、シアン等の成分が新たに発生したりし、水中のCO
D成分の酸化による非COD成分化ができず効率的な除
去が不可能であった。Further, when the treated water after the activated sludge treatment or the raw water is subjected to the oxidation treatment by using ozone, the ozone is consumed by the rhodan, ammonia, etc. other than the COD component, and the component such as cyan is newly added. CO occurs in the water
Since the non-COD component could not be converted to the non-COD component by the oxidation of the D component, efficient removal was impossible.
【0008】本発明は安水中のCOD成分を活性汚泥処
理とオゾン処理を特定の条件下で適用することによっ
て、効率的に低減する方法を提供することを目的とした
ものである。An object of the present invention is to provide a method for efficiently reducing the COD component in the ammonium hydroxide by applying activated sludge treatment and ozone treatment under specific conditions.
【0009】[0009]
【課題を解決するための手段】本発明は、コークス炉で
発生する安水を活性汚泥処理し、次いでオゾン処理して
安水中のCOD成分を低減するに際し、導入する安水の
PHを8〜10の範囲内のほぼ一定値に管理すると共に
その活性汚泥処理槽内の酸化還元電位を150〜300
mvに制御して活性汚泥処理し、次いで酸化処理槽内で
上記PH6〜7の処理水にオゾンを添加、攪拌すること
を特徴とするコークス炉安水の処理方法である。According to the present invention, when reducing the COD component in the ammonium hydroxide by treating the ammonium hydroxide generated in the coke oven with activated sludge and then ozone treatment, the pH of the ammonium chloride introduced is 8 to 8. The oxidation-reduction potential in the activated sludge treatment tank is controlled to be within a range of 10 to 150-300.
It is a coke oven sewage treatment method characterized in that activated sludge treatment is carried out under mv control, and then ozone is added to the treated water of PH 6 to 7 and stirred in an oxidation treatment tank.
【0010】[0010]
【発明の作用】本発明は、まず、コークス炉から発生す
る安水にアルカリ水溶液、海水あるいは淡水を混合して
PHを8〜10の範囲内のほぼ一定値の処理水とするの
で後続する活性汚泥処理の負荷が過不足なく安定的に遂
行できる。上記ほぼ一定値というのはPHが8〜10の
範囲内においてそのPHが緩やかに変動するとしても急
激に変動しないということであり、具体的には、連続的
に供給される処理水のPHを8〜10の範囲内でその変
化幅を例えば±30%の範囲に管理するものである。According to the present invention, first, the ammonium hydroxide generated from the coke oven is mixed with an alkaline aqueous solution, sea water or fresh water to obtain a treated water having a substantially constant pH value in the range of 8 to 10. The sludge treatment load can be stably performed without excess or deficiency. The above-mentioned substantially constant value means that the pH does not change abruptly even if the pH fluctuates gently within the range of 8 to 10. Specifically, the pH of the continuously supplied treated water is The range of change within the range of 8 to 10 is managed within a range of ± 30%, for example.
【0011】また、PH8〜10の範囲内のほぼ一定値
に管理された処理水を活性汚泥処理する処理槽内には、
例えば散気管を用いて酸素源を供給するとかあるいはイ
ンペラー等で処理水表層部を攪拌することで酸素源であ
る空気を取り込むことによって活性汚泥処理槽内の酸化
還元電位を150〜300mvに制御して活性汚泥処理
するので、処理水中のロダンは2ppm以下に除去さ
れ、且つ処理水中のアンモニアは酸化処理されて亜硝酸
を10〜100ppm発生させることでアンモニア量を
低減すると共に処理水のPHを6〜7にすることがで
き、後続するオゾンによる酸化処理に適したPHの処理
水を準備できる。Further, in the treatment tank for treating the treated water, which is controlled to a substantially constant value within the range of pH 8 to 10, with the activated sludge,
For example, the oxygen reduction potential in the activated sludge treatment tank is controlled to 150 to 300 mv by supplying an oxygen source using an air diffuser or by agitating the surface layer of the treated water with an impeller or the like to take in air as the oxygen source. Since the activated sludge is treated by the method, rhodan in the treated water is removed to 2 ppm or less, and the ammonia in the treated water is oxidized to generate 10 to 100 ppm of nitrous acid, thereby reducing the amount of ammonia and reducing the pH of the treated water to 6%. Can be set to 7 and PH treated water suitable for the subsequent oxidation treatment with ozone can be prepared.
【0012】上記活性汚泥処理後の活性汚泥含有処理水
から活性汚泥を沈降分離した処理水にオゾンを添加して
酸化処理すると、最優先に酸化される亜硝酸の硝酸化で
処理水のPHを5〜6に低減できるのでオゾンのアンモ
ニアの酸化への消費回避、ロダンの酸化分解によるシア
ン化の回避を可能として、処理水中のCOD成分の選択
的酸化、処理水中へのシアン等毒性物質の混入を防止で
きる。When ozone is added to the treated water obtained by settling and separating the activated sludge from the treated sludge-containing treated water after the above-mentioned activated sludge treatment to oxidize, the pH of the treated water is increased by nitrification of nitrous acid, which is oxidized first. Since it can be reduced to 5-6, it is possible to avoid consumption of ozone to oxidation of ammonia, avoidance of cyanation by oxidative decomposition of rhodan, selective oxidation of COD component in treated water, and mixing of toxic substances such as cyanide into treated water. Can be prevented.
【0013】本発明において対象とする処理水である安
水のPHは通常8以上の値であるが、その値はコークス
炉操業条件、石炭条件によって安水の成分が変動し、し
ばしば高い値を示す現象が発生し活性汚泥処理を困難に
していた。例えば処理水のPHを8に管理して処理して
いる過程で急激にPHが10に変動すると活性汚泥処理
が乱れ、未消化CODが多量に残ったり、活性汚泥の一
部が死滅する。また、活性汚泥処理後のオゾンによる酸
化処理においてオゾンが大量に消費されるという問題が
発生する。In the present invention, the pH value of the treated water, which is the target treated water, is usually a value of 8 or more. However, the value of the component of the ammonium hydroxide varies depending on the coke oven operating conditions and coal conditions, and the value is often high. The phenomenon shown below occurred, making the activated sludge treatment difficult. For example, if the pH of the treated water suddenly fluctuates to 10 during the process of controlling the pH of the treated water to 8, the activated sludge treatment is disturbed, a large amount of undigested COD remains, and some of the activated sludge dies. In addition, there is a problem that a large amount of ozone is consumed in the oxidation treatment with ozone after the activated sludge treatment.
【0014】従って、本発明はPH8〜10の範囲内の
ほぼ一定値に管理するために、アルカリ水溶液、海水あ
るいは淡水を選択配合することによってその変動幅を可
能な範囲において小さくするものである。Therefore, according to the present invention, in order to control the pH to a substantially constant value within the range of 8 to 10, an alkaline aqueous solution, seawater or fresh water is selectively blended to reduce the fluctuation range within a possible range.
【0015】上記活性汚泥処理槽内の酸化還元電位は1
50mv未満になると活性汚泥が酸欠状態となって活性
度が低下する。一方、300mvを越えると過曝気とな
って活性汚泥の自己消化現象が発現すると共に亜硝酸が
過剰に生成し、後続する酸化処理工程におけるオゾンに
よる亜硝酸の優先酸化時にオゾンの消費量が増加する。The redox potential in the activated sludge treatment tank is 1
If it is less than 50 mv, the activated sludge becomes oxygen deficient and the activity is lowered. On the other hand, if it exceeds 300 mv, over-aeration will occur and the self-digestion phenomenon of activated sludge will occur, and nitrite will be excessively produced, and the consumption of ozone will increase during the preferential oxidation of nitrite by ozone in the subsequent oxidation treatment step. ..
【0016】従って、本発明は導入され処理水中に酸素
源を供給し酸化還元電位を150〜300mvに制御す
る。制御手段としては散気管から供給する空気量あるい
はインペラー回転数により調整することができ、当然両
手段を組み合わせて使用できる。Therefore, according to the present invention, an oxygen source is introduced into the treated water to control the redox potential to 150 to 300 mv. The control means can be adjusted by the amount of air supplied from the air diffuser or the number of rotations of the impeller, and naturally both means can be used in combination.
【0017】尚、上記処理槽内の微生物量は1日に処理
するCOD量と微生物槽体積の比率を1.0〜1.5に
調節することが好ましい。As for the amount of microorganisms in the treatment tank, it is preferable to adjust the ratio of the amount of COD to be treated per day and the volume of the microorganism tank to 1.0 to 1.5.
【0018】上記活性汚泥処理後のオゾンによる酸化処
理において、活性汚泥を分離した処理水は攪拌槽にてオ
ゾンと攪拌混合する。このオゾンによる酸化処理によっ
て、処理水中の亜硝酸が優先的に酸化されて硝酸とな
り、処理水中のPHは5〜6となり、この段階でCOD
の酸化分解処理が進行するので、オゾン添加量は処理水
中のCOD低減量に応じて調整するものである。In the oxidation treatment with ozone after the activated sludge treatment, the treated water from which the activated sludge has been separated is stirred and mixed with ozone in a stirring tank. By this oxidation treatment with ozone, the nitrous acid in the treated water is preferentially oxidized to nitric acid, and the PH in the treated water becomes 5 to 6, and at this stage COD
Since the oxidative decomposition treatment of 1 proceeds, the ozone addition amount is adjusted according to the COD reduction amount in the treated water.
【0019】上記オゾンによる酸化分解処理の効率をよ
り高めるためには処理水中のオゾン気泡径をできるだけ
小さくすることが望ましく、またオゾン気泡を処理水中
により長く滞留させるためにはインペラーを用いた数1
000回転の高速攪拌がよい。このオゾン酸化により、
オゾン消費量を最小で処理水中COD量を精度よく低減
できる。In order to further improve the efficiency of the oxidative decomposition treatment with ozone, it is desirable to make the diameter of ozone bubbles in the treated water as small as possible, and in order to make the ozone bubbles stay longer in the treated water, a number 1 using an impeller is used.
High speed stirring of 000 rpm is good. By this ozone oxidation,
Ozone consumption can be minimized and COD amount in treated water can be accurately reduced.
【0020】また、オゾンの利用効率を更に高める手段
としては、図1に示すように、上記攪拌処理手段を備え
たオゾン酸化処理槽を多段に、例えば2槽設置し、第1
槽に供給し、酸化処理後に第1槽から排出されたオゾン
18を第2槽に供給することにより、オゾンの利用率が
高まると共に過渡的なCOD変化時のオゾン吹き込み量
調節が容易となる。As a means for further increasing the utilization efficiency of ozone, as shown in FIG. 1, an ozone oxidation treatment tank equipped with the agitation treatment means is provided in multiple stages, for example, two tanks are installed.
By supplying the ozone 18 discharged from the first tank to the second tank after being supplied to the tank and being oxidized, the utilization rate of ozone is increased and the amount of ozone blown in at the time of a transient COD change becomes easy.
【0021】以上のように本発明は、コークス炉から発
生する安水の成分変動に対して、活性汚泥処理において
平均的に処理水中COD量を低減し、その処理水のオゾ
ン処理により過渡的なCOD変化に対応できるので、い
かなるコークス炉操業での安水成分が変化しても常に安
水中のCOD量を一定値以下に制御できる。As described above, according to the present invention, the COD amount of the treated water is reduced on average in the activated sludge treatment against the fluctuation of the component of the ammonium hydroxide generated from the coke oven, and the transition of the treated water by the ozone treatment is performed transiently. Since the COD change can be dealt with, the COD amount in the safe water can always be controlled to be equal to or less than a certain value even if the safe water component in any coke oven operation changes.
【0022】以下、本発明を図面にもとづいて具体的に
説明する。図2は本発明を実施する処理フローの一例の
説明図である。The present invention will be described in detail below with reference to the drawings. FIG. 2 is an explanatory diagram of an example of a processing flow for implementing the present invention.
【0023】コークス炉1で発生したコークス炉ガスを
配管2によりクーラー3に導き、アンモニア、硫化物、
シアン化物、無機化合物、フェノール等の有機物を含ん
だガス液として配管4により原安水タンク5に貯留す
る。この原安水はポンプ6にて配管7を通し蒸留塔8で
大部分のアンモニア、シアン化合物、硫化水素等が除去
される。この安水に海水あるいは水と混合してそのPH
を8〜10の範囲内でほぼ一定値に調整された処理水は
ポンプ9で配管10を通し活性汚泥処理槽12に導入す
る。The coke oven gas generated in the coke oven 1 is led to the cooler 3 through the pipe 2 to remove ammonia, sulfide,
A gas liquid containing an organic substance such as cyanide, an inorganic compound, and phenol is stored in the raw sewage water tank 5 through the pipe 4. A large amount of ammonia, cyanide compounds, hydrogen sulfide, etc. are removed from the raw water by a distillation column 8 through a pipe 7 by a pump 6. PH mixed with seawater or water
The treated water adjusted to a substantially constant value within the range of 8 to 10 is introduced into the activated sludge treatment tank 12 through the pipe 10 by the pump 9.
【0024】処理槽12内には活性汚泥を槽当たりの1
日のCOD処理量比1.0〜1.5に調節した状態で、
空気配管13にて槽12内の酸化還元電位を150〜3
00mvになるように空気を導入する。この空気の処理
槽12内の活性汚泥への供給法は上記配管による導入方
式だけでなくインペラー等(図示せず)による空気の巻
き込みを利用した方法でもよい。The activated sludge in the treatment tank 12 is 1 per tank.
With the daily COD processing amount ratio adjusted to 1.0 to 1.5,
The redox potential in the tank 12 is adjusted to 150 to 3 by the air pipe 13.
Air is introduced so that the pressure becomes 00 mv. The method of supplying the air to the activated sludge in the treatment tank 12 may be not only the introduction method using the above-mentioned piping but also a method using air entrainment by an impeller or the like (not shown).
【0025】上記活性汚泥処理された処理水を配管14
で沈降槽15に導き、活性汚泥と処理水を分離する。分
離された処理水は配管16にてオゾン攪拌槽17に導入
され、オゾン18と共に攪拌機19にて攪拌される。こ
の際の攪拌機回転数はオゾン気泡径が1mm以下且つ滞
留時間が5分程度もてるようにすることが望まれる。ま
た温度は30℃程度が好ましい。The treated water treated with the activated sludge is piped 14
Is introduced into the settling tank 15 to separate the activated sludge from the treated water. The separated treated water is introduced into the ozone stirring tank 17 through the pipe 16 and stirred with the ozone 18 by the stirrer 19. At this time, the number of rotations of the stirrer is preferably such that the ozone bubble diameter is 1 mm or less and the residence time is about 5 minutes. The temperature is preferably about 30 ° C.
【0026】図1はオゾン18による酸化処理槽17を
二つ配置した態様を示しており、第1槽に処理水とオゾ
ンが導入されインペラー19で高速攪拌され酸化処理が
進行する。第1槽から抜き出された処理水は配管16で
第2槽に導入される。一方第1槽から抜き出されたオゾ
ンを含有する排気は第2槽に導入される。この排気には
新たにオゾンを添加してその酸化能を調整できる。FIG. 1 shows a mode in which two oxidation treatment tanks 17 for ozone 18 are arranged. Treated water and ozone are introduced into the first tank, and the impeller 19 agitates them at high speed to proceed with the oxidation treatment. The treated water extracted from the first tank is introduced into the second tank through the pipe 16. On the other hand, the exhaust gas containing ozone extracted from the first tank is introduced into the second tank. Ozone can be adjusted by newly adding ozone to this exhaust gas.
【0027】上記酸化処理された処理水は、排水溝等の
排水設備(図示せず)に導かれ処理される。The treated water that has been subjected to the oxidation treatment is guided to a drainage facility (not shown) such as a drainage channel for treatment.
【0028】[0028]
【実施例】コークス炉安水をPHを9程度、水温を30
度になるように希釈水、蒸気等で調節した後、活性汚泥
槽に導き、活性汚泥槽内の活性汚泥量を槽出口堰高さ、
排出管絞り等で活性汚泥槽当たりの1日のCOD処理量
比を1.0〜1.5程度になるように調節し、かつ活性
汚泥槽へ散気管により酸素源を供給し酸化還元電位15
0〜250mvになるように調節して試験した。[Example] PH of coke oven is 9 and water temperature is 30
After adjusting with diluting water, steam, etc. to the desired degree, guide it to the activated sludge tank, and adjust the amount of activated sludge in the activated sludge tank to the tank outlet weir height,
Adjust the daily COD treatment amount ratio per activated sludge tank to about 1.0 to 1.5 by squeezing the discharge pipe, etc., and supply an oxygen source to the activated sludge tank with a diffuser pipe to reduce the redox potential 15
The test was carried out by adjusting to 0 to 250 mV.
【0029】その結果を第1表に示す。試験No.1及
び2は本発明例であって、一定オゾン量でのCOD低減
かつロダンの低減、シアンなどの発生を制御ができてお
り効率的な安水の処理が行えた。尚、No.3は比較例
でCOD、ロダンの低減が悪く、またシアンの発生が見
られた。The results are shown in Table 1. Test No. 1 and 2 are examples of the present invention, in which COD reduction and rhodane reduction at a constant ozone amount and generation of cyan and the like can be controlled, and efficient water treatment can be performed. Incidentally, No. No. 3 is a comparative example, in which COD and rhodane were poorly reduced, and cyan was generated.
【0030】[0030]
【表1】 [Table 1]
【図1】処理水とオゾンを攪拌混合する2槽式装置の説
明図。FIG. 1 is an explanatory view of a two-tank type device for stirring and mixing treated water and ozone.
【図2】本発明を実施する処理フローの一例の説明図。FIG. 2 is an explanatory diagram of an example of a processing flow for implementing the present invention.
1…コークス炉 2,4…ガス配管 3…クーラー 5…安水タンク 6…ポンプ 7…配管 8…蒸留塔 9…ポンプ 10…配管 11…希釈水 12…活性汚泥処理槽 13…空気供給管 14…配管 15…沈降槽 16…配管 17…混合槽 18…オゾン 19…インペラー 1 ... Coke oven 2, 4 ... Gas piping 3 ... Cooler 5 ... Anhydrous tank 6 ... Pump 7 ... Piping 8 ... Distillation tower 9 ... Pump 10 ... Piping 11 ... Diluting water 12 ... Activated sludge treatment tank 13 ... Air supply pipe 14 ... Piping 15 ... Settling tank 16 ... Piping 17 ... Mixing tank 18 ... Ozone 19 ... Impeller
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 A 8515−4D (72)発明者 山口彰一 東海市東海町5−3 新日本製鐵株式会社 名古屋製鐵所内Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication C02F 9/00 A 8515-4D (72) Inventor Shoichi Yamaguchi 5-3 Tokai-cho, Tokai City Nippon Steel Corporation Inside Nagoya Steel Works
Claims (1)
理し、次いでオゾン処理して安水中のCOD成分を低減
するに際し、導入する安水のPHを8〜10の範囲内の
ほぼ一定値に管理すると共にその活性汚泥処理槽内の酸
化還元電位を150〜300mvに制御して活性汚泥処
理し、次いで酸化処理槽内で上記PH6〜7の処理水に
オゾンを添加、攪拌することを特徴とするコークス炉安
水の処理方法。1. The pH of the ammonium hydroxide introduced when the ammonium hydroxide generated in the coke oven is treated with activated sludge and then treated with ozone to reduce the COD component in the ammonium hydroxide, is a substantially constant value within the range of 8 to 10. It is characterized by controlling the oxidation-reduction potential in the activated sludge treatment tank to 150 to 300 mv and treating the activated sludge, and then adding ozone to the treated water of PH6 to 7 in the oxidation treatment tank and stirring. Method of treating coke oven sewage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4094170A JPH05285491A (en) | 1992-04-14 | 1992-04-14 | Treatment of ammonical liquor of coke oven |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4094170A JPH05285491A (en) | 1992-04-14 | 1992-04-14 | Treatment of ammonical liquor of coke oven |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05285491A true JPH05285491A (en) | 1993-11-02 |
Family
ID=14102880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4094170A Pending JPH05285491A (en) | 1992-04-14 | 1992-04-14 | Treatment of ammonical liquor of coke oven |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05285491A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015047580A (en) * | 2013-09-03 | 2015-03-16 | 大阪ガスエンジニアリング株式会社 | Treatment equipment and treatment method for cyanogen-containing solution and method for producing solution having reduced cyanogen ions by the method |
CN106745949A (en) * | 2015-11-25 | 2017-05-31 | 衡阳市锦轩化工有限公司 | A kind of ADC foaming agents wastewater treatment equipment |
CN108911440A (en) * | 2018-09-20 | 2018-11-30 | 河南小威环境科技有限公司 | A kind of method and system handling coking wastewater |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5061059A (en) * | 1973-10-02 | 1975-05-26 | ||
JPS58202097A (en) * | 1982-05-13 | 1983-11-25 | Nippon Steel Corp | Treatment of ammonia liquor with activated sludge |
JPH03275198A (en) * | 1990-03-25 | 1991-12-05 | Asahi Kagaku Kenkyusho:Kk | Treatment of photographic waste solution |
-
1992
- 1992-04-14 JP JP4094170A patent/JPH05285491A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5061059A (en) * | 1973-10-02 | 1975-05-26 | ||
JPS58202097A (en) * | 1982-05-13 | 1983-11-25 | Nippon Steel Corp | Treatment of ammonia liquor with activated sludge |
JPH03275198A (en) * | 1990-03-25 | 1991-12-05 | Asahi Kagaku Kenkyusho:Kk | Treatment of photographic waste solution |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015047580A (en) * | 2013-09-03 | 2015-03-16 | 大阪ガスエンジニアリング株式会社 | Treatment equipment and treatment method for cyanogen-containing solution and method for producing solution having reduced cyanogen ions by the method |
CN106745949A (en) * | 2015-11-25 | 2017-05-31 | 衡阳市锦轩化工有限公司 | A kind of ADC foaming agents wastewater treatment equipment |
CN108911440A (en) * | 2018-09-20 | 2018-11-30 | 河南小威环境科技有限公司 | A kind of method and system handling coking wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4780552B2 (en) | Biological wastewater treatment method | |
JP4632356B2 (en) | Biological nitrogen removal method and system | |
JPS5933439B2 (en) | Microbiological wastewater treatment equipment for nitrogenous wastewater | |
JP2017144402A (en) | Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated | |
CN104370418A (en) | Treatment method of chemical sewage | |
KR20140063454A (en) | Apparatus and method for treatment wastewater | |
JP5984137B2 (en) | Water treatment apparatus and water treatment method | |
US3876535A (en) | Hydrogen sulfide removal from waste fluid | |
EP0275538B1 (en) | Method and apparatus for biological purification of wastewater with no excess activated sludge | |
JPH05285491A (en) | Treatment of ammonical liquor of coke oven | |
JP5095882B2 (en) | Waste nitric acid treatment method | |
JP2000070989A (en) | Method and apparatus removing nitrogen in waste water | |
JPS6038095A (en) | Treatment of organic sewage | |
KR100935022B1 (en) | Apparatus for purifying waste water | |
JP2007222830A (en) | Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it | |
JP4786678B2 (en) | Organic wastewater treatment method | |
JPS60896A (en) | Treating process for night soil | |
Kamenev11 et al. | Aerobic bio-oxidation combined with ozonation in the treatment of landfill leachates | |
CN208071543U (en) | A kind of chemical wastewater treatment system | |
JPS6350078B2 (en) | ||
JPS6358639B2 (en) | ||
CN115583749A (en) | Process for removing cyanide in blast furnace gas washing turbid circulating wastewater | |
CN117228881A (en) | Microwave catalytic oxidation method for treating refractory wastewater | |
CN113603312A (en) | Comprehensive treatment system and treatment method for high-ammonia-nitrogen wastewater difficult to biodegrade | |
CN118591513A (en) | Method and system for water treatment using improved advanced oxidation technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19961203 |