JP2019171321A - Waste water treatment system and waste water treatment method - Google Patents

Waste water treatment system and waste water treatment method Download PDF

Info

Publication number
JP2019171321A
JP2019171321A JP2018064350A JP2018064350A JP2019171321A JP 2019171321 A JP2019171321 A JP 2019171321A JP 2018064350 A JP2018064350 A JP 2018064350A JP 2018064350 A JP2018064350 A JP 2018064350A JP 2019171321 A JP2019171321 A JP 2019171321A
Authority
JP
Japan
Prior art keywords
tank
sludge
activated sludge
wastewater
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018064350A
Other languages
Japanese (ja)
Other versions
JP7088715B2 (en
Inventor
佐藤 峰彦
Minehiko Sato
峰彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2018064350A priority Critical patent/JP7088715B2/en
Publication of JP2019171321A publication Critical patent/JP2019171321A/en
Application granted granted Critical
Publication of JP7088715B2 publication Critical patent/JP7088715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

To provide reduction of wastewater treatment load and improvement of wastewater treatment capacity.SOLUTION: A wastewater treatment system that separates the wastewater flowing into an activated sludge tank into treated water purified by biological treatment and activated sludge by biologically treating pollutants in the wastewater with the activated sludge, includes a sludge storage tank that stores the separated activated sludge in an aerated state, a sludge adsorption tank into which the activated sludge stored in the sludge storage tank and the wastewater before flowing into the activated sludge tank flow, and which adsorbs the pollutants in the wastewater onto the activated sludge flowed from the sludge adsorption tank, and discharge means that discharges the activated sludge having the pollutants in the wastewater adsorbed thereto.SELECTED DRAWING: Figure 1

Description

本発明は、排水処理システム及び排水処理方法に関する。   The present invention relates to a wastewater treatment system and a wastewater treatment method.

排水処理方法の一つとして、微生物を含む活性汚泥に、曝気により酸素を与え、排水中の汚濁物質を餌として分解させる活性汚泥法が知られている。汚濁物質(有機物)を処理する曝気槽(活性汚泥槽ともいう)では、流入してくる汚濁物質の量(以下、汚濁負荷ともいう)が増加すると、活性汚泥槽で微生物が有機物を分解するまでの滞留時間が長くなり、曝気による消費エネルギーが増加する。また、汚濁負荷が上がると、微生物の増殖によって不要となる余剰汚泥は増加する。これに対し、余剰汚泥の減容化を図る技術が提案されている(例えば、特許文献1を参照)。   As one of wastewater treatment methods, there is known an activated sludge method in which oxygen is given to activated sludge containing microorganisms by aeration, and pollutants in the wastewater are decomposed as feed. In an aeration tank (also called activated sludge tank) that treats pollutants (organic substances), if the amount of inflowing pollutants (hereinafter also referred to as pollution load) increases, until microorganisms decompose organic substances in the activated sludge tank The residence time becomes longer and the energy consumption due to aeration increases. Moreover, when the pollution load increases, excess sludge that becomes unnecessary due to the growth of microorganisms increases. On the other hand, a technique for reducing the volume of excess sludge has been proposed (see, for example, Patent Document 1).

特開2005−28265号公報JP 2005-28265 A

余剰汚泥の減容化が図られても、汚濁負荷が下がらなければ、排水処理時間は短縮されず、曝気による消費エネルギーは抑制されない。また、排水処理施設において処理可能な汚濁負荷は、活性汚泥槽の大きさに依存するため、既存の排水処理施設において排水処理能力を向上させることは、困難な可能性がある。新設の排水処理施設においても、汚濁負荷に応じた大きさの活性汚泥槽が設置されるため、施設の縮小化は困難な場合がある。   Even if the volume of excess sludge is reduced, the wastewater treatment time is not shortened and the energy consumed by aeration is not suppressed unless the pollution load is reduced. Further, since the pollution load that can be treated in the wastewater treatment facility depends on the size of the activated sludge tank, it may be difficult to improve the wastewater treatment capacity in the existing wastewater treatment facility. Even in a new wastewater treatment facility, since an activated sludge tank having a size corresponding to the pollution load is installed, it may be difficult to reduce the size of the facility.

そこで、本発明は、排水処理の負荷を低減し、排水処理能力を向上させる技術を提供することを目的とする。   Then, an object of this invention is to provide the technique which reduces the load of waste water treatment and improves waste water treatment capacity.

本発明は、上記課題を解決するため、活性汚泥槽において排水の生物処理に使用された活性汚泥を曝気状態で滞留させ、飢餓状態とした活性汚泥を使用して、活性汚泥槽における生物処理前の排水から、有機物の一部を除去することにした。飢餓状態は、活性汚泥が死滅しない程度に曝気をすることにより、餌となる汚濁物質が消費された状態である。   In order to solve the above-mentioned problems, the present invention uses activated sludge that has been aerated to retain activated sludge used for biological treatment of wastewater in the activated sludge tank, before the biological treatment in the activated sludge tank. It was decided to remove some organic matter from the wastewater. The starvation state is a state in which the pollutant serving as food is consumed by aeration to such an extent that the activated sludge does not die.

詳細には、本発明は、活性汚泥槽に流入する排水を、排水中の汚濁物質を活性汚泥により分解して生物処理し、生物処理によって浄化された処理水と活性汚泥とに分離する排水処理システムは、分離された活性汚泥を曝気状態で貯留する汚泥貯留槽と、汚泥貯留槽に貯留された活性汚泥及び活性汚泥槽に流入する前の排水が流入し、排水中の汚濁物質を、汚泥貯留槽から流入した活性汚泥に吸着させる汚泥吸着槽と、排水中の汚濁物質を吸着した活性汚泥を排出する排出手段と、を備える。   Specifically, the present invention is a wastewater treatment in which wastewater flowing into an activated sludge tank is biologically treated by decomposing pollutants in the wastewater with activated sludge and separated into treated water and activated sludge purified by biological treatment. The system consists of a sludge storage tank that stores the separated activated sludge in an aerated state, activated sludge stored in the sludge storage tank, and wastewater before flowing into the activated sludge tank. A sludge adsorption tank for adsorbing the activated sludge flowing in from the storage tank; and a discharge means for discharging the activated sludge adsorbing the pollutant in the waste water.

上記の排水処理システムは、排水中の汚濁物質を活性汚泥槽で生物処理し、活性汚泥槽から分離された活性汚泥を、汚泥貯留槽において曝気状態で貯留する。活性汚泥槽から分離された活性汚泥は、汚泥貯留槽で曝気することにより飢餓状態となる。飢餓状態となった活性汚泥は、汚泥吸着槽に送出され、排水中の汚濁物質を吸着するために利用される。排水処理システムは、活性汚泥槽で生物処理をする前に、汚泥吸着槽において飢餓状態の活性汚泥に、排水中の汚濁物質を吸着させる。汚泥吸着槽において汚濁物質を吸着した活性汚泥は、余剰汚泥として系外に排出され、排水の生物処理系には戻されずに廃棄される
。汚泥吸着槽では、排水中の汚濁物質の約40%から80%は、飢餓状態の活性汚泥に吸着され除去される。このため、活性汚泥槽に流入する排水中の汚濁物質の量は低減される。したがって、排水処理システムは、排水中の汚濁物質の処理可能負荷を増加させ、処理水質を向上させることができる。なお、処理可能負荷は、活性汚泥によって処理可能な排水中の汚濁物質の量である。汚濁物質の量は、BOD量(Biochemical oxygen demand、生物化学的酸素要求量)ともいう。
The above-described wastewater treatment system biologically treats pollutants in wastewater in an activated sludge tank, and stores activated sludge separated from the activated sludge tank in an aerated state in the sludge storage tank. The activated sludge separated from the activated sludge tank is starved by aeration in the sludge storage tank. The activated sludge that has become starved is sent to a sludge adsorption tank and used to adsorb pollutants in waste water. Prior to biological treatment in an activated sludge tank, the waste water treatment system adsorbs pollutants in the waste water to the activated sludge in a starved state in the sludge adsorption tank. The activated sludge that has adsorbed the pollutants in the sludge adsorption tank is discharged out of the system as surplus sludge and discarded without being returned to the biological treatment system of waste water. In the sludge adsorption tank, about 40% to 80% of the pollutants in the waste water are adsorbed and removed by the activated sludge in the starved state. For this reason, the quantity of the pollutant in the waste_water | drain flowing into an activated sludge tank is reduced. Therefore, the wastewater treatment system can increase the treatable load of pollutants in the wastewater and improve the quality of treated water. In addition, the load which can be processed is the quantity of the pollutant in the waste water which can be processed with activated sludge. The amount of the pollutant is also referred to as a BOD amount (Biochemical oxygen demand, biochemical oxygen demand).

上記の排水処理システムであれば、既存の排水処理施設において、活性汚泥槽の容積当たり、又は1日当たりの処理可能負荷を増加させることができる。また、新設の排水処理施設においても、活性汚泥槽の容積をより小さくすることが可能となる。   If it is said waste water treatment system, the load which can be processed per volume of an activated sludge tank or the day can be increased in the existing waste water treatment facility. In addition, even in a newly installed wastewater treatment facility, the volume of the activated sludge tank can be further reduced.

上記の排水処理システムは、飢餓状態である活性汚泥の初期吸着を利用して、排水中の汚濁物質を活性汚泥に吸着させ、余剰汚泥として系外に排出する。初期吸着は、活性汚泥が、排水と接触し、汚濁物質を吸着又は補足することで、排水中から汚濁物質を除去する現象であり、20から30分で汚濁物質の75%以上が減少する(参考文献:日本下水道事業団 JS技術開発情報メール いまさら訊けない下水道講座 No.2 <初期吸着>)。飢餓状態の活性汚泥は、飢餓状態でない活性汚泥よりも初期吸着能力が高く、より多くの汚濁物質を吸着する。排水処理システムは、汚濁物質を初期吸着の段階で系外に排出することで、活性汚泥槽における曝気量を減らし、消費エネルギーを削減することができる。   The wastewater treatment system uses the initial adsorption of the activated sludge in a starved state to adsorb pollutants in the wastewater to the activated sludge and discharge it as excess sludge outside the system. The initial adsorption is a phenomenon in which activated sludge comes into contact with wastewater and adsorbs or supplements the pollutant, thereby removing the pollutant from the wastewater. In 20 to 30 minutes, 75% or more of the pollutant is reduced ( Reference: Japan Sewerage Corporation JS Technology Development Information Mail Sewerage Course No. 2 <Initial Adsorption> The activated sludge in the starved state has a higher initial adsorption capacity than the activated sludge not in the starved state, and adsorbs more pollutants. The wastewater treatment system discharges pollutants out of the system at the initial adsorption stage, thereby reducing the amount of aeration in the activated sludge tank and reducing energy consumption.

なお、活性汚泥が飢餓状態か否かは、活性汚泥の呼吸速度により判断することができる。活性汚泥の呼吸速度は、例えば、汚泥を曝気して溶存酸素濃度を高めた後、曝気を停止して溶存酸素濃度の低下速度を測定することで判断可能である。溶存酸素濃度の低下が速いほど、活性汚泥の酸素消費速度(呼吸速度)も速く、活性汚泥が飢餓状態であると判断できる。上記の排水処理システムの汚泥貯留槽では、活性汚泥は飢餓状態となり、汚泥貯留槽内の有機物濃度も低いため、溶存酸素濃度の低下は遅くなる。即ち、汚泥貯留槽における活性汚泥の呼吸速度は遅くなる。一方、活性汚泥槽では、活性汚泥の酸素消費速度が速く、活性汚泥槽内の有機物濃度が高いため、溶存酸素濃度の低下は速くなる。即ち、活性汚泥槽における活性汚泥の呼吸速度は速くなる。   Whether or not the activated sludge is starved can be determined from the respiration rate of the activated sludge. The respiration rate of activated sludge can be determined, for example, by aeration of sludge to increase the dissolved oxygen concentration, and then stop aeration and measure the rate of decrease in dissolved oxygen concentration. The faster the decrease in dissolved oxygen concentration, the faster the oxygen consumption rate (respiration rate) of the activated sludge, and it can be determined that the activated sludge is in a starved state. In the sludge storage tank of the above wastewater treatment system, activated sludge is starved and the concentration of organic matter in the sludge storage tank is low, so the decrease in dissolved oxygen concentration is delayed. That is, the respiration rate of activated sludge in the sludge storage tank is slow. On the other hand, in the activated sludge tank, the oxygen consumption rate of the activated sludge is high, and the organic substance concentration in the activated sludge tank is high, so that the decrease in the dissolved oxygen concentration is accelerated. That is, the activated sludge respiration rate in the activated sludge tank is increased.

また、排出手段は、排水中の汚濁物質を吸着した活性汚泥を沈殿させる沈殿槽を含むものであってもよい。このような排出手段であれば、汚泥吸着槽において曝気を止めることなく、汚泥吸着槽で曝気した排水を沈殿槽で沈殿させることができる。したがって、排出手段は、汚濁物質を吸着した汚泥を効率よく系外に排出することができる。   Further, the discharging means may include a sedimentation tank for precipitating activated sludge that has adsorbed the pollutant in the waste water. With such a discharge means, the waste water aerated in the sludge adsorption tank can be precipitated in the settling tank without stopping the aeration in the sludge adsorption tank. Therefore, the discharge means can efficiently discharge the sludge adsorbing the pollutant out of the system.

また、汚泥貯留槽は、分離された活性汚泥が飢餓状態となるまでの所定時間、分離された活性汚泥を貯留するものであってもよい。このような排水処理システムは、汚泥吸着槽に送出される活性汚泥を飢餓状態とすることで、汚泥吸着槽において初期吸着により除去される汚濁物質の量を増加させることができる。   Further, the sludge storage tank may store the separated activated sludge for a predetermined time until the separated activated sludge becomes starved. Such a wastewater treatment system can increase the amount of pollutant removed by initial adsorption in the sludge adsorption tank by starving the activated sludge sent to the sludge adsorption tank.

また、汚泥貯留槽は、隣接槽との間で活性汚泥が移動可能に複数の槽に仕切られ、複数の槽間の活性汚泥の流れをプラグフローとなるように構成するものであってもよい。このような汚泥貯留槽であれば、プラグフロー(押し出し流れ)方式により活性汚泥を段階的に飢餓状態とすることができる。汚泥貯留槽は、活性汚泥を段階的に飢餓状態とすることで、より飢餓状態が進んだ活性汚泥を汚泥吸着槽に送出することができる。   Further, the sludge storage tank may be configured to be partitioned into a plurality of tanks so that the activated sludge can move between adjacent tanks, and the flow of the activated sludge between the plurality of tanks becomes a plug flow. . If it is such a sludge storage tank, activated sludge can be made into a starvation state in steps by a plug flow (extrusion flow) system. The sludge storage tank can send activated sludge in a more starved state to the sludge adsorption tank by gradually turning the activated sludge into a starved state.

なお、本発明は、方法の側面から捉えることもできる。例えば、本発明は、活性汚泥槽に流入する排水を、排水中の汚濁物質を活性汚泥により分解して生物処理し、生物処理によって浄化された処理水と活性汚泥とに分離する排水処理方法であって、汚泥貯留槽で、
分離された活性汚泥を曝気状態で貯留する貯留工程と、汚泥貯留槽に貯留された活性汚泥及び活性汚泥槽に流入する前の排水が流入する汚泥吸着槽内で、排水中の汚濁物質を、汚泥貯留槽から流入した活性汚泥に吸着させる吸着工程と、排水中の汚濁物質を吸着した活性汚泥を排出する排出工程と、を含む、排水処理方法であってもよい。
The present invention can also be understood from the aspect of the method. For example, the present invention is a wastewater treatment method in which wastewater flowing into an activated sludge tank is biologically treated by decomposing pollutants in the wastewater with activated sludge and separated into treated water and activated sludge purified by biological treatment. In the sludge storage tank,
In the storage process of storing the separated activated sludge in an aerated state, the activated sludge stored in the sludge storage tank and the sludge adsorption tank into which the waste water before flowing into the activated sludge tank flows, the pollutants in the waste water are It may be a wastewater treatment method including an adsorption process for adsorbing activated sludge that has flowed in from a sludge storage tank and a discharge process for discharging activated sludge that adsorbs the pollutant in the wastewater.

本発明によれば、排水処理の負荷を低減し、排水処理能力を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the load of waste water treatment can be reduced and waste water treatment capacity can be improved.

図1は、実施形態に係る排水処理システムの構成を例示する図である。FIG. 1 is a diagram illustrating a configuration of a wastewater treatment system according to an embodiment. 図2は、排水処理システムの第1の変形例を示す図である。FIG. 2 is a diagram illustrating a first modification of the wastewater treatment system. 図3は、排水処理システムの第2の変形例を示す図である。FIG. 3 is a diagram showing a second modification of the waste water treatment system. 図4は、汚泥貯留槽の第1の変形例を示す図である。FIG. 4 is a view showing a first modification of the sludge storage tank. 図5は、汚泥貯留槽の第2の変形例を示す図である。FIG. 5 is a view showing a second modification of the sludge storage tank. 図6は、汚泥貯留槽の複数槽間の仕切りを例示する図である。FIG. 6 is a diagram illustrating partitioning between a plurality of sludge storage tanks. 図7は、汚泥貯留槽の複数槽間の仕切りを例示する図である。FIG. 7 is a diagram illustrating a partition between a plurality of sludge storage tanks. 図8は、比較例に係る排水処理システムの構成を例示する図である。FIG. 8 is a diagram illustrating the configuration of a wastewater treatment system according to a comparative example.

以下、本願発明の実施形態について説明する。以下に示す実施形態は、本願発明の一態様を例示したものであり、本願発明の技術的範囲を以下の態様に限定するものではない。   Hereinafter, embodiments of the present invention will be described. The embodiment described below exemplifies one aspect of the present invention, and does not limit the technical scope of the present invention to the following aspect.

図1は、実施形態に係る排水処理システムの構成を例示する図である。排水処理システム10は、汚泥貯留槽1、汚泥吸着槽2、沈殿槽A31、沈殿槽B32、活性汚泥槽4及び余剰汚泥槽5を備える。また、排水処理システム10が備える各槽は、経路L1からL7によって接続され、排水又は活性汚泥は、ポンプ等により各槽間を流通可能である。   FIG. 1 is a diagram illustrating a configuration of a wastewater treatment system according to an embodiment. The wastewater treatment system 10 includes a sludge storage tank 1, a sludge adsorption tank 2, a precipitation tank A31, a precipitation tank B32, an activated sludge tank 4, and an excess sludge tank 5. Moreover, each tank with which the waste water treatment system 10 is provided is connected by the path | routes L1 to L7, and waste_water | drain or activated sludge can distribute | circulate between each tank with a pump etc.

汚泥貯留槽1は、活性汚泥による生物処理によって浄化された排水から分離された活性汚泥を貯留する。汚泥貯留槽1は、曝気装置11を備え、汚泥貯留槽1内の活性汚泥を曝気する。曝気装置11は、汚泥貯留槽1内の活性汚泥が死滅しない程度に曝気をすればよい。活性汚泥が死滅しない程度は、汚泥貯留槽1内にわずかでも酸素が残っていればよく、曝気した酸素が微生物で消費しきれずに残っている状態である。具体的には、例えば、汚泥貯留槽1内の水中で計測した溶存酸素濃度計の表示値が0mg/L以外であればよい。汚泥貯留槽1内にわずかでも酸素が残っていれば、嫌気性菌の発生及び増殖は抑制され、好気菌の働きは促進される。   The sludge storage tank 1 stores activated sludge separated from wastewater purified by biological treatment with activated sludge. The sludge storage tank 1 includes an aeration device 11 and aerated activated sludge in the sludge storage tank 1. The aeration apparatus 11 should just aerate so that the activated sludge in the sludge storage tank 1 may not die. To the extent that the activated sludge does not die, it is sufficient that even a small amount of oxygen remains in the sludge storage tank 1, and the aerated oxygen remains without being consumed by microorganisms. Specifically, for example, the displayed value of the dissolved oxygen concentration meter measured in the water in the sludge storage tank 1 may be other than 0 mg / L. If even a small amount of oxygen remains in the sludge storage tank 1, the generation and growth of anaerobic bacteria are suppressed, and the action of aerobic bacteria is promoted.

汚泥貯留槽1内に残る汚濁物質は、活性汚泥によって分解されて更に減少する。活性汚泥は、汚泥貯留槽1に数時間(例えば、4時間)から数日間滞留することで、餌となる汚濁物質の減少により飢餓状態となる。飢餓状態となった活性汚泥は、経路L1を通り、排水が活性汚泥槽4に流入する経路上に設置された汚泥吸着槽2に送出される。   The pollutant remaining in the sludge storage tank 1 is further decomposed by being decomposed by the activated sludge. The activated sludge stays in the sludge storage tank 1 for several hours (for example, 4 hours) to several days, so that the activated sludge becomes starved due to a decrease in pollutant substances serving as food. The activated sludge in a starved state passes through the path L1 and is sent to the sludge adsorption tank 2 installed on the path where the wastewater flows into the activated sludge tank 4.

汚泥貯留槽1での滞留時間は、排水処理システム10の運転状況により異なる。排水処理システム10において、例えば、BOD容積負荷を0.1kg−BOD/m・dとして運転した場合、排水中の汚濁物質は2〜3時間程度でほぼ消費されて餌が無い状態となる。BOD容積負荷は、汚濁負荷を示す指標の1つであり、活性汚泥槽4の単位容積当たり1日に処理できるBOD量である。一方、BOD容積負荷を1kg−BOD/m・dで運転した場合、排水中の汚濁物質は、消費されるまで2日程度かかる場合がある。汚泥貯留槽1での滞留時間、即ち、汚泥が飢餓状態になるまでの時間は、BOD容積負荷等の排水処理システム10の運転状況により変動する。 The residence time in the sludge storage tank 1 varies depending on the operation status of the wastewater treatment system 10. In the waste water treatment system 10, for example, when the BOD volume load is operated at 0.1 kg-BOD / m 3 · d, the pollutant in the waste water is almost consumed in about 2 to 3 hours and there is no food. The BOD volumetric load is one of the indexes indicating the pollutant load, and is the BOD amount that can be processed per unit volume of the activated sludge tank 4 per day. On the other hand, when the BOD volumetric load is operated at 1 kg-BOD / m 3 · d, the pollutant in the wastewater may take about 2 days to be consumed. The residence time in the sludge storage tank 1, that is, the time until the sludge becomes starved varies depending on the operation status of the wastewater treatment system 10 such as the BOD volume load.

汚泥貯留槽1の容積は、排水中の汚濁物質が消費されて活性汚泥が飢餓状態となるまでの滞留時間を予め求めることで、汚泥吸着槽2に流入する排水量(排水中の汚濁物質の量)に応じて、当該時間滞留するように設定することができる。また、汚泥吸着槽2に流入する排水は、図示しない流量調整槽に滞留させ、汚泥吸着槽2に流入する排水量は、ポンプ等により略一定となるように調整することができる。   The volume of the sludge storage tank 1 is calculated based on the amount of wastewater flowing into the sludge adsorption tank 2 (the amount of pollutants in the wastewater) by obtaining the residence time until the activated sludge is starved after the pollutants in the wastewater are consumed. ) Can be set to stay for the time. Moreover, the waste water flowing into the sludge adsorption tank 2 is retained in a flow rate adjusting tank (not shown), and the amount of the waste water flowing into the sludge adsorption tank 2 can be adjusted to be substantially constant by a pump or the like.

汚泥貯留槽1は、図1の例では2槽に分割されるが、2槽に限られない。汚泥貯留槽1は、1槽であってもよく、3槽以上の分割構造としてもよい。汚泥貯留槽1を複数槽からなる分割構造とした場合、汚泥貯留槽1内の活性汚泥の流れは、プラグフロー(押し出し流れ)により、流入した活性汚泥が汚泥吸着槽2に送出されるようにしてもよい。複数槽間の活性汚泥の流れをプラグフローとすることで、飢餓状態がより進んだ活性汚泥を汚泥吸着槽2に供給することが可能となる。   Although the sludge storage tank 1 is divided | segmented into 2 tanks in the example of FIG. 1, it is not restricted to 2 tanks. The sludge storage tank 1 may be one tank or may have a divided structure of three or more tanks. When the sludge storage tank 1 is divided into a plurality of tanks, the activated sludge flow in the sludge storage tank 1 is sent to the sludge adsorption tank 2 by plug flow (extrusion flow). May be. By making the flow of activated sludge between a plurality of tanks into a plug flow, it becomes possible to supply activated sludge in a more starved state to the sludge adsorption tank 2.

また、汚泥貯留槽1は、複数槽からなる分割構造とした場合、一部の槽への曝気をしないものであってもよい。活性汚泥は、数時間程度曝気をしなくても死滅しない。このため、汚泥貯留槽1では、活性汚泥が死滅しない程度に曝気がされればよく、分割された槽のうち、滞留時間が数時間以上となる槽において曝気をすることで、汚泥の死滅を防ぐことが可能である。このような汚泥貯留槽1であれば、一部の槽への曝気をしないことから、曝気による消費エネルギーは削減される。   Moreover, when the sludge storage tank 1 has a divided structure composed of a plurality of tanks, the sludge storage tank 1 may not be aerated to some tanks. Activated sludge does not die even if it is not aerated for several hours. For this reason, in the sludge storage tank 1, it is sufficient that aeration is performed to such an extent that the activated sludge is not killed. Of the divided tanks, aeration is performed in a tank having a residence time of several hours or more, thereby eliminating the sludge. It is possible to prevent. With such a sludge storage tank 1, since aeration to some tanks is not performed, energy consumption by aeration is reduced.

また、汚泥貯留槽1は、複数槽からなる分割構造とした場合、一部の槽に撹拌手段を有するものであってもよい。このような汚泥貯留槽1であれば、活性汚泥の沈降を防ぎ、腐敗や死滅を抑制することができる。   Moreover, when the sludge storage tank 1 has a divided structure including a plurality of tanks, some tanks may have stirring means. If it is such a sludge storage tank 1, sedimentation of activated sludge can be prevented and decay and death can be suppressed.

汚泥吸着槽2は、流入する処理対象の排水、及び汚泥貯留槽1から送出される飢餓状態の活性汚泥を滞留させる。汚泥吸着槽2に流入する排水は、図示しない流量調整槽に一旦滞留し、ポンプ等により略一定の流量で汚泥吸着槽2に流入させることができる。汚泥吸着槽2は、曝気装置21を備え、槽内に滞留する排水及び活性汚泥を曝気する。活性汚泥は、汚泥吸着槽2に曝気状態で所定時間滞留することで、排水中の汚濁物質を吸着する。所定時間は、活性汚泥が汚濁物質を吸着して系外に排出することができればよく、活性汚泥が汚濁物質を生物処理によって分解する時間よりも短い時間であることが好ましい。所定時間は、例えば20分から60分である。活性汚泥が生物処理によって汚濁物質を分解する時間を見込まなくてもよいため、汚泥吸着槽2は、縮小化が可能となる。活性汚泥は、汚泥吸着槽2において、排水中の汚濁物質の40%から80%を吸着することが想定される。汚泥吸着槽2内で所定時間滞留した排水及び活性汚泥は、経路L2を通り、沈殿槽A31に送出される。   The sludge adsorption tank 2 retains the waste water to be treated which flows in and the starved activated sludge sent out from the sludge storage tank 1. The wastewater flowing into the sludge adsorption tank 2 once stays in a flow rate adjusting tank (not shown) and can be made to flow into the sludge adsorption tank 2 at a substantially constant flow rate by a pump or the like. The sludge adsorption tank 2 includes an aeration device 21 and aerates the waste water and activated sludge staying in the tank. The activated sludge stays in the sludge adsorption tank 2 in an aerated state for a predetermined time, thereby adsorbing the pollutant in the waste water. The predetermined time may be any time as long as the activated sludge can adsorb the pollutant and discharge it out of the system, and is preferably shorter than the time during which the activated sludge decomposes the pollutant by biological treatment. The predetermined time is, for example, 20 minutes to 60 minutes. Since it is not necessary to allow time for the activated sludge to decompose the pollutant by biological treatment, the sludge adsorption tank 2 can be reduced. The activated sludge is assumed to adsorb 40% to 80% of the pollutant in the wastewater in the sludge adsorption tank 2. The waste water and activated sludge that stayed in the sludge adsorption tank 2 for a predetermined time pass through the path L2 and are sent to the sedimentation tank A31.

沈殿槽A31は、汚泥吸着槽2から流入する汚濁物質を吸着した活性汚泥が混和した状態の排水から、汚濁物質を吸着した活性汚泥を沈降分離する。汚濁物質を吸着した活性汚泥は、沈殿槽A31内で沈降し、経路L3を通り余剰汚泥槽5に送出される。また、活性汚泥と分離され、汚濁物質の一部が除去された排水は、経路L4を通り、活性汚泥槽4に送出される。   The sedimentation tank A31 settles and separates the activated sludge adsorbing the pollutant from the wastewater mixed with the activated sludge adsorbing the pollutant flowing in from the sludge adsorption tank 2. The activated sludge that has adsorbed the pollutants settles in the sedimentation tank A31, and is sent to the surplus sludge tank 5 through the path L3. In addition, the wastewater separated from the activated sludge and from which part of the pollutant material has been removed passes through the path L4 and is sent to the activated sludge tank 4.

活性汚泥槽4は、沈殿槽A31から流入する排水を滞留させる。活性汚泥槽4は、曝気装置41を備え、槽内に滞留する排水及び活性汚泥を曝気する。活性汚泥は、排水中の汚濁物質を生物処理によって分解する。汚泥吸着槽2において、排水中の汚濁物質は既に40%から80%程度除去されているため、活性汚泥槽4は、容積を縮小し、曝気量を削減することが可能である。生物処理された排水及び活性汚泥は、経路L5を通り、沈殿槽B32に送出される。   The activated sludge tank 4 retains the waste water flowing from the settling tank A31. The activated sludge tank 4 includes an aeration device 41 and aerates the waste water and activated sludge staying in the tank. Activated sludge decomposes pollutants in wastewater by biological treatment. In the sludge adsorption tank 2, the pollutant in the waste water has already been removed by about 40% to 80%. Therefore, the activated sludge tank 4 can be reduced in volume and the amount of aeration can be reduced. The biologically treated waste water and activated sludge are sent to the sedimentation tank B32 through the path L5.

沈殿槽B32は、活性汚泥槽4から流入する排水と活性汚泥とを沈降分離する。沈殿槽B32内で沈降した活性汚泥の一部は、経路L6を通り、活性汚泥槽4に返送される。活性汚泥槽4に返送された活性汚泥は、活性汚泥槽4内の汚濁物質を、生物処理によって分解する。活性汚泥槽4に返送されない活性汚泥は、経路L7を通り、汚泥貯留槽1に送出される。沈殿槽B32において活性汚泥と沈降分離された上澄みは、排水処理システム10による処理水として得られる。   The sedimentation tank B32 separates and separates the waste water flowing from the activated sludge tank 4 and the activated sludge. Part of the activated sludge that has settled in the sedimentation tank B32 passes through the path L6 and is returned to the activated sludge tank 4. The activated sludge returned to the activated sludge tank 4 decomposes the pollutant in the activated sludge tank 4 by biological treatment. The activated sludge that is not returned to the activated sludge tank 4 passes through the path L7 and is sent to the sludge storage tank 1. The supernatant sedimented and separated from the activated sludge in the sedimentation tank B32 is obtained as treated water by the wastewater treatment system 10.

余剰汚泥槽5は、沈殿槽A31から流入する汚濁物質を吸着した活性汚泥を貯留する。余剰汚泥槽5に流入する活性汚泥は、廃棄対象となる余剰汚泥であり、腐敗を回避する程度に曝気されてもよい。   The surplus sludge tank 5 stores activated sludge that has adsorbed the pollutants flowing from the settling tank A31. The activated sludge that flows into the surplus sludge tank 5 is surplus sludge to be discarded, and may be aerated to the extent of avoiding corruption.

図2は、排水処理システムの第1の変形例を示す図である。排水処理システム10Aは、図1に示す沈殿槽B32及び活性汚泥槽4に代えて、浸漬膜活性汚泥槽4Aを備える。図1の排水処理システム10と共通する構成については同一の符号を付して説明を省略する。   FIG. 2 is a diagram illustrating a first modification of the wastewater treatment system. The wastewater treatment system 10A includes a submerged membrane activated sludge tank 4A instead of the settling tank B32 and the activated sludge tank 4 shown in FIG. The components common to the wastewater treatment system 10 of FIG.

浸漬膜活性汚泥槽4Aは、処理水と活性汚泥とを、沈殿槽B32での沈降分離と異なり、精密ろ過膜(MF膜)又は限外ろ過膜(UF膜)等の膜を使って分離する。浸漬膜活性汚泥槽4Aは、槽内に分離膜42を備え、曝気装置41により曝気する。分離膜42でろ過された処理水は、吸引して得ることができる。また、沈降した活性汚泥の一部は、経路L7を通り、汚泥貯留槽1に送出される。   The submerged membrane activated sludge tank 4A separates treated water and activated sludge using a membrane such as a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) unlike the sedimentation separation in the sedimentation tank B32. . The submerged membrane activated sludge tank 4 </ b> A includes a separation membrane 42 in the tank and is aerated by an aeration apparatus 41. The treated water filtered by the separation membrane 42 can be obtained by suction. A part of the activated sludge that has settled passes through the path L7 and is sent to the sludge storage tank 1.

図3は、排水処理システムの第2の変形例を示す図である。排水処理システム10Bは、図1に示す活性汚泥槽4に代えて、嫌気−無酸素−好気槽4Bを備える。図1の排水処理システム10と共通する構成については同一の符号を付して説明を省略する。   FIG. 3 is a diagram showing a second modification of the waste water treatment system. The waste water treatment system 10B includes an anaerobic-anoxic-aerobic tank 4B instead of the activated sludge tank 4 shown in FIG. The components common to the wastewater treatment system 10 of FIG.

嫌気−無酸素−好気槽4Bは、糸状性細菌の増殖を抑制しリンを除去する嫌気槽4B1、窒素を除去する無酸素槽4B2、曝気装置41により曝気処理をする好気槽4B3を備える。沈殿槽B32から経路L6を通って嫌気−無酸素−好気槽4Bに返送される活性汚泥は、嫌気槽4B1に流入しリンを除去する。無酸素槽4B2に移動した活性汚泥は、好気槽4B3で生じた硝酸を使用して窒素を除去する。好気槽4B3では、曝気装置41により曝気することで、活性汚泥は汚濁物質を分解(生物処理)する。また、好気槽4B3では、排水中のアンモニアの硝化により硝酸が生じる。硝酸を含む活性汚泥の混合液は、経路L8を通り、無酸素槽4B2に送水される。混合液中の硝酸は、無酸素槽4B2で窒素を除去するために使用される。好気槽4B3で生物処理された排水及び活性汚泥は、経路L5を通り、沈殿槽B32に送出される。   The anaerobic-anoxic-aerobic tank 4B includes an anaerobic tank 4B1 that suppresses the growth of filamentous bacteria and removes phosphorus, an anaerobic tank 4B2 that removes nitrogen, and an aerobic tank 4B3 that performs aeration treatment with the aeration apparatus 41. . The activated sludge returned from the settling tank B32 to the anaerobic-anoxic-aerobic tank 4B through the path L6 flows into the anaerobic tank 4B1 to remove phosphorus. The activated sludge that has moved to the anaerobic tank 4B2 uses the nitric acid generated in the aerobic tank 4B3 to remove nitrogen. In the aerobic tank 4B3, the activated sludge decomposes the pollutant (biological treatment) by aeration by the aeration apparatus 41. In the aerobic tank 4B3, nitric acid is generated by nitrification of ammonia in the waste water. The mixed liquid of activated sludge containing nitric acid passes through the path L8 and is sent to the oxygen-free tank 4B2. Nitric acid in the mixed solution is used to remove nitrogen in the oxygen-free tank 4B2. The wastewater and activated sludge that have been biologically treated in the aerobic tank 4B3 are sent to the sedimentation tank B32 through the path L5.

活性汚泥による排水の生物処理は、図1の活性汚泥槽4、図2の浸漬膜活性汚泥槽4A、及び図3に示す嫌気−無酸素−好気槽4Bによる方式に限られず、活性汚泥槽4等における汚濁物質の分解により、活性汚泥が発生する方式であればよい。活性汚泥による生物処理の方式は、例えば、長時間曝気法、酸化溝法(オキシデーションディッチ法)、嫌気好気法(AO法)、循環式嫌気好気法(A2O法)、膜分離活性汚泥法、接触曝気法等の各種生物処理方法である。   The biological treatment of wastewater with activated sludge is not limited to the system using the activated sludge tank 4 in FIG. 1, the submerged membrane activated sludge tank 4A in FIG. 2, and the anaerobic-anoxic-aerobic tank 4B shown in FIG. Any method may be used as long as activated sludge is generated by the decomposition of the pollutant at 4 or the like. The biological treatment system using activated sludge is, for example, a long time aeration method, oxidation ditch method (oxidation ditch method), anaerobic aerobic method (AO method), circulating anaerobic aerobic method (A2O method), membrane separation activated sludge. And various biological treatment methods such as contact aeration method.

(汚泥貯留槽)
図4は、汚泥貯留槽の第1の変形例を示す図である。図4に例示する汚泥貯留槽1Aは、3つの分割槽1A1、分割槽1A2及び分割槽1A3に分割されている。沈殿槽B32から送出される活性汚泥は、分割槽1A1に流入し、分割槽1A2、分割槽1A3の順に移動し、汚泥吸着槽2に送出される。活性汚泥は、数時間程度曝気しなくても死滅しないため、分割槽1A1及び分割槽1A2では、曝気をしなくてもよい。滞留時間が数時間以
上になる場合、汚泥吸着槽2に活性汚泥を送出する側にある分割槽1A3で、曝気装置11により曝気することで、活性汚泥の死滅は防ぐことができる。一部の分割槽で曝気をしないことにより、曝気のための消費エネルギーは削減される。
(Sludge storage tank)
FIG. 4 is a view showing a first modification of the sludge storage tank. The sludge storage tank 1A illustrated in FIG. 4 is divided into three division tanks 1A1, a division tank 1A2, and a division tank 1A3. The activated sludge sent out from the sedimentation tank B32 flows into the dividing tank 1A1, moves in the order of the dividing tank 1A2 and the dividing tank 1A3, and is sent out to the sludge adsorption tank 2. Since activated sludge does not die even if it is not aerated for several hours, it is not necessary to aerate in the dividing tank 1A1 and the dividing tank 1A2. When the residence time is several hours or longer, the activated sludge can be prevented from being killed by aeration with the aeration apparatus 11 in the dividing tank 1A3 on the side of sending the activated sludge to the sludge adsorption tank 2. By not performing aeration in some divided tanks, energy consumption for aeration is reduced.

図5は、汚泥貯留槽の第2の変形例を示す図である。図5に例示する汚泥貯留槽1Bは、2つの分割槽1B1及び分割槽1B2に分割されている。沈殿槽B32から送出される活性汚泥は、分割槽1B1に流入し、分割槽1B2に移動して、汚泥吸着槽2に送出される。活性汚泥は、数時間程度曝気しなくても死滅しないため、図4の汚泥貯留槽1Aの場合と同様に、分割槽1B1では、曝気をしなくてもよい。図5の例では、分割槽1B1内に設置される撹拌装置12は、活性汚泥を撹拌することで活性汚泥の沈降を防ぎ、活性汚泥の腐敗又は死滅を抑制する。汚泥吸着槽2に活性汚泥を送出する側にある分割槽1B2で、曝気装置11により曝気することで、活性汚泥の死滅は防ぐことができる。   FIG. 5 is a view showing a second modification of the sludge storage tank. The sludge storage tank 1B illustrated in FIG. 5 is divided into two division tanks 1B1 and a division tank 1B2. The activated sludge sent out from the sedimentation tank B32 flows into the dividing tank 1B1, moves to the dividing tank 1B2, and is sent out to the sludge adsorption tank 2. Since activated sludge does not die even if it is not aerated for several hours, it does not need to be aerated in the division tank 1B1 as in the case of the sludge storage tank 1A of FIG. In the example of FIG. 5, the stirring device 12 installed in the division tank 1 </ b> B <b> 1 stirs the activated sludge to prevent sedimentation of the activated sludge and suppress the decay or death of the activated sludge. The activated sludge can be prevented from being killed by aeration by the aeration apparatus 11 in the dividing tank 1B2 on the side of sending the activated sludge to the sludge adsorption tank 2.

図6は、汚泥貯留槽の複数槽間の仕切りを例示する図である。図6に例示する汚泥貯留槽1Cは、仕切りS1により、2つの分割槽1C1及び分割槽1C2に分割されている。仕切りS1は、活性汚泥が流通可能な流通孔S1a及び流通孔S1bを有する。図6の例では、流通孔S1aは仕切りS1の前方上部に設けられ、流通孔S1bは仕切りS1の後方下部に設けられるが、流通孔の位置はこれに限られない。流通孔の数及び位置は、活性汚泥が分割槽1C1から分割槽1C2に流入可能な数及び位置であればよい。沈殿槽B32から送出される活性汚泥は、分割槽1C1に流入し、流通孔S1a及び流通孔S1bを通って分割槽1C2に移動する。分割槽1C2に移動した活性汚泥は、汚泥吸着槽2に送出される。   FIG. 6 is a diagram illustrating partitioning between a plurality of sludge storage tanks. The sludge storage tank 1C illustrated in FIG. 6 is divided into two division tanks 1C1 and a division tank 1C2 by a partition S1. The partition S1 has a flow hole S1a and a flow hole S1b through which activated sludge can flow. In the example of FIG. 6, the flow hole S1a is provided in the upper front part of the partition S1, and the flow hole S1b is provided in the lower rear part of the partition S1, but the position of the flow hole is not limited to this. The number and position of the circulation holes may be any number and position where activated sludge can flow into the dividing tank 1C2 from the dividing tank 1C1. The activated sludge sent out from the sedimentation tank B32 flows into the division tank 1C1 and moves to the division tank 1C2 through the circulation hole S1a and the circulation hole S1b. The activated sludge moved to the division tank 1C2 is sent to the sludge adsorption tank 2.

図7は、汚泥貯留槽の複数槽間の仕切りを例示する図である。図7に例示する汚泥貯留槽1Dは、仕切りS2及び仕切りS3により、3つの分割槽1D1、分割槽1D2及び分割槽1D3に分割されている。仕切りS2は、汚泥貯留槽1Dの前方の壁面との間に、スリット状に活性汚泥の流路を設けて配置される。仕切りS3は、汚泥貯留槽1Dの後方の壁面との間に、スリット状に活性汚泥の流路を設けて配置される。活性汚泥の流路は、複数の仕切りによって汚泥貯留槽1Dの前方又は後方に設けられる場合に限られない。活性汚泥の流路は、活性汚泥が分割槽1D1から分割槽1D2、分割槽1D3の順に移動するように設けられればよい。沈殿槽B32から送出される活性汚泥は、分割槽1D1に流入し、仕切りS2の前方側に設けられた隙間を通って分割槽1D2に移動する。分割槽1D2に移動した活性汚泥は、仕切りS3の後方側に設けられた隙間を通って分割槽1D3に移動する。分割槽1D3に移動した活性汚泥は、汚泥吸着槽2に送出される。   FIG. 7 is a diagram illustrating a partition between a plurality of sludge storage tanks. The sludge storage tank 1D illustrated in FIG. 7 is divided into three divided tanks 1D1, 1D2, and 1D3 by a partition S2 and a partition S3. The partition S2 is disposed with a flow path of activated sludge in a slit shape between the front wall surface of the sludge storage tank 1D. The partition S3 is provided with a flow path of activated sludge in a slit shape between the partition wall S3 and the wall surface behind the sludge storage tank 1D. The flow path of the activated sludge is not limited to the case where it is provided in front of or behind the sludge storage tank 1D by a plurality of partitions. The flow path of activated sludge should just be provided so that activated sludge may move in order of division tank 1D2, division tank 1D2, and division tank 1D3. The activated sludge sent out from the sedimentation tank B32 flows into the division tank 1D1, and moves to the division tank 1D2 through a gap provided on the front side of the partition S2. The activated sludge that has moved to the dividing tank 1D2 moves to the dividing tank 1D3 through a gap provided on the rear side of the partition S3. The activated sludge moved to the division tank 1D3 is sent to the sludge adsorption tank 2.

(排水処理システムの容積削減効果)
本実施形態に係る排水処理システム10は、汚泥吸着槽2において排水中の汚濁物質の約40%から80%を除去することが想定される。このため、活性汚泥槽4の大きさは、汚泥吸着槽2を設けないシステムと比較して小さくすることができる。また、本実施形態の汚泥吸着槽2は、活性汚泥が汚濁物質を吸着して系外に排出することができればよく、活性汚泥が汚濁物質を分解する場合より小さくてもよい。即ち、本実施形態に係る排水処理システム10は、活性汚泥槽4及び汚泥吸着槽2の縮小化が可能である。そこで、本実施形態に係る排水処理システム10の容積削減効果を、図8に示す比較例に係る排水処理システムとの対比により説明する。
(Volume reduction effect of wastewater treatment system)
It is assumed that the wastewater treatment system 10 according to the present embodiment removes about 40% to 80% of pollutants in the wastewater in the sludge adsorption tank 2. For this reason, the magnitude | size of the activated sludge tank 4 can be made small compared with the system which does not provide the sludge adsorption tank 2. FIG. Moreover, the sludge adsorption tank 2 of this embodiment should just be smaller than the case where activated sludge can adsorb | suck a pollutant, and can discharge | emit it outside a system, and activated sludge decomposes | disassembles a pollutant. That is, the wastewater treatment system 10 according to the present embodiment can reduce the size of the activated sludge tank 4 and the sludge adsorption tank 2. Therefore, the volume reduction effect of the wastewater treatment system 10 according to the present embodiment will be described by comparison with the wastewater treatment system according to the comparative example shown in FIG.

図8は、比較例に係る排水処理システムの構成を例示する図である。比較例に係る排水処理システム100は、活性汚泥槽40、沈殿槽320、及び余剰汚泥槽60を備える。また、排水処理システム100が備える各槽は、経路L10、経路L20、経路L30によって接続される。   FIG. 8 is a diagram illustrating the configuration of a wastewater treatment system according to a comparative example. The wastewater treatment system 100 according to the comparative example includes an activated sludge tank 40, a sedimentation tank 320, and an excess sludge tank 60. Moreover, each tank with which the waste water treatment system 100 is provided is connected by the path | route L10, the path | route L20, and the path | route L30.

活性汚泥槽40は、処理対象の排水が流入すると、曝気装置410により曝気し、排水中の汚濁物質を生物処理によって分解する。活性汚泥槽40内で生物処理された排水及び活性汚泥は、経路L10を通り、沈殿槽320に送出される。沈殿槽320は、活性汚泥槽40から流入する排水から活性汚泥を沈降分離する。沈殿槽320内で沈降した活性汚泥の一部は、経路L20を通り、活性汚泥槽40に返送される。活性汚泥槽40に返送されない余剰の活性汚泥は、経路L30を通り、余剰汚泥槽60に送出される。沈殿槽320において活性汚泥と沈降分離された上澄みは、排水処理システム100による処理水として得られる。余剰汚泥槽60は、活性汚泥槽40で不要となって系外に排出される活性汚泥を貯留する。   When the wastewater to be treated flows into the activated sludge tank 40, it is aerated by the aeration device 410, and the pollutant in the wastewater is decomposed by biological treatment. The wastewater and activated sludge that have been biologically treated in the activated sludge tank 40 are sent to the sedimentation tank 320 through the path L10. The sedimentation tank 320 settles and separates the activated sludge from the wastewater flowing from the activated sludge tank 40. Part of the activated sludge settled in the settling tank 320 is returned to the activated sludge tank 40 through the path L20. Excess activated sludge that is not returned to the activated sludge tank 40 is sent to the excess sludge tank 60 through the path L30. The supernatant sedimented and separated from the activated sludge in the sedimentation tank 320 is obtained as treated water by the wastewater treatment system 100. The surplus sludge tank 60 stores the activated sludge that is unnecessary in the activated sludge tank 40 and is discharged outside the system.

本実施形態に係る排水処理システム10及び図8に示す比較例に係る排水処理システム100が備える各槽の容積を対比するため、各システムにおける各槽の容積の合計を試算する。表1は、試算ための条件を示す。   In order to compare the volume of each tank provided in the wastewater treatment system 10 according to the present embodiment and the wastewater treatment system 100 according to the comparative example shown in FIG. 8, the total volume of each tank in each system is estimated. Table 1 shows the conditions for the trial calculation.

Figure 2019171321
Figure 2019171321

流入水量は、各排水処理システムにおいて、1日に流入する排水量であり、100m/dと仮定される。流入BODは、排水1L中に含まれる汚濁物質の量であり、1000mg/Lと仮定される。BOD容積負荷は、生物処理を実施する槽(活性汚泥槽4又は活性汚泥槽40)の単位容積当たりの1日に処理できる汚濁物質の量であり、0.5kg−BOD/(m・d)とする。汚泥吸着槽の有機物除去率は、本実施形態に係る汚泥吸着槽2において、活性汚泥が有機物(汚濁物質)を吸着により除去する割合であって、60%と仮定される。汚泥吸着槽の滞留時間は、本実施形態に係る汚泥吸着槽2における排水及び活性汚泥の滞留時間であって、40分と仮定される。汚泥貯留槽の滞留時間は、本実施形態に係る汚泥貯留槽1における滞留時間であって、1日と仮定される。汚泥転換率は、除去された汚濁物質の量に対する余剰汚泥発生量の割合であり、0.3と仮定される。汚泥含水率は、99%とする。余剰汚泥槽の滞留時間は、系外に排出される余剰汚泥の余剰汚泥槽(余剰汚泥槽5又は余剰汚泥槽60)での滞留時間であり、2日と仮定される。 The amount of inflow water is the amount of wastewater that flows in each day in each wastewater treatment system, and is assumed to be 100 m 3 / d. Inflow BOD is the amount of pollutant contained in 1 L of waste water, and is assumed to be 1000 mg / L. BOD volumetric load is the amount of pollutant that can be treated per unit volume per unit volume of the biological treatment tank (activated sludge tank 4 or activated sludge tank 40). 0.5 kg-BOD / (m 3 · d ). The organic matter removal rate of the sludge adsorption tank is a rate at which activated sludge removes organic substances (sludge substances) by adsorption in the sludge adsorption tank 2 according to this embodiment, and is assumed to be 60%. The residence time of the sludge adsorption tank is the residence time of waste water and activated sludge in the sludge adsorption tank 2 according to this embodiment, and is assumed to be 40 minutes. The residence time of the sludge storage tank is the residence time in the sludge storage tank 1 according to the present embodiment, and is assumed to be 1 day. The sludge conversion rate is the ratio of the amount of excess sludge generated to the amount of polluted substances removed, and is assumed to be 0.3. Sludge moisture content is 99%. The residence time of the excess sludge tank is the residence time of the excess sludge discharged outside the system in the excess sludge tank (the excess sludge tank 5 or the excess sludge tank 60), and is assumed to be 2 days.

本実施形態に係る排水処理システム10及び図8に示す比較例に係る排水処理システム
100がそれぞれ備える各槽の容積及び、容積の合計を表2に示す。
Table 2 shows the volume of each tank provided in the wastewater treatment system 10 according to the present embodiment and the wastewater treatment system 100 according to the comparative example shown in FIG.

Figure 2019171321
Figure 2019171321

本実施形態に係る排水処理システム10では、汚泥吸着槽2、沈殿槽A31、活性汚泥槽4、沈殿槽B32、汚泥貯留槽1及び余剰汚泥槽5の容積は、それぞれ2.7m、16.7m、80m、16.7m、3m、6mと試算される。この場合、本実施形態に係る排水処理システム10が備える各槽の容積の合計は、125.1mとなる。 In the wastewater treatment system 10 according to the present embodiment, the volumes of the sludge adsorption tank 2, the sedimentation tank A31, the activated sludge tank 4, the sedimentation tank B32, the sludge storage tank 1, and the surplus sludge tank 5 are 2.7 m 3 and 16. It is estimated to be 7m 3 , 80m 3 , 16.7m 3 , 3m 3 , 6m 3 . In this case, the total volume of each tank provided in the wastewater treatment system 10 according to the present embodiment is 125.1 m 3 .

ここで、排水処理システム10が備える各槽の試算の詳細について説明する。従来の活性汚泥槽の容積は、200mと想定する。また、排水処理システム10に対し、1日に流入する排水量(処理対象の排水量)は100mとする。 Here, the detail of the trial calculation of each tank with which the waste water treatment system 10 is provided is demonstrated. The volume of the conventional activated sludge tank is assumed to be 200 m 3 . In addition, the amount of wastewater that flows into the wastewater treatment system 10 in one day (the amount of wastewater to be treated) is 100 m 3 .

本実施形態に係る排水処理システム10では、汚泥吸着槽2において、有機物(汚濁物質)の60%が除去される。このため、残りの有機物を除去するためには、活性汚泥槽4の大きさは、従来の200mより60%小さい80mであればよいことが試算される。 In the wastewater treatment system 10 according to the present embodiment, 60% of organic substances (contaminating substances) are removed in the sludge adsorption tank 2. For this reason, in order to remove the remaining organic matter, it is estimated that the size of the activated sludge tank 4 may be 80 m 3 which is 60% smaller than the conventional 200 m 3 .

次に、汚泥吸着槽2での排水の滞留時間は、20分から60分と想定される。平均値をとって、汚泥吸着槽2での滞留時間は40分とする。この場合、汚泥吸着槽2の大きさは、1日に流入する排水量100m/dを40分で処理する排水量に換算して、100m/d÷24時間÷60分×40分=2.7mと試算される。 Next, the residence time of the waste water in the sludge adsorption tank 2 is assumed to be 20 minutes to 60 minutes. Taking the average value, the residence time in the sludge adsorption tank 2 is 40 minutes. In this case, the size of the sludge suction tank 2, in terms of amount of waste water to process the wastewater 100 m 3 / d flowing a day 40 minutes, 100m 3 / d ÷ 24 hours ÷ 60 minutes × 40 min = 2. It is estimated to be 7m 3.

また、沈殿槽A31及び沈殿槽B32の容積は、1日に流入する排水量100m/dにほぼ比例するように設定することができる。ここでは、滞留時間を4時間と想定し、沈殿槽A31及び沈殿槽B32の容積は、100m/d÷24時間÷×4時間=16.7mと試算される。 Moreover, the volume of the sedimentation tank A31 and the sedimentation tank B32 can be set so that it may be substantially proportional to the amount of drainage 100m < 3 > / d which flows in a day. Here, assuming that the residence time is 4 hours, the volume of the precipitation tank A31 and the precipitation tank B32 is calculated as 100 m 3 / d ÷ 24 hours ÷ × 4 hours = 16.7 m 3 .

また、汚泥貯留槽1の容積を試算するため、まず汚泥発生量を求める。1日に流入する排水量を100m/d、入口でのBOD(流入する排水中の汚濁物質の量)を1000mg−BOD/L、出口でのBOD(処理水中の汚濁物質の量)を20mg−BOD/Lと想定する。この場合、BODの除去量は、(1000−20)[mg/L]/1000[単位換算]×100[m/d]=98kg−BOD/dとなる。汚泥転換率を0.3と仮定すると、発生した余剰汚泥量は、98kg−BOD/d×0.3=29.4kg−
drySS/dと算出される。発生した余剰汚泥の汚泥含水率を99%と仮定すると、汚泥発生量は、29.4kg−drySS/d×100÷(100−99)=2,940kg−wetSS/dと算出される。汚泥貯留槽1での排水の滞留時間は、2時間から2日と想定されるが、ここでは1日と仮定する。この場合、汚泥貯留槽1の容積は、2,940kg−wetSS/d×1d≒3mと試算される。
Moreover, in order to estimate the volume of the sludge storage tank 1, first, the sludge generation amount is obtained. 100m 3 / d of inflow water per day, BOD at the inlet (amount of pollutants in the inflow waste water) 1000mg-BOD / L, BOD at the outlet (amount of pollutants in the treated water) 20mg- Assume BOD / L. In this case, the removal amount of BOD is (1000-20) [mg / L] / 1000 [unit conversion] × 100 [m 3 / d] = 98 kg-BOD / d. Assuming that the sludge conversion rate is 0.3, the amount of generated excess sludge is 98 kg−BOD / d × 0.3 = 29.4 kg−
It is calculated as drySS / d. Assuming that the sludge moisture content of the generated excess sludge is 99%, the sludge generation amount is calculated as 29.4 kg−drySS / d × 100 ÷ (100−99) = 2,940 kg−wetSS / d. The residence time of the wastewater in the sludge storage tank 1 is assumed to be 2 hours to 2 days, but here it is assumed to be 1 day. In this case, the volume of the sludge storage tank 1 is estimated to be 2,940 kg-wetSS / d × 1d≈3 m 3 .

余剰汚泥槽5の滞留時間は、2日と仮定される。余剰汚泥槽5の容積は、汚泥発生量を3m/dとすると6mと試算される。 The residence time of the excess sludge tank 5 is assumed to be 2 days. The volume of the excess sludge tank 5 is estimated the amount of sludge and 6 m 3 When 3m 3 / d.

一方、比較例に係る排水処理システム100は、汚泥吸着槽2、沈殿槽A31及び汚泥貯留槽1に対応する槽を有しない。比較例に係る排水処理システム100では、活性汚泥槽40、沈殿槽320(沈殿槽B32に相当)、及び余剰汚泥槽60の容積は、それぞれ200m、16.7m、6mと試算される。比較例に係る排水処理システム100は、汚泥吸着槽2を備えず、流入する排水中の汚濁物質は、活性汚泥槽40で生物処理される。このため、活性汚泥槽40の大きさは、200mと試算される。比較例に係る排水処理システム100が備える各槽の容積の合計は、222.7mとなる。 On the other hand, the wastewater treatment system 100 according to the comparative example does not have a tank corresponding to the sludge adsorption tank 2, the sedimentation tank A31, and the sludge storage tank 1. The wastewater treatment system 100 according to the comparative example, the volume of the activated sludge tank 40, settling tank 320 (corresponding to sedimentation tank B32), and excess sludge tank 60 is estimated to respectively 200m 3, 16.7m 3, 6m 3 . The wastewater treatment system 100 according to the comparative example does not include the sludge adsorption tank 2, and the pollutant in the inflowing wastewater is biologically treated in the activated sludge tank 40. For this reason, the size of the activated sludge tank 40 is estimated to be 200 m 3 . The total volume of each tank provided in the wastewater treatment system 100 according to the comparative example is 222.7 m 3 .

本実施形態に係る排水処理システム10は、沈殿槽A31及び活性汚泥槽4と比較して容量の小さい汚泥吸着槽2で、排水中の汚濁物質を約40%から80%除去することができる。このため、活性汚泥槽4に流入する汚濁負荷の削減か可能となり、活性汚泥槽4の容積は、比較例に係る排水処理システム100と比較して約60%縮小される。本実施形態に係る排水処理システム10は、比較例では使用されない汚泥吸着槽2、沈殿槽A31及び汚泥貯留槽1を備えるが、システム全体としても、比較例に係る排水処理システム100と比較して40%以上の容積が削減可能である。   The wastewater treatment system 10 according to the present embodiment is capable of removing approximately 40% to 80% of pollutants in the wastewater by the sludge adsorption tank 2 having a smaller capacity than the sedimentation tank A31 and the activated sludge tank 4. For this reason, it becomes possible to reduce the pollutant load flowing into the activated sludge tank 4, and the volume of the activated sludge tank 4 is reduced by about 60% compared to the waste water treatment system 100 according to the comparative example. The wastewater treatment system 10 according to the present embodiment includes the sludge adsorption tank 2, the sedimentation tank A31, and the sludge storage tank 1 that are not used in the comparative example, but the entire system is also compared with the wastewater treatment system 100 according to the comparative example. A volume of 40% or more can be reduced.

<作用効果>
本実施形態に係る排水処理システム10は、汚泥吸着槽2において、汚泥貯留槽1から返送される飢餓状態の活性汚泥により、排水中の汚濁物質の約40%から80%を除去することができるため、活性汚泥槽4での汚濁負荷を低減することができる。したがって、排水処理システム10は、排水の処理量を増加させたり、活性汚泥槽4の容積を縮小したりすることが可能である。また、活性汚泥槽4での汚濁負荷が低減されるため、曝気による消費エネルギーも削減される。
<Effect>
The wastewater treatment system 10 according to the present embodiment can remove about 40% to 80% of the pollutants in the wastewater by the activated sludge in the sludge adsorption tank 2 that is returned from the sludge storage tank 1. Therefore, the pollution load in the activated sludge tank 4 can be reduced. Therefore, the wastewater treatment system 10 can increase the amount of wastewater treated or reduce the volume of the activated sludge tank 4. Moreover, since the pollution load in the activated sludge tank 4 is reduced, the energy consumption by aeration is also reduced.

10,10A,10B・・排水処理システム:1,1A,1B,1C,1D・・汚泥貯留槽:2・・汚泥吸着槽:31,32・・沈殿槽:4・・活性汚泥槽:4A・・浸漬膜活性汚泥槽:4B・・嫌気−無酸素−好気槽:5・・余剰汚泥槽:11,21,41・・曝気装置、12・・撹拌装置 10, 10A, 10B ... Wastewater treatment system: 1, 1A, 1B, 1C, 1D Sludge storage tank: 2, Sludge adsorption tank: 31, 32 Precipitation tank: 4, Activated sludge tank: 4A・ Immersion membrane activated sludge tank: 4B ・ ・ Anaerobic-anoxic-aerobic tank: 5 ・ ・ Excess sludge tank: 11,21,41 ・ ・ Aeration device, 12 ・ ・ Agitator

Claims (5)

活性汚泥槽に流入する排水を、前記排水中の汚濁物質を活性汚泥により分解して生物処理し、前記生物処理によって浄化された処理水と活性汚泥とに分離する排水処理システムであって、
前記分離された活性汚泥を曝気状態で貯留する汚泥貯留槽と、
前記汚泥貯留槽に貯留された活性汚泥及び前記活性汚泥槽に流入する前の前記排水が流入し、前記排水中の汚濁物質を、前記汚泥貯留槽から流入した活性汚泥に吸着させる汚泥吸着槽と、
前記排水中の汚濁物質を吸着した活性汚泥を排出する排出手段と、を備える、
排水処理システム。
A wastewater treatment system for separating wastewater flowing into an activated sludge tank into biological treatment by decomposing the pollutants in the wastewater with activated sludge and separating the treated water and activated sludge purified by the biological treatment,
A sludge storage tank for storing the separated activated sludge in an aerated state;
The activated sludge stored in the sludge storage tank and the waste water before flowing into the activated sludge tank, and the sludge adsorption tank for adsorbing the pollutants in the waste water to the activated sludge flowing in from the sludge storage tank; ,
A discharge means for discharging activated sludge adsorbing the pollutants in the waste water,
Wastewater treatment system.
前記排出手段は、前記排水中の汚濁物質を吸着した活性汚泥を沈殿させる沈殿槽を含む、
請求項1に記載の排水処理システム。
The discharge means includes a settling tank for precipitating activated sludge adsorbing the pollutant in the waste water,
The wastewater treatment system according to claim 1.
前記汚泥貯留槽は、前記分離された活性汚泥が飢餓状態となるまでの所定時間、前記分離された活性汚泥を貯留する、
請求項1または2に記載の排水処理システム。
The sludge storage tank stores the separated activated sludge for a predetermined time until the separated activated sludge is starved.
The wastewater treatment system according to claim 1 or 2.
前記汚泥貯留槽は、隣接槽との間で活性汚泥が移動可能に複数の槽に仕切られ、前記複数の槽間の活性汚泥の流れをプラグフローとなるように構成する、
請求項1から3のいずれか一項に記載の排水処理システム。
The sludge storage tank is divided into a plurality of tanks so that the activated sludge can move between adjacent tanks, and the flow of the activated sludge between the plurality of tanks is configured as a plug flow.
The waste water treatment system according to any one of claims 1 to 3.
活性汚泥槽に流入する排水を、前記排水中の汚濁物質を活性汚泥により分解して生物処理し、前記生物処理によって浄化された処理水と活性汚泥とに分離する排水処理方法であって、
汚泥貯留槽で、前記分離された活性汚泥を曝気状態で貯留する貯留工程と、
前記汚泥貯留槽に貯留された活性汚泥及び前記活性汚泥槽に流入する前の前記排水が流入する汚泥吸着槽内で、前記排水中の汚濁物質を、前記汚泥貯留槽から流入した活性汚泥に吸着させる吸着工程と、
前記排水中の汚濁物質を吸着した活性汚泥を排出する排出工程と、を含む、
排水処理方法。
A wastewater treatment method in which wastewater flowing into an activated sludge tank is biologically treated by decomposing pollutants in the wastewater with activated sludge, and separated into treated water and activated sludge purified by the biological treatment,
A storage step of storing the separated activated sludge in an aerated state in a sludge storage tank;
In the sludge adsorption tank into which the activated sludge stored in the sludge storage tank and the waste water before flowing into the activated sludge tank flow, the pollutants in the waste water are adsorbed to the activated sludge flowing in from the sludge storage tank. An adsorption process,
A discharge step of discharging activated sludge adsorbing the pollutant in the waste water,
Wastewater treatment method.
JP2018064350A 2018-03-29 2018-03-29 Wastewater treatment system and wastewater treatment method Active JP7088715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018064350A JP7088715B2 (en) 2018-03-29 2018-03-29 Wastewater treatment system and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064350A JP7088715B2 (en) 2018-03-29 2018-03-29 Wastewater treatment system and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2019171321A true JP2019171321A (en) 2019-10-10
JP7088715B2 JP7088715B2 (en) 2022-06-21

Family

ID=68166248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064350A Active JP7088715B2 (en) 2018-03-29 2018-03-29 Wastewater treatment system and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7088715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818845A (en) * 2023-02-24 2023-03-21 苏州苏科环保科技有限公司 Garbage transfer station sewage treatment system and process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411994A (en) * 1990-04-26 1992-01-16 Ngk Insulators Ltd Method for treating organic waste water
US5310484A (en) * 1992-08-24 1994-05-10 Zimpro Passavatn Environmental Sys. Preaeration treatment of volatile wastewater components
JPH06182377A (en) * 1992-12-24 1994-07-05 Ngk Insulators Ltd Method for treating sewage
JPH1119675A (en) * 1997-06-30 1999-01-26 Shinko Pantec Co Ltd Treatment of organic matter-containing water and device therefor
JP2002035782A (en) * 2000-07-26 2002-02-05 Japan Organo Co Ltd Sludge treatment apparatus
JP2006247566A (en) * 2005-03-11 2006-09-21 Kurita Water Ind Ltd Biological treatment method for organic waste water
WO2016148086A1 (en) * 2015-03-17 2016-09-22 水ing株式会社 Water treatment method and water treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411994A (en) * 1990-04-26 1992-01-16 Ngk Insulators Ltd Method for treating organic waste water
US5310484A (en) * 1992-08-24 1994-05-10 Zimpro Passavatn Environmental Sys. Preaeration treatment of volatile wastewater components
JPH06182377A (en) * 1992-12-24 1994-07-05 Ngk Insulators Ltd Method for treating sewage
JPH1119675A (en) * 1997-06-30 1999-01-26 Shinko Pantec Co Ltd Treatment of organic matter-containing water and device therefor
JP2002035782A (en) * 2000-07-26 2002-02-05 Japan Organo Co Ltd Sludge treatment apparatus
JP2006247566A (en) * 2005-03-11 2006-09-21 Kurita Water Ind Ltd Biological treatment method for organic waste water
WO2016148086A1 (en) * 2015-03-17 2016-09-22 水ing株式会社 Water treatment method and water treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818845A (en) * 2023-02-24 2023-03-21 苏州苏科环保科技有限公司 Garbage transfer station sewage treatment system and process

Also Published As

Publication number Publication date
JP7088715B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP4508694B2 (en) Water treatment method and apparatus
JP5223219B2 (en) Organic wastewater treatment equipment
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
US20090152192A1 (en) Novel Arrangement of Denitrification Reactors in a Recirculating Aquaculture System
RU2537611C2 (en) Apparatus for purifying household waste water
KR101463987B1 (en) Method of treating organic waste water
KR100785044B1 (en) Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities
KR20130138048A (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process
KR101003162B1 (en) Stock raising onsite wastewater treatment apparatus
CN106458669B (en) Method for clarifying waste water
JP2003053363A (en) Treatment method and treatment equipment for organic matter-containing water
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
JP5049929B2 (en) Water treatment apparatus and water treatment method
WO2003043941A1 (en) Apparatus and method for treating organic waste water
JP7088715B2 (en) Wastewater treatment system and wastewater treatment method
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2010069359A (en) Water treatment device and water treatment method
JP2013000670A (en) Sewage treatment apparatus
KR100715020B1 (en) Treatment device of wastewater using a sea-water electrolysis apparatus and submerged membrane
JP2011200767A (en) Wastewater treating method and wastewater treatment system
CN209619128U (en) Municipal sewage plant vacuum in draft tube device
JP6369203B2 (en) Activated sludge treatment system
KR20130079834A (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP2016123920A (en) Wastewater treatment apparatus and method
KR101679603B1 (en) Water treatment apparatus using cleaning powder and submersed membranes module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7088715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150