WO2016148086A1 - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
WO2016148086A1
WO2016148086A1 PCT/JP2016/057855 JP2016057855W WO2016148086A1 WO 2016148086 A1 WO2016148086 A1 WO 2016148086A1 JP 2016057855 W JP2016057855 W JP 2016057855W WO 2016148086 A1 WO2016148086 A1 WO 2016148086A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
water
separated
mixing
solid
Prior art date
Application number
PCT/JP2016/057855
Other languages
French (fr)
Japanese (ja)
Inventor
正英 鈴木
葛 甬生
昌次郎 渡邊
Original Assignee
水ing株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水ing株式会社 filed Critical 水ing株式会社
Priority to JP2017506536A priority Critical patent/JP6749313B2/en
Publication of WO2016148086A1 publication Critical patent/WO2016148086A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a water treatment method and a water treatment apparatus, and particularly to a treatment facility that decomposes and recovers organic matter from organic wastewater by combining biological treatment and sludge energy (fuel) treatment such as anaerobic digestion treatment.
  • the present invention relates to an available water treatment method and a water treatment apparatus.
  • the solid matter in the influent wastewater is first roughened in a first solid-liquid separation tank such as a sedimentation basin, and the treated water is treated in a reaction tank where microorganisms exist.
  • a method is known in which biological treatment is performed while oxygen is supplied, and a mixed liquid containing microorganisms after biological treatment is separated and treated in a second solid-liquid separation tank such as a final sedimentation basin.
  • the organic sludge which is a solid separated in the first and second solid-liquid separation tanks, is methane-fermented in an anaerobic digestion tank and recovered as methane, or dried and carbonized and used as fuel as biomass.
  • the first solid-liquid separation is a method for increasing the amount of methane recovered and the amount of fuel heat by recovering more organic matter from the organic wastewater before the organic wastewater is biologically treated.
  • a preliminary aeration tank is provided in front of the tank, and in some cases, excess sludge is mixed and aerated for about 20 to 30 minutes (for example, see Non-Patent Document 1).
  • this method requires a water tank having a residence time of 20 to 30 minutes as a preliminary aeration tank, and requires an aeration apparatus and power for providing a sufficient dissolved oxygen amount (DO).
  • the first aeration tank requires a water tank having a residence time of about 20 to 30 minutes and a sludge return line.
  • An aeration apparatus and power for providing sufficient DO are required.
  • the present invention provides a water treatment method and a water treatment apparatus capable of highly efficient and stable treatment throughout the apparatus.
  • the present invention completed on the basis of the above knowledge is, in one aspect, mixing organic wastewater as raw water with surplus sludge obtained by biological treatment and hydraulic retention time of 10 minutes or less, and organic wastewater,
  • the liquid mixture of excess sludge is solid-liquid separated to obtain the separated liquid and separated sludge, the separated sludge is converted into fuel, the separated liquid is biologically treated, and the biological treatment generates.
  • a water treatment method is provided that includes returning the sludge as excess sludge.
  • the sludge generated by biological treatment is returned as surplus sludge, and the mixing ratio of surplus sludge to organic wastewater as raw water is 1.5 [kg-sludge. SS / m 3 -raw water] or less and / or 3.0 [kg-SS / kg-raw water CODcr] or less.
  • the water treatment method according to the present invention further includes mixing organic waste water and excess sludge with an oxygen concentration DO of 0.1 mg / L or more.
  • the water treatment method according to the present invention includes mixing organic waste water and excess sludge under anaerobic conditions.
  • the water treatment method according to the present invention includes mixing the organic waste water and the excess sludge after aeration of the excess sludge.
  • converting the separated sludge into fuel includes anaerobically digesting the separated sludge to obtain methane gas and digested sludge, and a part of the digested sludge is obtained. And further supplying the separation liquid into a reaction vessel for biological treatment.
  • a mixing device that mixes organic wastewater as raw water with surplus sludge obtained by biological treatment in a hydraulic retention time of 10 minutes or less, and a mixture of organic wastewater and surplus sludge A solid-liquid separation to obtain a separated liquid and separated sludge, a first solid-liquid separation tank, a fueling device for converting the separated sludge into fuel, a reaction tank for biologically treating the separated liquid, and biological There is provided a water treatment device including return means for returning sludge generated in the treatment as surplus sludge.
  • the mixing apparatus is disposed in the first solid-liquid separation tank.
  • the water treatment apparatus is a mixing apparatus 1 that mixes organic wastewater as raw water with surplus sludge, and adsorbs organic matter in the organic wastewater to the surplus sludge;
  • a first solid-liquid separation tank 2, a reaction tank 3, a second solid-liquid separation tank 4, a fuelizer 6, and a return means 7 are provided.
  • organic wastewater containing organic substances such as sewage, manure, and urine can be used.
  • the quality of influent raw water is 100 to 1000 mg / L biochemical oxygen demand (BOD) and 200 to 3000 mg / L chemical oxygen demand (CODcr).
  • Organic wastewater having a suspended substance (SS) of about 100 to 1000 mg / L is suitably supplied to the water treatment apparatus according to this embodiment.
  • the hydraulic residence time (HRT) of the mixing apparatus 1 is less than 20 minutes, more preferably within 10 minutes, and even more preferably within 5 minutes.
  • the mixing apparatus 1 shown in FIG. 1 is disposed in the first solid-liquid separation tank 2 as shown in FIG. 2, and mixing of organic waste water and excess sludge is organic. It is also preferable to carry out in a solid-liquid separation tank for solid-liquid separation of the mixed liquid of effluent wastewater and excess sludge. Thereby, the water tank for mixing organic waste water and excess sludge can be omitted.
  • the lower limit time of HRT is, for example, preferably 10 seconds or more, more preferably 30 seconds or more.
  • the mixing method used in the mixing device 1 for example, mechanical stirring by a stirring device, aeration method using a diffuser plate using air or the like, an aeration method using an underwater aerator, a method using piping or a water channel, a baffle wall is used.
  • the mixing method that was used is available.
  • the mixing device 1 does not need to be provided with an aeration device for mixing organic waste water and excess sludge in principle, but an aeration device is provided. Therefore, it is preferable to adjust the amount of aeration in the mixing device 1 so that the DO in the mixing device 1 is 0.1 mg / L or more, more preferably 0.2 mg / L or more. Thereby, the excess sludge is activated and the organic matter removing ability is improved, and the discharge of phosphorus from the activated sludge can be suppressed.
  • the mixing apparatus 1 it is also effective to mix organic waste water and excess sludge under anaerobic conditions.
  • an additional device such as an aeration device is not necessary, so that the entire device can be further simplified.
  • an aeration device 8 is provided in the middle of the return means 7, and after the excess sludge is preaerated, the organic waste water and the excess sludge are mixed under anaerobic conditions or aerobic conditions. Good. It is possible to suppress the discharge of phosphorus by aeration of excess sludge in advance with the aeration device 8.
  • 1st solid-liquid separation tank 2 is an apparatus which carries out solid-liquid separation of the liquid mixture obtained with the mixing apparatus 1, for example, a first sedimentation tank etc. are utilized suitably.
  • a first sedimentation tank etc. As means for solid-liquid separation, gravity sedimentation separation, centrifugation, flotation separation, agglomeration separation, membrane separation and the like can be used.
  • an inclined plate or a sludge blanket layer may be used, or a flocculant may be used.
  • the separation liquid obtained in the first solid-liquid separation tank 2 is sent to the reaction tank 3 through a pipe.
  • the separated sludge obtained in the first solid-liquid separation tank 2 is sent to the fuelizer 6 via a pipe.
  • the fueling device 6 is a device for decomposing the separated sludge separated in the first solid-liquid separation tank and converting it into fuel gas or sludge fuel.
  • the fueling device 6 is not particularly limited as long as it is a device installed for the purpose of decomposing the separated sludge and converting it into fuel gas or sludge fuel.
  • an anaerobic digester that generates methane gas by anaerobic digestion of the separated sludge, or a dryer or a carbonizer that dries or carbonizes the separated sludge to produce fuel is also preferably used.
  • an anaerobic digester When an anaerobic digester is used as the fueling device 6, a concentrated sludge having a TS concentration of 1 to 12 wt%, more typically 2 to 8 wt%, more typically 3 to 6 wt% is stored in a hydraulic environment. It is preferable to arrange an anaerobic digester that can be processed within 40 days, more typically within 30 days, and with a methane conversion of 40% or more, more typically 45% or more.
  • the pretreatment device 5 may be disposed in the front stage of the fueling device 6 as necessary. Although the pretreatment device 5 is not specified, a device for reducing the sludge moisture content of the separated sludge from the first solid-liquid separation tank 2 such as a concentrating device or a dewatering device, or a device for improving fuelization such as alkali treatment or ozone treatment May be used alone or in combination.
  • a device for reducing the sludge moisture content of the separated sludge from the first solid-liquid separation tank 2 such as a concentrating device or a dewatering device, or a device for improving fuelization such as alkali treatment or ozone treatment May be used alone or in combination.
  • the reaction tank 3 is an apparatus for performing biological treatment on the separated liquid separated in the first solid-liquid separation tank.
  • biological treatments include activated sludge methods (membrane separation activated sludge method, batch activated sludge method), biofilm treatment methods (fixed bed type biofilm method, fluidized bed type biofilm method) and the like.
  • the reaction tank 3 is an apparatus using a conventional activated sludge method, an anaerobic aerobic method, a circulating nitrification denitrification method, a step inflow multistage nitrification denitrification method, an A2O method, or the like.
  • the reaction tank 3 may be connected to the return means 7 so that the excess sludge generated in the reaction tank 3 can be returned to the mixing device 1 as necessary.
  • the second solid-liquid separation tank 4 is an apparatus for solid-liquid separation of the treated water obtained in the reaction tank 3, and for example, a final sedimentation basin or the like is preferably used.
  • a final sedimentation basin or the like is preferably used.
  • the treated water obtained in the reaction tank 3 is solid-liquid separated into treated water and separated sludge that can be discharged to the outside by sterilization or the like in the second solid-liquid separation tank.
  • a return means 7 for extracting separated sludge is connected to the bottom of the second solid-liquid separation tank 4.
  • a bypass route for sending excess sludge to the sludge fueling device 6 may be provided in preparation for not returning excess sludge to the mixing device 1.
  • the return means 7 is a device for returning the sludge obtained in the second solid-liquid separation tank 4 as surplus sludge to be supplied to the mixing device 1, and is constituted by piping or the like.
  • the amount of surplus sludge supplied to the mixing device 1 via the return means 7 varies depending on the components of the organic waste water. However, when processing general sewage, the surplus sludge is mixed with the organic waste water as raw water.
  • the ratio is 1.5 [kg-sludge SS / m 3 -raw water] or less, more preferably 1.0 [kg-sludge SS / m 3 -raw water] or less, more preferably 0.51 [kg-sludge SS / s m 3 -raw water] It is preferable to return the excess sludge so that the following is satisfied.
  • the mixing ratio of surplus sludge to the organic waste water as raw water is 0.01 [kg-sludge SS / m 3 -raw water] or more, more preferably 0.05 [kg-sludge.
  • SS / m 3 -raw water] is preferably returned so as to be equal to or higher than that.
  • the supply of surplus sludge by the return means 7 may be performed continuously, or the surplus sludge may be sent temporarily only during a time when the sludge load is high.
  • the mixing ratio of excess sludge to organic wastewater as raw water is 0.01 to 0.6 [kg-sludge SS / m 3 -raw water], more preferably 0. It is preferable to add it so that it becomes 0.05 to 0.2 [kg-sludge SS / m 3 -raw water].
  • the mixing ratio of surplus sludge to organic wastewater as raw water is 0.1 to 1.5 [kg-sludge SS / m 3 -raw water] More preferably, it is added so as to be 0.2 to 1.0 [kg-sludge SS / m 3 -raw water].
  • the amount of excess sludge when evaluated by CODcr in the raw water, it is 3.0 [kg-SS / kg-raw water CODcr] or less, more preferably 1.0 [kg-SS / kg-raw water CODcr] or less, More preferably, it is returned to 0.4 [kg-SS / kg-raw water CODcr] or less.
  • the excess sludge amount is evaluated by CODcr in the raw water, the mixing ratio of the excess sludge amount is 0.02 [kg-SS / kg-raw water CODcr] or more, more preferably 0.1 [kg-SS / kg-raw water. CODcr] is preferably returned.
  • the water treatment method which can perform waste water treatment more efficiently by the whole apparatus can be provided by adjusting a mixing ratio to become the said range.
  • the return means 7 is connected to the bottom of the second solid-liquid separation tank 4, but the return means 7 is also connected to the reaction tank 3, and the second means is used to maintain the microorganism concentration in the reaction tank 3.
  • the sludge generated in the solid-liquid separation tank 4 can be returned to the reaction tank 3 as return sludge, and a part of the return sludge can be returned to the mixing apparatus 1 as surplus sludge.
  • sludge may be drawn directly from the reaction tank 3 and supplied to the mixing device 1 as surplus sludge.
  • the return means 7 is connected to the reaction tank 3, the sludge generated in the second solid-liquid separation tank 4 is returned to the reaction tank 3, and the sludge obtained in the reaction tank 3 Is directly returned to the mixing apparatus 1.
  • the ability to remove organic substances from the organic wastewater in the mixing apparatus 1 can be improved.
  • return means 7 return using a centrifugal pump is generally available, but an air lift pump may be used. By using an air lift pump, the power required for return can be reduced, and the entire apparatus can be made more efficient.
  • the water treatment apparatus which concerns on the modification (4th modification) of embodiment of this invention is the digested sludge digested when using an anaerobic digester as the fueling apparatus 6
  • a digested sludge supply means 18 for supplying a part of the reaction tank 3 to the reaction tank 3 may be provided.
  • illustration is omitted, in the case where the aeration apparatus 8 for aeration of excess sludge as shown in FIG. 3 is provided, a part of the digested sludge may be supplied to the aeration apparatus 8.
  • the digested sludge is reactivated and the amount of surplus sludge that contributes to organic matter removal can be increased, so that the efficiency of the entire process can be improved.
  • the amount of digested sludge that is finally aerobically decomposed and partially discharged is reduced, the labor required for digested sludge treatment can be further reduced, and the overall efficiency of the equipment can be reduced. It leads to improvement.
  • a phosphorus recovery device 20 As shown in FIG. 6, as a water treatment device according to still another modification (fifth modification) of the embodiment of the present invention, a phosphorus recovery device 20, a dehydrator 30, and an anaerobic device are disposed downstream of the fuelizer 6.
  • the control apparatus 10 which controls the supply amount of the excess sludge which the reductive ammonia oxidation processing apparatus 40 and the return means 7 return is supplied, and at least one part of the treated water processed with the anaerobic ammonia oxidation processing apparatus 40 is supplied to the mixing apparatus 1. May be.
  • the control device 10 detects, for example, inflow water or sludge concentration (for example, MLSS concentration), supply flow rate, organic matter concentration (for example, CODcr concentration), ammonia nitrogen concentration, etc., disposed in various places in the water treatment device. Possible first detector 11, second detector 12, third detector 13, fourth detector 14, fifth detector 15, sixth detector 16, seventh detector 17 Based on at least one detection result of the eighth detector 18, the control device 10 can adjust the excess sludge supply amount via the excess sludge supply regulator 7a.
  • the control device 10 can adjust the excess sludge supply amount via the excess sludge supply regulator 7a.
  • the control device 10 According to the water treatment apparatus and method shown in FIG. 6, at least a part of the treated water treated by the phosphorus recovery apparatus 20 and the anaerobic ammonia oxidation treatment apparatus 40 is mixed with the mixing apparatus 1, thereby applying to the reaction tank 3. Nitrogen and phosphorus loads are reduced and the quality of treated water is improved.
  • reaction tank 3 various known methods can be applied as long as the separation liquid separated in the first solid-liquid separation tank can be subjected to aerobic biological treatment.
  • a sludge storage tank or a concentration tank (not shown) for storing sludge in the subsequent stage of the reaction tank 3 and supply excess sludge from the sludge storage tank or the concentration tank via the return means 7.
  • the present invention includes various embodiments and the like which are not described herein, and the technical scope of the present invention is determined by the invention specifying matters according to the appropriate claims from the above description. Determined.
  • the sewage is treated with raw water (organic) under the conditions shown in Table 1.
  • Waste water was treated as waste water). That is, the raw water is a sewage with a BOD concentration of 180 mg / L, an SS of 150 mg / L, and the treated water is 600 L / d.
  • the amount of sludge returned from the second solid-liquid separation tank to the reaction tank is 200 L.
  • the treatment was performed as / d.
  • an anaerobic digester was used as the fueling device.
  • surplus sludge is returned so that the mixing ratio of surplus sludge to raw water is 120 [mg-SS / L-raw water] and 0.3 [kg-SS / kg-raw water CODcr] in the case of CODcr concentration standard. did.
  • the amount of methane gas generated was 22% higher in the example than in the comparative example.
  • Table 2 shows the results of the quality of treated water obtained from the second solid-liquid separation tank for the examples and comparative examples.
  • a part of the SS in the organic waste water is adsorbed and aggregated in the activated sludge by mixing the organic waste water (raw water) and the activated sludge for a very short time (5 minutes).
  • the removal rate of BOD and SS in the first solid-liquid separation tank (primary sedimentation) was improved.
  • the BOD load of the separation liquid flowing into the reaction tank is reduced, the amount of aeration air necessary for biological treatment is greatly reduced, and the power can be reduced. .
  • the treated water quality obtained in the reaction tank was also good.
  • organic substances that have been aerobically decomposed in the conventional method can be recovered as solids in the first settling in this embodiment, and can be converted to methane gas in the fueling device, so that the amount of methane gas generated can be increased. It was. That is, according to the water treatment method according to the embodiment of the present invention, it is possible to provide a water treatment method capable of performing wastewater treatment more efficiently in the entire apparatus combining biological treatment and sludge energy conversion treatment. It was.

Abstract

Provided are a water treatment method and a water treatment device, whereby it becomes possible to treat water with high efficiency and in a safe manner when considered in the whole of the device. A water treatment method comprising: mixing organic waste water that is raw water with excess sludge obtained by a biological treatment for a hydraulic retention time of 10 minutes or shorter; subjecting the mixed solution of the organic waste water and the excess sludge to solid/liquid separation to produce a separated solution and separated sludge; converting the separated sludge into the form of a fuel; subjecting the separated solution to a biological treatment; and returning sludge formed by the biological treatment as excess sludge.

Description

水処理方法及び水処理装置Water treatment method and water treatment apparatus
 本発明は、水処理方法及び水処理装置に関し、特に、生物学的処理と嫌気性消化処理等の汚泥のエネルギー(燃料)化処理を組み合わせて有機性排水から有機物を分解及び回収する処理施設に利用可能な水処理方法及び水処理装置に関する。 The present invention relates to a water treatment method and a water treatment apparatus, and particularly to a treatment facility that decomposes and recovers organic matter from organic wastewater by combining biological treatment and sludge energy (fuel) treatment such as anaerobic digestion treatment. The present invention relates to an available water treatment method and a water treatment apparatus.
 下水などの有機性排水を処理する一般的な方法として、最初沈殿池などの第1の固液分離槽で流入排水中の固形物を粗取りし、その処理水を微生物が存在する反応槽で酸素を供給しながら生物学的処理し、生物学的処理後の微生物を含む混合液を最終沈殿池などの第2の固液分離槽で固形物を分離して処理する方法が知られている。第1及び第2の固液分離槽で分離された固形物である有機性汚泥は嫌気性消化槽によりメタン発酵されてメタンとして回収されるか、あるいは乾燥及び炭化処理されてバイオマスとして燃料利用される。 As a general method for treating organic wastewater such as sewage, the solid matter in the influent wastewater is first roughened in a first solid-liquid separation tank such as a sedimentation basin, and the treated water is treated in a reaction tank where microorganisms exist. A method is known in which biological treatment is performed while oxygen is supplied, and a mixed liquid containing microorganisms after biological treatment is separated and treated in a second solid-liquid separation tank such as a final sedimentation basin. . The organic sludge, which is a solid separated in the first and second solid-liquid separation tanks, is methane-fermented in an anaerobic digestion tank and recovered as methane, or dried and carbonized and used as fuel as biomass. The
 このような処理方法において、有機性排水が生物学的処理される前に有機性排水からより多くの有機物を回収することにより、メタン回収量や燃料熱量を増やす方法として、第1の固液分離槽の前に予備エアレーションタンクを設け、場合によっては余剰汚泥を混ぜて20~30分程度曝気する方法がある(例えば、非特許文献1参照)。しかし、この方法では、予備エアレーションタンクとして20~30分の滞留時間を有する水槽が必要であり、また十分な溶存酸素量(DO)を与えるための曝気装置や動力が必要となる。 In such a treatment method, the first solid-liquid separation is a method for increasing the amount of methane recovered and the amount of fuel heat by recovering more organic matter from the organic wastewater before the organic wastewater is biologically treated. There is a method in which a preliminary aeration tank is provided in front of the tank, and in some cases, excess sludge is mixed and aerated for about 20 to 30 minutes (for example, see Non-Patent Document 1). However, this method requires a water tank having a residence time of 20 to 30 minutes as a preliminary aeration tank, and requires an aeration apparatus and power for providing a sufficient dissolved oxygen amount (DO).
 別の方法として第1の固液分離槽に余剰汚泥を混ぜるだけの方法もある(例えば、非特許文献2参照)。しかし、この方法では混合装置が無いために、十分な効果が得られない。 As another method, there is also a method in which excess sludge is simply mixed in the first solid-liquid separation tank (for example, see Non-Patent Document 2). However, since there is no mixing device in this method, a sufficient effect cannot be obtained.
 更に別の方法として第1の固液分離槽での分離効率を向上させるためにろ材を利用したろ過機能を持たせる方法もある。しかし、この方法では流入排水中の溶解性有機物までは除去することができない。 As yet another method, there is a method of providing a filtration function using a filter medium in order to improve the separation efficiency in the first solid-liquid separation tank. However, this method cannot remove even the soluble organic matter in the influent wastewater.
 更に別の方法として、2段活性汚泥法を用いる方法があるが、第一の曝気槽では20~30分程度の滞留時間を有する水槽及び汚泥返送ラインが必要であり、第一の曝気槽に十分なDOを与えるための曝気装置や動力が必要となる。 As another method, there is a method using a two-stage activated sludge method, but the first aeration tank requires a water tank having a residence time of about 20 to 30 minutes and a sludge return line. An aeration apparatus and power for providing sufficient DO are required.
 尚、これらの処理方法を適用することにより、回収されるエネルギー量が増えるだけでなく、生物学的処理される有機物量が削減されることによる反応槽への酸素供給量が削減されるため、処理に必要なエネルギー量を削減する効果もある。 By applying these treatment methods, not only the amount of recovered energy is increased, but also the amount of oxygen supplied to the reaction vessel is reduced by reducing the amount of organic matter to be biologically treated. There is also an effect of reducing the amount of energy required for processing.
 しかしながら、従来のいずれの方法も、装置全体からみた効率性や処理安定性を鑑みるとまだ検討の余地がある。 However, any of the conventional methods still has room for study in view of the efficiency and processing stability seen from the whole apparatus.
 上記課題を鑑み、本発明は、装置全体で高効率且つ安定的な処理が可能な水処理方法及び水処理装置を提供する。 In view of the above problems, the present invention provides a water treatment method and a water treatment apparatus capable of highly efficient and stable treatment throughout the apparatus.
 上記課題を解決するために本発明者らが鋭意検討した結果、原水としての有機性排水中の固形物を最初沈殿池などで固液分離する前に、生物学的処理により得られる余剰汚泥と極短時間混合して固液分離させることで、その後に行われる生物学的処理及び汚泥燃料化処理を効率的に行えることが分かった。 As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, before solid-liquid separation of solids in organic wastewater as raw water in a first sedimentation basin or the like, surplus sludge obtained by biological treatment and It was found that the biological treatment and sludge fueling treatment performed thereafter can be performed efficiently by mixing for a very short period of time and solid-liquid separation.
 以上の知見を基礎として完成した本発明は一側面において、原水としての有機性排水を生物学的処理により得られる余剰汚泥と水理学的滞留時間10分以下で混合させることと、有機性排水と余剰汚泥の混合液を固液分離して分離液と分離汚泥とを得ることと、分離汚泥を燃料化することと、分離液に生物学的処理をすることと、生物学的処理で発生する汚泥を余剰汚泥として返送することとを含む水処理方法が提供される。 The present invention completed on the basis of the above knowledge is, in one aspect, mixing organic wastewater as raw water with surplus sludge obtained by biological treatment and hydraulic retention time of 10 minutes or less, and organic wastewater, The liquid mixture of excess sludge is solid-liquid separated to obtain the separated liquid and separated sludge, the separated sludge is converted into fuel, the separated liquid is biologically treated, and the biological treatment generates. A water treatment method is provided that includes returning the sludge as excess sludge.
 本発明に係る水処理方法は一実施態様において、生物学的処理で発生する汚泥を余剰汚泥として返送することが、原水としての有機性排水に対する余剰汚泥の混合比率が1.5[kg-汚泥SS/m3-原水]以下及び/又は3.0[kg-SS/kg-原水CODcr]以下となるように返送することを含む。 In one embodiment of the water treatment method according to the present invention, the sludge generated by biological treatment is returned as surplus sludge, and the mixing ratio of surplus sludge to organic wastewater as raw water is 1.5 [kg-sludge. SS / m 3 -raw water] or less and / or 3.0 [kg-SS / kg-raw water CODcr] or less.
 本発明に係る水処理方法は別の一実施態様において、酸素濃度DOが0.1mg/L以上で有機性排水と余剰汚泥とを混合させることを更に含む。 In another embodiment, the water treatment method according to the present invention further includes mixing organic waste water and excess sludge with an oxygen concentration DO of 0.1 mg / L or more.
 本発明に係る水処理方法は更に別の一実施態様において、有機性排水と余剰汚泥とを嫌気性条件下で混合させることを含む。 In yet another embodiment, the water treatment method according to the present invention includes mixing organic waste water and excess sludge under anaerobic conditions.
 本発明に係る水処理方法は更に別の一実施態様において、余剰汚泥を曝気してから有機性排水と余剰汚泥とを混合させることを含む。 In yet another embodiment, the water treatment method according to the present invention includes mixing the organic waste water and the excess sludge after aeration of the excess sludge.
 本発明に係る水処理方法は更に別の一実施態様において、分離汚泥を燃料化することが、分離汚泥を嫌気性消化してメタンガスと消化汚泥とを得ることを含み、消化汚泥の一部を、分離液に生物学的処理を行うための反応槽内へ供給することを更に含む。 In still another embodiment of the water treatment method according to the present invention, converting the separated sludge into fuel includes anaerobically digesting the separated sludge to obtain methane gas and digested sludge, and a part of the digested sludge is obtained. And further supplying the separation liquid into a reaction vessel for biological treatment.
 本発明は別の一側面において、原水としての有機性排水を生物学的処理により得られる余剰汚泥と水理学的滞留時間10分以下で混合させる混合装置と、有機性排水と余剰汚泥の混合液を固液分離して分離液と分離汚泥とを得る第1の固液分離槽と、分離汚泥を燃料化する燃料化装置と、分離液に生物学的処理をする反応槽と、生物学的処理で発生する汚泥を余剰汚泥として返送する返送手段とを含む水処理装置が提供される。 In another aspect of the present invention, a mixing device that mixes organic wastewater as raw water with surplus sludge obtained by biological treatment in a hydraulic retention time of 10 minutes or less, and a mixture of organic wastewater and surplus sludge A solid-liquid separation to obtain a separated liquid and separated sludge, a first solid-liquid separation tank, a fueling device for converting the separated sludge into fuel, a reaction tank for biologically treating the separated liquid, and biological There is provided a water treatment device including return means for returning sludge generated in the treatment as surplus sludge.
 本発明に係る水処理装置は一実施態様において、混合装置が第1の固液分離槽内に配置される。 In one embodiment of the water treatment apparatus according to the present invention, the mixing apparatus is disposed in the first solid-liquid separation tank.
 本発明によれば、装置全体で高効率且つ安定的な処理が可能な水処理方法及び水処理装置が提供できる。 According to the present invention, it is possible to provide a water treatment method and a water treatment apparatus capable of highly efficient and stable treatment throughout the apparatus.
本発明の実施の形態に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on embodiment of this invention. 第1変形例に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on a 1st modification. 第2変形例に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on a 2nd modification. 第3変形例に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on a 3rd modification. 第4変形例に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on a 4th modification. 第5変形例に係る水処理装置の一例を表す概略図である。It is the schematic showing an example of the water treatment apparatus which concerns on a 5th modification.
 以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement, etc. of components as follows. Not what you want.
 図1に示すように、本発明の実施の形態に係る水処理装置は、原水としての有機性排水を余剰汚泥と混合し、有機性排水中の有機物を余剰汚泥に吸着させる混合装置1と、第1の固液分離槽2と、反応槽3と、第2の固液分離槽4と、燃料化装置6と、返送手段7とを備える。 As shown in FIG. 1, the water treatment apparatus according to the embodiment of the present invention is a mixing apparatus 1 that mixes organic wastewater as raw water with surplus sludge, and adsorbs organic matter in the organic wastewater to the surplus sludge; A first solid-liquid separation tank 2, a reaction tank 3, a second solid-liquid separation tank 4, a fuelizer 6, and a return means 7 are provided.
 本実施形態に係る水処理装置に用いられる流入原水としては、下水、屎尿、厨芥などの有機性物質を含有する有機性排水が利用可能である。以下に限定されるものではないが、典型的には、流入原水の水質として生物化学的酸素要求量(BOD)が100~1000mg/L、化学的酸素要求量(CODcr)が200~3000mg/L、浮遊物質(SS)が100~1000mg/L程度の有機性排水が、本実施形態に係る水処理装置に好適に供給される。 As the inflow raw water used in the water treatment apparatus according to the present embodiment, organic wastewater containing organic substances such as sewage, manure, and urine can be used. Typically, but not limited to, the quality of influent raw water is 100 to 1000 mg / L biochemical oxygen demand (BOD) and 200 to 3000 mg / L chemical oxygen demand (CODcr). Organic wastewater having a suspended substance (SS) of about 100 to 1000 mg / L is suitably supplied to the water treatment apparatus according to this embodiment.
 本発明者らの鋭意検討の結果、上記有機性排水と余剰汚泥との混合時間は長くしても余剰汚泥への有機物吸着効果はあまり変わらないことが分かった。そのため、混合装置1の水理学的滞留時間(HRT)は20分未満、より好ましくは10分以内、更に好ましくは5分以内とする。混合装置1のHRTを短くすることにより混合装置1の装置サイズを小型化することができるため、装置全体としての省スペース化が図れ、装置構成面での効率化が図れる。 As a result of intensive studies by the present inventors, it was found that even if the mixing time of the organic waste water and the excess sludge is increased, the organic matter adsorption effect on the excess sludge does not change much. Therefore, the hydraulic residence time (HRT) of the mixing apparatus 1 is less than 20 minutes, more preferably within 10 minutes, and even more preferably within 5 minutes. By shortening the HRT of the mixing apparatus 1, the apparatus size of the mixing apparatus 1 can be reduced, so that the space of the entire apparatus can be saved and the efficiency of the apparatus configuration can be improved.
 図1に示す混合装置1は、更なる省スペース化のために、図2に示すように、第1の固液分離槽2内に配置し、有機性排水と余剰汚泥との混合が、有機性排水と余剰汚泥の混合液を固液分離する固液分離槽内で行われるようにすることも好ましい。これにより、有機性排水と余剰汚泥との混合のための水槽を省略できる。有機物吸着効果と装置小型化の両面を考慮すると、HRTの下限時間は例えば10秒以上、より好ましくは30秒以上とすることが好ましい。 For further space saving, the mixing apparatus 1 shown in FIG. 1 is disposed in the first solid-liquid separation tank 2 as shown in FIG. 2, and mixing of organic waste water and excess sludge is organic. It is also preferable to carry out in a solid-liquid separation tank for solid-liquid separation of the mixed liquid of effluent wastewater and excess sludge. Thereby, the water tank for mixing organic waste water and excess sludge can be omitted. Considering both the organic matter adsorption effect and the downsizing of the apparatus, the lower limit time of HRT is, for example, preferably 10 seconds or more, more preferably 30 seconds or more.
 混合装置1で用いられる混合方法としては、例えば、攪拌装置による機械攪拌や、空気などを用いた散気板や水中エアレーターを通じた曝気方法、配管や水路を利用する方法、阻流壁を用いた混合方法が利用可能である。装置全体の省スペース化、装置簡略化の点を考慮すると、混合装置1内には、有機性排水と余剰汚泥を混合するための曝気装置は原則設けなくてもよいが、曝気装置を設ける場合には、混合装置1内のDOは、0.1mg/L以上、より好ましくは0.2mg/L以上となるように、混合装置1内への曝気量を調節することが好ましい。これにより、余剰汚泥が活性化して有機物除去能が向上するとともに、活性汚泥からのりんの吐き出しを抑制できる。 As the mixing method used in the mixing device 1, for example, mechanical stirring by a stirring device, aeration method using a diffuser plate using air or the like, an aeration method using an underwater aerator, a method using piping or a water channel, a baffle wall is used. The mixing method that was used is available. In consideration of space saving and simplification of the entire device, the mixing device 1 does not need to be provided with an aeration device for mixing organic waste water and excess sludge in principle, but an aeration device is provided. Therefore, it is preferable to adjust the amount of aeration in the mixing device 1 so that the DO in the mixing device 1 is 0.1 mg / L or more, more preferably 0.2 mg / L or more. Thereby, the excess sludge is activated and the organic matter removing ability is improved, and the discharge of phosphorus from the activated sludge can be suppressed.
 一方で、混合装置1では、有機性排水と余剰汚泥とを嫌気性条件下で混合させることも効果がある。嫌気性条件下で混合させることにより、曝気装置などの追加装置が不要となるため、装置全体をより簡略化することができる。また、図3に示すように、返送手段7の途中に曝気装置8を設け、余剰汚泥を予め曝気してから嫌気性条件又は好気性条件下で有機性排水と余剰汚泥とを混合させてもよい。曝気装置8で余剰汚泥を予め曝気することにより、りんの吐き出しを抑制することが可能となる。 On the other hand, in the mixing apparatus 1, it is also effective to mix organic waste water and excess sludge under anaerobic conditions. By mixing under anaerobic conditions, an additional device such as an aeration device is not necessary, so that the entire device can be further simplified. In addition, as shown in FIG. 3, an aeration device 8 is provided in the middle of the return means 7, and after the excess sludge is preaerated, the organic waste water and the excess sludge are mixed under anaerobic conditions or aerobic conditions. Good. It is possible to suppress the discharge of phosphorus by aeration of excess sludge in advance with the aeration device 8.
 第1の固液分離槽2は、混合装置1で得られた混合液を固液分離する装置であり、例えば最初沈殿池などが好適に利用される。固液分離の手段としては、重力沈降分離、遠心分離、浮上分離、凝集分離、膜分離等が利用可能である。分離効率を向上させるために、傾斜板や汚泥ブランケット層を用いてもよく、凝集剤を使ってもよい。第1の固液分離槽2で得られた分離液は配管を介して反応槽3へと送られる。第1の固液分離槽2で得られた分離汚泥は配管を介して燃料化装置6へと送られる。 1st solid-liquid separation tank 2 is an apparatus which carries out solid-liquid separation of the liquid mixture obtained with the mixing apparatus 1, for example, a first sedimentation tank etc. are utilized suitably. As means for solid-liquid separation, gravity sedimentation separation, centrifugation, flotation separation, agglomeration separation, membrane separation and the like can be used. In order to improve the separation efficiency, an inclined plate or a sludge blanket layer may be used, or a flocculant may be used. The separation liquid obtained in the first solid-liquid separation tank 2 is sent to the reaction tank 3 through a pipe. The separated sludge obtained in the first solid-liquid separation tank 2 is sent to the fuelizer 6 via a pipe.
 燃料化装置6は、第1の固液分離槽で分離された分離汚泥を分解して燃料ガス又は汚泥燃料に変換するための装置である。燃料化装置6は分離汚泥を分解して燃料ガス又は汚泥燃料に変換する目的で設置される装置であれば特に限定されない。例えば、分離汚泥を嫌気性消化によりメタンガスを発生させる嫌気性消化槽、或いは分離汚泥を乾燥或いは炭化して燃料化する乾燥機又は炭化装置等も好適に利用される。燃料化装置6として嫌気性消化槽を用いる場合には、TS濃度1~12wt%、より典型的には2~8wt%、より典型的には3~6wt%の濃縮汚泥を、水理学的滞留時間40日以内、より典型的には30日以内で、メタン転換率40%以上、より典型的には45%以上で処理可能な嫌気性消化槽が配置されることが好ましい。 The fueling device 6 is a device for decomposing the separated sludge separated in the first solid-liquid separation tank and converting it into fuel gas or sludge fuel. The fueling device 6 is not particularly limited as long as it is a device installed for the purpose of decomposing the separated sludge and converting it into fuel gas or sludge fuel. For example, an anaerobic digester that generates methane gas by anaerobic digestion of the separated sludge, or a dryer or a carbonizer that dries or carbonizes the separated sludge to produce fuel is also preferably used. When an anaerobic digester is used as the fueling device 6, a concentrated sludge having a TS concentration of 1 to 12 wt%, more typically 2 to 8 wt%, more typically 3 to 6 wt% is stored in a hydraulic environment. It is preferable to arrange an anaerobic digester that can be processed within 40 days, more typically within 30 days, and with a methane conversion of 40% or more, more typically 45% or more.
 燃料化装置6の前段には必要に応じて前処理装置5が配置されていてもよい。前処理装置5は特定しないが、濃縮装置や脱水装置などの第1の固液分離槽2からの分離汚泥の汚泥含水率を低減させる装置やアルカリ処理やオゾン処理などの燃料化を向上させる装置を単独又は組み合わせて利用してもよい。 The pretreatment device 5 may be disposed in the front stage of the fueling device 6 as necessary. Although the pretreatment device 5 is not specified, a device for reducing the sludge moisture content of the separated sludge from the first solid-liquid separation tank 2 such as a concentrating device or a dewatering device, or a device for improving fuelization such as alkali treatment or ozone treatment May be used alone or in combination.
 反応槽3は、第1の固液分離槽で分離された分離液に生物学的処理を行うための装置である。生物学的処理としては、例えば、活性汚泥法(膜分離活性汚泥法、回分式活性汚泥法)、生物膜処理法(固定床型生物膜法、流動床型生物膜法)等を用いた好気性生物処理がある。活性汚泥法を用いる場合、反応槽3としては、標準活性汚泥法、嫌気好気法、循環式硝化脱窒法、ステップ流入式多段硝化脱窒法、A2O法などの従来の水処理方法を利用した装置を配置することができる。反応槽3は、反応槽3で発生した余剰汚泥を、必要に応じて混合装置1へ返送することが可能なように返送手段7に接続されていてもよい。 The reaction tank 3 is an apparatus for performing biological treatment on the separated liquid separated in the first solid-liquid separation tank. Examples of biological treatments include activated sludge methods (membrane separation activated sludge method, batch activated sludge method), biofilm treatment methods (fixed bed type biofilm method, fluidized bed type biofilm method) and the like. There is a temperate biological treatment. When using the activated sludge method, the reaction tank 3 is an apparatus using a conventional activated sludge method, an anaerobic aerobic method, a circulating nitrification denitrification method, a step inflow multistage nitrification denitrification method, an A2O method, or the like. Can be arranged. The reaction tank 3 may be connected to the return means 7 so that the excess sludge generated in the reaction tank 3 can be returned to the mixing device 1 as necessary.
 第2の固液分離槽4は、反応槽3で得られた処理水を固液分離する装置であり、例えば最終沈殿池などが好適に用いられる。固液分離の手段としては、第1の固液分離槽2と同様の手段を採用することができる。反応槽3で得られた処理水は、第2の固液分離槽において、消毒等することにより外部へ排出可能な処理水と分離汚泥とに固液分離される。第2の固液分離槽4の底部には、分離汚泥を抜き出すための返送手段7が接続されている。図示していないが、余剰汚泥を混合装置1へ返送しない場合に備え、余剰汚泥を汚泥燃料化装置6へ送るためのバイパスルートを設けておいてもよい。 The second solid-liquid separation tank 4 is an apparatus for solid-liquid separation of the treated water obtained in the reaction tank 3, and for example, a final sedimentation basin or the like is preferably used. As means for solid-liquid separation, the same means as in the first solid-liquid separation tank 2 can be employed. The treated water obtained in the reaction tank 3 is solid-liquid separated into treated water and separated sludge that can be discharged to the outside by sterilization or the like in the second solid-liquid separation tank. A return means 7 for extracting separated sludge is connected to the bottom of the second solid-liquid separation tank 4. Although not shown, a bypass route for sending excess sludge to the sludge fueling device 6 may be provided in preparation for not returning excess sludge to the mixing device 1.
 返送手段7は、第2の固液分離槽4で得られる汚泥を混合装置1へ供給する余剰汚泥として返送するための装置であり、配管等で構成される。 The return means 7 is a device for returning the sludge obtained in the second solid-liquid separation tank 4 as surplus sludge to be supplied to the mixing device 1, and is constituted by piping or the like.
 返送手段7を介して混合装置1へ供給する余剰汚泥の量は、有機性排水の成分によっても異なるが、一般的な下水を処理する場合には、原水としての有機性排水に対する余剰汚泥の混合比率が1.5[kg-汚泥SS/m3-原水]以下、より好ましくは1.0[kg-汚泥SS/m3-原水]以下、更に好ましくは、0.51[kg-汚泥SS/m3-原水]以下となるように余剰汚泥を返送することが好ましい。なお、原水としての有機性排水に対する余剰汚泥の混合比率が0.01[kg-汚泥SS/m3-原水]以上となるように添加することが好ましく、より好ましくは0.05[kg-汚泥SS/m3-原水]以上となるように返送することが好ましい。 The amount of surplus sludge supplied to the mixing device 1 via the return means 7 varies depending on the components of the organic waste water. However, when processing general sewage, the surplus sludge is mixed with the organic waste water as raw water. The ratio is 1.5 [kg-sludge SS / m 3 -raw water] or less, more preferably 1.0 [kg-sludge SS / m 3 -raw water] or less, more preferably 0.51 [kg-sludge SS / s m 3 -raw water] It is preferable to return the excess sludge so that the following is satisfied. It is preferable to add so that the mixing ratio of surplus sludge to the organic waste water as raw water is 0.01 [kg-sludge SS / m 3 -raw water] or more, more preferably 0.05 [kg-sludge. SS / m 3 -raw water] is preferably returned so as to be equal to or higher than that.
 返送手段7による余剰汚泥の供給は、連続的に行ってもよいし、汚泥負荷の高い時間にのみ一次的に余剰汚泥を送るようにしてもよい。連続的且つ定常的に余剰汚泥を添加する場合は、原水としての有機性排水に対する余剰汚泥の混合比率が0.01~0.6[kg-汚泥SS/m3-原水]、より好ましくは0.05~0.2[kg-汚泥SS/m3-原水]となるように添加することが好ましい。これにより、生物学的処理と汚泥のエネルギー処理とを組み合わせた装置全体において、より安定的且つ効率的に処理を進めることができる。一方、汚泥負荷の高い時間にのみ余剰汚泥を返送する場合には、原水としての有機性排水に対する余剰汚泥の混合比率が0.1~1.5[kg-汚泥SS/m3-原水]、より好ましくは0.2~1.0[kg-汚泥SS/m3-原水]となるように添加することが好ましい。 The supply of surplus sludge by the return means 7 may be performed continuously, or the surplus sludge may be sent temporarily only during a time when the sludge load is high. When adding excess sludge continuously and constantly, the mixing ratio of excess sludge to organic wastewater as raw water is 0.01 to 0.6 [kg-sludge SS / m 3 -raw water], more preferably 0. It is preferable to add it so that it becomes 0.05 to 0.2 [kg-sludge SS / m 3 -raw water]. Thereby, in the whole apparatus which combined the biological treatment and the energy treatment of sludge, a process can be advanced more stably and efficiently. On the other hand, when surplus sludge is returned only during periods of high sludge load, the mixing ratio of surplus sludge to organic wastewater as raw water is 0.1 to 1.5 [kg-sludge SS / m 3 -raw water] More preferably, it is added so as to be 0.2 to 1.0 [kg-sludge SS / m 3 -raw water].
 或いは、原水中のCODcrで余剰汚泥量を評価する場合には、3.0[kg-SS/kg-原水CODcr]以下、より好ましくは1.0[kg-SS/kg-原水CODcr]以下、更に好ましくは0.4[kg-SS/kg-原水CODcr]以下となるように返送することが好ましい。原水中のCODcrで余剰汚泥量を評価する場合の余剰汚泥量の混合比率は、0.02[kg-SS/kg-原水CODcr]以上、より好ましくは0.1[kg-SS/kg-原水CODcr]以上となるように返送することが好ましい。 Alternatively, when the amount of excess sludge is evaluated by CODcr in the raw water, it is 3.0 [kg-SS / kg-raw water CODcr] or less, more preferably 1.0 [kg-SS / kg-raw water CODcr] or less, More preferably, it is returned to 0.4 [kg-SS / kg-raw water CODcr] or less. When the excess sludge amount is evaluated by CODcr in the raw water, the mixing ratio of the excess sludge amount is 0.02 [kg-SS / kg-raw water CODcr] or more, more preferably 0.1 [kg-SS / kg-raw water. CODcr] is preferably returned.
 余剰汚泥の混合比率を高くしすぎても有機物除去効果が比例して得られるものではない。一方で、装置全体で生じる余剰汚泥量は有限なため、添加できる余剰汚泥量も処理条件によって変動する。本発明によれば、混合比率を上記範囲となるように調整することで、装置全体でより効率良く排水処理することが可能な水処理方法が提供できる。 Even if the mixing ratio of excess sludge is increased too much, the organic matter removal effect is not obtained in proportion. On the other hand, since the amount of excess sludge generated in the entire apparatus is finite, the amount of excess sludge that can be added also varies depending on the processing conditions. ADVANTAGE OF THE INVENTION According to this invention, the water treatment method which can perform waste water treatment more efficiently by the whole apparatus can be provided by adjusting a mixing ratio to become the said range.
 返送手段7は、第2の固液分離槽4の底部に接続されているが、返送手段7は反応槽3にも接続されており、反応槽3内の微生物濃度を維持するために第2の固液分離槽4で発生した汚泥を、返送汚泥として反応槽3へ返送するとともに、その返送汚泥の一部を余剰汚泥として混合装置1へ返送することができる。或いは、図4で示すように、反応槽3から直接、汚泥を引き抜いて、これを余剰汚泥として混合装置1へ供給してもよい。図4に示す水処理装置では、返送手段7が反応槽3に接続されており、第2の固液分離槽4で発生した汚泥が反応槽3へ返送され、反応槽3で得られた汚泥が直接混合装置1へ返送されるようになっている。 The return means 7 is connected to the bottom of the second solid-liquid separation tank 4, but the return means 7 is also connected to the reaction tank 3, and the second means is used to maintain the microorganism concentration in the reaction tank 3. The sludge generated in the solid-liquid separation tank 4 can be returned to the reaction tank 3 as return sludge, and a part of the return sludge can be returned to the mixing apparatus 1 as surplus sludge. Alternatively, as shown in FIG. 4, sludge may be drawn directly from the reaction tank 3 and supplied to the mixing device 1 as surplus sludge. In the water treatment apparatus shown in FIG. 4, the return means 7 is connected to the reaction tank 3, the sludge generated in the second solid-liquid separation tank 4 is returned to the reaction tank 3, and the sludge obtained in the reaction tank 3 Is directly returned to the mixing apparatus 1.
 有機性排水に混合する余剰汚泥として生物学的処理により十分曝気された汚泥を利用することにより、混合装置1において有機性排水中からの有機物除去能を向上させることができる。返送手段7としては、遠心ポンプを用いた返送が一般的には利用可能であるが、エアリフトポンプでもよい。エアリフトポンプを利用することにより返送に必要な動力を低減でき、装置全体を効率化できる。 By using sludge sufficiently aerated by biological treatment as surplus sludge mixed with organic wastewater, the ability to remove organic substances from the organic wastewater in the mixing apparatus 1 can be improved. As the return means 7, return using a centrifugal pump is generally available, but an air lift pump may be used. By using an air lift pump, the power required for return can be reduced, and the entire apparatus can be made more efficient.
 或いは、図5に示すように、本発明の実施の形態の変形例(第4変形例)に係る水処理装置は、燃料化装置6として嫌気性消化槽を用いる場合に消化処理された消化汚泥の一部を、反応槽3へ供給するための消化汚泥供給手段18を備えていてもよい。図示は省略するが、図3に示すような、余剰汚泥を曝気する曝気装置8を備える場合には、この曝気装置8に消化汚泥の一部を供給するようにしてもよい。消化汚泥の一部を反応槽3又は曝気装置8へ戻すことにより、消化汚泥が再活性化されて有機物除去に寄与する余剰汚泥量を増やすことができるため、処理全体としての効率化が図れる。また、戻された消化汚泥の一部が好気分解されて最終的に排出される消化汚泥量を減らすことができるため、消化汚泥の処理に必要な労力がより削減でき、装置全体としての効率向上に繋がる。 Or as shown in FIG. 5, the water treatment apparatus which concerns on the modification (4th modification) of embodiment of this invention is the digested sludge digested when using an anaerobic digester as the fueling apparatus 6 A digested sludge supply means 18 for supplying a part of the reaction tank 3 to the reaction tank 3 may be provided. Although illustration is omitted, in the case where the aeration apparatus 8 for aeration of excess sludge as shown in FIG. 3 is provided, a part of the digested sludge may be supplied to the aeration apparatus 8. By returning a part of the digested sludge to the reaction tank 3 or the aeration device 8, the digested sludge is reactivated and the amount of surplus sludge that contributes to organic matter removal can be increased, so that the efficiency of the entire process can be improved. In addition, since the amount of digested sludge that is finally aerobically decomposed and partially discharged is reduced, the labor required for digested sludge treatment can be further reduced, and the overall efficiency of the equipment can be reduced. It leads to improvement.
 図6に示すように、本発明の実施の形態の更に別の変形例(第5変形例)に係る水処理装置としては、燃料化装置6の後段にリン回収装置20、脱水機30、嫌気性アンモニア酸化処理装置40及び返送手段7が返送する余剰汚泥の供給量を制御する制御装置10を備え、嫌気性アンモニア酸化処理装置40で処理された処理水の少なくとも一部が混合装置1へ供給されてもよい。制御装置10は、例えば水処理装置内の各所に配置された、流入水或いは各処理工程における汚泥濃度(例えばMLSS濃度)、供給流量、有機物濃度(例えばCODcr濃度)、アンモニア性窒素濃度等を検出可能な第1の検出器11、第2の検出器12、第3の検出器13、第4の検出器14、第5の検出器15、第6の検出器16、第7の検出器17、第8の検出器18の少なくとも1つの検出結果に基づいて、制御装置10が余剰汚泥供給調整器7aを介して余剰汚泥供給量を調整できるようになっている。図6に示す水処理装置及び方法によれば、りん回収装置20及び嫌気性アンモニア酸化処理装置40で処理された処理水の少なくとも一部を混合装置1へ混合させることにより、反応槽3にかかる窒素及びりんの負荷が軽減され、処理水質が向上する。 As shown in FIG. 6, as a water treatment device according to still another modification (fifth modification) of the embodiment of the present invention, a phosphorus recovery device 20, a dehydrator 30, and an anaerobic device are disposed downstream of the fuelizer 6. The control apparatus 10 which controls the supply amount of the excess sludge which the reductive ammonia oxidation processing apparatus 40 and the return means 7 return is supplied, and at least one part of the treated water processed with the anaerobic ammonia oxidation processing apparatus 40 is supplied to the mixing apparatus 1. May be. The control device 10 detects, for example, inflow water or sludge concentration (for example, MLSS concentration), supply flow rate, organic matter concentration (for example, CODcr concentration), ammonia nitrogen concentration, etc., disposed in various places in the water treatment device. Possible first detector 11, second detector 12, third detector 13, fourth detector 14, fifth detector 15, sixth detector 16, seventh detector 17 Based on at least one detection result of the eighth detector 18, the control device 10 can adjust the excess sludge supply amount via the excess sludge supply regulator 7a. According to the water treatment apparatus and method shown in FIG. 6, at least a part of the treated water treated by the phosphorus recovery apparatus 20 and the anaerobic ammonia oxidation treatment apparatus 40 is mixed with the mixing apparatus 1, thereby applying to the reaction tank 3. Nitrogen and phosphorus loads are reduced and the quality of treated water is improved.
(その他の実施の形態)
 本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments and operational techniques will be apparent to those skilled in the art.
 反応槽3は、第1の固液分離槽で分離された分離液に好気性生物学的処理可能であれば周知の種々の方法を適用することができる。例えば、反応槽3において回分式活性汚泥法を適用した処理を行う場合には、処理水の排出及び汚泥の引抜がバッチ式に行われる。そのため、反応槽3の後段に汚泥を貯蔵するための汚泥貯留槽又は濃縮槽(図示せず)を設け、汚泥貯留槽又は濃縮槽から返送手段7を介して余剰汚泥を供給することが好ましい。 As the reaction tank 3, various known methods can be applied as long as the separation liquid separated in the first solid-liquid separation tank can be subjected to aerobic biological treatment. For example, when performing the process which applied the batch type activated sludge method in the reaction tank 3, discharge | emission of process water and extraction of sludge are performed in a batch type. Therefore, it is preferable to provide a sludge storage tank or a concentration tank (not shown) for storing sludge in the subsequent stage of the reaction tank 3 and supply excess sludge from the sludge storage tank or the concentration tank via the return means 7.
 反応槽3において膜分離活性汚泥法を利用する場合、分離膜が反応槽内に設置される槽一体型、反応槽の後段に膜分離槽を設ける槽別置き型、或いは水槽を設けずにケーシング内に収納した分離膜を用いる槽外型などが用いられるが、このような生物学的処理も本水処理方法に勿論適用可能である。また、反応槽3において固定床型生物膜法を利用する場合、第2の固液分離槽4から反応槽3への返送汚泥は供給しないが、このような生物学的処理も本水処理方法に勿論適用可能である。 When using the membrane separation activated sludge method in the reaction tank 3, a tank integrated type in which the separation membrane is installed in the reaction tank, a tank separate type in which a membrane separation tank is provided at the subsequent stage of the reaction tank, or a casing without providing a water tank An outside tank type using a separation membrane housed in the inside is used, and such biological treatment is naturally applicable to the present water treatment method. Further, when the fixed bed type biofilm method is used in the reaction tank 3, the return sludge from the second solid-liquid separation tank 4 to the reaction tank 3 is not supplied. Of course, it is applicable.
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論であり、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によって定められる。 As described above, the present invention includes various embodiments and the like which are not described herein, and the technical scope of the present invention is determined by the invention specifying matters according to the appropriate claims from the above description. Determined.
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 EXAMPLES Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
 図1に示す水処理装置を用いた場合(実施例)と、図1の混合装置1による混合処理を行わない場合(比較例)について、表1に示す条件で、それぞれ下水を原水(有機性排水)として排水処理した。即ち、原水としてBOD濃度が180mg/L、SSが150mg/Lの下水を原水として、いずれも処理水量600L/dとし、第2の固液分離槽から反応槽への返送汚泥量をいずれも200L/dとして処理を行った。なお、実施例及び比較例のいずれも、燃料化装置としては嫌気性消化装置を用いた。実施例では、原水に対する余剰汚泥の混合比率を120[mg-SS/L-原水]、CODcr濃度基準の場合で0.3[kg-SS/kg-原水CODcr]となるように余剰汚泥を返送した。メタンガス発生量は、比較例に比べて実施例の方が22%多くなった。 In the case where the water treatment apparatus shown in FIG. 1 is used (Example) and the case where the mixing treatment by the mixing apparatus 1 in FIG. 1 is not performed (Comparative Example), the sewage is treated with raw water (organic) under the conditions shown in Table 1. Waste water was treated as waste water). That is, the raw water is a sewage with a BOD concentration of 180 mg / L, an SS of 150 mg / L, and the treated water is 600 L / d. The amount of sludge returned from the second solid-liquid separation tank to the reaction tank is 200 L. The treatment was performed as / d. In both the examples and comparative examples, an anaerobic digester was used as the fueling device. In the embodiment, surplus sludge is returned so that the mixing ratio of surplus sludge to raw water is 120 [mg-SS / L-raw water] and 0.3 [kg-SS / kg-raw water CODcr] in the case of CODcr concentration standard. did. The amount of methane gas generated was 22% higher in the example than in the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例について、第2の固液分離槽から得られた処理水の水質の結果を表2に示す。 Table 2 shows the results of the quality of treated water obtained from the second solid-liquid separation tank for the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例においては、混合装置内において、有機性排水(原水)と活性汚泥との極短時間(5分間)の混合によって、有機性排水中のSSの一部が活性汚泥に吸着凝集されて、第1の固液分離槽(初沈)でのBOD及びSSの除去率が向上した。また、初沈での有機物除去効率の向上によって、反応槽に流入する分離液のBOD負荷が低下し、生物学的処理に必要な曝気風量が大幅に低下し、動力の削減が可能となった。また、反応槽で得られた処理水質も良好であった。更に、従来法では、好気性分解されていた有機物を、本実施例では、初沈において固形物として回収でき、燃料化装置においてメタンガスに変換できたことから、メタンガス発生量を増加させることができた。即ち、本発明の実施の形態に係る水処理方法によれば、生物学的処理と汚泥のエネルギー化処理を組み合せた装置全体で、より効率良く排水処理することが可能な水処理方法が提供できた。 In the embodiment, in the mixing apparatus, a part of the SS in the organic waste water is adsorbed and aggregated in the activated sludge by mixing the organic waste water (raw water) and the activated sludge for a very short time (5 minutes). The removal rate of BOD and SS in the first solid-liquid separation tank (primary sedimentation) was improved. In addition, by improving the organic substance removal efficiency in the initial sedimentation, the BOD load of the separation liquid flowing into the reaction tank is reduced, the amount of aeration air necessary for biological treatment is greatly reduced, and the power can be reduced. . The treated water quality obtained in the reaction tank was also good. Furthermore, organic substances that have been aerobically decomposed in the conventional method can be recovered as solids in the first settling in this embodiment, and can be converted to methane gas in the fueling device, so that the amount of methane gas generated can be increased. It was. That is, according to the water treatment method according to the embodiment of the present invention, it is possible to provide a water treatment method capable of performing wastewater treatment more efficiently in the entire apparatus combining biological treatment and sludge energy conversion treatment. It was.
1…混合装置
2…第1の固液分離槽
3…反応槽
4…第2の固液分離槽
5…前処理装置
6…燃料化装置
7…返送手段
7a…余剰汚泥供給調整器
8…曝気装置
10…制御装置
20…リン回収装置
30…脱水機
40…嫌気性アンモニア酸化処理装置
DESCRIPTION OF SYMBOLS 1 ... Mixing apparatus 2 ... 1st solid-liquid separation tank 3 ... Reaction tank 4 ... 2nd solid-liquid separation tank 5 ... Pretreatment apparatus 6 ... Fueling apparatus 7 ... Return means 7a ... Excess sludge supply regulator 8 ... Aeration Device 10 ... Control device 20 ... Phosphorus recovery device 30 ... Dehydrator 40 ... Anaerobic ammonia oxidation treatment device

Claims (8)

  1.  原水としての有機性排水を生物学的処理により得られる余剰汚泥と水理学的滞留時間10分以下で混合させることと、
     前記有機性排水と前記余剰汚泥の混合液を固液分離して分離液と分離汚泥とを得ることと、
     前記分離汚泥を燃料化することと、
     前記分離液に生物学的処理をすることと、
     前記生物学的処理で発生する汚泥を前記余剰汚泥として返送することと、
    を含む水処理方法。
    Mixing organic wastewater as raw water with surplus sludge obtained by biological treatment in a hydraulic retention time of 10 minutes or less;
    Solid-liquid separation of the mixed liquid of the organic waste water and the excess sludge to obtain a separated liquid and separated sludge;
    Fueling the separated sludge;
    Biologically treating the separation liquid;
    Returning the sludge generated in the biological treatment as the surplus sludge;
    Including water treatment method.
  2.  前記生物学的処理で発生する汚泥を前記余剰汚泥として返送することが、原水としての有機性排水に対する前記余剰汚泥の混合比率が1.5[kg-汚泥SS/m3-原水]以下及び/又は3.0[kg-SS/kg-原水CODcr]以下となるように返送することを含む請求項1に記載の水処理方法。 Returning the sludge generated by the biological treatment as the surplus sludge is such that the mixing ratio of the surplus sludge to the organic waste water as raw water is 1.5 [kg-sludge SS / m 3 -raw water] or less and / or 2. The water treatment method according to claim 1, further comprising returning it to 3.0 [kg-SS / kg-raw water CODcr] or less.
  3.  酸素濃度DOが0.1mg/L以上で有機性排水と余剰汚泥とを混合させることを更に含む請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1 or 2, further comprising mixing organic wastewater and excess sludge at an oxygen concentration DO of 0.1 mg / L or more.
  4.  前記有機性排水と前記余剰汚泥とを嫌気性条件下で混合させることを含む請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1 or 2, comprising mixing the organic waste water and the excess sludge under anaerobic conditions.
  5.  前記余剰汚泥を曝気してから前記有機性排水と前記余剰汚泥とを混合させることを含む請求項1~4のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 4, comprising aeration of the excess sludge and mixing of the organic waste water and the excess sludge.
  6.  前記分離汚泥を燃料化することが、前記分離汚泥を嫌気性消化してメタンガスと消化汚泥とを得ることを含み、
     前記消化汚泥の一部を、前記分離液に生物学的処理を行うための反応槽内へ供給することを更に含む請求項1~5のいずれか1項に記載の水処理方法。
    Fueling the separated sludge includes anaerobically digesting the separated sludge to obtain methane gas and digested sludge,
    The water treatment method according to any one of claims 1 to 5, further comprising supplying a part of the digested sludge into a reaction tank for performing biological treatment on the separated liquid.
  7.  原水としての有機性排水を生物学的処理により得られる余剰汚泥と水理学的滞留時間10分以下で混合させる混合装置と、
     前記有機性排水と前記余剰汚泥の混合液を固液分離して分離液と分離汚泥とを得る第1の固液分離槽と、
     前記分離汚泥を燃料化する燃料化装置と、
     前記分離液に生物学的処理をする反応槽と、
     前記生物学的処理で発生する汚泥を前記余剰汚泥として返送する返送手段と
    を含む水処理装置。
    A mixing device that mixes organic waste water as raw water with surplus sludge obtained by biological treatment in a hydraulic residence time of 10 minutes or less;
    A first solid-liquid separation tank that obtains a separated liquid and separated sludge by solid-liquid separation of the mixed liquid of the organic waste water and the excess sludge;
    A fueling device for fueling the separated sludge;
    A reaction vessel for biologically treating the separated liquid;
    A water treatment apparatus comprising return means for returning sludge generated in the biological treatment as the excess sludge.
  8.  前記混合装置が前記第1の固液分離槽内に配置される請求項7に記載の水処理装置。 The water treatment apparatus according to claim 7, wherein the mixing apparatus is disposed in the first solid-liquid separation tank.
PCT/JP2016/057855 2015-03-17 2016-03-11 Water treatment method and water treatment device WO2016148086A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506536A JP6749313B2 (en) 2015-03-17 2016-03-11 Water treatment method and water treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053908 2015-03-17
JP2015-053908 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016148086A1 true WO2016148086A1 (en) 2016-09-22

Family

ID=56920415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057855 WO2016148086A1 (en) 2015-03-17 2016-03-11 Water treatment method and water treatment device

Country Status (2)

Country Link
JP (1) JP6749313B2 (en)
WO (1) WO2016148086A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034286A (en) * 2017-08-18 2019-03-07 水ing株式会社 Device and method for treating organic wastewater
JP2019118866A (en) * 2017-12-28 2019-07-22 株式会社東芝 Water treatment apparatus and water treatment method
JP2019171321A (en) * 2018-03-29 2019-10-10 高砂熱学工業株式会社 Waste water treatment system and waste water treatment method
WO2020255516A1 (en) * 2019-06-19 2020-12-24 株式会社クボタ Water treatment method and water treatment apparatus
CN112188996A (en) * 2018-06-05 2021-01-05 懿华水处理技术有限责任公司 Combination of dissolved air flotation and fixed film bioreactor solutions

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115561A (en) * 1978-03-01 1979-09-08 Gadelius Co Ltd Pressurizing activated sludge method
JPS56139196A (en) * 1980-04-01 1981-10-30 Ebara Infilco Co Ltd Treatment of sludge in decontamination vessel
EP0180197A2 (en) * 1984-10-29 1986-05-07 Vanderbilt University Wastewater treatment process
JPH0716589A (en) * 1991-08-31 1995-01-20 Nippon Arushii Kk Active sludge treatment method
JPH10263580A (en) * 1997-03-21 1998-10-06 Unitika Ltd Treatment of waste water
JPH10323685A (en) * 1997-05-23 1998-12-08 Shotei Cho Biological odorproofing deodorization method and excess-sludge digestion volume reduction method
JP2001252682A (en) * 2000-03-10 2001-09-18 Fuji Clean Kogyo Kk Sewage treatment method for livestock waste water and apparatus therefor
JP2001300577A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Sewage treating method
JP2002210487A (en) * 2001-01-17 2002-07-30 Kyowa Exeo Corp Bulking-controlled continuous activated sludge process
JP2003190997A (en) * 2001-12-28 2003-07-08 Ebara Corp Organic wastewater treatment method and apparatus therefor
JP2010264424A (en) * 2009-05-18 2010-11-25 Kobelco Eco-Maintenance Co Ltd Organic wastewater treatment facility and method for operating the same
WO2013132612A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Active sludge treatment method, and method for improving existing wastewater treatment facilities using said method
US20140238932A1 (en) * 2010-08-18 2014-08-28 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115561A (en) * 1978-03-01 1979-09-08 Gadelius Co Ltd Pressurizing activated sludge method
JPS56139196A (en) * 1980-04-01 1981-10-30 Ebara Infilco Co Ltd Treatment of sludge in decontamination vessel
EP0180197A2 (en) * 1984-10-29 1986-05-07 Vanderbilt University Wastewater treatment process
JPH0716589A (en) * 1991-08-31 1995-01-20 Nippon Arushii Kk Active sludge treatment method
JPH10263580A (en) * 1997-03-21 1998-10-06 Unitika Ltd Treatment of waste water
JPH10323685A (en) * 1997-05-23 1998-12-08 Shotei Cho Biological odorproofing deodorization method and excess-sludge digestion volume reduction method
JP2001252682A (en) * 2000-03-10 2001-09-18 Fuji Clean Kogyo Kk Sewage treatment method for livestock waste water and apparatus therefor
JP2001300577A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Sewage treating method
JP2002210487A (en) * 2001-01-17 2002-07-30 Kyowa Exeo Corp Bulking-controlled continuous activated sludge process
JP2003190997A (en) * 2001-12-28 2003-07-08 Ebara Corp Organic wastewater treatment method and apparatus therefor
JP2010264424A (en) * 2009-05-18 2010-11-25 Kobelco Eco-Maintenance Co Ltd Organic wastewater treatment facility and method for operating the same
US20140238932A1 (en) * 2010-08-18 2014-08-28 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
WO2013132612A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Active sludge treatment method, and method for improving existing wastewater treatment facilities using said method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034286A (en) * 2017-08-18 2019-03-07 水ing株式会社 Device and method for treating organic wastewater
JP2019118866A (en) * 2017-12-28 2019-07-22 株式会社東芝 Water treatment apparatus and water treatment method
JP7169067B2 (en) 2017-12-28 2022-11-10 株式会社東芝 Water treatment equipment and water treatment method
JP2019171321A (en) * 2018-03-29 2019-10-10 高砂熱学工業株式会社 Waste water treatment system and waste water treatment method
JP7088715B2 (en) 2018-03-29 2022-06-21 高砂熱学工業株式会社 Wastewater treatment system and wastewater treatment method
CN112188996A (en) * 2018-06-05 2021-01-05 懿华水处理技术有限责任公司 Combination of dissolved air flotation and fixed film bioreactor solutions
EP3802434A4 (en) * 2018-06-05 2022-03-09 Evoqua Water Technologies LLC Combination of dissolved air flotation and fixed film bioreactor solutions
US11447408B2 (en) 2018-06-05 2022-09-20 Evoqua Water Technologies Llc Combination of captivator and fixed film bioreactor solutions
WO2020255516A1 (en) * 2019-06-19 2020-12-24 株式会社クボタ Water treatment method and water treatment apparatus
JP2020203265A (en) * 2019-06-19 2020-12-24 株式会社クボタ Water treatment method and water treatment apparatus
JP7157009B2 (en) 2019-06-19 2022-10-19 株式会社クボタ Water treatment method and water treatment equipment

Also Published As

Publication number Publication date
JP6749313B2 (en) 2020-09-02
JPWO2016148086A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
WO2019169980A1 (en) Anaerobic ammonia oxidation-based sewage treatment process using mbr
JP5826851B2 (en) Hypoxic and biological phosphorus and nitrogen removal simultaneously with energy recovery
WO2016148086A1 (en) Water treatment method and water treatment device
JP4610977B2 (en) Method and apparatus for treating sludge return water
US10654735B2 (en) Method of combining recuperative digestion with a contact tank and dissolved air flotation
KR20150120512A (en) Wastewater treatment with membrane aerated biofilm and anaerobic digester
JP2007160147A (en) Advanced sewage treatment method and system
JP2016172236A (en) Apparatus and method for treating water
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
CN111908618A (en) High ammonia-nitrogen concentration effluent disposal system
JP6533676B2 (en) Water treatment apparatus and water treatment method
JP2007061773A (en) Organic sludge treatment method and apparatus
KR100714825B1 (en) Method for treating sewage and high organic loading wastewater by anaerobic/oxic process with membrane and biological aerated filter
CN111807611A (en) A2O process-based sewage nitrogen removal method
JP3916697B2 (en) Wastewater treatment method
JP5873744B2 (en) Organic wastewater and organic waste treatment method and treatment equipment
JP6154250B2 (en) Organic waste treatment method and organic waste treatment facility
JP2021112729A (en) Treatment apparatus and treatment method for organic wastewater
JP2023005115A (en) Method of operating anaerobic treatment tank
KR20230075377A (en) Method and apparatus for treating high-concentration waste water generated during hydrothermal carbonization of livestock manure
JP2022127421A (en) Treatment method and treatment apparatus for organic liquid waste
CN114920431A (en) Toilet excrement treatment process
JP2023162977A (en) Wastewater treatment system and wastewater treatment method
JP5197901B2 (en) Waste water treatment apparatus and waste water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764916

Country of ref document: EP

Kind code of ref document: A1