JPH03229693A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPH03229693A
JPH03229693A JP2024656A JP2465690A JPH03229693A JP H03229693 A JPH03229693 A JP H03229693A JP 2024656 A JP2024656 A JP 2024656A JP 2465690 A JP2465690 A JP 2465690A JP H03229693 A JPH03229693 A JP H03229693A
Authority
JP
Japan
Prior art keywords
tank
sludge
denitrification
liquid
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2024656A
Other languages
Japanese (ja)
Other versions
JPH06236B2 (en
Inventor
Kiwamu Matsubara
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2024656A priority Critical patent/JPH06236B2/en
Publication of JPH03229693A publication Critical patent/JPH03229693A/en
Publication of JPH06236B2 publication Critical patent/JPH06236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To dispense with the addition of a hydrogen donor such as methanol and to reduce running cost by performing denitrification by utilizing only org. matter in raw water. CONSTITUTION:Return sludge is added to raw water containing org. matter and ammonia nitrogen and/or org. nitrogen and soluble org. matter in raw water is adsorbed in a mixing tank 1 and the treated water is separated into sludge and a separated solution in the first sedimentation tank 2. The separated solution is nitrated in a nitration tank 3 according to a biological membrane filtering method. Next, the sludge and nitrated solution in the first sedimentation tank 2 are again supplied to a denitrification tank 4 to be denitrified and the denitrified solution is further aerated in a re-aeration tank 5. Thereafter, solid- liquid separation is performed in the second sedimentation tank 6 to return a part of the sludge in the second sedimentation tank 6 to the mixing tank 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は下水等を少ないコストで効率良く処理すること
ができる有機性廃水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for treating organic wastewater that can efficiently treat sewage and the like at low cost.

(従来の技術) 窒素成分を含有する下水等の有機性廃水の処理方法とし
ては、従来から■硝化液循環法、■A20法、0回分式
活性汚泥法等が知られている。
(Prior Art) Conventionally known methods for treating organic wastewater such as sewage containing nitrogen components include (1) nitrification liquid circulation method, (2) A20 method, and 0-batch activated sludge method.

■の硝化液循環法は第6図に示されるように、硝化槽0
1)で硝化した液の一部を脱窒槽02)へ循環し、原水
(有機性廃水)中の有機物を水素供与体として利用して
窒素を除去する方法であるが、循環率が小さいと脱窒が
十分に行われず処理水に残留する窒素が多くなり、循環
率を大きくすると脱窒槽(12+の容積を大きくしなけ
ればならない欠点がある。
As shown in Figure 6, the nitrification solution circulation method () is as follows:
This method circulates part of the nitrified liquid in step 1) to denitrification tank 02) and removes nitrogen by using organic matter in the raw water (organic wastewater) as a hydrogen donor, but if the circulation rate is low, denitrification There is a drawback that insufficient nitrogenization results in a large amount of nitrogen remaining in the treated water, and if the circulation rate is increased, the volume of the denitrification tank (12+) must be increased.

■のA20法は第7図に示されるように、原水中の有機
物を利用して窒素を除去するとともに、更にメタノール
を添加して第二脱窒槽側において窒素を完全に除去する
方法であるが、メタノールを添加するためにランニング
コストが高くなるとともに、残留メタノールを再曝気槽
θ4によって除去するために再曝気のための動力を余分
に必要とする欠点がある。
As shown in Figure 7, the A20 method (2) is a method in which nitrogen is removed using organic matter in raw water, and methanol is further added to completely remove nitrogen in the second denitrification tank. However, since running costs are increased due to the addition of methanol, additional power is required for reaeration to remove residual methanol in the reaeration tank θ4.

■の回分式活性汚泥法は一つの槽内で硝化と脱窒とを行
わせる方法であり、その運転方法は硝化の終わった槽内
の曝気を停止し、固液分離させた後に処理水の一部を排
出し、排出量に見合った原水を供給しながら嫌気的に攪
拌して原水中の有機物を利用した脱窒を行わせ、その後
に曝気して硝化を行い、以下同様のサイクルを繰り返す
方法である。しかしこの■の方法は■と同様に処理水の
引抜き率によって処理水中に残留する窒素の量が変化す
るばかりか、下水等のように処理すべき原水の量が多い
ときには適用しにくい欠点がある。
The batch activated sludge method described in (2) is a method in which nitrification and denitrification are performed in one tank.The operating method is to stop aeration in the tank after nitrification, and after solid-liquid separation, the treated water is A portion of the water is discharged, and while supplying raw water commensurate with the amount of discharged water, it is agitated anaerobically to perform denitrification using organic matter in the raw water, followed by aeration and nitrification, and the same cycle is repeated. It's a method. However, this method (2) not only changes the amount of nitrogen remaining in the treated water depending on the withdrawal rate of the treated water, but also has the drawback that it is difficult to apply when the amount of raw water to be treated is large, such as sewage. .

以上に説明した■〜■の各方法は、いずれも脱窒に必要
な水素供与体として原水中の有機物あるいは添加された
メタノールを利用する外呼吸型脱窒法に属する方法であ
るが、最近では特公平1−44400号公報に記載され
たように余剰脱窒菌自体の内部構成成分を利用した内呼
吸型脱窒法によりメタノールを用いることなく脱窒を行
わせる■の方法も提案されている。しかしこの方法にお
いても脱窒槽内で生きたままの脱窒菌を短時間で競合さ
せ共食いさせることが難しく、また死滅させる菌量のコ
ントロールが難しいために窒素の除去が不安定となる欠
点をさけることができない。
Each of the above-mentioned methods (■ to ■) belongs to the exo-breathing denitrification method, which uses organic matter in raw water or added methanol as the hydrogen donor necessary for denitrification. As described in Publication No. 1-44400, method (2) has also been proposed in which denitrification is carried out without using methanol by an internal respiration denitrification method that utilizes the internal components of surplus denitrifying bacteria themselves. However, even with this method, it is difficult to compete with and cannibalize living denitrifying bacteria in the denitrification tank in a short period of time, and it is also difficult to control the amount of bacteria to be killed, making nitrogen removal unstable. I can't.

このように従来の有機性廃水の処理方法は、原水中の有
機物を水素供与体として利用して脱窒を行わせようとす
ると処理が不安定となり、逆に外部から水素供与体を添
加すると処理は安定するもののランニングコストが高く
なること、原水中の有機物を100%利用しない場合に
はその有機物の分解が必要となり余分の動力コストがか
かること、■、■の方法では硝化液の循環を行わせるた
めにその分だけ脱窒槽が大型化すること等の欠点があっ
た。
As described above, in conventional organic wastewater treatment methods, if denitrification is attempted using organic matter in raw water as a hydrogen donor, the treatment becomes unstable, and conversely, if a hydrogen donor is added from outside, the treatment becomes unstable. Although it is stable, the running cost is high, and if 100% of the organic matter in the raw water is not used, it is necessary to decompose the organic matter, which requires extra power cost. However, there were drawbacks such as the denitrification tank becoming larger to accommodate the larger size.

(発明が解決しようとする課題) 本発明は上記したような従来の欠点を解決して、原水中
の有機物のみを利用して低いランニングコストでしかも
安定した脱窒を行わせることができ、また処理装置の小
型化と処理時間の短縮とを達成することができる有機性
廃水の処理方法を提供するために完成されたものである
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks, makes it possible to perform stable denitrification at low running costs by using only organic matter in raw water, and This invention has been completed in order to provide a method for treating organic wastewater that can achieve downsizing of treatment equipment and shortening of treatment time.

(課題を解決するための手段) 上記の課題は、有機物とアンモニア性窒素及び/または
有機性窒素を含む原水に返送汚泥を加え、混合槽にて原
水中の溶解性有機物を吸着させた後、第1沈澱槽におい
て汚泥と分離液に分離し、分離液を生物膜濾過法によっ
て硝化した後に再び第1沈澱槽の汚泥と硝化液とを脱窒
槽に供給して脱窒し、更に脱窒液を再曝気槽で曝気した
後、第2沈澱槽にて固液分離して第2沈澱槽の汚泥の一
部を混合槽に返送することを特徴とする有機性廃水の処
理方法によって達成することができる。
(Means for solving the problem) The above problem is solved by adding return sludge to raw water containing organic matter and ammonia nitrogen and/or organic nitrogen, and adsorbing soluble organic matter in the raw water in a mixing tank. The sludge and the separated liquid are separated in the first settling tank, and the separated liquid is nitrified by the biofilm filtration method.The sludge and nitrified liquid in the first settling tank are again supplied to the denitrification tank for denitrification, and then the denitrified liquid is This is achieved by a method for treating organic wastewater, which is characterized in that after aeration in a reaeration tank, solid-liquid separation is performed in a second settling tank, and a part of the sludge in the second settling tank is returned to a mixing tank. I can do it.

また上記の課題は、有機物とアンモニア性窒素及び/ま
たは有機性窒素を含む原水に返送汚泥を加え、混合槽に
て原水中の溶解性有機物を吸着させた後、第1沈澱槽に
おいて汚泥と分離液に分離し、分離液を生物膜濾過法に
よって硝化した後に再び第1沈澱槽の汚泥と硝化液とを
脱窒槽に供給して脱窒し、脱窒液を第2沈澱槽で固液分
離し、第2沈澱槽の汚泥の一部を再曝気槽で曝気した後
、混合槽に返送することを特徴とする有機性廃水の処理
方法によって解決することができる。
In addition, to solve the above problem, return sludge is added to raw water containing organic matter and ammonia nitrogen and/or organic nitrogen, and after the soluble organic matter in the raw water is adsorbed in the mixing tank, it is separated from the sludge in the first settling tank. After separating into liquid and nitrifying the separated liquid by biofilm filtration method, the sludge and nitrification liquid in the first settling tank are again supplied to the denitrification tank for denitrification, and the denitrified liquid is separated into solid and liquid in the second settling tank. However, this problem can be solved by a method for treating organic wastewater, which is characterized in that a part of the sludge in the second settling tank is aerated in a reaeration tank and then returned to the mixing tank.

(作用) 本発明によれば、原水中の有機物のみを利用して脱窒を
行わせるので、メタノールのような水素供与体を添加す
る必要がなく、ランニングコストを安価とすることがで
きる。また本発明によれば、有機物の分解に使用する動
力は原水中の有機物のうちの脱窒に利用された残部を分
解するためにのみ用いればよいので、動力費も安価に抑
えることができる。更に本発明によれば、硝化液の循環
を行わせないワンバス方式で処理を行わせるので、脱窒
槽の容積を大型化する必要がなく、また硝化槽では窒素
の酸化だけを行わせるので滞留時間の短縮と硝化槽の小
型化を図ることができる。
(Function) According to the present invention, denitrification is carried out using only organic substances in raw water, so there is no need to add a hydrogen donor such as methanol, and running costs can be reduced. Furthermore, according to the present invention, the power used to decompose organic matter only needs to be used to decompose the remainder of the organic matter in the raw water that has been used for denitrification, so power costs can also be kept low. Furthermore, according to the present invention, the treatment is carried out in a one-bath method without circulation of the nitrification solution, so there is no need to increase the volume of the denitrification tank, and since only nitrogen oxidation is performed in the nitrification tank, the residence time is reduced. It is possible to shorten the time and downsize the nitrification tank.

以下に本発明を図示の実施例によって更に詳細に説明す
る。
The present invention will be explained in more detail below with reference to illustrated embodiments.

(実施例) 第1図に示す実施例のフローシートにおいて、(1)は
混和槽、(2)は第−沈澱槽、(3)は硝化槽、(4)
は脱窒槽、(5)は再曝気槽、(6)は第二沈澱槽であ
る。
(Example) In the flow sheet of the example shown in Fig. 1, (1) is a mixing tank, (2) is a first settling tank, (3) is a nitrification tank, and (4) is a mixing tank.
is a denitrification tank, (5) is a reaeration tank, and (6) is a second settling tank.

まず、BODなどの有機物とアンモニア性窒素及び/ま
たは有機性窒素等を含んだ原水(有機性廃水)が混和槽
(1)へ供給され、これとともに再曝気槽(5)で活性
化され第二沈澱槽(6)で沈降分離された汚泥の一部は
返送汚泥として混和槽(1)へ供給、混和される。混和
槽(1)中で原水のBOD等の溶解性有機物は接触安定
化法によって汚泥に吸着され、第−沈澱槽(2)で沈降
分離される。このときの混和槽(1)の滞留時間は15
〜60分間程度とする。滞留時間が15分間よりも短い
とBODの吸着が不充分であるが、第3図に示されるよ
うに60分間よりも長くしても吸着率の向上はほとんど
認められない。BODの吸着率を安定に保つためには3
0〜60分間が好ましい。
First, raw water (organic wastewater) containing organic matter such as BOD, ammonia nitrogen and/or organic nitrogen, etc. is supplied to the mixing tank (1), and together with this, it is activated in the re-aeration tank (5). A part of the sludge that has been sedimented and separated in the settling tank (6) is supplied to the mixing tank (1) as return sludge and mixed therein. Dissolved organic matter such as BOD in the raw water is adsorbed to the sludge in the mixing tank (1) by a contact stabilization method, and is separated by sedimentation in the first settling tank (2). The residence time in the mixing tank (1) at this time is 15
~60 minutes. If the residence time is shorter than 15 minutes, BOD adsorption is insufficient, but as shown in FIG. 3, even if the residence time is longer than 60 minutes, little improvement in the adsorption rate is observed. To keep the BOD adsorption rate stable, 3.
0 to 60 minutes is preferred.

第−沈澱槽(2)で分離された分離液は次に硝化槽(3
)に供給され、亜硝酸菌及び硝化菌の作用によって有機
性窒素及びアンモニア性窒素は亜硝酸性窒素あるいは硝
酸性窒素にまで酸化される。ここでは混和槽(1)でB
ODの殆どが予め除去されているため、除去しきれなか
った若干のBoD、有機性窒素及びアンモニア性窒素の
酸化に必要な酸素と、生物(亜硝酸菌及び硝酸菌)の維
持に必要な酸素とがあればよい。この硝化槽(3)は通
常の活性汚泥処理槽を用いてもよいが、この場合には更
に汚泥分離用の沈澱槽が必要となるため、生物膜による
処理槽とくに生物膜濾過槽が適している。
The separated liquid separated in the second sedimentation tank (2) is then transferred to the nitrification tank (3).
), and organic nitrogen and ammonia nitrogen are oxidized to nitrite nitrogen or nitrate nitrogen by the action of nitrite bacteria and nitrifying bacteria. Here, B is added in the mixing tank (1).
Since most of the OD has been removed in advance, some of the BoD that could not be removed, the oxygen necessary for oxidizing organic nitrogen and ammonia nitrogen, and the oxygen necessary for maintaining living organisms (nitrite bacteria and nitrate bacteria). It is good if there is. A normal activated sludge treatment tank may be used as the nitrification tank (3), but in this case, a settling tank for sludge separation is also required, so a biofilm treatment tank, especially a biofilm filtration tank, is suitable. There is.

硝化槽(3)にて硝化された硝化液は先の第−沈澱槽(
2)で分離された汚泥と混合され、脱窒槽(4)へ入る
。脱窒槽(4)では硝化液中の亜硝酸性窒素及び/また
はまたは硝酸性窒素が、汚泥中に吸着されているBOD
などの有機物を水素供与体として脱窒される。脱窒槽(
4)における滞留時間は0.5〜3時間、望ましくは1
.5〜3時間である。第4図に示されるように、滞留時
間が0.5時間より短いと脱窒率が低下し、3時間を越
えても脱窒率の向上はほとんど認められない。
The nitrified liquid nitrified in the nitrification tank (3) is transferred to the first sedimentation tank (
It is mixed with the sludge separated in step 2) and enters the denitrification tank (4). In the denitrification tank (4), nitrite nitrogen and/or nitrate nitrogen in the nitrification solution is converted to BOD adsorbed in the sludge.
It is denitrified using organic substances such as hydrogen donors. Denitrification tank (
The residence time in 4) is 0.5 to 3 hours, preferably 1
.. It takes 5 to 3 hours. As shown in FIG. 4, when the residence time is shorter than 0.5 hours, the denitrification rate decreases, and even when the residence time exceeds 3 hours, almost no improvement in the denitrification rate is observed.

このようにして脱窒を行った後、液と汚泥との混合物は
再曝気槽(5)へ送られ再曝気される。これにより残余
のBOD等の有機物が酸化分解されるとともに、後続す
る第2沈澱槽(6)で固液分離された後、汚泥の一部が
混和槽(1)へ返送汚泥として返送されたときに原水中
のBODなどの溶解性有機物を十分に吸着できるような
活性が与えられる。再曝気槽(5)における滞留時間は
1.5〜3時間、望ましくは2〜3時間とする。第5図
に示されるように、滞留時間が1.5時間未満であると
残留BODは処理されていても混和槽(1)へ返送され
た汚泥の吸着性が不十分となり、逆に3時間を越えても
再曝気槽(5)におけるBOD除去率及び混和槽(1)
における有機物の吸着性は向上しない。再曝気槽(5)
により処理された混合液は第二沈澱槽(6)へ送られて
汚泥と上澄水とに分離され、上澄水は処理水として放流
される一方、汚泥は混和槽(1)へ返送される。
After denitrifying in this manner, the mixture of liquid and sludge is sent to the reaeration tank (5) and reaeration is performed. As a result, residual organic matter such as BOD is oxidized and decomposed, and after solid-liquid separation in the subsequent second settling tank (6), a part of the sludge is returned to the mixing tank (1) as return sludge. is given an activity that can sufficiently adsorb soluble organic matter such as BOD in raw water. The residence time in the reaeration tank (5) is 1.5 to 3 hours, preferably 2 to 3 hours. As shown in Figure 5, if the residence time is less than 1.5 hours, even if the residual BOD is treated, the adsorption of the sludge returned to the mixing tank (1) will be insufficient; BOD removal rate in the reaeration tank (5) and mixing tank (1)
The adsorptivity of organic matter is not improved. Re-aeration tank (5)
The treated mixed liquid is sent to the second settling tank (6) and separated into sludge and supernatant water. The supernatant water is discharged as treated water, while the sludge is returned to the mixing tank (1).

第1表と第2表は本発明方法と従来法とによって、Lm
”/Hrの処理規模で下水を処理した結果を示したもの
である。
Tables 1 and 2 show that Lm by the method of the present invention and the conventional method.
This figure shows the results of treating sewage at a treatment scale of "/Hr."

第2表 処理設備のうち、脱窒槽の容積は本発明が2.7111
3、従来法が第1脱窒槽、第2脱窒槽との合計で6.9
 m”であって、本発明によれば従来の約40%にまで
コンパクト化されている。また全体の槽容積も硝化槽に
生物膜濾過法を採用した場合には本発明では9.25m
’、従来法では24.15 m3であり、やはり従来の
約40%にまでコンパクト化されている。
Among the treatment equipment in Table 2, the capacity of the denitrification tank is 2.7111 in the present invention.
3. The conventional method has a total of 6.9 with the first denitrification tank and the second denitrification tank
According to the present invention, the total tank volume is reduced to about 40% of the conventional one.If the biofilm filtration method is adopted for the nitrification tank, the total tank volume is reduced to 9.25 m.
', the conventional method was 24.15 m3, which is also about 40% more compact than the conventional method.

更に従来は脱窒のために68g/m3原水のメタノール
を必要とするのに対して本発明では全く添加を必要とし
ない。更に従来は300g酸素/ m 3原水の酸素を
硝化槽において必要としていたのに比較して本発明では
180g酸素/1113原水でよく、約40%の曝気動
力の削減が達成されている。
Furthermore, whereas conventional methods require 68 g/m3 of methanol in raw water for denitrification, the present invention does not require methanol addition at all. Further, while the conventional method required 300 g oxygen/m3 of raw water in the nitrification tank, the present invention requires only 180 g oxygen/1113 raw water, achieving a reduction in aeration power of about 40%.

なお有機性廃水中にSS性の有機性窒素が多く、第−沈
澱槽(2)において汚泥に吸着分離された窒素が汚泥側
に移行したのち再曝気槽(5)で硝化されて処理水に窒
素が混入するような場合には、第1図の脱窒槽(4)よ
り後の部分を変更して第2図のようにする。
In addition, there is a lot of SS organic nitrogen in the organic wastewater, and the nitrogen adsorbed and separated by the sludge in the first sedimentation tank (2) is transferred to the sludge side and then nitrified in the re-aeration tank (5) and converted into treated water. If nitrogen is mixed in, the portion after the denitrification tank (4) in FIG. 1 is changed to the one shown in FIG. 2.

第2図のフローにおいては、脱窒槽(4)から流出させ
た汚水を含む脱窒液を第二沈澱槽(6)にて固液分離さ
せ、分離液は再処理槽(7)で生物膜法等によって残余
のBODを除去し処理水として放流する一方、汚泥は再
曝気槽(5)で活性を与えたのちに混和槽(1)・\返
送する。このようにすれば、第1沈澱槽(2)において
汚泥側に移行した窒素骨が処理水中に混入するおそれが
なくより好ましい。
In the flow shown in Figure 2, the denitrification liquid containing wastewater discharged from the denitrification tank (4) is separated into solid and liquid in the second sedimentation tank (6), and the separated liquid is processed into biofilm in the reprocessing tank (7). The remaining BOD is removed by a method or the like and discharged as treated water, while the sludge is activated in the re-aeration tank (5) and then returned to the mixing tank (1). This is more preferable since there is no fear that the nitrogen bones transferred to the sludge side in the first settling tank (2) will be mixed into the treated water.

(発明の効果) 本発明は以上に説明したように、従来法に比較すると脱
窒槽は勿論、処理装置全体としても40%程度にまで小
型化することができる。また脱窒に必要な水素供与体と
して原水中のBOD等の有機物を利用するので、メタノ
ール等を添加する必要がなく、ランニングコストを低く
抑えることができる。更に本発明によれば、原水中の有
機物の大部分を脱窒により処理するので曝気処理により
除去しなければならない部分が少なくなり、曝気動力を
大きく削除することができる。なお、脱窒後の再曝気に
よって脱リンも同時に行うことができる利点もある。
(Effects of the Invention) As described above, according to the present invention, not only the denitrification tank but also the entire processing apparatus can be downsized by about 40% compared to the conventional method. Furthermore, since organic substances such as BOD in raw water are used as hydrogen donors necessary for denitrification, there is no need to add methanol or the like, and running costs can be kept low. Furthermore, according to the present invention, since most of the organic matter in raw water is treated by denitrification, the portion that must be removed by aeration treatment is reduced, and the power for aeration can be significantly reduced. Note that there is also the advantage that dephosphorization can be performed simultaneously by re-aeration after denitrification.

よって本発明は従来の問題点を一掃した有機性廃水の処
理方法として、産業の発展に寄与するところは極めて大
である。
Therefore, the present invention greatly contributes to the development of industry as a method for treating organic wastewater that eliminates the problems of the conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例を示すフローシート、第
2図は第二の実施例を示すフローシート、第3図は混和
槽滞留時間とBOD除去率との関係を示すグラフ、第4
図は脱窒槽滞留時間と脱窒率との関係を示すグラフ、第
5図は再曝気槽滞留時間とBOD除去率との関係を示す
グラフ、第6図は従来の硝化液循環法を示すフローシー
ト、第7図は従来のA20法を示すフローシートである
。 (1):混和槽、(2):第−沈澱槽、(3):硝化槽
、(4):脱窒槽、(5):再曝気槽、(6):第二沈
澱槽、(7):再処理槽。
FIG. 1 is a flow sheet showing the first embodiment of the present invention, FIG. 2 is a flow sheet showing the second embodiment, and FIG. 3 is a graph showing the relationship between residence time in the mixing tank and BOD removal rate. Fourth
The figure is a graph showing the relationship between denitrification tank residence time and denitrification rate, Figure 5 is a graph showing the relationship between reaeration tank residence time and BOD removal rate, and Figure 6 is a flowchart showing the conventional nitrification liquid circulation method. FIG. 7 is a flow sheet showing the conventional A20 method. (1): Mixing tank, (2): First settling tank, (3): Nitrification tank, (4): Denitrification tank, (5): Re-aeration tank, (6): Second settling tank, (7) : Reprocessing tank.

Claims (1)

【特許請求の範囲】 1、有機物とアンモニア性窒素及び/または有機性窒素
を含む原水に返送汚泥を加え、混合槽にて原水中の溶解
性有機物を吸着させた後、第1沈澱槽において汚泥と分
離液に分離し、分離液を生物膜濾過法によって硝化した
後に再び第1沈澱槽の汚泥と硝化液とを脱窒槽に供給し
て脱窒し、更に脱窒液を再曝気槽で曝気した後、第2沈
澱槽にて固液分離して第2沈澱槽の汚泥の一部を混合槽
に返送することを特徴とする有機性廃水の処理方法。 2、有機物とアンモニア性窒素及び/または有機性窒素
を含む原水に返送汚泥を加え、混合槽にて原水中の溶解
性有機物を吸着させた後、第1沈澱槽において汚泥と分
離液に分離し、分離液を生物膜濾過法によって硝化した
後に再び第1沈澱槽の汚泥と硝化液とを脱窒槽に供給し
て脱窒し、脱窒液を第2沈澱槽で固液分離し、第2沈澱
槽の汚泥の一部を再曝気槽で曝気した後、混合槽に返送
することを特徴とする有機性廃水の処理方法。
[Claims] 1. Returned sludge is added to raw water containing organic matter and ammonia nitrogen and/or organic nitrogen, and after adsorbing soluble organic matter in the raw water in a mixing tank, the sludge is mixed in a first settling tank. After separating the separated liquid into a separated liquid and nitrifying the separated liquid using the biofilm filtration method, the sludge and nitrified liquid from the first settling tank are again supplied to the denitrification tank for denitrification, and the denitrified liquid is further aerated in the re-aeration tank. After that, the sludge is separated into solid and liquid in a second settling tank, and a part of the sludge in the second settling tank is returned to a mixing tank. 2. Returned sludge is added to raw water containing organic matter and ammonia nitrogen and/or organic nitrogen, and after adsorbing soluble organic matter in the raw water in a mixing tank, it is separated into sludge and separated liquid in a first settling tank. After the separated liquid is nitrified by the biofilm filtration method, the sludge and nitrified liquid in the first settling tank are again supplied to the denitrifying tank for denitrification, the denitrifying liquid is separated into solid and liquid in the second settling tank, A method for treating organic wastewater characterized by aerating a portion of sludge in a settling tank in a re-aeration tank and then returning it to a mixing tank.
JP2024656A 1990-02-02 1990-02-02 Organic wastewater treatment method Expired - Lifetime JPH06236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024656A JPH06236B2 (en) 1990-02-02 1990-02-02 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024656A JPH06236B2 (en) 1990-02-02 1990-02-02 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH03229693A true JPH03229693A (en) 1991-10-11
JPH06236B2 JPH06236B2 (en) 1994-01-05

Family

ID=12144187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024656A Expired - Lifetime JPH06236B2 (en) 1990-02-02 1990-02-02 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH06236B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011314A1 (en) * 1992-11-09 1994-05-26 SAARBERG-INTERPLAN GESELLSCHAFT FüR ROHSTOFF-, ENERGIE- UND INGENIEURTECHNIK MBH Biological method for purifying waste water contaminated with organic carbon and nitrogen compounds
EP0634370A1 (en) * 1993-07-13 1995-01-18 OTV (OMNIUM de TRAITEMENTS et de VALORISATION) Process for treatment of nitrogenous effluents using sludges as substrate
WO2018107740A1 (en) * 2016-12-14 2018-06-21 江南大学 Wastewater nitrogen and phosphorus removal device and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011314A1 (en) * 1992-11-09 1994-05-26 SAARBERG-INTERPLAN GESELLSCHAFT FüR ROHSTOFF-, ENERGIE- UND INGENIEURTECHNIK MBH Biological method for purifying waste water contaminated with organic carbon and nitrogen compounds
EP0634370A1 (en) * 1993-07-13 1995-01-18 OTV (OMNIUM de TRAITEMENTS et de VALORISATION) Process for treatment of nitrogenous effluents using sludges as substrate
FR2707623A1 (en) * 1993-07-13 1995-01-20 Omnium Traitement Valorisa Process for the treatment of nitrogenous effluents.
WO2018107740A1 (en) * 2016-12-14 2018-06-21 江南大学 Wastewater nitrogen and phosphorus removal device and application thereof

Also Published As

Publication number Publication date
JPH06236B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JP2970730B2 (en) Sewage treatment method
JPH03229693A (en) Treatment of organic waste water
KR20070014857A (en) System and method for biological treatment of wastewater using mbr and zeolite powder
JPS6117558B2 (en)
JPS6133638B2 (en)
JPS5830393A (en) Biological denitrifying and dephosphorizing method for sewage
JPS59115793A (en) Treatment of organic sewage
JPS6055200B2 (en) Organic wastewater treatment method
JPH06182377A (en) Method for treating sewage
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JP3841446B2 (en) Treatment method for waste liquid containing organic nitrogen compounds
JPS6099394A (en) Biological denitrification and dephosphorization apparatus of sewage
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPH06170388A (en) Treatment of sewage
JP2002273476A (en) Treatment of waste water containing high-concentration nitrogen
JP2533991B2 (en) Sewage nitrification and denitrification method
JPS61197097A (en) Method for denitrifying waste water
JPH10165981A (en) Apparatus for treating ammonia-containing waste water
JP2594733B2 (en) Sewage nitrification denitrification method
JPH0679714B2 (en) Organic wastewater treatment method
JPH0312958B2 (en)
JPS6253238B2 (en)
JPS6216159B2 (en)
JPH0137197B2 (en)
JPH0999296A (en) Method for biologically nitrifying and denitrifying organic sewage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 17