JPH06236B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method

Info

Publication number
JPH06236B2
JPH06236B2 JP2024656A JP2465690A JPH06236B2 JP H06236 B2 JPH06236 B2 JP H06236B2 JP 2024656 A JP2024656 A JP 2024656A JP 2465690 A JP2465690 A JP 2465690A JP H06236 B2 JPH06236 B2 JP H06236B2
Authority
JP
Japan
Prior art keywords
tank
denitrification
sludge
liquid
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2024656A
Other languages
Japanese (ja)
Other versions
JPH03229693A (en
Inventor
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2024656A priority Critical patent/JPH06236B2/en
Publication of JPH03229693A publication Critical patent/JPH03229693A/en
Publication of JPH06236B2 publication Critical patent/JPH06236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は下水等を少ないコストで効率良く処理すること
ができる有機性廃水の処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for treating organic wastewater which can efficiently treat sewage and the like at low cost.

(従来の技術) 窒素成分を含有する下水等の有機性廃水の処理方法とし
ては、従来から硝化液循環法、A2O法、回分式活
性汚泥法等が知られている。
(Prior Art) As a method of treating organic wastewater such as sewage containing a nitrogen component, a nitrification solution circulation method, an A 2 O method, a batch activated sludge method and the like have been conventionally known.

の硝化液循環法は第6図に示されるように、硝化槽(1
1)で硝化した液の一部を脱窒槽(12)へ循環し、原水(有
機性廃水)中の有機物を水素供与体として利用して窒素
を除去する方法であるが、循環率が小さいと脱窒が十分
に行われず処理水に残留する窒素が多くなり、循環率を
大きくすると脱窒槽(12)の容積を大きくしなければなら
ない欠点がある。
As shown in Fig. 6, the nitrification solution circulation method of
It is a method to circulate a part of the liquid nitrified in 1) to the denitrification tank (12) and use the organic matter in the raw water (organic wastewater) as a hydrogen donor to remove nitrogen. There is a drawback that the denitrification tank (12) must be increased in volume if the circulation rate is increased and the nitrogen remaining in the treated water is increased due to insufficient denitrification.

のA○法は第7図に示されるように、原水中の有機
物を利用して窒素を除去するとともに、更にメタノール
を添加して第二脱窒槽(13)において窒素を完全に除去す
る方法であるが、メタノールを添加するためにランニン
グコストが高くなるとともに、残留メタノールを再曝気
槽(14)によって除去するために再曝気のための動力を余
分に必要とする欠点がある。
As shown in Fig. 7, the A 2 ○ method is to remove nitrogen using organic matter in raw water, and further add methanol to completely remove nitrogen in the second denitrification tank (13). However, there is a drawback that the running cost is increased due to the addition of methanol and an extra power for re-aeration is required for removing the residual methanol by the re-aeration tank (14).

の回分式活性汚泥法は一つの槽内で硝化と脱窒とを行
わせる方法であり、その運転方法は硝化の終わつた槽内
の曝気を停止し、固液分離させた後に処理水の一部を排
出し、排出量に見合つた原水を供給しながら嫌気的に撹
拌して原水中の有機物を利用した脱窒を行わせ、その後
に曝気して硝化を行い、以下同様のサイクルを繰り返す
方法である。しかしこのの方法はと同様に処理水の
引抜き率によって処理水中に残留する窒素の量が変化す
るばかりか、下水等のように処理すべき原水の量が多い
ときには適用しにくい欠点がある。
The batch activated sludge method is a method of performing nitrification and denitrification in one tank.The operation method is to stop the aeration in the tank after nitrification and to separate the treated water after solid-liquid separation. Part, and anaerobically stirring while supplying raw water commensurate with the amount discharged to perform denitrification using organic matter in the raw water, then aeration and nitrification, and the same cycle is repeated. Is. However, similarly to this method, not only the amount of nitrogen remaining in the treated water changes depending on the withdrawal rate of the treated water, but it is difficult to apply this method when the amount of raw water to be treated such as sewage is large.

以上に説明した〜の各方法は、いずれも脱窒に必要
な水素供与体として原水中の有機物あるいは添加された
メタノールを利用する外呼吸型脱窒法に属する方法であ
るが、最近では特公平1-44400号公報に記載されたよう
に余剰脱窒菌自体の内部構成成分を利用した内呼吸型脱
窒法によりメタノールを用いることなく脱窒を行わせる
の方法も提案されている。しかしこの方法においても
脱窒槽内で生きたままの脱窒菌を短時間で競合させ共食
いさせることが難しく、また死滅させる菌量のコントロ
ールが難しいために窒素の除去が不安定となる欠点をさ
けることができない。
Each of the above-mentioned methods (1) to (4) is a method belonging to the external respiration type denitrification method using organic matter in raw water or added methanol as a hydrogen donor necessary for denitrification. There is also proposed a method of performing denitrification without using methanol by an internal respiration type denitrification method utilizing internal constituent components of the surplus denitrifying bacterium itself as described in Japanese Patent Publication No. 44400. However, even in this method, it is difficult to compete with the denitrifying bacteria alive in the denitrifying tank in a short period of time to feed on them, and it is difficult to control the amount of bacteria to be killed, so avoid the disadvantage that the removal of nitrogen becomes unstable. I can't.

このように従来の有機性廃水の処理方法は、原水中の有
機物を水素供与体として利用して脱窒を行わせようとす
ると処理が不安定となり、逆に外部から水素供与体を添
加すると処理は安定するもののランニングコストが高く
なること、原水中の有機物を100%利用しない場合には
その有機物の分解が必要となり余分の動力コストがかか
ること、、の方法では硝化液の循環を行わせるため
にその分だけ脱窒槽が大型化すること等の欠点があっ
た。
In this way, the conventional treatment method of organic wastewater becomes unstable when the organic matter in the raw water is used as a hydrogen donor to perform denitrification, and conversely, when a hydrogen donor is added from the outside, the treatment becomes unstable. Is stable but the running cost is high, and if 100% of the organic matter in the raw water is not used, the organic matter needs to be decomposed and extra power cost is required. In addition, there was a defect that the denitrification tank was enlarged by that amount.

(発明が解決しようとする課題) 本発明は上記したような従来の欠点を解決して、原水中
の有機物のみを利用して低いランニングコストでしかも
安定した脱窒を行わせることができ、また処理装置の小
型化と処理時間の短縮とを達成することができる有機性
廃水の処理方法を提供するために完成されたものであ
る。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks and enables stable denitrification to be performed at low running cost using only organic substances in raw water, and The present invention has been completed in order to provide a method for treating organic wastewater which can achieve downsizing of a treatment apparatus and reduction of treatment time.

(課題を解決するための手段) 上記の課題は、有機物とアンモニア性窒素及び/または
有機性窒素を含む原水に返送汚泥を加え、混合槽にて原
水中の溶解性有機物を吸着させた後、第1沈澱槽におい
て汚泥と分離液に分離し、分離液を生物膜濾過法によっ
て硝化した後に再び第1沈澱槽の汚泥と硝化液とを脱窒
槽に供給して脱窒し、更に脱窒液を再曝気槽で曝気した
後、第2沈澱槽にて固液分離して第2沈澱槽の汚泥の一
部を混合槽に返送することを特徴とする有機性廃水の処
理方法によって達成することができる。
(Means for Solving the Problem) The above problem is that after adding return sludge to raw water containing organic matter and ammonia nitrogen and / or organic nitrogen, after adsorbing soluble organic matter in raw water in a mixing tank, The sludge and the separated liquid are separated in the first settling tank, and the separated liquid is nitrified by the biofilm filtration method, and then the sludge and the nitrified solution in the first settling tank are supplied again to the denitrification tank for denitrification, and further denitrified liquid. Aeration in the re-aeration tank, solid-liquid separation in the second precipitation tank, and returning part of the sludge in the second precipitation tank to the mixing tank. You can

また上記の課題は、有機物とアンモニア性窒素及び/ま
たは有機性窒素を含む原水に返送汚泥を加え、混合槽に
て原水中の溶解性有機物を吸着させた後、第1沈澱槽に
おいて汚泥と分離液に分離し、分離液を生物膜濾過法に
よって硝化した後に再び第1沈澱槽の汚泥と硝化液とを
脱窒槽に供給して脱窒し、脱窒液を第2沈澱槽で固液分
離し、第2沈澱槽の汚泥の一部を再曝気槽で曝気した
後、混合槽に返送することを特徴とする有機性廃水の処
理方法によって解決することができる。
Further, the above-mentioned problem is that after returning sludge is added to the raw water containing organic matter and ammonia nitrogen and / or organic nitrogen, the soluble organic matter in the raw water is adsorbed in the mixing tank and then separated from the sludge in the first settling tank. Liquid, and the separated liquid is nitrified by the biofilm filtration method, and then the sludge in the first settling tank and the nitrifying solution are again supplied to the denitrification tank for denitrification, and the denitrified solution is solid-liquid separated in the second settling tank. However, this can be solved by a method for treating organic wastewater, which comprises aeration of a part of the sludge in the second settling tank in the re-aeration tank and then returning it to the mixing tank.

(作用) 本発明によれば、原水中の有機物のみを利用して脱窒を
行わせるので、メタノールのような水素供与体を添加す
る必要がなく、ランニングコストを安価とすることがで
きる。また本発明によれば、有機物の分解に使用する動
力は原水中の有機物のうちの脱窒に利用された残部を分
解するためにのみ用いればよいので、動力費も安価に抑
えることができる。更に本発明によれば、硝化液の循環
を行わせないワンパス方式で処理を行わせるので、脱窒
槽の容積を大型化する必要がなく、また硝化槽では窒素
の酸化だけを行わせるので滞留時間の短縮と硝化槽の小
型化を図ることができる。以下に本発明を図示の実施例
によって更に詳細に説明する。
(Operation) According to the present invention, since denitrification is performed using only organic substances in raw water, it is not necessary to add a hydrogen donor such as methanol, and the running cost can be reduced. Further, according to the present invention, the power used for decomposing the organic matter may be used only for decomposing the remaining portion of the organic matter in the raw water that has been used for denitrification, so that the power cost can be kept low. Further, according to the present invention, since the treatment is carried out by a one-pass method in which the nitrification liquid is not circulated, it is not necessary to increase the volume of the denitrification tank, and since the nitrification tank only oxidizes nitrogen, the residence time is reduced. And the nitrification tank can be downsized. Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments.

(実施例) 第1図に示す実施例のフローシートにおいて、(1)は混
和槽、(2)は第一沈澱槽、(3)は硝化槽、(4)は脱窒槽、
(5)は再曝気槽、(6)は第二沈澱槽である。
(Example) In the flow sheet of the example shown in FIG. 1, (1) is a mixing tank, (2) is a first precipitation tank, (3) is a nitrification tank, (4) is a denitrification tank,
(5) is a re-aeration tank, and (6) is a second precipitation tank.

まず、BODなどの有機物とアンモニア性窒素及び/また
は有機性窒素等を含んだ原水(有機性廃水)が混和槽
(1)へ供給され、これとともに再曝気槽(5)で活性化され
第二沈澱槽(6)で沈降分離された汚泥の一部は返送汚泥
として混和槽(1)へ供給、混和される。混和槽(1)中で原
水のBOD等の溶解性有機物は接触安定化法によって汚泥
に吸着され、第一沈澱槽(2)で沈降分離される。このと
きの混和槽(1)の滞留時間は15〜60分間程度とす
る。滞留時間が15分間よりも短いとBODの吸着が不充
分であるが、第3図に示されるように60分間よりも長
くしても吸着率の向上はほとんど認められない。BODの
吸着率を安定に保つためには30〜60分間が好まし
い。
First, a mixing tank of organic substances such as BOD and raw water (organic wastewater) containing ammonia nitrogen and / or organic nitrogen
Part of the sludge supplied to (1), activated with the re-aeration tank (5) and settled and separated in the second precipitation tank (6) is supplied to the mixing tank (1) as return sludge and mixed. . Soluble organic matter such as BOD of raw water in the mixing tank (1) is adsorbed to the sludge by the contact stabilization method, and settled and separated in the first precipitation tank (2). The residence time of the mixing tank (1) at this time is about 15 to 60 minutes. If the residence time is shorter than 15 minutes, the adsorption of BOD is insufficient, but as shown in FIG. 3, even if the retention time is longer than 60 minutes, the adsorption rate is hardly improved. In order to keep the adsorption rate of BOD stable, 30 to 60 minutes is preferable.

第一沈澱槽(2)で分離された分離液は次に硝化槽(3)に供
給され、亜硝酸菌及び硝化菌の作用によって有機性窒素
及びアンモニア性窒素は亜硝酸性窒素あるいは硝酸性窒
素にまで酸化される。ここでは混和槽(1)でBODの殆どが
予め除去されているため、除去しきれなかった若干のBO
D、有機性窒素及びアンモニア性窒素の酸化に必要な酸
素と、生物(亜硝酸菌及び硝酸菌)の維持に必要な酸素
とがあればよい。この硝化槽(3)は通常の活性汚泥処理
槽を用いてもよいが、この場合には更に汚泥分離用の沈
澱槽が必要となるため、生物膜による処理槽とくに生物
膜濾過槽が適している。
The separated liquid separated in the first settling tank (2) is then supplied to the nitrification tank (3), and organic nitrogen and ammoniacal nitrogen are converted to nitrite nitrogen or nitrate nitrogen by the action of nitrite bacteria and nitrifying bacteria. Is oxidized to. Most of the BOD was removed in advance in the mixing tank (1), so some of the BO that could not be removed.
D, Oxygen required for the oxidation of organic nitrogen and ammonia nitrogen, and oxygen required for the maintenance of organisms (nitrite and nitrate) are sufficient. As this nitrification tank (3), an ordinary activated sludge treatment tank may be used, but in this case, a sedimentation tank for sludge separation is further required, so a treatment tank using a biofilm, particularly a biofilm filtration tank, is suitable. There is.

硝化槽(3)にて硝化された硝化液は先の第一沈澱槽(2)で
分離された汚泥と混合され、脱窒槽(4)へ入る。脱窒槽
(4)では硝化液中の亜硝酸性窒素及び/またはまたは硝
酸性窒素が、汚泥中に吸着されているBODなどの有機物
を水素供与体として脱窒される。脱窒槽(4)における滞
留時間は0.5〜3時間、望ましくは1.5〜3時間である。
第4図に示されるように、滞留時間が0.5時間より短い
と脱窒率が低下し、3時間を越えても脱窒率の向上はほ
とんど認められない。
The nitrification solution nitrified in the nitrification tank (3) is mixed with the sludge separated in the first precipitation tank (2) and enters the denitrification tank (4). Denitrification tank
In (4), nitrite nitrogen and / or nitrate nitrogen in the nitrification solution is denitrified by using an organic substance such as BOD adsorbed in sludge as a hydrogen donor. The residence time in the denitrification tank (4) is 0.5 to 3 hours, preferably 1.5 to 3 hours.
As shown in FIG. 4, when the residence time is shorter than 0.5 hours, the denitrification rate decreases, and even when it exceeds 3 hours, the denitrification rate is hardly improved.

このようにして脱窒を行つた後、液と汚泥との混合物は
再曝気槽(5)へ送られ再曝気される。これにより残余のB
OD等の有機物が酸化分解されるとともに、後続する第2
沈澱槽(6)で固液分離された後、汚泥の一部が混和槽(1)
へ返送汚泥として返送されたときに原水中のBODなどの
溶解性有機物を十分に吸着できるような活性が与えられ
る。再曝気槽(5)における滞留時間は1.5〜3時間、望ま
しくは2〜3時間とする。第5図に示されるように、滞
留時間が1.5時間未満であると残留BODは処理されて
いても混和槽(1)へ返送された汚泥の吸着性が不十分と
なり、逆に3時間を越えても再曝気槽(5)におけるBOD除
去率及び混和槽(1)における有機物の吸着性は向上しな
い。再曝気槽(5)により処理された混合液は第二沈澱槽
(6)へ送られて汚泥と上澄水とに分離され、上澄水は処
理水として放流される一方、汚泥は混和槽(1)へ返送さ
れる。
After denitrification in this way, the mixture of liquid and sludge is sent to the re-aeration tank (5) and re-aerated. This leaves the residual B
The oxidative decomposition of organic matter such as OD, and the subsequent second
After solid-liquid separation in the settling tank (6), part of the sludge is mixed in the mixing tank (1)
When it is returned as sludge, it is given the activity to sufficiently adsorb soluble organic substances such as BOD in raw water. The residence time in the re-aeration tank (5) is 1.5 to 3 hours, preferably 2 to 3 hours. As shown in Fig. 5, if the retention time is less than 1.5 hours, the residual BOD will not be sufficiently adsorbed to the sludge returned to the mixing tank (1) even if it has been treated, and conversely, it will exceed 3 hours. However, the BOD removal rate in the re-aeration tank (5) and the adsorbability of organic substances in the mixing tank (1) are not improved. The mixed solution treated by the re-aeration tank (5) is the second precipitation tank.
It is sent to (6) and separated into sludge and supernatant water, and the supernatant water is discharged as treated water, while the sludge is returned to the mixing tank (1).

第1表と第2表は本発明方法と従来法とによって、1m3
/Hrの処理規模で下水を処理した結果を示したものであ
る。
Tables 1 and 2 show 1 m 3 according to the method of the present invention and the conventional method.
It shows the result of treating sewage at a treatment scale of / Hr.

処理設備のうち、脱窒槽の容積は本発明が2.7m3、従来
法が第1脱窒槽、第2脱窒槽との合計で6.9m3であつ
て、本発明によれば従来の約40%にまでコンパクト化さ
れている。また全体の槽容積も硝化槽に生物膜濾過法を
採用した場合には本発明では9.25m3、従来法では24.15m
3であり、やはり従来の約40%にまでコンパクト化され
ている。
Of the processing equipment, the volume of the denitrification tank present invention is 2.7 m 3, the conventional method is first denitrification tank, 6.9 m 3 der therefor; sum of the second denitrification tank, about conventional according to the present invention 40% It has been made compact. Further, the total tank volume is 9.25 m 3 in the present invention when the biofilm filtration method is adopted in the nitrification tank, and 24.15 m in the conventional method.
It is 3, which is still about 40% of the conventional size.

更に従来は脱窒のために68g/m3原水のメタノールを必
要とするのに対して本発明では全く添加を必要としな
い。更に従来は300g酸素/m3原水の酸素を硝化槽にお
いて必要としていたのに比較して本発明では180g酸素
/m3原水でよく、約40%の曝気動力の削減が達成されて
いる。
Further, while 68 g / m 3 of raw water methanol was conventionally required for denitrification, the present invention does not require any addition. Further, compared with the conventional case where 300 g oxygen / m 3 raw water oxygen was required in the nitrification tank, 180 g oxygen / m 3 raw water was sufficient in the present invention, and the aeration power reduction of about 40% was achieved.

なお有機性廃水中にSS性の有機性窒素が多く、第一沈
澱槽(2)において汚泥に吸着分離された窒素が汚泥側に
移行したのち再曝気槽(5)で硝化されて処理水に窒素が
混入するような場合には、第1図の脱窒槽(4)より後の
部分を変更して第2図のようにする。
The organic wastewater contains a lot of SS organic nitrogen, and the nitrogen adsorbed and separated in the sludge in the first settling tank (2) moves to the sludge side and is then nitrified in the re-aeration tank (5) to become treated water. When nitrogen is mixed in, the portion after the denitrification tank (4) in FIG. 1 is changed so that it is as shown in FIG.

第2図のフローにおいては、脱窒槽(4)から流出させ
た汚水を含む脱窒液を第二沈澱槽(6)にて固液分離さ
せ、分離液は再処理槽(7)で生物膜法等によつて残余のB
ODを除去し処理水として放流する一方、汚泥は再曝気槽
(5)で活性を与えたのちに混和槽(1)へ返送する。このよ
うにすれば、第1沈澱槽(2)において汚泥側に移行した
窒素分が処理水中に混入するおそれがなくより好まし
い。
In the flow of FIG. 2, the denitrification liquid containing sewage discharged from the denitrification tank (4) is subjected to solid-liquid separation in the second precipitation tank (6), and the separated liquid is biofilm in the reprocessing tank (7). Remaining B according to law
OD is removed and discharged as treated water, while sludge is re-aeration tank
After giving activity in (5), return to mixing tank (1). This is more preferable because there is no possibility that the nitrogen component transferred to the sludge side in the first settling tank (2) will be mixed into the treated water.

(発明の効果) 本発明は以上に説明したように、従来法に比較すると脱
窒槽は勿論、処理装置全体としても40%程度にまで小型
化することができる。また脱窒に必要な水素供与体とし
て原水中のBOD等の有機物を利用するので、メタノール
等を添加する必要がなく、ランニングコストを低く抑え
ることができる。更に本発明によれば、原水中の有機物
の大部分を脱窒により処理するので曝気処理により除去
しなければならない部分が少なくなり、曝気動力を大き
く削除することができる。なお、脱窒後の再曝気によっ
て脱リンも同時に行うことができる利点もある。
(Effects of the Invention) As described above, the present invention can downsize the denitrification tank and the entire processing apparatus to about 40% as compared with the conventional method. In addition, since organic substances such as BOD in raw water are used as hydrogen donors necessary for denitrification, it is not necessary to add methanol or the like, and the running cost can be kept low. Further, according to the present invention, most of the organic substances in the raw water are treated by denitrification, so that the portion that needs to be removed by the aeration treatment is reduced, and the aeration power can be largely eliminated. There is also an advantage that dephosphorization can be performed at the same time by re-aeration after denitrification.

よって本発明は従来の問題点を一掃した有機性廃水の処
理方法として、産業の発展に寄与するところは極めて大
である。
Therefore, the present invention is extremely large in that it contributes to the development of industry as a method for treating organic wastewater that eliminates the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第一の実施例を示すフローシート、第
2図は第二の実施例を示すフローシート、第3図は混和
槽滞留時間とBOD除去率との関係を示すグラフ、第4図
は脱窒槽滞留時間と脱窒率との関係を示すグラフ、第5
図は再曝気槽滞留時間とBOD除去率との関係を示すグラ
フ、第6図は従来の硝化液循環法を示すフローシート、
第7図は従来のA2O法を示すフローシートである。 (1):混和槽、(2):第一沈澱槽、(3):硝化槽、 (4):脱窒槽、(5):再曝気槽、(6):第二沈澱槽、 (7):再処理槽。
FIG. 1 is a flow sheet showing the first embodiment of the present invention, FIG. 2 is a flow sheet showing the second embodiment, and FIG. 3 is a graph showing the relationship between the mixing tank residence time and the BOD removal rate. FIG. 4 is a graph showing the relationship between the residence time of the denitrification tank and the denitrification rate.
Figure is a graph showing the relationship between residence time in the re-aeration tank and BOD removal rate. Figure 6 is a flow sheet showing the conventional nitrification solution circulation method.
FIG. 7 is a flow sheet showing the conventional A 2 O method. (1): Mixing tank, (2): First precipitation tank, (3): Nitrification tank, (4): Denitrification tank, (5): Re-aeration tank, (6): Second precipitation tank, (7) : Reprocessing tank.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機物とアンモニア性窒素及び/または有
機性窒素を含む原水に返送汚泥を加え、混合槽にて原水
中の溶解性有機物を吸着させた後、第1沈澱槽において
汚泥と分離液に分離し、分離液を生物膜濾過法によって
硝化した後に再び第1沈澱槽の汚泥と硝化液とを脱窒槽
に供給して脱窒し、更に脱窒液を再曝気槽で曝気した
後、第2沈澱槽にて固液分離して第2沈澱槽の汚泥の一
部を混合槽に返送することを特徴とする有機性廃水の処
理方法。
1. A recycled sludge is added to raw water containing organic matter and ammoniacal nitrogen and / or organic nitrogen, and after dissolving organic matter in the raw water is adsorbed in a mixing tank, the sludge and the separated liquid are placed in a first settling tank. After the separated liquid is nitrified by the biofilm filtration method, the sludge in the first settling tank and the nitrification liquid are again supplied to the denitrification tank for denitrification, and the denitrification liquid is further aerated in the re-aeration tank, A method for treating organic wastewater, comprising solid-liquid separation in a second settling tank and returning a part of sludge in the second settling tank to a mixing tank.
【請求項2】有機物とアンモニア性窒素及び/または有
機性窒素を含む原水に返送汚泥を加え、混合槽にて原水
中の溶解性有機物を吸着させた後、第1沈澱槽において
汚泥と分離液に分離し、分離液を生物膜濾過法によって
硝化した後に再び第1沈澱槽の汚泥と硝化液とを脱窒槽
に供給して脱窒し、脱窒液を第2沈澱槽で固液分離し、
第2沈澱槽の汚泥の一部を再曝気槽で曝気した後、混合
槽に返送することを特徴とする有機性廃水の処理方法。
2. After returning sludge to raw water containing organic matter and ammonia nitrogen and / or organic nitrogen and adsorbing soluble organic matter in the raw water in a mixing tank, the sludge and the separated liquid in the first settling tank. And nitrifying the separated liquid by the biofilm filtration method, the sludge and nitrification liquid in the first precipitation tank are again supplied to the denitrification tank for denitrification, and the denitrification liquid is subjected to solid-liquid separation in the second precipitation tank. ,
A method for treating organic wastewater, which comprises aerating a part of the sludge in the second settling tank in a re-aeration tank and then returning it to the mixing tank.
JP2024656A 1990-02-02 1990-02-02 Organic wastewater treatment method Expired - Lifetime JPH06236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024656A JPH06236B2 (en) 1990-02-02 1990-02-02 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024656A JPH06236B2 (en) 1990-02-02 1990-02-02 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH03229693A JPH03229693A (en) 1991-10-11
JPH06236B2 true JPH06236B2 (en) 1994-01-05

Family

ID=12144187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024656A Expired - Lifetime JPH06236B2 (en) 1990-02-02 1990-02-02 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH06236B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237716C1 (en) * 1992-11-09 1994-01-20 Saarberg Interplan Gmbh Process for the biological treatment of waste water contaminated with organic carbon compounds and nitrogen compounds
FR2707623B1 (en) * 1993-07-13 1995-09-15 Omnium Traitement Valorisa Process for the treatment of nitrogenous effluents.
CN106630410A (en) * 2016-12-14 2017-05-10 江南大学 Sewage nitrogen and phosphorus removal device and application thereof

Also Published As

Publication number Publication date
JPH03229693A (en) 1991-10-11

Similar Documents

Publication Publication Date Title
JPH07171594A (en) Method and apparatus for denitrifying and dephosphorizing sewage
JP2002186994A (en) Method for water treatment
JP2970730B2 (en) Sewage treatment method
JPH06236B2 (en) Organic wastewater treatment method
JP2912905B1 (en) Denitrification and dephosphorization of organic wastewater
JPS6055200B2 (en) Organic wastewater treatment method
JPS5830393A (en) Biological denitrifying and dephosphorizing method for sewage
JP3125628B2 (en) Wastewater treatment method
JP3841446B2 (en) Treatment method for waste liquid containing organic nitrogen compounds
JP2533991B2 (en) Sewage nitrification and denitrification method
JPH07115031B2 (en) Nitrification and denitrification method of organic wastewater
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPH06170388A (en) Treatment of sewage
JP2002273476A (en) Treatment of waste water containing high-concentration nitrogen
KR19990074576A (en) Biological treatment of wastewater by continuous circulation / regeneration in biological treatment tank of powdered zeolite
JPS61197097A (en) Method for denitrifying waste water
JP3257943B2 (en) Wastewater treatment method
JP3340790B2 (en) Wastewater treatment method
JPH0679714B2 (en) Organic wastewater treatment method
JP2594733B2 (en) Sewage nitrification denitrification method
JPH08168793A (en) Treatment of sewage
JPH0999296A (en) Method for biologically nitrifying and denitrifying organic sewage
JPH07115033B2 (en) Biological denitrification equipment for inorganic wastewater containing ammoniacal nitrogen
JPS6253238B2 (en)
JPH0796286A (en) High-degree treatment of organic sewage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 17