JPS6253238B2 - - Google Patents

Info

Publication number
JPS6253238B2
JPS6253238B2 JP2493479A JP2493479A JPS6253238B2 JP S6253238 B2 JPS6253238 B2 JP S6253238B2 JP 2493479 A JP2493479 A JP 2493479A JP 2493479 A JP2493479 A JP 2493479A JP S6253238 B2 JPS6253238 B2 JP S6253238B2
Authority
JP
Japan
Prior art keywords
tank
treatment
denitrification
bod
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2493479A
Other languages
Japanese (ja)
Other versions
JPS55116494A (en
Inventor
Keiji Nagamatsu
Kaname Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2493479A priority Critical patent/JPS55116494A/en
Publication of JPS55116494A publication Critical patent/JPS55116494A/en
Publication of JPS6253238B2 publication Critical patent/JPS6253238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、BOD及び窒素化合物を高濃度に含
有する排水を光合成細菌(主として紅色無硫黄細
菌)を用い無希釈にて1次処理し、この1次処理
水を固液分離することなく、活性化汚泥を用い2
次及び3次処理を併せ行つて浄化することによ
り、該排水中のBOD及び窒素化合物を高能率で
高度に除去する排水の処理法に関するものであ
る。 BOD及び窒素化合物を高濃度に含有する排水
(以下、単に原排水という。)、例えばし尿、畜産
排水及び水産加工、皮革工場、蚕糸副産の各産業
排水などの原排水中のBOD及び窒素化合物を除
去する方法として、従来は原排水を希釈して活性
汚泥法、散水ろ床法、回転円板法等が適用され
た。すなわち、原排水は、例えばし尿のBODは
10000〜13000ppm、窒素化合物は3000〜
5000ppmであるように、非常に高濃度であるた
め、従来はこれを清水にて20倍程度に希釈して処
理する方法がとられてきた。しかしながら、かか
る従来の希釈による処理方法は、希釈のための清
水が必要であり、しかも希釈による水量増加のた
め処理設備が大きくなるばかりでなく、更に希釈
処理の場合には、2次処理(BOD除去工程)に
おいて窒素化合物がほとんど除去されないため
に、3次処理(窒素化合物除去工程)装置は原排
水中の窒素化合物を基準にして設置しなければな
らないので、特に処理設備が極端に大きくなるの
に加え、排水の総量規則、最近の省資源、省エネ
ルギーの必要性等からしても問題があるなど、多
くの欠点を有している。 本発明者らは、上記の従来技術の欠点を解決す
べく、光合成細菌(主として紅色無硫黄細菌)に
よるBOD濃厚排水の無希釈処理方法について研
究を進め、先に特願昭52−143650号「し尿の処理
方法」、特願昭52−154849号「排水の処理方法」
及び特願昭53−9406号「排水を処理する方法」に
記載した如く、BODを光合成細菌による無希釈
処理で効率よく高度に除去するという目的を達
し、更にBODに加えて窒素化合物をも同様に効
率よく高度に除去する方法については、特願昭53
−92863号「排水の処理方法」に記載した如く一
応目的を達したのであるが、その後更にBOD及
び窒素化合物を光合成細菌並びに活性汚泥により
効率よく除去する方法について鋭意検討した結
果、本発明に到達したもので、その要旨は、
BOD及び窒素化合物を高濃度に含有する排水を
無希釈で光合成細菌により1次処理し、次いで該
1次処理水を活性汚泥を用い主としてBODを除
去する2次処理及び主として窒素化合物を除去す
る3次処理を併せ行つて浄化するにあたり、上記
活性汚泥による2次及び3次処理において、1次
処理水を固液分離することなく脱窒槽Aに移送
し、該脱窒槽A内の1次処理水に硝化槽内液と最
終工程の沈殿槽内の賦活化された汚泥とを共に返
送添加しつつ処理し、次いで該処理水を次工程の
硝化槽、脱窒槽B、再曝気槽及び沈殿槽に順次移
送し処理することを特徴とする排水の処理法に存
する。 本発明の排水の処理法は、第1図のプロセス例
の工程図に示すように、次の8工程により実施す
る。 (1) 原排水を無希釈で、まず第1図の工程1に示
す可溶化調整槽に入れて、水量及びBOD濃度
の均一化をはかると同時に、通常、24時間程度
の空気曝気を行い高分子物質の低分子化(例え
ば有機酸化)を行う。原排水がし尿の場合、こ
の段階でBODは5000ppm以上、窒素化合物は
2000ppm以上である。 (2) ついで、上記の如く処理して得た排水が中性
でない場合は、第1図の工程2に示す中和槽に
て、酸またはアルカリで中和する。 (3) 中和した排水は、そのまま無希釈で、第1図
の工程3に示す光合成細菌処理槽に移送し、光
合成細菌を接種して空気曝気を行い、BOD及
び窒素化合物除去の1次処理を行う。 (4) 上記の光合成細菌処理した1次処理水を、そ
のまま固液分離することなく、第1図の工程4
以下に示す2次及び3次処理の併合工程に移す
が、先ず最初の脱窒槽Aに移し、第1図の工程
5に示す硝化槽から循環される循環液、及び第
1図の工程8に示す最終沈殿槽から返送される
返送汚泥と混合する。この場合、機械撹拌もし
くは窒素ガス、炭酸ガス等の発生ガスを用いる
ガス撹拌により混合し、嫌気性の状態で脱窒菌
の働きにより上記循環液中の主として硝酸性窒
素を窒素ガスに還元するが、この脱窒素するに
必要な有機炭素源としては1次処理水中の
BODを利用し、脱窒素と同時にBODの除去を
行う。 (5) 脱窒槽Aの処理水は1図の工程5に示す硝化
槽に移し、1次処理水中から引続き存在するア
ンモニア性窒素を活性汚泥中の硝化菌の働きに
よつて主として硝酸性窒素にまで酸化し、かつ
脱窒槽Aの処理でなお残存しているBODをこ
こで除去する。この場合は、通常、空気曝気に
より混合しながら十分に曝気する。硝化槽処理
水中の硝酸性窒素は、循環液と共に大部分脱窒
槽Aに循環され、残りは第1図の工程6に示す
脱窒槽Bに移される。 (6) 硝化槽処理水は第1図の工程6に示す脱窒槽
Bに移し、前記工程4の脱窒槽Aの場合と同様
に嫌気性状態に保持して硝化槽処理水中に含ま
れる硝酸性窒素を窒素化ガスに還元する。この
場合は脱窒素するための有機炭素源となる
BODが硝化槽処理水中にはほとんど含まれな
いので、有機炭素源としてメタノール等を添加
する。 (7) 脱窒槽Bの処理水は第1図の工程7に示す再
曝気槽に移して通常空気曝気することにより、
主として上記工程6で脱窒素のために添加した
有機炭素源例えばメタノール等の残留BODの
除去、脱窒槽Bにて発生した窒素ガスの付着し
た汚泥の脱気及び汚泥の活性化を行う。 (8) 再曝気槽の処理水は第1図の工程8に示す最
終沈殿槽に移し、汚泥と上澄水とに分離し、上
澄水は放流し、沈降分離した汚泥は脱窒槽Aに
返送すると同時に余剰分は引抜き処分する。最
終沈殿槽からの放流水は、通常、BODが
20ppm以下、窒素化合物が10ppm以下であ
る。 すなわち、本発明の排水の処理法における
BOD及び窒素化合物の除去方法にあつては、1
次処理工程3にて原排水中のBODの5%以上及
び窒素化合物の40%以上を除去し得るため、工程
4の脱窒槽A、工程5の硝化槽及び工程6の脱窒
槽Bをいずれも大巾に小さくすることができる。
さらに脱窒素処理に従来必要であつたアルカリ剤
が不要であり、かつ脱窒槽Aでは脱窒素に必要な
有機炭素源として1次処理水中のBODを利用す
ることができ、しかも、1次処理槽及び上記のよ
うに脱窒素にBODを利用し得る脱窒槽Aにて窒
素化合物が多量に除去され、脱窒槽Bにて除去す
べき窒素化合物は少量となるので、BODをほと
んど含まない脱窒槽Bにおける脱窒素に必要な有
機炭素源、例えばメタノールの使用量は大巾に節
減することが可能である。従つて、本発明の排水
の処理法は、光合成細菌による無希釈処理の効果
とあいまつてトータルシステムで非常に設備費、
運転費の低廉なシステムとなる。 本発明の処理法における2次及び3次処理の併
合工程をさらに詳しく説明するに、第1図の工程
4において、一次処理水中の主としてBODを除
去する2次処理と、第1図の工程5の硝化槽より
循環される主として硝酸性窒素を窒素ガスに還元
して窒素化合物を除去する3次処理とを併せて行
うにあたり、脱窒槽Aに要求される条件として、
後記(1)式を満足する槽容積とPHを調整すること、
脱窒素処理に必要な有機炭素源を確保すること、
及び脱窒素反応は脱窒菌により通常嫌気状態下で
行われるため溶存酸素が0.1ppm以下になるよう
に機械式撹拌ないしガス吹込みによる曝気撹拌を
行うことが必要である。しかも、本発明の処理法
の場合は、1次処理水中のBODは脱窒素処理の
有機炭素源として有効に利用することにより除去
できるので脱窒槽Aにて有機炭素源の添加は必要
なく、さらに硝化槽から脱窒槽Aに循環する循環
液の量は、脱窒槽Aにおける脱窒素量を増すため
には多い方が良いが、通常、除去すべき窒素化合
物量に見合つて原排水量に対して50〜600%の範
囲に設定する。これは、50%以下では十分な脱窒
素効果は得られず、一方、600%以上では、脱窒
素効果は向上していくが、循環液量が過大となり
動力量がかさむこと、及び硝化槽の溶存酸素が脱
窒槽Aに多量に流入すること等により、循環効率
が低下して実用的でなくなるからである。 ついで脱窒槽Aの処理水を第1図の工程5の硝
化槽に移し処理することによつて、1次処理水中
のアンモニア性窒素を活性汚泥中の硝化菌(亜硝
酸菌、硝酸菌)の働きにより主として硝酸性窒素
にまで酸化し、併せて脱窒槽Aでなお残存する
BODをここで除去する。かかる硝化槽処理に要
求される条件として、硝化菌の汚泥日令を考慮し
た下記(2)式を満足する槽容積とPHの調整(6.5〜
9.0)及び硝化に必要な酸素を供給するため通常
溶存酸素が2ppm以上になるように空気曝気を行
うことが必要である。 更に、第1図の工程6において、硝化槽処理水
中の主として硝酸性窒素からなる窒素化合物を窒
素ガスに還元して除去するにあたり、脱窒槽Bに
要求される条件としては、脱窒槽Aと同じく下記
(1)式を満足する槽容積とPHの調整及び嫌気状態に
することに加えて、硝化槽処理水中には有機炭素
源がほとんど存在しないため脱窒素のための有機
炭素源として例えばメタノールの添加が必要であ
る。 なお、上述の脱窒槽及び硝化槽の各槽容積に関
する条件式(1)及び(2)並びに硝酸化及び脱窒素の各
反応式は次の通りである。 △N/VdXs<Kn ……(1) △N:脱窒素すべき硝酸性窒素量(Kg日-1) Vd:脱窒槽容量(m3) Xs:脱窒槽内の汚泥濃度(Kgm-3) Kn:脱窒速度(日-1) 1/Q=△Xs/VnXs<μ ……(2) Q:汚泥日令(日) △Xs:汚泥排出量(Kg日-1) Vn:硝化工程容量(m3) Xs:硝化汚泥濃度(Kg・m-3) μ:亜硝酸菌の増殖速度(日-1) 硝酸化反応: 2NH4 ++3O2→2NO- 2+2H2O+4H+ ……(3) 2NO2 -+O2→2NO- 3 ……(4) NH4 ++2O2→NO- 3+H2O+2H+ ……(5) 脱窒素反応: 3NO +CH3OH→3NO +CO2+2H2O ……(6) 2NO +CH3OH→N2+CO2+H2O+2HO- ……(7) 6NO +5CH3OH→3N2+5CO2+7H2O +6OH- ……(8) かくして、本発明の処理法においては、1次処
理工程3で窒素化合物の除去量が大きく1次処理
水は遊離のアルカリ度が高く、しかも上記反応式
の(3)〜(8)式から分るように、硝酸化反応ではH+
イオンが生成し、脱窒素反応では水酸イオンが発
生するが、硝化槽と脱窒槽Aは循環液により常に
混合状態がよく両槽のPHはそれぞれ硝酸化反応と
脱窒素反応の最適状態に維持されるので、特にア
ルカリ剤を添加する必要はない。また、脱窒槽
A、硝化槽、脱窒槽Bの各槽の活性汚泥濃度は
1000ppm〜10000ppmの間に設定する。これは、
1000ppm以下では十分な硝化菌、脱窒菌の確保
が難しく処理効率が悪く、一方、10000ppm以上
では、BOD、窒素化合物の除去の面では問題は
ないが、特に硝化槽でかかる高濃度の活性汚泥を
維持し、かつ溶存酸素を2ppm以上に維持する上
で曝気のための動力費が過大になり、しかもこの
活性汚泥濃度を維持するには第1図の工程8の最
終沈殿槽からの活性汚泥の返送供給量が過大にな
るので、硝化槽、脱窒槽A、脱窒槽Bの活性汚泥
の維持の点から実用的でなくなることによるので
ある。 以上詳記したように、本発明の排水の処理法
は、BOD及び窒素化合物を高濃度に含有する排
水を光合成細菌にて無希釈処理して得た1次処理
水をそのまま2次及び3次処理を兼ねる活性汚泥
処理により、BOD及び窒素化合物を容易に高度
に除去することができるばかりでなく、2次及び
3次処理の併合工程で用いる各槽の大きさは従来
よりも大巾に縮小することができ、しかもアルカ
リ剤が不要で、かつ脱窒素のための有機炭素源は
従来よりも大巾に少なくてすみ、1次処理水の特
別な固液分離装置及び固液分離のための凝集剤等
の薬剤も不要であるなど、従来の方法に比べて設
備費、運転費を大巾に節減できる多くの利点を有
し、その工業的価値は大きい。 本発明の処理法において、更に脱リン設備を付
加すれば、BOD、窒素化合物及びリンを高濃度
に含有する排水を無希釈にて効率よく処理できる
すぐれたシステムとなる。 次に本発明を実施例及び比較例により更に具体
的に説明する。 実施例1及び比較例1 破砕ポンプにて大型の雑物を破砕した生し尿を
30メツシユのスクリーンにて雑物を除去し、これ
を可溶化槽にて24時間空気曝気して可溶化後、そ
のまま無希釈にて光合成細菌をし尿の容量の20%
相当量を接種して光合成細菌処理を行い、ついで
光合成細菌処理槽から流出する1次処理水をその
まま固液分離することなく第1図の本発明の処理
法にもとづき処理してBOD及び窒素化合物を除
去し、後記表−1の結果を得た。 上記の本発明の処理法において、脱窒槽Aの滞
留日数は1.5日に設定し、硝化槽は5日に設定
し、脱窒槽Bは0.5日に設定した。また、硝化槽
から脱窒槽Aへの循環液量は原排水量に対し600
%の比率に設定した。一方、最終沈殿槽から脱窒
槽Aへの汚泥の返送供給量は、余剰汚泥の発生量
と沈殿層内の活性汚泥濃度をみつつ30〜100%の
比率でコントロールした。また、硝化槽の溶存酸
素量は2〜3ppmになるように空気曝気し、脱窒
槽A,Bの溶存酸素量は0.1ppm以下で機械撹拌
を行つた。 別に比較のため、第2図に示す比較例1の処理
法にて実施例1の本発明の処理法と同等程度の処
理効果を得た場合の処理データ及び槽容積を後記
表−2に示す。第2図の比較例1の処理法が本発
明の処理法と異なる点は、1次処理で光合成細菌
処理を行わず、原排水を清水にて10倍に希釈し、
そのまま活性汚泥処理を行つたことである。 なお、第1図の実施例1の本発明の処理法及び
第2図の比較例1の処理法において、脱窒槽Bへ
添加する有機炭素源としてはメタノールを用い
た。後記表−3に本発明の処理法と比較例1の処
理方法とにおけるメタノール添加量の比較データ
を示す。
The present invention performs primary treatment of wastewater containing high concentrations of BOD and nitrogen compounds using photosynthetic bacteria (mainly purple non-sulfur bacteria) without dilution, and activates the primary treated water without solid-liquid separation. Using chemical sludge 2
The present invention relates to a wastewater treatment method that highly efficiently and highly removes BOD and nitrogen compounds in the wastewater by purifying the wastewater through a combination of secondary and tertiary treatments. BOD and nitrogen compounds in wastewater containing high concentrations of BOD and nitrogen compounds (hereinafter simply referred to as raw wastewater), such as human waste, livestock wastewater, and industrial wastewater from fish processing, tanneries, and silk byproducts. Conventionally, the activated sludge method, trickling filter method, rotating disk method, etc., have been applied to remove raw wastewater by diluting it. In other words, raw wastewater, for example, the BOD of human waste is
10000~13000ppm, nitrogen compounds 3000~
Since the concentration is extremely high (5000 ppm), the conventional method for treatment was to dilute it approximately 20 times with fresh water. However, such conventional treatment methods by dilution require fresh water for dilution, and the increase in water volume due to dilution not only increases the size of treatment equipment, but also requires secondary treatment (BOD) in the case of dilution treatment. Because almost no nitrogen compounds are removed during the removal process (removal process), the tertiary treatment (nitrogen compound removal process) equipment must be installed based on the nitrogen compounds in the raw wastewater, so the treatment equipment in particular becomes extremely large. In addition, it has many drawbacks, such as problems due to regulations on the total amount of wastewater and the recent need for resource conservation and energy conservation. In order to solve the above-mentioned drawbacks of the prior art, the present inventors have conducted research on a non-dilution treatment method for BOD-concentrated wastewater using photosynthetic bacteria (mainly purple non-sulfur bacteria), and have previously published Japanese Patent Application No. 143,650/1989. ``Method for treating human waste'', Patent Application No. 154849, 1982 ``Method for treating wastewater''
As described in Japanese Patent Application No. 53-9406 ``Method of Treating Wastewater'', the objective of highly efficient removal of BOD by non-dilution treatment using photosynthetic bacteria was achieved, and in addition to BOD, nitrogen compounds were also removed in the same way. For information on how to efficiently and highly remove
As described in No. 92863, "Wastewater treatment method," the objective was achieved to a certain extent, but after further intensive study on a method for efficiently removing BOD and nitrogen compounds using photosynthetic bacteria and activated sludge, the present invention was reached. The gist of it is as follows:
Wastewater containing a high concentration of BOD and nitrogen compounds is first treated without dilution using photosynthetic bacteria, and then the first treatment water is subjected to a second treatment using activated sludge to mainly remove BOD, and a second treatment to mainly remove nitrogen compounds. In performing the next treatment and purification, in the above-mentioned secondary and tertiary treatment using activated sludge, the primary treated water is transferred to the denitrification tank A without solid-liquid separation, and the primary treated water in the denitrification tank A is The liquid in the nitrification tank and the activated sludge in the settling tank in the final process are both returned and added to the process, and then the treated water is sent to the nitrification tank, denitrification tank B, reaeration tank, and settling tank in the next process. It consists in a method of treating wastewater, which is characterized by sequential transfer and treatment. The wastewater treatment method of the present invention is carried out through the following eight steps, as shown in the process diagram of the process example in FIG. (1) Raw wastewater is first put into the solubilization adjustment tank shown in Step 1 in Figure 1 without dilution, and the water volume and BOD concentration are made uniform, and at the same time, air aeration is usually performed for about 24 hours to increase the concentration. Reduce molecular weight of molecular substances (for example, organic oxidation). If the raw wastewater is human waste, at this stage the BOD is over 5000ppm and the nitrogen compounds are
It is 2000ppm or more. (2) Next, if the wastewater obtained by the above treatment is not neutral, it is neutralized with acid or alkali in the neutralization tank shown in Step 2 of Figure 1. (3) The neutralized wastewater is transferred without dilution to the photosynthetic bacteria treatment tank shown in step 3 in Figure 1, where it is inoculated with photosynthetic bacteria and subjected to air aeration for primary treatment to remove BOD and nitrogen compounds. I do. (4) The primary treated water treated with the photosynthetic bacteria described above can be directly processed in step 4 of Figure 1 without solid-liquid separation.
The process is transferred to the combined process of secondary and tertiary treatment shown below, but first, the circulating liquid is transferred to the first denitrification tank A, and then the circulating liquid circulated from the nitrification tank shown in step 5 of Figure 1, and the process 8 of Figure 1. It is mixed with the return sludge returned from the final settling tank shown. In this case, mixing is performed by mechanical stirring or gas stirring using generated gases such as nitrogen gas and carbon dioxide gas, and mainly nitrate nitrogen in the circulating liquid is reduced to nitrogen gas by the action of denitrifying bacteria in an anaerobic state. The organic carbon source necessary for this denitrification is
Using BOD, BOD is removed at the same time as denitrification. (5) The treated water in denitrification tank A is transferred to the nitrification tank shown in step 5 in Figure 1, and the ammonia nitrogen still present from the primary treated water is mainly converted to nitrate nitrogen by the action of nitrifying bacteria in activated sludge. The BOD that has been oxidized to 100% and still remains from the treatment in denitrification tank A is removed here. In this case, sufficient aeration is usually performed while mixing by air aeration. Most of the nitrate nitrogen in the nitrification tank treated water is circulated to the denitrification tank A together with the circulating fluid, and the rest is transferred to the denitrification tank B shown in step 6 in FIG. (6) The nitrification tank treated water is transferred to the denitrification tank B shown in step 6 in Figure 1, and kept in an anaerobic state as in the case of the denitrification tank A in step 4 to remove the nitric acid contained in the nitrification tank treated water. Reduces nitrogen to nitrogenous gas. In this case, it becomes an organic carbon source for denitrification.
Since BOD is hardly contained in the nitrification tank treated water, methanol etc. are added as an organic carbon source. (7) The treated water in denitrification tank B is transferred to the re-aeration tank shown in step 7 in Figure 1 and aerated with normal air.
Mainly, the residual BOD of the organic carbon source, such as methanol, added in step 6 for denitrification is removed, the sludge generated in the denitrification tank B to which nitrogen gas has adhered is deaerated, and the sludge is activated. (8) The treated water from the reaeration tank is transferred to the final settling tank shown in Step 8 in Figure 1, where it is separated into sludge and supernatant water, the supernatant water is discharged, and the sedimented and separated sludge is returned to denitrification tank A. At the same time, the surplus will be extracted and disposed of. The effluent from the final settling tank usually has a BOD of
20ppm or less, and nitrogen compounds are 10ppm or less. That is, in the wastewater treatment method of the present invention
Regarding the method for removing BOD and nitrogen compounds, 1.
In order to remove 5% or more of BOD and 40% or more of nitrogen compounds in the raw wastewater in the next treatment step 3, denitrification tank A in step 4, nitrification tank B in step 5, and denitrification tank B in step 6 are all used. It can be made very small.
Furthermore, the alkaline agent that was conventionally necessary for denitrification treatment is not required, and in denitrification tank A, BOD in the primary treatment water can be used as an organic carbon source necessary for denitrification. And as mentioned above, a large amount of nitrogen compounds are removed in denitrification tank A, which can use BOD for denitrification, and a small amount of nitrogen compounds should be removed in denitrification tank B, so denitrification tank B contains almost no BOD. The amount of organic carbon source, such as methanol, required for denitrification can be significantly reduced. Therefore, the wastewater treatment method of the present invention, combined with the effect of non-dilution treatment using photosynthetic bacteria, provides a total system with very low equipment costs and
The system has low operating costs. To explain in more detail the combined step of secondary and tertiary treatment in the treatment method of the present invention, in step 4 of FIG. 1, the secondary treatment mainly removes BOD from the primary treatment water, and step 5 of FIG. The conditions required for the denitrification tank A include the following:
Adjusting the tank volume and pH to satisfy formula (1) below,
Securing the organic carbon source necessary for denitrification treatment;
Since the denitrification reaction is usually carried out by denitrifying bacteria under anaerobic conditions, it is necessary to perform mechanical stirring or aeration stirring by gas blowing so that the dissolved oxygen is 0.1 ppm or less. Moreover, in the case of the treatment method of the present invention, BOD in the primary treatment water can be removed by effectively using it as an organic carbon source for denitrification treatment, so there is no need to add an organic carbon source in denitrification tank A. The amount of circulating fluid that circulates from the nitrification tank to the denitrification tank A should be large in order to increase the amount of denitrification in the denitrification tank A, but it is usually 50% of the original wastewater volume in proportion to the amount of nitrogen compounds to be removed. Set to a range of ~600%. Below 50%, a sufficient denitrification effect cannot be obtained, while above 600%, the denitrification effect improves, but the amount of circulating fluid becomes excessive and the amount of power increases, and the nitrification tank This is because a large amount of dissolved oxygen flows into the denitrification tank A, reducing the circulation efficiency and making it impractical. The treated water in denitrification tank A is then transferred to the nitrification tank in step 5 in Figure 1 for treatment, thereby converting ammonia nitrogen in the primary treated water to nitrifying bacteria (nitrite bacteria, nitrate bacteria) in the activated sludge. Due to its action, it is mainly oxidized to nitrate nitrogen, and it still remains in denitrification tank A.
Remove BOD here. The conditions required for such nitrification tank treatment include adjusting the tank volume and pH (6.5 to 6.5 to
9.0) and to supply the oxygen necessary for nitrification, it is usually necessary to perform air aeration so that the dissolved oxygen is 2 ppm or more. Furthermore, in step 6 in Figure 1, the conditions required for denitrification tank B are the same as those for denitrification tank A in order to reduce and remove nitrogen compounds mainly consisting of nitrate nitrogen in the nitrification tank treated water to nitrogen gas. the below described
In addition to adjusting the tank volume and pH to satisfy equation (1) and creating an anaerobic state, for example, methanol is added as an organic carbon source for denitrification since there is almost no organic carbon source in the nitrification tank treated water. is necessary. The conditional expressions (1) and (2) regarding the volumes of the denitrification tank and nitrification tank and the reaction equations for nitrification and denitrification are as follows. △N/VdXs<Kn...(1) △N: Amount of nitrate nitrogen to be denitrified (Kg day -1 ) Vd: Denitrification tank capacity ( m3 ) Xs: Sludge concentration in the denitrification tank (Kgm -3 ) Kn: Denitrification rate (day -1 ) 1/Q=△Xs/VnXs<μ...(2) Q: Sludge age (days) △Xs: Sludge discharge amount (Kg day -1 ) Vn: Nitrification process capacity m 3 _ _ _ _ _ _ ) 2NO 2 - +O 2 →2NO - 3 ...(4) NH 4 + +2O 2 →NO - 3 +H 2 O+2H + ...(5) Denitrification reaction: 3NO - 3 +CH 3 OH→3NO - 2 +CO 2 +2H 2 O ......(6) 2NO - 2 +CH 3 OH→N 2 +CO 2 +H 2 O+2HO - ...(7) 6NO - 3 +5CH 3 OH→3N 2 +5CO 2 +7H 2 O +6OH - ...(8) Thus, In the treatment method of the present invention, the amount of nitrogen compounds removed in the primary treatment step 3 is large, and the primary treated water has a high free alkalinity, and as can be seen from the above reaction equations (3) to (8). In the nitrification reaction, H +
Hydroxyl ions are generated in the denitrification reaction, but the nitrification tank and denitrification tank A are always well mixed by the circulating fluid, and the pH of both tanks is maintained at the optimal state for the nitrification reaction and denitrification reaction, respectively. Therefore, there is no need to add an alkaline agent. In addition, the activated sludge concentration in each tank of denitrification tank A, nitrification tank, and denitrification tank B is
Set between 1000ppm and 10000ppm. this is,
Below 1,000 ppm, it is difficult to secure sufficient nitrifying bacteria and denitrifying bacteria, resulting in poor treatment efficiency.On the other hand, above 10,000 ppm, there is no problem in terms of removing BOD and nitrogen compounds, but it is especially difficult to remove highly concentrated activated sludge from nitrification tanks. In order to maintain dissolved oxygen at 2ppm or higher, the power cost for aeration becomes excessive, and in order to maintain this activated sludge concentration, activated sludge from the final settling tank in step 8 in Figure 1 must be removed. This is because the amount of returned supply becomes excessive, making it impractical in terms of maintaining activated sludge in the nitrification tank, denitrification tank A, and denitrification tank B. As detailed above, in the wastewater treatment method of the present invention, wastewater containing a high concentration of BOD and nitrogen compounds is treated without dilution using photosynthetic bacteria, and the primary treated water is used as it is for secondary and tertiary treatment. Activated sludge treatment, which also serves as treatment, not only makes it easy to remove BOD and nitrogen compounds to a high degree, but the size of each tank used in the combined secondary and tertiary treatment process is much smaller than before. Furthermore, an alkaline agent is not required, and the organic carbon source for denitrification is significantly less than conventional methods. It has many advantages such as no need for chemicals such as flocculants, and can significantly reduce equipment costs and operating costs compared to conventional methods, and its industrial value is great. If dephosphorization equipment is further added to the treatment method of the present invention, it will become an excellent system that can efficiently treat wastewater containing high concentrations of BOD, nitrogen compounds, and phosphorus without dilution. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 and Comparative Example 1 Human waste obtained by crushing large impurities using a crushing pump
After removing impurities with a 30-mesh screen and solubilizing it in a solubilization tank with air aeration for 24 hours, the photosynthetic bacteria are added to 20% of the human waste volume without dilution.
A considerable amount of the water is inoculated and treated with photosynthetic bacteria, and then the primary treated water flowing out from the photosynthetic bacteria treatment tank is treated without solid-liquid separation according to the treatment method of the present invention shown in Figure 1 to remove BOD and nitrogen compounds. was removed, and the results shown in Table 1 below were obtained. In the above-mentioned treatment method of the present invention, the retention period in the denitrification tank A was set to 1.5 days, the nitrification tank was set to 5 days, and the denitrification tank B was set to 0.5 days. In addition, the amount of circulating fluid from the nitrification tank to the denitrification tank A is 600% of the raw drainage volume.
The ratio was set to %. On the other hand, the amount of sludge returned and supplied from the final settling tank to denitrification tank A was controlled at a ratio of 30 to 100% while monitoring the amount of surplus sludge generated and the activated sludge concentration in the settling layer. Further, air aeration was performed so that the amount of dissolved oxygen in the nitrification tank was 2 to 3 ppm, and mechanical stirring was performed so that the amount of dissolved oxygen in denitrification tanks A and B was 0.1 ppm or less. Separately, for comparison, the treatment data and tank volume when the treatment method of Comparative Example 1 shown in Fig. 2 obtained a treatment effect equivalent to that of the treatment method of the present invention of Example 1 are shown in Table 2 below. . The difference between the treatment method of Comparative Example 1 in Fig. 2 and the treatment method of the present invention is that photosynthetic bacteria treatment is not performed in the primary treatment, and the raw wastewater is diluted 10 times with fresh water.
Activated sludge treatment was performed as is. In addition, in the treatment method of the present invention of Example 1 shown in FIG. 1 and the treatment method of Comparative Example 1 shown in FIG. 2, methanol was used as the organic carbon source added to the denitrification tank B. Table 3 below shows comparative data on the amount of methanol added between the treatment method of the present invention and the treatment method of Comparative Example 1.

【表】【table】

【表】【table】

【表】【table】

【表】 表−1、2及び3の結果から明らかなように、
本発明の処理法に比べて比較例1の処理方法で
は、槽容積が2.2倍以上となり、メタノール添加
量は5.4倍となる。すなわち、本発明の処理法で
は、比較例1の処理方法に比べて槽容積、メタノ
ール添加量が大巾に少なく、かつ希釈水も必要と
せず、効率よくBOD及び窒素化合物を高度に除
去できることが分る。
[Table] As is clear from the results in Tables 1, 2 and 3,
Compared to the treatment method of the present invention, in the treatment method of Comparative Example 1, the tank volume is 2.2 times or more, and the amount of methanol added is 5.4 times. In other words, in the treatment method of the present invention, the tank volume and amount of methanol added are significantly smaller than in the treatment method of Comparative Example 1, and dilution water is not required, and BOD and nitrogen compounds can be removed efficiently and to a high degree. I understand.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の処理法のプロセス例、第2図
は比較例1の処理方法のプロセス例、それぞれの
工程図である。
FIG. 1 is a process example of the treatment method of the present invention, and FIG. 2 is a process diagram of a process example of the treatment method of Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 BOD及び窒素化合物を高濃度に含有する排
水を無希釈で光合成細菌により1次処理し、次い
で該1次処理水を活性汚泥を用い主としてBOD
を除去する2次処理及び主として窒素化合物を除
去する3次処理を併せ行つて浄化するにあたり、
上記活性汚泥による2次及び3次処理において、
1次処理水を固液分離することなく脱窒槽Aに移
送し、該脱窒槽A内の1次処理水に硝化槽内液と
最終工程の沈殿槽内の賦活化された汚泥とを共に
返送添加しつつ処理し、次いで該処理水を次工程
の硝化槽、脱窒槽B、再曝気槽及び沈殿槽に順次
移送し処理することを特徴とする排水の処理法。
1 Firstly treat wastewater containing high concentrations of BOD and nitrogen compounds without dilution using photosynthetic bacteria, then use activated sludge to treat the firstly treated water mainly as BOD.
When performing purification by combining secondary treatment to remove nitrogen compounds and tertiary treatment to mainly remove nitrogen compounds,
In the secondary and tertiary treatment using the above activated sludge,
The primary treated water is transferred to the denitrification tank A without solid-liquid separation, and the liquid in the nitrification tank and the activated sludge in the settling tank in the final step are returned to the primary treated water in the denitrification tank A. A method for treating wastewater, characterized in that the treated water is treated while being added, and then the treated water is sequentially transferred to the next step of a nitrification tank, a denitrification tank B, a reaeration tank, and a settling tank.
JP2493479A 1979-03-03 1979-03-03 Treating method for waste water Granted JPS55116494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2493479A JPS55116494A (en) 1979-03-03 1979-03-03 Treating method for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2493479A JPS55116494A (en) 1979-03-03 1979-03-03 Treating method for waste water

Publications (2)

Publication Number Publication Date
JPS55116494A JPS55116494A (en) 1980-09-08
JPS6253238B2 true JPS6253238B2 (en) 1987-11-09

Family

ID=12151903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2493479A Granted JPS55116494A (en) 1979-03-03 1979-03-03 Treating method for waste water

Country Status (1)

Country Link
JP (1) JPS55116494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220642A (en) * 1988-02-29 1989-09-04 Kao Corp Transfer and loading method for article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460214B1 (en) * 2001-01-05 2004-12-08 학교법인 인하학원 Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220642A (en) * 1988-02-29 1989-09-04 Kao Corp Transfer and loading method for article

Also Published As

Publication number Publication date
JPS55116494A (en) 1980-09-08

Similar Documents

Publication Publication Date Title
JP3531481B2 (en) Wastewater treatment method and apparatus
US4552663A (en) Process for the removal of ammoniacal nitrogen in the BOD sorption zone of a wastewater treatment plant
JPS5881491A (en) Purification of filthy water with activated sludge
JPH0788500A (en) Method for treating sewage countercurrent water
JPS6254075B2 (en)
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPS6253238B2 (en)
JPH11156391A (en) Treating method for ethanolamine-containing waste water
JPS6222678B2 (en)
JP3288097B2 (en) Purification method of nitrogen-containing polluted water
JPH0483594A (en) Biological treatment of organic sewage
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPH0141115B2 (en)
JPS6320599B2 (en)
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
JPH09290290A (en) Treatment of coke-oven gas liquor
KR100228739B1 (en) Disposal method of organic wastewater using oxygen
JPS6358639B2 (en)
JPH0218155B2 (en)
JPH0123197B2 (en)
JPS586292A (en) Treatment of water
JPS61146395A (en) Method for denitrifying biologically waste water
JPS61197097A (en) Method for denitrifying waste water
JPH038840B2 (en)