KR100460214B1 - Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms - Google Patents

Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms Download PDF

Info

Publication number
KR100460214B1
KR100460214B1 KR10-2001-0000504A KR20010000504A KR100460214B1 KR 100460214 B1 KR100460214 B1 KR 100460214B1 KR 20010000504 A KR20010000504 A KR 20010000504A KR 100460214 B1 KR100460214 B1 KR 100460214B1
Authority
KR
South Korea
Prior art keywords
wastewater treatment
nitrogen
wastewater
delete delete
present
Prior art date
Application number
KR10-2001-0000504A
Other languages
Korean (ko)
Other versions
KR20020057466A (en
Inventor
이철균
이광용
Original Assignee
학교법인 인하학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 인하학원 filed Critical 학교법인 인하학원
Priority to KR10-2001-0000504A priority Critical patent/KR100460214B1/en
Publication of KR20020057466A publication Critical patent/KR20020057466A/en
Application granted granted Critical
Publication of KR100460214B1 publication Critical patent/KR100460214B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • C02F3/325Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae as symbiotic combination of algae and bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biotechnology (AREA)
  • Ecology (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 광합성 미생물을 이용한 하폐수 처리방법 및 이를 이용한 처리장치에 관한 것으로, 구체적으로 유입 원수관, 침전조, 탈질 반응조, 최종 침전조, 처리수 방출관, 반송관으로 구성된 하폐수 처리장치를 이용하고, 상기 탈질 반응조에 광원, 포기장치 및 교반장치를 부착하여 하폐수에서 광합성 미생물이 질소를 효율적으로 제거하는 하폐수 처리방법 및 이를 이용한 처리장치에 관한 것이다. 본 발명의 하폐수 처리방법은 기존에 혐기성 미생물을 이용하는 대신 광합성 미생물을 이용함으로써, 폐수처리시 통상적으로 이용되는 활성슬러지 공정의 질소 제거율이 낮은 단점을 극복하여 질소를 최고 95% 이상 제거할 수 있으며 추가적인 유기 탄소원 공급 및 혐기조를 생략함으로써 공정 시간을 단축하고 하수 처리 비용을 절감할 수 있다.The present invention relates to a wastewater treatment method using a photosynthetic microorganism and a treatment apparatus using the same, in particular, using a wastewater treatment apparatus consisting of an inlet source pipe, a sedimentation tank, a denitrification reaction tank, a final sedimentation tank, a treated water discharge tube, and a return pipe. The present invention relates to a wastewater treatment method and a treatment apparatus using the same by attaching a light source, an aeration device, and a stirring device to the denitrification reactor to efficiently remove nitrogen from the wastewater. In the wastewater treatment method of the present invention, by using photosynthetic microorganisms instead of using anaerobic microorganisms, nitrogen can be removed up to 95% or more by overcoming the disadvantage of low nitrogen removal rate of the activated sludge process commonly used in wastewater treatment. By eliminating the supply of organic carbon sources and the anaerobic tank, the process time can be shortened and the cost of sewage treatment can be reduced.

Description

광합성 미생물을 이용한 하폐수 처리방법 및 그의 처리장치{Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms}Wastewater treatment method using photosynthetic microorganism and its treatment device {Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms}

본 발명은 광합성 미생물을 이용한 하폐수 처리방법 및 이를 이용한 처리장치에 관한 것으로, 구체적으로 유입 원수관, 침전조, 탈질 반응조, 최종 침전조, 처리수 방출관, 반송관으로 구성된 하폐수 처리장치를 이용하고, 상기 탈질 반응조에 광원, 포기장치 및 교반장치를 부착하여 하폐수에서 광합성 미생물이 질소를 효율적으로 제거하는 하폐수 처리방법 및 이를 이용한 처리장치에 관한 것이다.The present invention relates to a wastewater treatment method using a photosynthetic microorganism and a treatment apparatus using the same, in particular, using a wastewater treatment apparatus consisting of an inlet source pipe, a sedimentation tank, a denitrification reaction tank, a final sedimentation tank, a treated water discharge tube, and a return pipe. The present invention relates to a wastewater treatment method and a treatment apparatus using the same by attaching a light source, an aeration device, and a stirring device to the denitrification reactor to efficiently remove nitrogen from the wastewater.

산업화에 따른 오폐수 배출로 인하여 유발되는 하천오염을 방지하기 위하여 다양한 오폐수 처리 방법이 제시되어 왔다.Various wastewater treatment methods have been proposed to prevent river pollution caused by wastewater discharge due to industrialization.

오폐수 처리방법은 크게 물리적, 화학적 및 생물학적 처리방법으로 구분되며 물리적 폐수 처리방법은 입자의 크기나 입자의 비중차 및 자성 등의 성질을 이용한 체분리, 여과, 초미분 여과, 투석, 침강법, 증류법 및 증발법 등이 사용되고 있다.Wastewater treatment methods are largely divided into physical, chemical and biological treatment methods. Physical wastewater treatment methods include sieve separation, filtration, ultra-fine filtration, dialysis, sedimentation, and distillation using properties such as particle size, specific gravity difference, and magnetic properties. And evaporation methods are used.

또한, 화학적 처리방법으로는 용해도, 산화환원, 가수분해, 계면특성 및 이온성 등의 성질을 이용한 중화법, 중화침전법, 산화환원법, 분해법, 응집법, 이온교환법 및 소각법 등이 사용되고 있다.In addition, as the chemical treatment method, neutralization method, neutralization precipitation method, redox method, decomposition method, coagulation method, ion exchange method and incineration method using properties such as solubility, redox, hydrolysis, interfacial properties and ionicity are used.

마지막으로, 생물학적 처리방법은 유기물이 다량 포함되어 있는 오폐수를 처리하기 위해서 많이 사용되며, 생물 산화 분해성이나 생물 환원 분해성 등의 성질을 이용한 활성오니법, 장기포기법, 접촉안정화법 및 순산소 폭기법 등이 있다.Finally, biological treatment methods are widely used to treat wastewater containing a large amount of organic matter. Etc.

오폐수를 처리하기 위한 일반적인 방법은 크게 두 단계로 진행되는데 폐수에 포함된 일정 크기의 부유물을 물리적으로 제거하는 1차 처리 단계와 폐수의 유기물을 생물학적으로 제거하는 2차 처리 단계로 이루어진다.The general method for treating wastewater consists of two main steps: a primary treatment step for physically removing a certain amount of suspended solids contained in the wastewater and a second treatment step for biologically removing organic matter from the wastewater.

상기 2차 처리 단계에서 처리되는 폐수는 유기물과 질소를 포함하고 있으며, 이러한 폐수를 처리하기 위해서 통상적으로 생물학적 활성슬러지 방법이 사용되고 있다. 통상적인 페수 처리 시스템은 질화 및 탈질소화 공정을 위하여 분리된 탱크를 필요로 하는데 먼저, 질화탱크 속에서는 질화반응을 일으키는 미생물과 공급된 산소에 의해 유입된 폐수의 유기질소 및 암모니아계 질소가 산화되어 아질산염 질소나 질산염 질소로 전환된다.Wastewater treated in the secondary treatment step contains organic matter and nitrogen, and biologically activated sludge methods are commonly used to treat such wastewater. Conventional wastewater treatment systems require separate tanks for nitriding and denitrification processes. First, in the nitriding tanks, nitrites are oxidized by oxidizing organic nitrogen and ammonia-based nitrogen in wastewater introduced by the microorganisms causing nitrification and supplied oxygen. It is converted to nitrogen or nitrate nitrogen.

이와 같이 질화된 폐수는 질화탱크에서 탈질소탱크로 운반되어 탈질소 미생물의 호흡작용에 의해 질소는 분리되어 대기중에 방출된다. 탈질소 처리된 물은 침전탱크 속으로 유입되어 활성슬러지와 물로 분리되며, 분리된 물은 고도의 공정으로 다시 넘겨지거나 염소 살균 처리된 후 시스템 밖으로 방출되고 활성슬러지는 회수되어 질화탱크로 유입된다. 그러나, 이러한 생물학적 활성슬러지 처리방법에서는 잉여슬러지 발생량이 다량 발생하게 되고 이러한 잉여슬러지를 처리하기 위해서는 별도의 설비와 비용이 추가되는 문제점이 있다.The nitrified wastewater is transported from the nitriding tank to the denitrification tank so that nitrogen is separated and released into the atmosphere by the respiratory action of the denitrification microorganism. The denitrified water is introduced into the settling tank and separated into activated sludge and water. The separated water is passed back to a high process or chlorinated and discharged out of the system and the activated sludge is recovered and introduced into the nitriding tank. However, in the biologically activated sludge treatment method, a large amount of excess sludge is generated, and additional facilities and costs are added to treat the excess sludge.

한편, 우리나라 하폐수는 질소원에 비해 탄소원의 상대적 비율이 적어 기존의 미생물을 사용한 하폐수 처리방법은 질소 제거 효율이 낮으며, 상기 활성슬러지 방법은 폐수에서 BOD(biochemical oxygen demand)를 90% 이상 제거할 수 있으나 질소는 20 내지 50% 정도만을 제거할 수 있다. 따라서, 현재까지는 에탄올이나 포도당과 같은 별도의 유기 탄소원을 공급하여 인위적으로 C/N의 비율을 높임으로써 질소를 제거해 왔는데, 이러한 처리방법은 하폐수에 포함된 질소가 충분히 제거되지 않는 상태에서 하천에 방출되면 적조 현상을 유발하여 생태계를 교란시킬 뿐만 아니라 경제적인 피해를 줄 수 있다.On the other hand, Korean sewage water has a relatively low proportion of carbon sources compared to nitrogen sources, so the wastewater treatment method using existing microorganisms has low nitrogen removal efficiency, and the activated sludge method can remove more than 90% of biochemical oxygen demand (BOD) from wastewater. But nitrogen can only remove about 20 to 50%. Therefore, to date, nitrogen has been removed by artificially increasing the ratio of C / N by supplying a separate organic carbon source such as ethanol or glucose, and this treatment is released to the stream without sufficient nitrogen contained in the wastewater. This can cause red tide, disrupt ecosystems and cause economic damage.

이와 같이 종래의 폐수처리 시스템은 질화 및 탈질소화 공정을 위해 분리된 탱크를 필요로 하므로 대형 설비가 필요하다. 또한, 질화탱크 내 암모니아계 질소가 아질산염이나 질산염을 생성하기 위해 산화되어 pH가 상당히 감소하므로 미생물 생육이 저하되고, 이를 방지하기 위하여 알칼리를 첨가해야 하며 폐수에서 질소 제거율이 상당히 낮다는 문제점이 지적되고 있다. 더욱이, 일반적으로 종속 영양 미생물을 탈질소 미생물로 사용하므로 에탄올이나 포도당 같은 유기 탄소원을 다량 첨가해야 하기 때문에 폐수 처리 공정의 비용이 상승하게 된다.As such, conventional wastewater treatment systems require separate tanks for nitriding and denitrification processes and therefore require large installations. In addition, since the ammonia nitrogen in the nitriding tank is oxidized to produce nitrite or nitrate and the pH is considerably reduced, the growth of microorganisms is reduced, and it is pointed out that the problem is that alkali should be added and nitrogen removal rate from waste water is very low. have. Moreover, since heterotrophic microorganisms are generally used as denitrogen microorganisms, the cost of the wastewater treatment process is increased because a large amount of organic carbon sources such as ethanol and glucose are required.

이에 본 발명자들은 상기의 문제점을 해결하기 위하여, 유입 원수관, 침전조, 탈질 반응조, 최종 침전조, 처리수 방출관, 반송관으로 구성된 하폐수 처리장치를 개발하고 이에 혐기성 미생물 대신 광합성 미생물을 사용하여 질소 함량이 높은 하폐수에서 별도의 유기 탄소원을 첨가하지 않고도 효율적으로 질소를 제거함으로써 본 발명을 완성하였다.In order to solve the above problems, the present inventors have developed a wastewater treatment apparatus composed of an inlet source pipe, a sedimentation tank, a denitrification reactor, a final sedimentation tank, a treated water discharge pipe, and a return pipe, and using the photosynthetic microorganism instead of anaerobic microorganisms, the nitrogen content The present invention has been completed by efficiently removing nitrogen from this high wastewater without adding a separate organic carbon source.

본 발명의 목적은 하폐수에서, 특히 질소 함유율이 높은 하폐수에서 효율적으로 질소를 제거하고 처리과정을 단축함으로써 폐수처리 비용을 절감할 수 있는 하폐수 처리방법 및 처리장치를 제공하는 것이다.It is an object of the present invention to provide a wastewater treatment method and treatment apparatus which can reduce the wastewater treatment cost by efficiently removing nitrogen and shortening the treatment process in wastewater, in particular, wastewater having high nitrogen content.

도 1은 본 발명의 광합성 미생물을 이용한 하폐수 처리방법에 따라 하폐수에서 질소를 제거하는 하폐수 처리장치를 나타낸 것이고, 1 shows a wastewater treatment apparatus for removing nitrogen from wastewater according to the wastewater treatment method using the photosynthetic microorganism of the present invention,

도 2도 1의 하폐수 처리장치 중 탈질 반응조에서 질소가 제거되는 장치를 나타낸 것이고, FIG. 2 shows an apparatus for removing nitrogen from a denitrification reactor in the wastewater treatment apparatus of FIG. 1 .

도 3a는 본 발명의 하페수 처리장치 중 탈질 반응조에 암모니아성 질소를 첨가하여 미세조류를 배양한 결과를 나타낸 것이고, Figure 3a shows the result of culturing the microalgae by adding ammonia nitrogen to the denitrification reactor in the hape water treatment apparatus of the present invention ,

도 3b도 3a에서 배양된 미세조류가 암모니아성 질소를 감소시키는 결과를 나타낸 것이고, Figure 3b is a microalgae cultured in Figure 3a shows the result of reducing ammonia nitrogen,

도 4a는 본 발명의 하폐수 처리장치 중 탈질 반응조에 질산성 질소를 첨가하여 미세조류를 배양한 결과를 나타낸 것이고, Figure 4a shows the result of culturing the microalgae by adding nitrate nitrogen to the denitrification reactor in the wastewater treatment apparatus of the present invention,

도 4b도 4a에서 배양된 미세조류가 질산성 질소를 감소시키는 결과를 나타낸 것이고, Figure 4b is a microalgae cultured in Figure 4a shows the result of reducing the nitrate nitrogen,

도 5a는 본 발명의 하페수 처리장치 중 탈질 반응조에 질산성 질소를 농도별로 첨가하여 미세조류를 배양한 결과를 나타낸 것이고, Figure 5a shows the result of culturing the microalgae by adding nitrate nitrogen to the denitration reaction tank in the haep water treatment apparatus of the present invention by concentration,

도 5b도 5a에서 배양된 미세조류가 첨가된 질산성 질소를 감소시키는 결과를 나타낸 것이다. Figure 5b shows the result of reducing the nitrate nitrogen added to the microalgae cultured in Figure 5a .

◆ : 140 ㎎-N/L ■ : 280 ㎎-N/L◆: 140 mg-N / L ■: 280 mg-N / L

▲ : 700 ㎎-N/L ● : 1,400 ㎎-N/L▲: 700 mg-N / L ●: 1,400 mg-N / L

* 도면의 주요 부분에 대한 부호의 설명** Explanation of symbols for main parts of the drawing

1 : 유입 원수관 2 : 침전조1: inlet raw water pipe 2: sedimentation tank

3 : 탈질 반응조 4 : 최종 침전조3: denitrification reactor 4: final precipitation tank

5 : 처리수 방출관 6 : 반송관5: treated water discharge pipe 6: return pipe

7 : 광원 8 : 교반장치7 light source 8 stirring device

9 : 포기장치9: aeration device

상기 목적을 달성하기 위하여, 본 발명은 하폐수에서 광합성 미생물을 이용하여 질소를 제거하는 하폐수 처리방법을 제공한다.In order to achieve the above object, the present invention provides a wastewater treatment method for removing nitrogen by using photosynthetic microorganisms in the wastewater.

또한, 본 발명은 유입 원수관, 침전조, 탈질 반응조, 최종 침전조, 처리수 방출관 및 반송관으로 구성되는 상기 하폐수 처리방법을 이용한 하폐수 처리장치를 제공한다.In addition, the present invention provides a wastewater treatment apparatus using the wastewater treatment method consisting of the inlet source pipe, sedimentation tank, denitrification reaction tank, final sedimentation tank, treated water discharge pipe and return pipe.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 하폐수에서 광합성 미생물을 이용하여 질소를 제거하는 하폐수 처리방법을 제공한다.The present invention provides a wastewater treatment method for removing nitrogen using photosynthetic microorganisms in wastewater.

본 발명의 하폐수 처리방법은,Wastewater treatment method of the present invention,

1) 하폐수에서 현탁을 일으키는 물질을 제거하는 단계;1) removing the material causing suspension from the sewage water;

2) 상기 하폐수에서 광합성 미생물을 이용하여 질소를 제거하는 단계; 및2) removing nitrogen from the sewage using photosynthetic microorganisms; And

3) 최종 침전조에서 광합성 미생물을 침전시키고 처리수를 방출하는 단계로 구성된다(도 1참조).3) precipitating photosynthetic microorganisms in the final settling tank and releasing the treated water (see FIG. 1 ).

단계 1)은 유입된 하폐수에서 현탁물질을 제거하는 단계로(1 및 2), 이는 물리적 처리 단계로 입자의 크기나 입자의 비중차 및 자성 등의 성질을 이용한 체분리, 여과, 초미분 여과, 투석, 침강법, 증류법 및 증발법 등이 사용될 수 있다. 본 발명은 빛과 이산화탄소를 이용하여 광합성 반응으로 에너지원과 탄소원을 얻는 광합성 미생물을 사용하므로 현탁물질이 충분히 제거되어야 한다.Step 1) is a step (1 and 2) of removing suspended solids from the influent sewage water, which is a physical treatment step, which is performed using a sieve separation, filtration, ultra-fine filtration, Dialysis, sedimentation, distillation and evaporation can be used. Since the present invention uses photosynthetic microorganisms that obtain an energy source and a carbon source through a photosynthetic reaction using light and carbon dioxide, the suspension material should be sufficiently removed.

단계 2)는 현탁물질이 제거된 하폐수에서 광합성 미생물에 의해 질소가 제거되는 단계로(3), 광합성 미생물의 생장에는 빛, 이산화탄소, 물 및 질소가 필요한데, 질소는 유입수로부터 공급받게 되므로 광합성 미생물의 생장에 비례하여 하폐수에서 질소가 제거된다.Step 2) is a step in which nitrogen is removed by photosynthetic microorganisms from the sewage water from which the suspended matter is removed (3). The growth of photosynthetic microorganisms requires light, carbon dioxide, water, and nitrogen. Nitrogen is removed from the sewage in proportion to growth.

광합성 미생물로는 스피룰리나(Spirulina), 아나베나(Anabaena),시네코코쿠스(Synechococcus),시네코시스티스(Synechocystis),아나시스티스(Anacystis),노스톡(Nostoc),오실라토리아(Oscillatoria)등의 시아노세균과 클로렐라(Chlorella),두나리엘라(Dunalialla),헤마토코쿠스(Haematococcus),아이소크라이시스(Isochrysis),세네데스무스(Scenedesmus),클라미도모나스(Chlamydomonas),포르파이리디움(Porphyridium)등의 미세조류가 사용될 수 있으며, 이들의 생장에 필수적인 인과 철, 아연, 망간, 구리 및 알루미늄 등의 금속이온은 활성슬러지로 처리하는 폐수라면 따로 첨가해 줄 필요가 없으나 이들 이온을 인위적으로 소량 첨가함으로써 광합성 미생물을 고농도로 배양할 수도 있다.In photosynthetic microorganisms such as Spirulina (Spirulina), Ana vena (Anabaena), cine Coco kusu (Synechococcus), cine Cauchy seutiseu (Synechocystis), know when seutiseu (Anacystis), no stock (Nostoc), come la thoria (Oscillatoria) Cyanobacteria and Chlorella , Dunalialla, Haematococcus, Isochrysis, Scenedesmus, Chlamydomonas, Porphyridium, etc. Microalgae of can be used, and metal ions such as phosphorus, iron, zinc, manganese, copper and aluminum, which are essential for their growth, do not need to be added to wastewater treated with activated sludge, but by artificially adding a small amount of these ions Photosynthetic microorganisms can also be cultured at high concentrations.

단계 3)은 최종 침전조에서 광합성 미생물이 침전되고 처리수가 방출되는 단계로(4 및 5), 질소가 제거된 하수는 최종 침전조(4)로 이송된 후 광합성 미생물은 중력에 의해 침전되어 반송관(6)으로 운반되고 처리수만 배출된다. 침전된 미생물은 반송관(6)을 통해 탈질 반응조로 다시 유입되어 재활용되거나 수거되어 가축의 사료로 또는 퇴비화하여 비료로 사용될 수 있다.Step 3) is a step in which photosynthetic microorganisms are precipitated in the final settling tank and treated water is discharged (4 and 5). The sewage from which nitrogen is removed is transferred to the final settling tank (4), and then the photosynthetic microorganisms are settled by gravity and the return pipe ( 6) and only treated water is discharged. The precipitated microorganisms may be introduced back into the denitrification reactor through the return pipe 6, recycled or collected, and used as fertilizer or compost for livestock.

또한, 상기 하폐수 처리방법을 기존의 하폐수 처리장치에 이용하여 광합성 미생물을 도입함으로써 모든 형태의 질소를 제거할 수 있다.In addition, all types of nitrogen can be removed by introducing photosynthetic microorganisms using the wastewater treatment method in the existing wastewater treatment apparatus.

또한, 본 발명은 유입 원수관, 침전조, 탈질 반응조, 최종 침전조, 처리수 방출관 및 반송관으로 구성되는 상기 하폐수 처리방법을 이용한 하폐수 처리장치를 제공한다.In addition, the present invention provides a wastewater treatment apparatus using the wastewater treatment method consisting of the inlet source pipe, sedimentation tank, denitrification reaction tank, final sedimentation tank, treated water discharge pipe and return pipe.

본 발명의 하폐수 처리장치는 구체적으로 하폐수가 유입되는 유입 원수관, 현탁 물질을 침전시키는 침전조, 광합성 미생물에 의해 질소가 제거되는 탈질 반응조, 광합성 미생물을 침전시키는 최종 침전조, 질소가 제거된 하폐수를 방출하는 처리수 방출관, 광합성 미생물을 침전조에서 탈질 반응조로 운반하는 반송관으로 구성되는 것을 특징으로 한다.The wastewater treatment apparatus of the present invention specifically discharges an inlet source pipe into which wastewater is introduced, a settling tank for precipitating suspended substances, a denitrification tank for removing nitrogen by photosynthetic microorganisms, a final settling tank for precipitating photosynthetic microorganisms, and wastewater from which nitrogen is removed. The treated water discharge pipe, characterized in that consisting of a return pipe for transporting photosynthetic microorganisms from the settling tank to the denitrification reactor.

기존의 방법으로 처리된 하수나 처리되지 않은 하폐수는 유입 원수관(1)을 통하여 침전조(2)로 이송되어 현탁물질이나 부유물이 침강되어 제거되고, 기존의 활성슬러지 방법 등으로 현탁물질이 이미 제거된 경우는 침전조(2)를 거치지 않고 바로 탈질 반응조(3)를 진행할 수 있다.The sewage or untreated wastewater treated by the conventional method is transferred to the sedimentation tank 2 through the inlet raw water pipe 1, and the suspended matter or suspended matter is settled and removed, and the suspended matter is already removed by the existing activated sludge method. If it is, it is possible to proceed directly to the denitrification tank (3) without passing through the settling tank (2).

탈질 반응조에서는 유입수의 상태에 따라 광원, 포기장치 및 교반장치를 부착함으로써 광합성 미생물의 생장을 조절할 수 있다(도 2참조).In the denitrification reactor, growth of photosynthetic microorganisms can be controlled by attaching a light source, aeration device, and agitation device according to the state of influent (see FIG. 2 ).

빛을 공급하기 위해서 탈질 반응조(3)에는 태양광 또는 인공광을 투입할 수 있는 장치(7)를 설치할 수 있다. 낮에는 태양광을 반사판 등으로 집광장치에 모아서 높은 광도로 반응조(3)에 공급하고 밤이나 태양광이 부족한 날에는 인공광을 투입하여 광합성 미생물의 생장을 지속시킬 수 있다. 인공광으로는 형광등, 제논램프, 할로겐등, 텅스텐, 수은등, 나트륨등, 메탈할라이드등 및 발광다이오드(light-emitting diode 또는 LED) 등이 사용될 수 있다.In order to supply light, the denitrification reactor 3 may be provided with a device 7 capable of introducing sunlight or artificial light. During the day, the solar light is collected in a light collecting device using a reflector or the like and supplied to the reactor 3 at high brightness, and artificial light may be added at night or on a day when solar light is insufficient to sustain the growth of photosynthetic microorganisms. As the artificial light, fluorescent lamps, xenon lamps, halogen lamps, tungsten, mercury lamps, sodium lamps, metal halide lamps and light-emitting diodes or LEDs may be used.

또한, 공기를 공급하기 위해서 탈질 반응조(3) 바닥에 포기장치(9)를 설치할 수 있다. 광합성 미생물은 공급된 공기 중에 포함되어 있는 0.03%의 이산화탄소를 탄소원으로 사용하며, 포기양과 포기속도를 조절함으로써 광합성 미생물의 생육 속도를 조절할 수 있다. 특히, 미세조류의 경우는 공기를 포기하는 것만으로도 유입수내 C/N 비에 제한을 받지 않고 질소를 고정할 수 있다. 또한, 포기는 반응기내 유입수를 교반함으로써 광합성 미생물이 빛을 이용할 수 있는 기회를 넓히므로 결과적으로 빛의 투과도를 증가시키는 효과를 볼 수 있다.In addition, the aeration device 9 may be installed at the bottom of the denitrification reactor 3 to supply air. The photosynthetic microorganism uses 0.03% of carbon dioxide contained in the supplied air as a carbon source, and the growth rate of the photosynthetic microorganism can be controlled by controlling the aeration amount and the aeration rate. In particular, in the case of microalgae, nitrogen can be fixed without being limited to the C / N ratio in the influent by simply giving up air. In addition, aeration increases the opportunity for photosynthetic microorganisms to utilize light by stirring the influent in the reactor, and consequently, the effect of increasing light transmittance can be seen.

마지막으로, 교반장치(8)는 반응조(3)내에서 광합성 미생물과 유입수를 골고루 혼합하여 반응조 내의 모든 곳에서 질소제거가 일어나도록 한다. 또한, 광원으로부터 빛을 받는 세포의 수를 증가시켜 빛의 이용 효율을 증대시키는 역할도 한다.Finally, the stirring device 8 evenly mixes the photosynthetic microorganism and the influent in the reaction tank 3 so that the nitrogen removal occurs everywhere in the reaction tank. In addition, by increasing the number of cells receiving light from the light source also serves to increase the utilization efficiency of light.

또한, 상기 하페수 처리장치를 기존의 하폐수 처리장치에 이용하여 광합성 미생물을 도입함으로써 모든 형태의 질소를 제거할 수 있다.In addition, all types of nitrogen can be removed by introducing photosynthetic microorganisms using the wastewater treatment apparatus in the existing wastewater treatment apparatus.

상기와 같은 본 발명의 탈질 반응조를 포함하는 하폐수 처리장치를 이용하여 광합성 미생물에 의해 질소가 제거되는 정도를 조사하기 위하여, 질소를 포함하는 폐수를 제조하고 미세조류인 클로렐라 케슬레리(Chlorella kessleri)를 10일 동안 배양하여 질소가 제거되는 정도를 측정하였다.In order to investigate the degree to which nitrogen is removed by photosynthetic microorganisms using the wastewater treatment apparatus including the denitrification reaction tank of the present invention as described above, a wastewater containing nitrogen is prepared and a microalga Chlorella kessleri ( Chlorella kessleri) is prepared. The degree of nitrogen removal was measured by incubating for 10 days.

암모니아성 질소를 140 ㎎/L로 첨가한 경우는 클로렐라 케슬레리의 세포농도가 점차 증가하면서 배양한지 10일째에 질소농도가 24 ㎎/L로 초기 농도의 약 1/7로 감소하였고(도 3a도 3b참조), 질산성 질소를 140 ㎎/L로 첨가한 경우는 클로렐라 케슬레리의 농도가 점차 증가하면서 배양한지 10일째에 질소농도가 10 ㎎/L로 초기 농도의 약 1/14로 감소하였다(도 4a도 4b참조). 또한, 질산성 질소를 140 ㎎/L, 280 ㎎/L, 700 ㎎/L 및 1,400 ㎎/L로 고농도로 첨가한 경우에도 클로렐라 케슬레리의 세포생장은 저해받지 않고 질산성 질소의 농도가 높을수록 세포농도가 높게 나타났으며 질소가 제거율도 높게 나타났다(도 5a도 5b참조).When ammonia nitrogen was added at 140 mg / L, the concentration of chlorella cesery gradually increased, and at 10 days of incubation, the nitrogen concentration decreased to 24 mg / L to about 1/7 of the initial concentration ( FIGS. 3A and 3A ) . In the case of adding nitrate nitrogen at 140 mg / L, the concentration of Chlorella Kessler was gradually increased and the concentration of nitrogen decreased to about 1/14 of the initial concentration at 10 mg / L on the 10th day of culture. (See FIGS . 4A and 4B ). In addition, even when high concentrations of nitrate nitrogen were added at 140 mg / L, 280 mg / L, 700 mg / L and 1,400 mg / L, the growth of Chlorella Kessler was not inhibited and the higher the concentration of nitrate nitrogen was, Cell concentration was high and nitrogen removal was also high (see FIGS . 5A and 5B ).

이와 같이 본 발명은 탈질 반응조를 포함하는 하폐수 처리장치 및 광합성 미생물을 사용함으로써 질소원을 다량 포함하는 하폐수에서 추가적인 유기 탄소원을 공급하지 않고도 질소를 효과적으로 제거할 수 있을 뿐만 아니라 기존에 사용되던 혐기조를 생략함으로써 하수처리 비용을 절감할 수 있다.As such, the present invention can effectively remove nitrogen without supplying additional organic carbon sources from wastewater containing a large amount of nitrogen by using a wastewater treatment apparatus including a denitrification reactor and photosynthetic microorganisms, as well as omitting an existing anaerobic tank. Sewage treatment costs can be reduced.

이하, 본 발명을 실시예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.The following examples are merely illustrative of the present invention, but the content of the present invention is not limited to the following examples.

<실시예 1> 암모니아성 질소의 제거Example 1 Removal of Ammonia Nitrogen

본 발명의 폐수처리 장치를 이용하여 질소 제거율을 조사하기 위하여 다음과 같은 실험을 하였다.In order to investigate the nitrogen removal rate using the wastewater treatment apparatus of the present invention, the following experiment was performed.

140 ㎎ NH4-N/L의 암모니아성 질소, 인, 철, 아연, 망간, 구리 및 알루미늄 등의 금속이온을 혼합하여 탄소원이 전혀 들어있지 않은 인공폐수를 제조하였다.Artificial wastewater containing no carbon source was prepared by mixing metal ions such as ammonia nitrogen, phosphorus, iron, zinc, manganese, copper and aluminum of 140 mg NH 4 -N / L.

본 발명의 탈질 반응조에 상기와 같이 제조된 폐수 400 ㎖을 채운 후 미세조류인 클로렐라 케슬레리를 1×106cell/㎖의 농도로 접종하였다. 광원 투입장치에는 형광등을 설치하여 200 μmol m-2sec-1의 빛을 조사하였고, 포기장치를 부착하여 공기를 400 ㎖/min 속도로 탈질 반응조에 공급하였다.The denitrification reactor of the present invention was filled with 400 ml of the wastewater prepared as described above, and then inoculated with a microalga Chlorella Kessler at a concentration of 1 × 10 6 cells / ml. A fluorescent lamp was installed in the light source input device to irradiate 200 μmol m −2 sec −1 light, and aeration device was attached to supply air to the denitrification reactor at a rate of 400 mL / min.

상기 클로렐라 케슬레리의 생장에 필수적인 인 225 mg/L, 금속이온으로 철, 아연, 망간, 구리 및 알루미늄을 각각 1.5 mg/L, 0.7275 mg/L, 3.6031 mg/L, 0.4657 mg/L 및 0.2103 mg/L의 농도로 첨가하여 실온에서 10일 동안 배양하였다. 배양된 클로렐라 케슬레리의 농도가 증가함에 따라 폐수에서 암모니아성 질소가 제거되는 양을도 3a도 3b에 나타냈다.225 mg / L phosphorus essential for the growth of Chlorella Kesslerley, 1.5 mg / L, 0.7275 mg / L, 3.6031 mg / L, 0.4657 mg / L and 0.2103 mg of iron, zinc, manganese, copper and aluminum as metal ions, respectively. It was added at a concentration of / L and incubated for 10 days at room temperature. 3A and 3B show the amount of ammonia nitrogen removed from the wastewater as the concentration of cultured Chlorella Kessler increased.

클로렐라 케슬레리는도 3a에 나타낸 바와 같이 접종 후 점차로 세포농도가 증가하였고 10일째는 5×107cell/㎖의 농도로 생육하였다. 또한,도 3b에 나타낸 바와 같이 탈질 반응조의 폐수내 암모니아성 질소는 세포배양 일수에 따라 점차 감소하여 10일째는 약 24 ㎎/L 미만으로 약 1/7로 감소하였다.As shown in Figure 3a , Chlorella Kessler increased cell concentration after inoculation and grew to a concentration of 5 × 10 7 cells / ml on day 10. In addition, as shown in Figure 3b the ammonia nitrogen in the waste water of the denitrification reactor gradually decreased with the number of days of cell culture, and decreased to about 1/7 to less than about 24 mg / L on day 10.

이는 클로렐라 케슬레리가 탈질 반응조의 폐수내 암모니아성 질소와 포기장치를 통해 투입된 공기 중의 이산화탄소 및 형광등의 빛을 이용하여 광합성 반응을 일으킴으로써, 세포 농도 증가에 따라 암모니아성 질소가 감소한 것이다.This is because Chlorella Kesselli causes a photosynthetic reaction using ammonia nitrogen in the wastewater of the denitrification tank and carbon dioxide and fluorescent light in the air introduced through the aeration device, so that ammonia nitrogen decreases with increasing cell concentration.

<실시예 2> 질산성 질소의 제거Example 2 Removal of Nitrate Nitrogen

본 발명의 폐수처리 장치로 다른 종류의 질소를 제거할 수 있는지 조사하기 위하여 다음과 같은 실험을 수행하였다.In order to investigate whether the wastewater treatment apparatus of the present invention can remove other types of nitrogen, the following experiment was performed.

폐수제조는 상기 실시예 1과 동일한 방법으로 제조하되 암모니아성 질소 대신에 질산성 질소 140 ㎎ NO3-N/L을 첨가하였다. 실시예 1과 동일한 조건으로 클로렐라 케슬레리를 실온에서 1×106cell/㎖의 농도로 접종하여 10일 동안 탈질 반응조에서 배양하고 배양된 클로렐라 케슬레리의 농도에 따라 폐수에서 질산성 질소가 제거되는 양을도 4a도 4b에 나타냈다.Wastewater preparation was prepared in the same manner as in Example 1 except that 140 mg NO 3 -N / L of nitrate nitrogen was added instead of ammonia nitrogen. Chlorella Kessler was inoculated at a concentration of 1 × 10 6 cells / ml at room temperature under the same conditions as in Example 1, incubated in a denitrification reactor for 10 days, and nitrate nitrogen was removed from the wastewater according to the concentration of the cultured Chlorella Kesslery. The amount is shown in FIGS . 4A and 4B .

세포 생장은4a에 나타낸 바와 같이 배양일수에 따라 점차로 세포농도가 증가하였고 10일째는 약 8×107cell/㎖ 농도로 생육하였다. 또한,도 4b에 나타낸 바와 같이 탈질 반응조의 폐수내 질산성 질소는 세포배양 일수에 따라 점차 감소하여 10일째는 약 10 ㎎/L 이하로 약 1/14로 감소하였다. 이는 클로렐라 케슬레리가 생육함에 따라 광합성 반응을 일으켜 폐수내 질산성 질소를 소비했음을 나타낸다.As shown in 4a , the cell growth gradually increased with the cultivation days, and on the 10th day, the cells were grown at a concentration of about 8 × 10 7 cells / ml. In addition, as shown in FIG . 4B , the nitrate nitrogen in the wastewater of the denitrification reactor gradually decreased with the days of cell culture, and decreased to about 1/14 at 10 days or less at 10 days. This indicates that as Chlorella Kessler grows, it caused a photosynthetic reaction and consumed nitrate nitrogen in the wastewater.

<실시예 3> 농도별로 첨가한 질산성 질소의 제거Example 3 Removal of Nitrate Nitrogen Added by Concentration

상기 실시예 2의 폐수내 질산성 질소의 농도를 증가시켜 클로렐라 케슬레리의 생육과 질산성 질소의 감소율을 조사하였다.By increasing the concentration of nitrate nitrogen in the wastewater of Example 2 was investigated the growth rate of Chlorella Kessler and the decrease rate of nitrate nitrogen.

실시예 2와 동일한 방법 및 조건으로 실험을 진행하되 폐수내 질산성 질소의농도를 각각 140 ㎎ NO3-N/L, 280 ㎎ NO3-N/L, 700 ㎎ NO3-N/L 및 1,400 ㎎ NO3-N/L로 첨가하여 4종류의 폐수를 제조하였다. 각각의 폐수에 클로렐라 케슬레리를 1×106cell/㎖의 농도로 접종하여 실온에서 10일 동안 배양하였다.The experiment was conducted in the same manner and in the same manner as in Example 2, except that the concentration of nitrate nitrogen in the wastewater was 140 mg NO 3 -N / L, 280 mg NO 3 -N / L, 700 mg NO 3 -N / L, and 1,400, respectively. Four kinds of wastewater were prepared by adding MG NO 3 -N / L. Each wastewater was inoculated with Chlorella Kessler at a concentration of 1 × 10 6 cells / ml and incubated at room temperature for 10 days.

그 결과도 5a에 나타낸 바와 같이 질산성 질소의 농도가 높은 폐수일수록 세포 생육이 더 활발하여 질산성 질소가 1,400 ㎎ NO3-N/L인 폐수에서 세포농도가 가장 높게 나타났다. 또한,도 5b에 나타낸 바와 같이 세포생육에 따라 질산성 질소가 점차 감소하였으며 질산성 질소를 1,400 ㎎ NO3-N/L, 700 ㎎ NO3-N/L로 첨가한 경우는 10일 후 각각 250 ㎎ NO3-N/L, 180 ㎎ NO3-N/L로 감소하여 질산성 질소 농도는 초기 농도의 각각 1/17, 1/25로 감소하였다. 질산성 질소를 280 ㎎ NO3-N/L, 140 ㎎ NO3-N/L로 첨가한 경우는 10일째 각각 20 ㎎/L, 10 ㎎/L로 감소하여 질산성 질소농도는 초기 농도의 각각 1/7로 감소하였다.As a result, as shown in Fig . 5a , the higher the concentration of nitrate nitrogen, the more active the cell growth, and the highest the cell concentration in the wastewater containing 1,400 mg NO 3 -N / L. In addition, as shown in FIG . 5B , nitrate nitrogen gradually decreased with cell growth, and when nitrate nitrogen was added at 1,400 mg NO 3 -N / L and 700 mg NO 3 -N / L, respectively, after 10 days of 250 Nitrate nitrogen concentrations were reduced to 1/17 and 1/25 of the initial concentrations, respectively, with mg NO 3 -N / L and 180 mg NO 3 -N / L. When nitrate nitrogen was added at 280 mg NO 3 -N / L and 140 mg NO 3 -N / L, the concentration decreased to 20 mg / L and 10 mg / L, respectively. Decreased to 1/7.

이는 질산성 질소를 고농도로 첨가할수록 광합성 미생물의 생육이 더욱 활발하게 되어 세포농도가 증가하게 되고 이에 비례하여 질산성 질소도 감소하기 때문이다.This is because the higher the concentration of nitrate nitrogen, the more active the growth of photosynthetic microorganisms, the cell concentration increases and proportionally decreases the nitrate nitrogen.

상기에서 살펴본 바와 같이, 본 발명의 하폐수 처리방법 및 처리장치는 탈질 반응조를 포함하는 하폐수 처리장치를 제공하고 이에 광합성 미생물을 사용함으로써 질소원을 대량으로 포함하는 하폐수에서 추가적인 유기 탄소원을 공급하지 않고도 질소를 최고 95% 이상 제거할 수 있을 뿐만 아니라 기존에 사용되던 혐기조를 생략함으로써 하수처리 비용을 절감할 수 있어 하폐수 처리에 유용하게 적용될 수 있다.As described above, the wastewater treatment method and treatment apparatus of the present invention provides a wastewater treatment apparatus including a denitrification reactor and uses photosynthetic microorganisms to supply nitrogen without supplying additional organic carbon sources from the wastewater containing a large amount of nitrogen. Not only can it remove more than 95%, but it can reduce the cost of sewage treatment by omitting the existing anaerobic tank, which can be useful for sewage treatment.

Claims (11)

1) 하폐수에서 현탁을 일으키는 물질을 제거하는 단계;1) removing the material causing suspension from the sewage water; 2) 아나베나(Anabaena),스피룰리나(Spirulina), 시네코코쿠스(Synechococcus),시네코시스티스(Synechocystis),아나시스티스(Anacystis),노스톡(Nostoc) 오실라토리아(Oscillatoria)의 시아노세균; 및 클로렐라(Chlorella),두나리엘라(Dunalialla),헤마토코쿠스(Haematococcus),아이소크라이시스(Isochrysis),세네데스무스(Scenedesmus),클라미도모나스(Chlamydomonas),포르파이리디움(Porphyridium)의 미세조류로 구성된 군으로부터 선택되는 광합성 미생물을 배양함으로써 질소를 제거하는 단계; 및2) Anavena (Anabaena),Spirulina(Spirulina), Shineko Cocous (Synechococcus),Cinecossis(Synechocystis),Anassistis(Anacystis),Northstock(Nostoc)And Oscillatoria(Oscillatoria)Cyanobacteria; And chlorella (Chlorella),Dunariella(Dunalialla),Hematococcus(Haematococcus),Isocrysis(Isochrysis),Senedesmus(Scenedesmus),Chlamydomonas(Chlamydomonas),Porphyridium(Porphyridium)Removing nitrogen by culturing a photosynthetic microorganism selected from the group consisting of microalgae; And 3) 최종 침전조에서 상기 광합성 미생물을 침전시키고 처리수를 방출하는 단계로 구성되는, C/N비가 낮은 하폐수로부터 질소성분을 제거하는 것을 특징으로 하는 하폐수 처리방법.3) sewage water treatment method comprising the step of precipitating the photosynthetic microorganisms in the final sedimentation tank and removing the treated water, wherein the nitrogen component is removed from the sewage water with low C / N ratio. 제 1항에 있어서, 단계 1)에서 현탁을 일으키는 물질의 제거는 체분리, 여과, 초미분 여과, 투석, 침강법, 증류법 및 증발법으로 구성된 군으로부터 선택되는 방법을 이용하는 것을 특징으로 하는 하폐수 처리방법.The wastewater treatment according to claim 1, wherein the removal of the material causing suspension in step 1) is performed using a method selected from the group consisting of sieving, filtration, ultrafine filtration, dialysis, sedimentation, distillation and evaporation. Way. 제 1항에 있어서, 단계 2)의 광합성 미생물은 클로렐라 케스레리인 것을 특징으로 하는 하폐수 처리방법.The method of claim 1, wherein the photosynthetic microorganism of step 2) is Chlorella keseri. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR10-2001-0000504A 2001-01-05 2001-01-05 Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms KR100460214B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0000504A KR100460214B1 (en) 2001-01-05 2001-01-05 Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0000504A KR100460214B1 (en) 2001-01-05 2001-01-05 Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms

Publications (2)

Publication Number Publication Date
KR20020057466A KR20020057466A (en) 2002-07-11
KR100460214B1 true KR100460214B1 (en) 2004-12-08

Family

ID=27690824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0000504A KR100460214B1 (en) 2001-01-05 2001-01-05 Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms

Country Status (1)

Country Link
KR (1) KR100460214B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713859B1 (en) 2005-12-13 2007-05-07 한국생명공학연구원 Cyanobacterium Anabaena flosaquae BT11 having turbidityremoval activity
KR100713860B1 (en) 2005-12-13 2007-05-07 한국생명공학연구원 Cyanobacterium Phormidium parchydematicum TB164 having turbidityremoval activity
KR100953058B1 (en) 2009-10-07 2010-04-13 김창환 Natural high-treatment system
KR101102310B1 (en) 2009-06-26 2012-01-03 연세대학교 산학협력단 Multiple energy recovery and carbon control MERCC in wastewater treatment process
WO2011162811A3 (en) * 2010-06-23 2012-04-12 AlgEvolve, LLC Advanced biologic water treatment using algae
KR101409035B1 (en) 2012-08-08 2014-06-18 경기도 Microalgae Culture Aguarlum Using an Artificial Light Source and Flue Gas and Wastewater Treatment System Using the Same Process

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426791B1 (en) * 2001-12-22 2004-04-14 학교법인조선대학교 A method for ecological treatment of organic wastewater using alga and waterflea
KR100487609B1 (en) * 2002-06-18 2005-05-03 이석일 A livestock wastewater treatment process combining a distillation under reduced pressure with a biological treatment
KR100897832B1 (en) * 2007-08-16 2009-05-18 대교엔지니어링(주) Treatment method livestock excretions
KR100897019B1 (en) 2007-10-15 2009-05-25 주식회사 바이오트론 High efficiency photo-bioreactor for culturing micro algae
KR101026122B1 (en) * 2009-12-28 2011-04-05 신강하이텍(주) Biological phosphorus and nitrogen treatment and biomass production and collection method using algae and apparatus thereof
KR101743653B1 (en) * 2014-12-12 2017-06-05 경기도 Apparatus for purifying water using microalgae
KR102015446B1 (en) * 2017-12-28 2019-08-28 국립낙동강생물자원관 An Wastewater Disposal Method Capable of Removing Microalgae, Extracellular Polymer Materials, and Cyanide Compounds
CN108298681A (en) * 2018-04-12 2018-07-20 南京林业大学 Light intensity energy-saving sewage treating device
KR102021289B1 (en) * 2019-01-24 2019-09-11 주식회사 부강테크 Apparatus and Method for Treating Sewage
CN111592180A (en) * 2020-05-20 2020-08-28 上海化学工业区中法水务发展有限公司 Method for treating organic matters in petrochemical wastewater by using spirulina
KR102436828B1 (en) * 2021-04-19 2022-08-26 주식회사 부강테크 Apparatus for Treating Wastewater Using Algae Granules
CN114477462B (en) * 2022-01-24 2023-11-17 广东古匠环保科技有限公司 Clean algae biological population domestication method for reducing algae density in water body and application thereof
KR20240081621A (en) 2022-11-30 2024-06-10 대한민국(환경부 국립생물자원관장) Strains Having Biodegradation Activity of Excess Sludge, and Uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116494A (en) * 1979-03-03 1980-09-08 Mitsubishi Jushi Eng Kk Treating method for waste water
KR960022281A (en) * 1994-12-14 1996-07-18 김정순 High concentration wastewater treatment using fixed phase biofilm of photosynthetic bacteria
KR960037586A (en) * 1995-04-12 1996-11-19 유충식 Bioreactor for high concentration organic wastewater treatment using photosynthetic bacteria
KR970010677A (en) * 1996-12-24 1997-03-27 박연준 High efficiency manure processing method and device
KR970042332A (en) * 1997-04-18 1997-07-24 백운화 Advanced treatment method of manure and its device
JPH11128985A (en) * 1997-11-04 1999-05-18 Meidensha Corp Treatment of separated liquid by wet oxidizing treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116494A (en) * 1979-03-03 1980-09-08 Mitsubishi Jushi Eng Kk Treating method for waste water
KR960022281A (en) * 1994-12-14 1996-07-18 김정순 High concentration wastewater treatment using fixed phase biofilm of photosynthetic bacteria
KR960037586A (en) * 1995-04-12 1996-11-19 유충식 Bioreactor for high concentration organic wastewater treatment using photosynthetic bacteria
KR970010677A (en) * 1996-12-24 1997-03-27 박연준 High efficiency manure processing method and device
KR970042332A (en) * 1997-04-18 1997-07-24 백운화 Advanced treatment method of manure and its device
JPH11128985A (en) * 1997-11-04 1999-05-18 Meidensha Corp Treatment of separated liquid by wet oxidizing treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713859B1 (en) 2005-12-13 2007-05-07 한국생명공학연구원 Cyanobacterium Anabaena flosaquae BT11 having turbidityremoval activity
KR100713860B1 (en) 2005-12-13 2007-05-07 한국생명공학연구원 Cyanobacterium Phormidium parchydematicum TB164 having turbidityremoval activity
KR101102310B1 (en) 2009-06-26 2012-01-03 연세대학교 산학협력단 Multiple energy recovery and carbon control MERCC in wastewater treatment process
KR100953058B1 (en) 2009-10-07 2010-04-13 김창환 Natural high-treatment system
WO2011162811A3 (en) * 2010-06-23 2012-04-12 AlgEvolve, LLC Advanced biologic water treatment using algae
KR101409035B1 (en) 2012-08-08 2014-06-18 경기도 Microalgae Culture Aguarlum Using an Artificial Light Source and Flue Gas and Wastewater Treatment System Using the Same Process

Also Published As

Publication number Publication date
KR20020057466A (en) 2002-07-11

Similar Documents

Publication Publication Date Title
KR100460214B1 (en) Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms
EP1150922B1 (en) Method for treating a waste stream using photosynthetic microorganisms
Green et al. Advanced integrated wastewater pond systems for nitrogen removal
US3462360A (en) Waste treatment
CN104961306B (en) A kind of processing method of vaccary breeding wastewater
KR101409035B1 (en) Microalgae Culture Aguarlum Using an Artificial Light Source and Flue Gas and Wastewater Treatment System Using the Same Process
CN106430845A (en) Kitchen garbage wastewater treatment apparatus
CN108017234B (en) Sewage treatment system and method
KR102095470B1 (en) Sbr system
CN108275780A (en) The nitrogenous petrochemical wastewater processing unit of novel height and the method for parameter adjustment
CN102464420A (en) Sewage physical-chemical treatment method
CN110615574A (en) Ozone catalytic oxidation coupling microalgae method wastewater treatment system and process
CN109368946A (en) Sewage from Ships processing coupling recovery of nitrogen and phosphorus integral system and method
Laurent et al. Finding optimal algal/bacterial inoculation ratio to improve algal biomass growth with wastewater as nutrient source
US8298416B2 (en) Apparatus for deodorizing sewage treatment plant sludge by using native microorganisms
CN109912126A (en) A kind of pesticides waste water treatment process
CN108751601A (en) A kind of agricultural breeding sewage-treatment plant and its processing method
KR102155524B1 (en) Livestock manure integrated treatment system and operating method thereof
CN108178303A (en) A kind of livestock breeding wastewater processing unit of more technology couplings
CN114590888A (en) Efficient biological nitrification method for source separation of urine sewage
KR20020087799A (en) Method for advanced wastewater treatment using multi-sbr system
KR100321679B1 (en) Advanced wastewater treatment method
CN208345854U (en) The novel nitrogenous petrochemical wastewater processing unit of height
KR100360561B1 (en) A treatment methods for organic sewage
CN105731619B (en) The processing method of nitrogen fertilizer production waste water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121122

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131025

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141031

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151103

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170907

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171205

Year of fee payment: 15