JPS59115793A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPS59115793A
JPS59115793A JP57225806A JP22580682A JPS59115793A JP S59115793 A JPS59115793 A JP S59115793A JP 57225806 A JP57225806 A JP 57225806A JP 22580682 A JP22580682 A JP 22580682A JP S59115793 A JPS59115793 A JP S59115793A
Authority
JP
Japan
Prior art keywords
aeration
bod
tank
activated sludge
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225806A
Other languages
Japanese (ja)
Inventor
Tatsuo Takechi
武智 辰夫
Yoshinari Fujisawa
能成 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57225806A priority Critical patent/JPS59115793A/en
Publication of JPS59115793A publication Critical patent/JPS59115793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove efficiently BOD and nitrogen in org. sewage by repeating successively the stage of subjecting the org. sewage in an aeration tank to a repetition of aeration and stopping of aeration or decreased aeration then settling activated sludge and discharging supernatant liquid. CONSTITUTION:The treatment for removing BOD with an aerobic treatment by aeration, nitrating a nitrogen component then removing NO3-N by the anaerobic treatment of stopping aeration or performing decreased aeration is repeated and thereafter the aeration is stopped and the activated sludge is settled then supernatant liquid is discharged as treated water 4, in a batch type activated sludge treatment method of the constitution wherein org. sewage 1 is introduced into an aeration tank 2 and is aerated by an aerator 3 and treated wate 4 cleaned up by the aeration is discharged. The liquid in the tank 2 having the decreased inside volume is aerated to remove the residual BOD and to accelerate the nitration reaction of low reaction rate, whereafter the sewage 1 is again introduced into said tank and the above-mentioned stage is successively repeated.

Description

【発明の詳細な説明】 本発明&−J1、有機性汚水の生物学的処理方法の1つ
である回分式の活性汚泥処理方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention &-J1 relates to an improvement in a batch-type activated sludge treatment method, which is one of the biological treatment methods for organic sewage.

第1図は、従来の回分式活性汚泥法を示すフローシート
図である。この回分式活性汚泥方法は、まず有機性汚水
1を曝気槽2へ導入する。
FIG. 1 is a flow sheet diagram showing a conventional batch activated sludge method. In this batch activated sludge method, organic wastewater 1 is first introduced into an aeration tank 2.

曝気槽2では、曝気装置3から酵素を含有する気体(一
般的には空気)を送シ込み、曝気槽2内にある活性汚泥
と有4JA性汚水lとを攪拌、混合、接触させ、活性汚
泥による汚水処理を行う。
In the aeration tank 2, an enzyme-containing gas (generally air) is sent from the aeration device 3, and the activated sludge in the aeration tank 2 and the 4JA sewage are stirred, mixed, and brought into contact with each other to activate the activated sludge. Sewage treatment is performed using sludge.

一定時間の曝気処理を行った後、曝気を停止し、活性汚
泥混合液を静置させて活・改汚泥を沈殿させる。しかる
後、沈殿上澄水を処理水4として系外へ排出し、排出し
た処理水酸にほぼ等しい量の有機性汚水1を曝気槽2へ
導入して、再び曝気処理を開始する。これを運転タイへ
チャートで示すと第2図(1)の如くになる。
After performing aeration treatment for a certain period of time, aeration is stopped and the activated sludge mixture is allowed to stand, allowing the activated/reformed sludge to settle. Thereafter, the precipitated supernatant water is discharged out of the system as treated water 4, and an amount of organic wastewater 1 approximately equal to the discharged treated water acid is introduced into the aeration tank 2, and the aeration process is started again. If this is shown in a chart for the driving tie, it will look like Fig. 2 (1).

・このように、回分式活性汚泥法は、曝気槽2を沈殿槽
としても使用し、曝気と沈殿の2つの機能を、曝気装置
3の稼動の有無によって使いわけ、有機性汚水Jを間け
っ的に導入し、処理水4を間けつ的に排出する生物学的
処理方法の1つである。この生物学的処理において、処
理可能な汚濁物質としてBODおよび窒素等を挙げるこ
とができる。これらの生物処理における反応式は、下記
の通りである。
・In this way, in the batch activated sludge method, the aeration tank 2 is also used as a sedimentation tank, and the two functions of aeration and sedimentation are used depending on whether or not the aeration device 3 is in operation. This is one of the biological treatment methods in which the treated water 4 is introduced continuously and the treated water 4 is discharged intermittently. In this biological treatment, BOD, nitrogen, etc. can be mentioned as pollutants that can be treated. The reaction formula in these biological treatments is as follows.

[BODの除去反応] →xco2+ T y H2O・・・・・・・・・・・
・・・(1)〔窒素の除去反応〕 NH4+202 →No  +H20+2H・・・・・・・・・・・(2
)2NO3+ 10H →N2 ↑+4H20+ 20H・・・・・・・・・(
3)なお汚水中の窒素は、NH4という形態のもののみ
ではなく、有機性窒素も存在するが、有機性窒素は、微
生物の脱アミン作用によってNH4+の形態へと転換さ
れることが多いため、汚水中の窒素の代表例としてNH
4を挙げて、上記反応BODの除去は(1)式に示した
ように1好気的反応である。このため、充分な曝気反応
条件を与えることKよって進行する。これに対し、窒素
の除去は(2)式に示した好気的反応と(3)式に示し
た嫌気的反応とからなる。このため、暖気反応条件を与
えたのみでは窒素の除去は行われず、充分曝気反応せし
めても窒素は、硝酸性窒素(No3−N)の形態で処理
水中に残留する。
[BOD removal reaction] →xco2+ T y H2O・・・・・・・・・・・・
・・・(1) [Nitrogen removal reaction] NH4+202 →No +H20+2H・・・・・・・・・・・・(2
)2NO3+ 10H →N2 ↑+4H20+ 20H・・・・・・・・・(
3) Nitrogen in wastewater is not only in the form of NH4, but also organic nitrogen, but organic nitrogen is often converted to the form of NH4+ by the deamination action of microorganisms. NH is a typical example of nitrogen in wastewater.
4, the above reaction BOD removal is an aerobic reaction as shown in equation (1). Therefore, the reaction proceeds by providing sufficient aeration reaction conditions. On the other hand, nitrogen removal consists of an aerobic reaction shown in equation (2) and an anaerobic reaction shown in equation (3). Therefore, nitrogen is not removed only by applying warm air reaction conditions, and even if a sufficient aeration reaction is carried out, nitrogen remains in the treated water in the form of nitrate nitrogen (No3-N).

従来の回分式活性汚泥法では、曝気槽全体を有効に酸化
反応に用いるため、曝気槽全体が好気的となるような曝
気方法を用いていた。従って、従来の回分式活性汚泥法
ではBOD除去は可能であるが、窒素除去は、はとんど
不可能であった。
In the conventional batch activated sludge method, in order to effectively use the entire aeration tank for the oxidation reaction, an aeration method was used in which the entire aeration tank became aerobic. Therefore, although it is possible to remove BOD using the conventional batch activated sludge method, it is almost impossible to remove nitrogen.

近年、曝気方法を改善することによって、回分式活性汚
泥法に脱窒機能を付与、強化するという研究がなされて
いる。この例を第21ffl (It) 。
In recent years, research has been conducted to add and strengthen the denitrification function to the batch activated sludge process by improving the aeration method. An example of this is the 21st ffl (It).

(至)の運転タイムチャートで示す、、 (It) 、
 ([0は曝気槽を好気的条件′(曝気装置稼動状態)
と嫌気的榮件(曝気装置停止状態)とを所望回数繰シ返
して運転し、好気的条件における式(1) 、 (2)
の反応と嫌気的条件における式(3)の反応とを起らし
めるようにしたものである。
(To) shown in the driving time chart, (It),
([0 is the aeration tank under aerobic conditions' (aeration equipment operating state)
and anaerobic conditions (aeration equipment stopped state) are repeated a desired number of times, and formulas (1) and (2) under aerobic conditions are obtained.
and the reaction of formula (3) under anaerobic conditions.

しかし、このような近年の改良法においてもいくつかの
問題点があった、。
However, even with these recent improved methods, there were some problems.

その1つは、BOD除去が先に進行するため脱1賢反尼
に必要なりODが不足することである。すなわち式(1
)に示したBOD除去反応と、式(2)に示した硝化反
応と、式(3)に示した脱窒反応の3つの反応における
速Ihe的、量的なバランスである。
One of them is that since BOD removal proceeds first, there is a shortage of OD, which is needed to escape from the 1st century. In other words, the formula (1
), the nitrification reaction shown in equation (2), and the denitrification reaction shown in equation (3).

BOD除去反応と硝化反応とは、共に好気的反応である
が、両者の反応速度は異り、前者の反応の方が速い。こ
のため、BODとNH4+−Nとを含有した汚水を暖気
処理した場合、BOD除去反応の方が進行は速い。しか
るに、第2図のCIり 、 ([[Dに示した近年の改
良法では、原汚水導入の直後から曝気を開始するため、
まず、BOD除去が進行し、硝化反応は、遅れることに
なる。従って、硝化反応が不充分のために一望素除去処
理も不充分となってしまう。さらに、式(3)に示した
脱窒反応においては、還元剤としての有機炭素源(式(
3)中には水素供与体としてHで示しである)が必要で
あるが、メタノール等の有機物を外部から添加すること
なく脱窒反応を起らしめるためには、原汚水に含まれる
有(長物成分、すなわち、BODを有効に利用する必要
がある。しかるに第2図の(It) 、 ([Dに示し
た近年の改良法では、原汚水導入の直後から曝気を開始
し、BODの好気的除去処理が先行する。このため、硝
化反応が終了して、脱窒処理に入る場合、脱窒反応に必
要なりODが不足する。
Both the BOD removal reaction and the nitrification reaction are aerobic reactions, but their reaction rates are different, with the former reaction being faster. Therefore, when wastewater containing BOD and NH4+-N is subjected to warm air treatment, the BOD removal reaction progresses faster. However, in the CI diagram in Figure 2, ([[In the recent improved method shown in D, aeration is started immediately after the introduction of raw wastewater,
First, BOD removal proceeds and the nitrification reaction is delayed. Therefore, since the nitrification reaction is insufficient, the removal treatment of the primary element is also insufficient. Furthermore, in the denitrification reaction shown in equation (3), an organic carbon source (formula (
3) Hydrogen donor (denoted by H) is required in the raw sewage, but in order to cause the denitrification reaction without adding organic substances such as methanol from the outside, it is necessary to It is necessary to effectively utilize long-term components, that is, BOD. However, in the recent improved method shown in (It) and ([D] in Figure 2, aeration is started immediately after the raw wastewater is introduced, and the BOD is improved. The gaseous removal process takes precedence.For this reason, when the nitrification reaction ends and the denitrification process begins, the OD required for the denitrification reaction will be insufficient.

他の問題点の1つはBODの忙が律速因子となることで
ある。すなわち、式(2)の硝化反応の結果生じたNo
3−Nを式(3)の脱窒反応によって処理する場合、有
機炭素源としてのBODの量が律速因子とならないよう
に、多量に存在することが望ましく、その場合には嫌気
的条件とする必要がある。しかるに、図2の(■)、(
ト)に示した近年の改良法においても、原汚水を導入し
た直後に曝気を行うため、この間にBODが除去され、
次の段階で嫌気的にして脱窒反応を起らしめんとしても
、BODの量が少く、律速因子となってしまう。
One of the other problems is that BOD busyness becomes a rate-limiting factor. That is, the No. produced as a result of the nitrification reaction of formula (2)
When 3-N is treated by the denitrification reaction of formula (3), it is desirable that a large amount of BOD be present as an organic carbon source so that it does not become a rate-determining factor, and in that case, anaerobic conditions are used. There is a need. However, (■) and (
In the recent improved method shown in g), aeration is performed immediately after introducing raw wastewater, so BOD is removed during this time.
Even if an attempt is made to make the denitrification reaction anaerobic in the next step, the amount of BOD is small and becomes a rate-limiting factor.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、回分式活性汚泥法において、BOD除
去と窒素除去とを効率よく行うことができる有機性汚水
の処理方法を得んとするものである。
The present invention was made in view of the above circumstances, and its purpose is to provide a method for treating organic wastewater that can efficiently remove BOD and nitrogen in a batch activated sludge method. That is.

すなわち本発明は、曝気槽に入れた有機性汚水に対し曝
気と曝気停止又は低減1(・A気とを繰返す工程と、曝
気停止して活性汚泥を沈殿するとともに上澄水を排出す
る工程と、上澄水排出後の曝気槽内を曝気する工程と、
曝気後に有機性汚水を入れる工程とを順次繰返しておこ
なうことを第1の特徴とする。
That is, the present invention includes a step of repeating aeration and aeration stop or reduction 1 (・A air) for organic wastewater placed in an aeration tank, a step of stopping aeration, precipitating activated sludge, and discharging supernatant water, A step of aerating the inside of the aeration tank after discharging the supernatant water;
The first feature is that the process of adding organic wastewater after aeration is repeated in sequence.

また曝気槽に入れた有機性汚水に対し低減曝気する工程
と、曝気と曝気停止又は低減曝気とを繰返す工程と、1
μ気停止して活性汚泥を沈殿するとともに上澄水を排出
する工程と、上澄水排出後の暢気槽内を曝気する工程と
、曝気後に有機性汚水を入れる工程とを順次繰返してお
こなうことを第2の特徴とする。
In addition, a step of reducing aeration of the organic wastewater placed in the aeration tank, and a step of repeating aeration and stopping or reducing aeration;
The first step is to sequentially repeat the steps of stopping the μ air to precipitate activated sludge and draining the supernatant water, aerating the tank after discharging the supernatant water, and adding organic sewage after the aeration. 2.

以下本発明方法を第3図に示す運転タイムチャートの実
施例にもとづいて詳細に説明する。
The method of the present invention will be explained in detail below based on an example of the operation time chart shown in FIG.

オす、1v気槽内の有機性汚水に対し、曝気運転と低減
曝気又は曝気停止を所望回数繰り返して、好気的条件と
嫌気的条件とを形成する。好気状!、!すと91g気状
態とを繰り返す際、曝気時間を短く区切るのが脱窒処理
を行う上で有効である。
For the organic wastewater in the 1V aeration tank, aeration operation and reduced aeration or aeration stop are repeated a desired number of times to form aerobic conditions and anaerobic conditions. Aerobic condition! ,! When repeating the aeration state and the 91g aeration state, it is effective to divide the aeration time into short periods for denitrification treatment.

これは曝気時間が長くなると、曝気処理の過程でBOD
が処理され脱窒用有機炭素源として利用されないためで
ある。通常1ザイクルにおける曝気時間は例えば3〜2
2時間程度とする。また好気状態と嫌気状態とを繰り返
す操作は、近年の研究によればリン除去効果があると言
われ、この点からも有効である。この繰り返しは、例え
ば3〜10回程度おこなう。同一の曝気槽で好気状態と
嫌気状態とを形成させるには、曝気装置の運転の作動、
作動停止によるのが最もffi便である。嫌気状態を形
成するには、必ずしもl暴気装f[ffiを完全停止す
る必要はなく、rl素供給速度を酸素消費速度に比べて
相対的に小さくした低減曝気状態としてもよい。むしろ
脱窒反応の主体である汚泥と水1111にあるNo3−
Nとの接触効率を上げる点から、低減曝気により、曝気
槽内を攪拌することが好ましい。ここで低減曝気の場合
は、槽内の溶存酸素間を0.5 mfl/を以下と低く
保つ必要がある。一方好気状態では、槽内の溶存1!2
 素1fが1.0119//−以上となるよう曝気する
のが好ましい。
This means that the longer the aeration time, the more BOD will be generated during the aeration process.
This is because the organic carbon is processed and cannot be used as an organic carbon source for denitrification. Normally, the aeration time in one cycle is, for example, 3 to 2
It will take about 2 hours. Further, according to recent research, the operation of repeating aerobic and anaerobic conditions is said to be effective in removing phosphorus, and is also effective from this point of view. This repetition is performed, for example, about 3 to 10 times. To form an aerobic state and an anaerobic state in the same aeration tank, the operation of the aeration device,
FFI flights are most likely to be due to suspension of operation. In order to form an anaerobic state, it is not necessarily necessary to completely stop the l aeration system f[ffi, and a reduced aeration state in which the rl element supply rate is relatively small compared to the oxygen consumption rate may be used. Rather, No.3- in sludge and water 1111, which are the main subjects of denitrification reactions,
From the viewpoint of increasing the contact efficiency with N, it is preferable to stir the inside of the aeration tank by reducing aeration. In the case of reduced aeration, it is necessary to maintain the dissolved oxygen level in the tank as low as 0.5 mfl/ or less. On the other hand, under aerobic conditions, dissolved 1!2 in the tank
It is preferable to aerate so that the element 1f becomes 1.0119//- or more.

このように曝気−低減曝気(曝気停止)とを所望回数繰
り返した後曝気停止して、活性汚泥を沈降させ 沈降分
離した上澄水を処理水として系外へ排出する1、この1
′に気停止時間は、例えば60〜120分程gf−とす
る。
After repeating the process of aeration and reduced aeration (stopping aeration) a desired number of times, the aeration is stopped, the activated sludge is allowed to settle, and the sedimented and separated supernatant water is discharged outside the system as treated water.
The air suspension time is set to gf-, for example, about 60 to 120 minutes.

しかして本発明では、処理水を排出して曝気槽内液容置
を減少させた後、曝気を行う。この11゛に気晴間は、
例えば60〜240分程度おこなう。この曝気処理によ
れば汚泥濃度が相対的に高い状態にあるため、BOD除
去反応と硝化反応、特に反応速度の遅い硝化反応の推進
を図ることができる。またこの曝気処理は、1旦曝気−
低減曝気(曝気停止)を繰返して水側のBODを低減し
た状態で行なわれる。このためBOD除去除去内自己消
化を起し、汚泥量が減少し、余剰汚泥処理にが少なくて
すむ利点がある。さらに、BOD除去除去内己消化によ
って減少する結果、汚泥中のBOD除去除去内合が減少
し、相対的に硝化菌の割合が増加するため、汚泥の硝化
活性が向上する。また、自己消化の過程で、汚泥成分と
してのタン・fり質の加水分解でNH4+−Nが生じる
が、これも硝化反応によってNo3−Nに変換され、後
の脱窒反応の結果窒素が除去され、窒素除去率が向上す
る。更にまた汚泥は自己消化を起す程の飢餓状態にある
ため、その後導入される原汚水中の汚泥成分を吸着除去
する能力が高くなり、清澄な処理水あるいはBOD濃度
の低い処理水を得る上で有効である。
Therefore, in the present invention, aeration is performed after the treated water is discharged to reduce the liquid storage capacity in the aeration tank. During this 11゛ period,
For example, do this for about 60 to 240 minutes. According to this aeration treatment, since the sludge concentration is in a relatively high state, it is possible to promote the BOD removal reaction and the nitrification reaction, especially the nitrification reaction which has a slow reaction rate. In addition, this aeration treatment is performed once
Reducing aeration (stopping aeration) is repeated to reduce BOD on the water side. Therefore, self-extinguishment occurs during BOD removal, reducing the amount of sludge, which has the advantage of requiring less processing of excess sludge. Furthermore, as a result of BOD removal and removal due to self-digestion, the BOD removal and removal content in the sludge decreases, and the proportion of nitrifying bacteria increases relatively, so that the nitrification activity of the sludge improves. In addition, during the autolysis process, NH4+-N is generated by hydrolysis of sludge components such as sludge, but this is also converted to No3-N through the nitrification reaction, and later nitrogen is removed as a result of the denitrification reaction. This improves the nitrogen removal rate. Furthermore, since the sludge is in such a starved state that it undergoes self-digestion, its ability to adsorb and remove sludge components from the raw sewage that is subsequently introduced increases, making it possible to obtain clear treated water or treated water with a low BOD concentration. It is valid.

沈殿上澄水放流後、機械曝気または散気曝気するにおい
ては、水位が低下しているため、撹拌抵抗、水頭圧が低
下し、曝気所要動力が低下し、省エネルギー運転に資す
る。
When performing mechanical aeration or diffused aeration after discharging precipitated supernatant water, the water level is lowered, so stirring resistance and water head pressure are lowered, and the power required for aeration is lowered, contributing to energy-saving operation.

次いでこの曝気処理後有機性汚水(原水)を流入して曝
気と1;′、÷急停止F又は低減曝気を緑り返す。
After this aeration treatment, organic sewage (raw water) is then flowed in, and the aeration and 1;', ÷ sudden stop F or reduced aeration are regenerated.

この処理において全1曝気時間は、曝気時間の合計に対
するBOD負荷がo、aky + BOD/k17・M
Lss/day以下、メ全窒累負荷がQ、1 kg・T
−N/klil・MLSS /day以下となるよう設
定するとと〃・望ましい。
In this process, for one aeration time, the BOD load relative to the total aeration time is o, aky + BOD/k17・M
Lss/day or less, the total nitrogen load is Q, 1 kg・T
It is desirable to set it to be less than -N/klil・MLSS/day.

また全低減+1.A気晴間(又は全曝気停止時間)は、
その時間の合計に対する全窒素負荷が0.4に9・T−
N/kg・MLSS / day以下となるよう設定す
ることが望ましい。すIに沈殿時間は、汚泥の沈降速度
と、曝気槽の形状、処理水量との関連で決定し、処理水
量に等しい沈殿上澄水を得るに十分な時間とする。まだ
原水流入時間、処理水排水時間は、原水の発生状況、貯
留槽容量、流入排出ポンプ容量、その他の状況から総合
的に決定する。
Also, total reduction +1. A distraction period (or total aeration stop time) is
The total nitrogen load for the total time is 0.4 to 9 T-
It is desirable to set it to less than N/kg・MLSS/day. The sedimentation time is determined in relation to the sedimentation rate of the sludge, the shape of the aeration tank, and the amount of water to be treated, and should be sufficient time to obtain sedimentation supernatant water equal to the amount of water to be treated. The raw water inflow time and treated water drainage time are determined comprehensively based on the raw water generation situation, storage tank capacity, inflow and discharge pump capacity, and other conditions.

次に第4図に示す他の実施例につき説明する。Next, another embodiment shown in FIG. 4 will be explained.

この方法は、有機性汚水(原水)を導入直後低減曝気状
態又は曝気停止状態とし、この後第3図の方法と同様の
操作をおこなう。この方法によれば、曝気−低減曝気(
又は曝気停止)を締り返すことによって生成、残留した
No3−Nを高一度のBODと接触させ、嫌気状態にお
くことにより、式(3)の脱型反応の推進を図ることが
できる。またこの方法では、原汚水導入直後の嫌気条件
下でBODが脱窒反応に用いられ低減した後、−気処理
を受けることになる。このため貯気によるBOD除去を
行う際のBOD負荷が実質的に低下し、BOD除去にも
有効である。
In this method, organic wastewater (raw water) is brought into a reduced aeration state or aeration stopped state immediately after introduction, and then the same operation as in the method shown in FIG. 3 is performed. According to this method, aeration - reduced aeration (
The demolding reaction of formula (3) can be promoted by bringing the generated and residual No3-N into contact with the high-temperature BOD and placing it in an anaerobic state. Furthermore, in this method, BOD is reduced by being used in a denitrification reaction under anaerobic conditions immediately after raw wastewater is introduced, and then subjected to -gas treatment. Therefore, the BOD load when removing BOD by storing air is substantially reduced, and it is also effective in removing BOD.

従って処理水排出後の曝気効果と、原汚水渚入後の低減
曝気(又は曝気停止)効果が相俟って窒素除去効果が更
に向上する。
Therefore, the effect of aeration after discharging treated water and the effect of reducing aeration (or stopping aeration) after raw wastewater enters the beach combine to further improve the nitrogen removal effect.

次に、第3図及び第4図に示したタイムチャートにもと
づいて本発明方法による有機性汚水処理を行った実施例
につき説明する。
Next, an example in which organic sewage treatment was carried out by the method of the present invention will be described based on the time charts shown in FIGS. 3 and 4.

この実施例では、原汚水として給食センター排水を用い
た。その組成は第1表に示す通シである。比較のための
従来方法として、第2図の(II)に示したタイムチャ
ートにもとづく回分式活性汚泥処理実験も併せて行った
。ゆ5気槽容量は100tとし、処理水]dは20t/
日とした。処理が安定した時の1.東気4j・11内の
+11LSSは、約2600my/lであった。
In this example, school lunch center wastewater was used as raw wastewater. Its composition is as shown in Table 1. As a conventional method for comparison, a batch activated sludge treatment experiment based on the time chart shown in (II) of FIG. 2 was also conducted. The capacity of the tank is 100t, and the treated water]d is 20t/
It was a day. 1. When processing is stable. +11LSS in Toki 4J・11 was approximately 2600 my/l.

本発明方法及び従来法でそれぞれ得られた処理水の水1
2丁を第1表に示す。
Water 1 of treated water obtained by the method of the present invention and the conventional method, respectively
Two guns are shown in Table 1.

第1表に示す結果から、本発明方法では、従来法に比し
て、BOD、窒素、リン共に含有量の少い良好な処理水
を得ることがわかった。
From the results shown in Table 1, it was found that the method of the present invention yields better treated water with lower BOD, nitrogen, and phosphorus contents than the conventional method.

本発明方法におけるリン除去機構については、今のとこ
ろ不明であるが、近年言われているように、汚泥が嫌気
状態と好気状態とに、繰り返しさらされることによって
、汚泥中に取り込まれたものと考えられる。
The mechanism of phosphorus removal in the method of the present invention is currently unknown, but as has been said in recent years, phosphorus is incorporated into sludge when sludge is repeatedly exposed to anaerobic and aerobic conditions. it is conceivable that.

以上説明したように本発明によれば、好気状態と嫌気状
態とを有効に形成して脱窒処理を効率よくおとなりよう
にしたので処理水の47素含有fを少くできると共に、
BOD、リンの含有量・も少々くできるという顕著な効
果を奏する。
As explained above, according to the present invention, aerobic conditions and anaerobic conditions are effectively formed to efficiently carry out denitrification treatment, so that the 47 element content of treated water can be reduced, and
It has the remarkable effect of slightly reducing BOD and phosphorus content.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、回分式活性汚泥装置を示すフローシート図、
第2図は、従来の回分式活性汚泥法における運転タイム
チャート図、第3図及び第4図は、本発明方法における
回分式活性汚泥法のそれぞれ異なる運転タイムチャート
図である。 1・・・有様性汚水、2・・・曝気槽、3・・・曝気装
Wi′0、・・・処理水。
Figure 1 is a flow sheet diagram showing a batch type activated sludge equipment;
FIG. 2 is an operation time chart for the conventional batch activated sludge method, and FIGS. 3 and 4 are different operation time charts for the batch activated sludge method in the method of the present invention. 1... Characteristic wastewater, 2... Aeration tank, 3... Aeration equipment Wi'0,... Treated water.

Claims (2)

【特許請求の範囲】[Claims] (1)曝気槽に入れた有機性汚水に対し、曝気と曝気停
止又は低減11ψ気とを繰返す工程と、暖気停止して活
性汚泥を沈殿するとともに上澄水を排出する工程と、上
澄水排出後の曝気槽内を曝気する工程と、11講気後に
有機性汚水を入れる工程とを順次繰;スしておこなうこ
とを特徴とする有様性汚水の処理方法、。
(1) A process of repeating aeration and stopping or reducing the aeration for organic sewage placed in an aeration tank, a process of stopping heating to precipitate activated sludge and discharging supernatant water, and a process of discharging supernatant water. 1. A method for treating specific wastewater, characterized in that the steps of aerating the inside of the aeration tank and adding organic wastewater after 11 aerations are carried out in sequence.
(2)曝気槽に入れた有Iメ!性汚水に対し、低減曝気
又は曝気停止する工程と、M気とM気停止又は低減曝気
とを繰返す工程と、1M気停止して活性汚泥を沈殿する
とともに上澄水を排出する工程と、上澄水排出後の町る
気相内を曝気する工程と、曝気後にイΣ機性汚水を入れ
る工程とを順次繰返しておこなうことを特徴とする有機
性汚水の処理方法。
(2) I put it in the aeration tank! A step of reducing aeration or stopping aeration, a step of repeating M air and stopping M air or reducing aeration, a step of stopping 1M air to precipitate activated sludge and discharge supernatant water, A method for treating organic sewage characterized by sequentially repeating a step of aerating the gas phase after discharge and a step of introducing organic sewage after the aeration.
JP57225806A 1982-12-24 1982-12-24 Treatment of organic sewage Pending JPS59115793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225806A JPS59115793A (en) 1982-12-24 1982-12-24 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225806A JPS59115793A (en) 1982-12-24 1982-12-24 Treatment of organic sewage

Publications (1)

Publication Number Publication Date
JPS59115793A true JPS59115793A (en) 1984-07-04

Family

ID=16835078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225806A Pending JPS59115793A (en) 1982-12-24 1982-12-24 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPS59115793A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150894A (en) * 1984-01-20 1985-08-08 Nishihara Environ Sanit Res Corp Batch treating apparatus of activated sludge
JPS6242796A (en) * 1985-08-15 1987-02-24 Nippon Steel Corp Treatment of waste water and method for acclimatizing activated sludge
JPS62180797A (en) * 1986-01-31 1987-08-08 Hitachi Kiden Kogyo Ltd Operating method for aeration device
JPS62197194A (en) * 1986-02-24 1987-08-31 Yukio Ibi Water treatment
JPS634900A (en) * 1986-06-26 1988-01-09 Ebara Res Co Ltd Batch-operated activated sludge treatment of organic waste water
JPH02191597A (en) * 1989-01-20 1990-07-27 Hitachi Plant Eng & Constr Co Ltd Batch treatment with activated sludge
CN105523643A (en) * 2015-12-25 2016-04-27 成都新柯力化工科技有限公司 Sewage treatment composite gel material for microbe embedding, and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150894A (en) * 1984-01-20 1985-08-08 Nishihara Environ Sanit Res Corp Batch treating apparatus of activated sludge
JPH038839B2 (en) * 1984-01-20 1991-02-07 Nishihara Kankyo Eisei Kenkyusho Kk
JPS6242796A (en) * 1985-08-15 1987-02-24 Nippon Steel Corp Treatment of waste water and method for acclimatizing activated sludge
JPH037436B2 (en) * 1985-08-15 1991-02-01 Shinnippon Seitetsu Kk
JPS62180797A (en) * 1986-01-31 1987-08-08 Hitachi Kiden Kogyo Ltd Operating method for aeration device
JPS62197194A (en) * 1986-02-24 1987-08-31 Yukio Ibi Water treatment
JPS634900A (en) * 1986-06-26 1988-01-09 Ebara Res Co Ltd Batch-operated activated sludge treatment of organic waste water
JPH0516919B2 (en) * 1986-06-26 1993-03-05 Ebara Sogo Kenkyusho Kk
JPH02191597A (en) * 1989-01-20 1990-07-27 Hitachi Plant Eng & Constr Co Ltd Batch treatment with activated sludge
CN105523643A (en) * 2015-12-25 2016-04-27 成都新柯力化工科技有限公司 Sewage treatment composite gel material for microbe embedding, and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102633359B (en) Method for treating total nitrogen of nitrogen-containing chemical wastewater
JP2000015288A (en) Waste water treatment method and apparatus
CN105753156B (en) A kind of town sewage high standard dephosphorization denitrification method
US11820688B2 (en) Water treatment method for simultaneous abatement of carbon, nitrogen and phosphorus, implemented in a sequencing batch moving bed biofilm reactor
JPS59115793A (en) Treatment of organic sewage
JP2661093B2 (en) Wastewater treatment method by activated sludge method
JPS58210897A (en) Biological dephosphorization method of waste water
JP2000061494A (en) Biological treatment of ammonia nitrogen
JPS5830393A (en) Biological denitrifying and dephosphorizing method for sewage
JPS59115794A (en) Treatment of organic sewage
JP2678123B2 (en) Sewage treatment method
JP2002136989A (en) Method and apparatus for treating organic waste liquid
JPS6055200B2 (en) Organic wastewater treatment method
JPS6222678B2 (en)
JPS60129194A (en) Treatment of sewage
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JPH03229693A (en) Treatment of organic waste water
JPH1080697A (en) Complete treatment of organic sewage
JPS6014997A (en) Treatment of organic filthy water
JPH0679714B2 (en) Organic wastewater treatment method
KR100357771B1 (en) The advanced wastewater treatment method and equipment using the circular oxidation ditch of intermittent aeration method to improve the removal of nitrogen and phosphorus
JPS61118194A (en) Biological treatment of waste water
JP2002192189A (en) Method for treating nitrogen-containing wastewater
JPH11226594A (en) Intermittent aeration type activated sludge treatment apparatus
JPS62163798A (en) Treatment of waste water