JPS6014997A - Treatment of organic filthy water - Google Patents
Treatment of organic filthy waterInfo
- Publication number
- JPS6014997A JPS6014997A JP12303883A JP12303883A JPS6014997A JP S6014997 A JPS6014997 A JP S6014997A JP 12303883 A JP12303883 A JP 12303883A JP 12303883 A JP12303883 A JP 12303883A JP S6014997 A JPS6014997 A JP S6014997A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- denitrification
- digestion
- sludge
- bod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は有機性汚水の処理方法に関し、詳細には有機性
汚水中に含まれる有機物(130D源)及び栄C塩類(
窒素化合物等)をいずれも効果的に分解処理し得る様な
有機性汚水の処理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating organic sewage, and in particular, it relates to a method for treating organic sewage, and more specifically, to treat organic matter (130D source) and Sakae C salts (130D source) contained in organic sewage.
This invention relates to a method for treating organic wastewater that can effectively decompose nitrogen compounds, etc.
有機性汚水(し尿等)に含まれる有機物や浮遊物質を分
解・除去する方法の1つに嫌気性消化(以下消化という
)処理法があり、古くから汎用されているが最近の実績
によると後述の生物学的窒素除去法に比べ汚泥発生量が
少ないという事実が確認されている。第1図はこの様な
消化処理法を適用した有機性汚水処理システムを示すフ
ロー図で、1は第1消化槽、2は第2消化槽、3は曝気
槽、4は沈殿槽を夫々示す。上記システムAにおいて、
第1消化槽1に投入された有機性汚水L1は第1消化イ
ク1更には第2消化IW、72で嫌気性雰囲気下に消化
処理を受け、有様性汚水中の有様物が可溶化すると共に
002やCH,等のガスに分解され、第2消化槽2から
消化脱離液L2として排出される。尚第2消化槽2の底
部に沈降しプヒ消化汚泥S1の一部は第1消化相1に返
送され種汚泥として利用されると共に残部は系外へ排出
される。Anaerobic digestion (hereinafter referred to as digestion) is one of the methods to decompose and remove organic matter and suspended solids contained in organic wastewater (human waste, etc.), and it has been widely used for a long time, but according to recent results, it will be explained later. It has been confirmed that this method generates less sludge than the biological nitrogen removal method. Figure 1 is a flow diagram showing an organic sewage treatment system applying such a digestion treatment method, where 1 shows the first digestion tank, 2 shows the second digestion tank, 3 shows the aeration tank, and 4 shows the settling tank. . In the above system A,
The organic wastewater L1 input into the first digestion tank 1 is subjected to digestion treatment in an anaerobic atmosphere in the first digestion tank 1 and the second digestion IW, 72, so that the substances in the wastewater are solubilized. At the same time, it is decomposed into gases such as 002 and CH, and is discharged from the second digestion tank 2 as a digestion and desorption liquid L2. A portion of the puhi-digested sludge S1 that settles to the bottom of the second digestion tank 2 is returned to the first digestion phase 1 and used as seed sludge, while the remainder is discharged outside the system.
次いで曝気槽3に投入されプ辷消化脱随液L2をliい
気することにより好気的分解を行なっ/こ後洗MZ’+
曹4に投入し、処理排水り、と汚泥S2に分ける。Next, aerobic decomposition is performed by aerating the dehydrated liquid L2, which is put into the aeration tank 3. After washing MZ'+
Pour into Sodium 4 and separate into treated wastewater and sludge S2.
尚汚泥S2の一部は曝気03に返送し種汚泥として利用
すると共に残部は余剰り泥Ssとして系外へ排出する。A part of the sludge S2 is returned to the aeration 03 and used as seed sludge, and the remainder is discharged outside the system as surplus sludge Ss.
ところで上記消化処理システムにおいてはBOD成分は
十分に分解除去されるが、含窒素化合物特にアンモニウ
ム塩の除去については考慮されておらず、殆んど除去さ
れないままで排出されていた。By the way, in the above-mentioned digestion treatment system, BOD components are sufficiently decomposed and removed, but no consideration is given to the removal of nitrogen-containing compounds, particularly ammonium salts, and the system is discharged with almost no removal.
その結果アンモニアガスの放出に伴なう悪臭の発生や河
川の富栄善化に伴なう各(g (J害が社会問題となっ
ている。又上記消化処理システムにおいては排出される
汚泥が消化槽からの汚泥S、と余剰汚泥S3の2種類と
なるブこめ汚泥処理設備も2系列とな)、設備が複船と
なると共に設備の維持管理が煩雑となる。又該システム
の操業に肖っては消化槽に投入される有機性汚水を消化
反応に適した温度まで加温しておか々ければならないが
、有機性汚水処理システムにおける汚水投入量は一般に
かなシ大きなものであるから加温の為の熱工・ネルボー
消費量も無視し得す、運転コストを上昇さぜる原因とな
っていた。As a result, the occurrence of bad odors due to the release of ammonia gas and the pollution caused by the enrichment of rivers have become social problems.In addition, in the above-mentioned digestion treatment system, the sludge discharged is There are also two lines of sludge processing equipment for treating two types of sludge, S from the tank, and surplus sludge, S3), and as the equipment becomes multiple vessels, the maintenance and management of the equipment becomes complicated. Therefore, it is necessary to heat the organic wastewater input into the digestion tank to a temperature suitable for the digestion reaction, but since the amount of wastewater input in an organic wastewater treatment system is generally large, heating is not necessary. Heat engineering and Nervo consumption for warming could also be ignored, causing an increase in operating costs.
本発明者等は以上の様々消化処理システムにおける種々
の問題を解決しようと研究を進め、まず始めに最も重要
な課題である窒素化合物の同時除去について検討を加え
た。しかるに窒素化合物の除去法については既に生物学
的窒素除去法が一応の確立を見ているので、該方法を上
記消化処理システムに組込むことによって有機物と窒素
化合物の同時除去を行なうことが第1番に考えられた。The present inventors have carried out research in an attempt to solve the various problems in the various digestion treatment systems described above, and first investigated the simultaneous removal of nitrogen compounds, which is the most important issue. However, as for the removal of nitrogen compounds, the biological nitrogen removal method has already been established to some extent, so the first option is to simultaneously remove organic matter and nitrogen compounds by incorporating this method into the above-mentioned digestion treatment system. was considered.
尚生物学的窒素除去法は、被処理水中に含まれる窒素化
合物、具体的にはNH,−Nを下記反応式(1)、(2
)に示される硝化反応(好気性雰囲気)、次いで反応式
(3)、(4)で示される脱窒反応嫌気性雰囲気に伺す
ことによって分解しようとするものである。The biological nitrogen removal method uses the following reaction formulas (1) and (2) to convert nitrogen compounds contained in the water to be treated, specifically NH, -N.
) The nitrification reaction shown in (aerobic atmosphere) is followed by the denitrification reaction shown in reaction formulas (3) and (4) in an anaerobic atmosphere.
(1)硝化反応
(亜硝酸型)
N1(4++1−!−02→NO2+H20+2H・・
・(1)(硝酸型)
N114++202→NOx +H20+21−I+
・・・(2)(11)脱窒反応
(亜硝酸型)
2N02 +6(H)→N2+2I■20+20H−(
η(硝酸型)
2NO,+ 10(:H〕→N2+4H,0+20H−
−・−(+)以下本発明の完成に至る研究の経心を思想
的な発展段階を追いながら説明する。(1) Nitrification reaction (nitrous acid type) N1 (4++1-!-02→NO2+H20+2H...
・(1) (Nitric acid type) N114++202→NOx +H20+21-I+
...(2)(11) Denitrification reaction (nitrous acid type) 2N02 +6(H) → N2+2I■20+20H-(
η (nitric acid type) 2NO, + 10 (:H) → N2+4H, 0+20H-
-・-(+) The essence of the research that led to the completion of the present invention will be explained below, following the stages of ideological development.
まず始めに第2図に示す様なシステム、即ち消化槽2と
ω気槽3の間に硝化槽5、脱窒1%!J6を組込んでな
るシステムBを考えてみた。尚このシステムBにおける
硝化槽5以後の全工程は生物学的窒素除去方法乃至設備
として原理的に公知のものである。ところが本システム
によるに消化脱離液L2を硝化処理すると該消化脱陥液
L2中に若干ながら残存していだBOD成分がNH,と
共に酸化される為に硝化反応自身を遅延させる恐れがあ
ると共に酸素の消費量も多くなる。一方脱窒槽6におい
ては脱窒反応を進行させる為に水素供与体の存在が必要
となるが、水素供与体となシ得るBOD成分がすでに硝
化槽5において酸化分解されているので新たにCI、O
H等の水素供与体を大量に脱窒4’dに投入する必要が
生じる。この様に第2図のシステムBは実用に適さない
面をもっている。First of all, we will start with a system as shown in Figure 2, that is, a nitrification tank 5 between the digestion tank 2 and the ω gas tank 3, and a denitrification tank of 1%! I thought about system B that incorporates J6. All processes after the nitrification tank 5 in this system B are known in principle as biological nitrogen removal methods and equipment. However, when the digestion desorption liquid L2 is nitrified using this system, a small amount of the BOD components remaining in the digestion desorption liquid L2 are oxidized together with NH, which may delay the nitrification reaction itself, and also cause the oxygen consumption will also increase. On the other hand, in the denitrification tank 6, the presence of a hydrogen donor is required in order to advance the denitrification reaction, but since the BOD component that can be used as a hydrogen donor has already been oxidized and decomposed in the nitrification tank 5, a new CI, O
It becomes necessary to introduce a large amount of hydrogen donor such as H into the denitrification process 4'd. As described above, system B shown in FIG. 2 has aspects that are not suitable for practical use.
そこで次に考えたのが第3図に示されるシステムCであ
シ、消化槽l、2の後に第1脱窒槽6a、硝化槽5及び
第2脱窒槽61〕をこの記載順に配設すると共に硝化槽
5からの混合液L4の一部をり。Therefore, the next idea was to create a system C shown in Fig. 3, in which the first denitrification tank 6a, the nitrification tank 5, and the second denitrification tank 61 were arranged in the order listed after the digestion tanks 1 and 2. Part of the mixed liquid L4 from the nitrification tank 5 is removed.
として返送し消化脱1’iI液L2に合流させてから第
1脱窒槽6aに入れている。上記システムCにおける第
1脱窒槽6a以降の工程も公知であシ、それ自身が独立
した設備として各地に建設されているものである。この
方法によると第1脱ff1VU6aには消化脱離液L2
中のBOD成分が水素供与体として供給されるので硝化
液り、と共に持ち込まれた硝酸イオンや亜硝酸イオンは
嫌気性雰囲気下に脱窒菌の働きによシ還元され、いわゆ
る脱窒が行なわれる。尚消化脱離液中の窒素化合物(N
H4塩)は第1脱窒槽を素通りし、脱窒処理液L6とし
て硝化槽5に投入され、好気性雰囲気下に硝化される。The denitrification tank 6a is then returned to the denitrification tank 6a, where it is combined with the digestion denitrification 1'iI liquid L2. The processes after the first denitrification tank 6a in the system C are also well known and have been constructed as independent facilities in various places. According to this method, in the first deflation ff1VU6a, the digestion desorption fluid L2
Since the BOD component contained therein is supplied as a hydrogen donor, the nitrate ions and nitrite ions brought in with the nitrifying liquid are reduced by the action of denitrifying bacteria in an anaerobic atmosphere, resulting in so-called denitrification. In addition, nitrogen compounds (N
H4 salt) passes through the first denitrification tank and is introduced into the nitrification tank 5 as a denitrification treatment liquid L6, where it is nitrified in an aerobic atmosphere.
そして硝化液L4 (硝化槽で新たに生成したNO,イ
オン等と第1脱窒槽における未反応のNO3イオン等)
の大部分は前述の返送硝化液り、として第1脱窒槽6a
に還流され、脱窒されると共に、硝化液L4の残部は第
2脱窒lambに入るが、ここではNOsイオン等の含
有量が少々いのでCH3011等のBOD成分の補給量
もわずかでよく簡単に且つ低コスト下に脱窒処理を受け
る。以下曝気処理によって残存する130D成分を分解
した後、沈Gm4から処理水L7及び汚泥S。and nitrification liquid L4 (NO, ions, etc. newly generated in the nitrification tank and unreacted NO3 ions, etc. in the first denitrification tank)
Most of the above-mentioned return nitrification liquid is sent to the first denitrification tank 6a.
At the same time, the remainder of the nitrifying liquid L4 enters the second denitrification lamb, but since the content of NOs ions etc. is a little low here, the amount of BOD components such as CH3011 to be replenished is small and easy. Denitrification treatment can be performed at low cost. After decomposing the remaining 130D component by aeration treatment, treated water L7 and sludge S are obtained from settled Gm4.
として排出される。It is discharged as.
しかるに上記システムCにおいては、消化脱離液L2中
のBOD成分の力士は消化処理によってかなυ低下して
いるため、第1脱窒’IW6aにおける脱窒反応に提供
される水素供与体としての必要量が1かなえずシステム
Bの場合より改善されているものの脱窒反応が十分に進
行しないという欠点があつ/ζ。However, in the above-mentioned system C, since the BOD component of the digested and desorbed liquid L2 has decreased considerably due to the digestion process, it is necessary as a hydrogen donor provided for the denitrification reaction in the first denitrification 'IW6a. Although this is improved over system B, it has the disadvantage that the denitrification reaction does not proceed sufficiently.
本発明はこうした問題点を解消しプこものであって、有
機性汚水中の有tE2’16y (B OD成分)及び
窒素化合物を十分に分解することを第1の目的とし、更
に上記分解に要するエネルギー殊に有機性汚水の予熱に
消費されるエネルギーを低減することを第2の目的とす
るものである。The present invention aims to solve these problems, and its primary purpose is to sufficiently decompose tE2'16y (BOD component) and nitrogen compounds in organic wastewater, and furthermore, it A second purpose is to reduce energy, particularly energy consumed for preheating organic wastewater.
しかして上記目的を達成しプヒ本発明の有機性汚水の処
理方法とは、有機性汚水の嫌気性消化により生成した好
気性消化脱1’1ffl液を消化汚泥と共に生物学的窒
素除去処理に付し、あるいは更に上記消化汚泥等と共に
該消化汚泥以外のl30D上昇成分を加えて生物学的窒
素除去処理に(=lす点に基本的な要旨があり更に上記
生物学的窒素除去処理の結果生成する処理排水によって
前記有機性汚水を加温することによってエネルギーの有
効利用を図ることに成功した。Therefore, the method for treating organic sewage of the present invention achieves the above object and subjects the aerobic digestion-depleted 1'1ffl liquid produced by anaerobic digestion of organic sewage to biological nitrogen removal treatment together with the digested sludge. Alternatively, the basic gist is to add l30D increasing components other than the digested sludge together with the above-mentioned digested sludge, etc. to perform biological nitrogen removal treatment (= l) By heating the organic wastewater using treated wastewater, we succeeded in making effective use of energy.
即ち前記第3図の方法における窒素化合物の除去、換言
すると第1脱窒496aにおける脱窒反応が十分に進行
しない原因は、先に述べた如く水素供与体の不足にある
と考えられたので水素供与体を更に補充添加することが
必要となる。しかしCH,OH等の有価物を更に大量投
入することは有機性汚水の処理コストを高めるので不適
当である。そこで本発明者等は第2消化槽2から排出さ
れる消化汚泥に注目し、消化脱離液と混合した場合の物
性値を測定したところ第1表に示す結果が得られた。尚
比較の為消化脱離液単独の性状を同時に測定した。In other words, the reason why the removal of nitrogen compounds in the method shown in FIG. Further supplementary addition of donor will be necessary. However, it is inappropriate to add large amounts of valuable substances such as CH and OH because it increases the cost of treating organic wastewater. Therefore, the present inventors focused on the digested sludge discharged from the second digestion tank 2 and measured the physical properties when mixed with the digested and desorbed liquid, and the results shown in Table 1 were obtained. For comparison, the properties of the digested fluid alone were measured at the same time.
第 1 表
第1表に示す様に、消化脱離液に消化汚泥を混合するこ
とによってBODの濃度が大巾に上昇することが分かっ
た。一方脱窒反応を良好に進行させる為にはBOD/N
H,−N比をできる限シ大きくすることが望ましいと考
えられるが、第1表に示す通シBOD/NH,−N比が
0.25から0.85に上昇して、t、−シ、脱蟹効果
の改善が強く期待された。尚脱窒処理実験の結果によれ
ば、前者の窒素除去率が平均26伜しかなかったのに対
し消化脱離液と消化汚泥を混合した本発明では窒素除去
率は平均で86q6に上昇した。Table 1 As shown in Table 1, it was found that the concentration of BOD increased significantly by mixing digested sludge with the digested and desorbed fluid. On the other hand, in order to progress the denitrification reaction well, BOD/N
It is considered desirable to increase the H, -N ratio as much as possible, but if the BOD/NH, -N ratio shown in Table 1 increases from 0.25 to 0.85, the t, -S ratio will increase. , it was strongly expected that the crab removal effect would be improved. According to the results of the denitrification treatment experiments, the nitrogen removal rate of the former was only 26 on average, whereas in the present invention, in which the digested desorption liquid and digested sludge were mixed, the nitrogen removal rate rose to 86q6 on average.
この様な予備実験データから、消化汚泥を水素供与体と
して混合利用することが有効であるという確信を得るに
至った。From such preliminary experimental data, we have come to believe that it is effective to mix and use digested sludge as a hydrogen donor.
次に本発明を実施例に基づいて説明する。第4図は実施
例のフローシートであシ本発明システムDが示されてい
る。本例では第2消化槽2から排出される消化汚泥S、
のうち返送汚泥として第1消化槽1へ供給されるもの以
外について、これを系外へ排出せずに第1脱窒m6 a
に投入することによって第1脱窒槽6aにおけるBOD
を高めて(BOD/NH4−N、比も高めて)脱窒反応
を効率良く進める様になっており、窒素除去率を向上さ
せることに成功した。Next, the present invention will be explained based on examples. FIG. 4 is a flow sheet of an embodiment, showing the system D of the present invention. In this example, the digested sludge S discharged from the second digestion tank 2,
Of the sludge, other than that supplied to the first digestion tank 1 as return sludge, this is not discharged outside the system and is subjected to the first denitrification m6 a.
The BOD in the first denitrification tank 6a is
By increasing the BOD/NH4-N ratio (and increasing the BOD/NH4-N ratio), the denitrification reaction can proceed efficiently, and the nitrogen removal rate has been successfully improved.
又本発明においては消化汚泥の投入に加えて該消化汚泥
以外のBOD上昇成分(水素供与体)、例えば未処理の
有機性汚水L1aを2点鎖線で示す様に消化脱離液L2
に合流させて第1脱窒Q6aに直接投入することによシ
、第1脱窒槽6aにおけるBOD/NH,−N比を1以
上まで上昇させることかでき、これにより窒素除去率を
90%以上まで高めることができる。尚第1脱窒槽6a
において除去し切れなかったNO2イオンやNO3イオ
ンは第2脱窒槽6bにおいて分解除去される。Furthermore, in the present invention, in addition to inputting the digested sludge, BOD increasing components (hydrogen donors) other than the digested sludge, such as untreated organic sewage L1a, are added to the digested and desorbed liquid L2 as shown by the two-dot chain line.
By directly charging the nitrogen into the first denitrification tank Q6a, it is possible to increase the BOD/NH, -N ratio in the first denitrification tank 6a to 1 or more, thereby increasing the nitrogen removal rate to 90% or more. It can be increased up to. Furthermore, the first denitrification tank 6a
The NO2 ions and NO3 ions that were not completely removed are decomposed and removed in the second denitrification tank 6b.
尚第2脱窒桔6bにも水素供与体を投入する必要がある
が、ここにおける水素供与体必要量は僅かテロ ル(D
テCHB OH等を用いることもある。It is also necessary to introduce a hydrogen donor into the second denitrification tank 6b, but the amount of hydrogen donor required here is only a little less than terol (D).
Te CHB OH etc. may also be used.
更に本発明においては、処理水L7の保有熱を利用して
有機性汚水L1の加温を行なうこともできる。即ち生物
学的窒素除去反応は、好気性条件下における酸化反応(
硝化反応)と嫌気性条件下における還元反応(脱窒反応
)を組み合わせたものであり、窒素1kgを除去すると
約10000 kcalの熱量が発生する。その結果処
理水L7の液温は35℃程度まで上昇する。そこで第4
図に2点鎖線で示す如く熱交換器7を設けて、処理水L
7と有機性汚水り、との間で熱交換することにょシ有機
性汚水L1を加温する。これにょシ従来必要であっ。Furthermore, in the present invention, the organic wastewater L1 can also be heated using the heat retained in the treated water L7. In other words, the biological nitrogen removal reaction is an oxidation reaction (
This is a combination of a nitrification reaction (nitrification reaction) and a reduction reaction (denitrification reaction) under anaerobic conditions, and when 1 kg of nitrogen is removed, approximately 10,000 kcal of heat is generated. As a result, the temperature of the treated water L7 rises to about 35°C. Therefore, the fourth
A heat exchanger 7 is installed as shown by the two-dot chain line in the figure, and the treated water L
The organic wastewater L1 is heated by exchanging heat between the organic wastewater L1 and the organic wastewater L1. This is traditionally necessary.
た消化槽1,2における有機性汚水の加温処理を省略す
ることについての展望が得られた。尚有機性汚水り、を
加温した処理水L7はL8となって系外へ排出される。The prospect of omitting the heating treatment of organic sewage in the digesters 1 and 2 was obtained. Furthermore, the treated water L7 obtained by heating the organic sewage water becomes L8 and is discharged outside the system.
ところで上記説明は、第4図のフロー図に従うものであ
ったが、具体的な実施設備としては深さ10mの泥槽反
応槽を挙げることができ、その運転条件はDO量を0.
2〜1.1巧/1%MLSSを15000Inl/1以
上とすることが推奨される。By the way, the above explanation was based on the flowchart shown in FIG. 4, but the concrete example of implementation equipment is a mud tank reaction tank with a depth of 10 m, and its operating conditions are a DO amount of 0.
It is recommended that the MLSS be 2 to 1.1 Inl/1% or more than 15000 Inl/1.
尚、上記生物学的窒素除去設備のみを用いて有機物及び
窒素化合物の一括除去を行なうことも現実には行なわれ
ているが、この場合には汚泥の発生量が本発明方法よシ
20襲以上多くな)汚泥処理に多大な労力並びにコスト
を要することになる。Incidentally, it is actually possible to remove organic matter and nitrogen compounds all at once using only the biological nitrogen removal equipment described above, but in this case, the amount of sludge generated is 20 times or more compared to the method of the present invention. sludge treatment requires a great deal of labor and cost.
これに対し本発明方法は従来の消化処理法の場合とほぼ
同程度の汚泥しか発生せずこの面でも優れた方法と言え
る。これはBOD成分の分解において好気性菌による分
解の方が好気性菌による分解に比べ汚泥発生量が少ない
ことに起因しておシ、即ち本発明方法ではBOD成分の
大半を消化槽で分解してしまうので後続の生物学的窒素
除去設備における好気性分解に頼る害す合が極めて少な
いからである。In contrast, the method of the present invention generates approximately the same amount of sludge as the conventional digestion method, and can be said to be an excellent method in this respect as well. This is because when decomposing BOD components, aerobic bacteria generate less sludge than decomposition by aerobic bacteria; in other words, in the method of the present invention, most of the BOD components are decomposed in the digestion tank. This is because there is very little risk of relying on aerobic decomposition in subsequent biological nitrogen removal equipment.
本発明は以上の様に構成されているので以下要約する効
果を得ることができる。Since the present invention is configured as described above, it is possible to obtain the effects summarized below.
(1)消化処理と生物学的窒素除去処理を組み合わせる
ことによシ、有機物(BOD成分)及び窒素化合物(N
H,塩類)の両方を効率よく完全に除去することができ
、系外に放流しても環境汚染をまねくことがない。(1) By combining digestion treatment and biological nitrogen removal treatment, organic matter (BOD components) and nitrogen compounds (N
H, salts) can be efficiently and completely removed, and even if discharged outside the system, it will not cause environmental pollution.
(2)被処理液である有機性汚水を生物学的窒素除去過
程で発生する熱量を利用して加温し得るので特に冬期寒
冷地等において加温の為のエネルギーを少なくすること
ができ経済的である。(2) Since organic wastewater, which is the liquid to be treated, can be heated using the amount of heat generated during the biological nitrogen removal process, it is economical because it requires less energy for heating, especially in cold regions during the winter. It is true.
(3)消化汚泥を脱窒反応の為の水素供与体として利用
したので脱窒反応を経済的に実施できると共にシステム
から排出される汚泥が余剰汚泥に一本化され、汚泥処理
が容易となった。(3) Since the digested sludge was used as a hydrogen donor for the denitrification reaction, the denitrification reaction could be carried out economically, and the sludge discharged from the system was consolidated into surplus sludge, making sludge treatment easier. Ta.
(4)有機物(BOD成分)を消化処理工程で殆んど分
解し、且つ窒素化合物を生物学的窒素除去工程で分解除
去するので、システムを通じて好気性菌の働きに頼る割
合が少なく、有機物及び窒素化金物を一括して除去する
方法としては汚泥発生量の少ない方法を提供することが
できた。(4) Most of the organic matter (BOD components) is decomposed in the digestion process, and nitrogen compounds are decomposed and removed in the biological nitrogen removal process, so there is less reliance on the action of aerobic bacteria throughout the system, and organic matter and As a method for removing nitrogenated metals all at once, we were able to provide a method that generates less sludge.
第1図は消化処理システムを示すフロー説明図、第2.
3図は消化処理と生物学的窒素除去処理を組合せた参考
例システムのフロー説明図、第4図は本発明実施例を示
すフロー説明図である。
1・・・第1消化槽 2・・・第2消化槽3・・・曝気
槽 4・・・沈殿檜
5・・・硝化槽 6.6a 、6b・・・脱窒槽7・・
・熱交換器FIG. 1 is a flow explanatory diagram showing the digestion processing system, and FIG.
FIG. 3 is a flow explanatory diagram of a reference example system that combines a digestion process and a biological nitrogen removal process, and FIG. 4 is a flow explanatory diagram showing an embodiment of the present invention. 1... 1st digestion tank 2... 2nd digestion tank 3... aeration tank 4... settling cypress 5... nitrification tank 6.6a, 6b... denitrification tank 7...
·Heat exchanger
Claims (4)
化脱離液を消化汚泥と共に生物学的窒素除去処理に付す
ことを特徴とする有機性汚水の処理方法。(1) A method for treating organic sewage, which comprises subjecting an anaerobic digestion solution produced by anaerobic digestion of organic sewage to biological nitrogen removal treatment together with digested sludge.
化脱離液を消化汚泥と共に生物学的窒素除去処理に付し
、且つ該生物学的窒素除去後の処理排水との熱交換によ
って前記有機性汚水を加温することを特徴とする有機性
汚水の処理方法。(2) The anaerobic digestion desorbed liquid produced by anaerobic digestion of organic wastewater is subjected to biological nitrogen removal treatment together with the digested sludge, and the A method for treating organic sewage characterized by heating the organic sewage.
化脱離液を消化汚泥及び該消化汚泥以外のBOD上昇成
分と共に生物学的窒素除去処理に付すことを特徴とする
有機性汚水の処理方法。(3) Organic sewage characterized by subjecting the anaerobic digestion desorbed liquid produced by anaerobic digestion of organic sewage to biological nitrogen removal treatment together with digested sludge and BOD-increasing components other than the digested sludge. processing method.
化脱離液を消化汚泥及び該消化汚泥以外のBOD上昇成
分と共に生物学的窒素除去処理に付し、且つ該生物学的
窒素除去後の処理排水との熱交換によって前記有機性汚
水を加温することを特徴とする有機性汚水の処理方法。(4) The anaerobic digestion solution produced by anaerobic digestion of organic sewage is subjected to biological nitrogen removal treatment together with digested sludge and BOD increasing components other than the digested sludge, and the biological nitrogen is A method for treating organic wastewater, comprising heating the organic wastewater by heat exchange with treated wastewater after removal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12303883A JPS6014997A (en) | 1983-07-05 | 1983-07-05 | Treatment of organic filthy water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12303883A JPS6014997A (en) | 1983-07-05 | 1983-07-05 | Treatment of organic filthy water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6014997A true JPS6014997A (en) | 1985-01-25 |
JPH0123197B2 JPH0123197B2 (en) | 1989-05-01 |
Family
ID=14850666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12303883A Granted JPS6014997A (en) | 1983-07-05 | 1983-07-05 | Treatment of organic filthy water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6014997A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100319375B1 (en) * | 1999-07-30 | 2002-01-09 | 채문식 | Method and Apparatus of Nitrogen Removal from the Recycle Water in the Sewage Treatment Plant |
WO2004083129A1 (en) * | 2003-03-18 | 2004-09-30 | Minaki Advance Co. Ltd. | Treating agent for decomposing feces/urine and method of treating feces/urine through decomposition by activated microorgnisms |
JP2011218283A (en) * | 2010-04-08 | 2011-11-04 | Swing Corp | Apparatus and method of treating organic waste |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5723558A (en) * | 1980-07-12 | 1982-02-06 | Itoutoshi Kk | Line spiral wrapping device for cylindrical substance |
-
1983
- 1983-07-05 JP JP12303883A patent/JPS6014997A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5723558A (en) * | 1980-07-12 | 1982-02-06 | Itoutoshi Kk | Line spiral wrapping device for cylindrical substance |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100319375B1 (en) * | 1999-07-30 | 2002-01-09 | 채문식 | Method and Apparatus of Nitrogen Removal from the Recycle Water in the Sewage Treatment Plant |
WO2004083129A1 (en) * | 2003-03-18 | 2004-09-30 | Minaki Advance Co. Ltd. | Treating agent for decomposing feces/urine and method of treating feces/urine through decomposition by activated microorgnisms |
JP2011218283A (en) * | 2010-04-08 | 2011-11-04 | Swing Corp | Apparatus and method of treating organic waste |
Also Published As
Publication number | Publication date |
---|---|
JPH0123197B2 (en) | 1989-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6014997A (en) | Treatment of organic filthy water | |
JPS6254075B2 (en) | ||
JPH06178995A (en) | Anaerobic digestion treatment of organic waste water | |
JPS59115793A (en) | Treatment of organic sewage | |
JPS5929092A (en) | Treatment of sewage containing nitrogen component | |
JPH08309366A (en) | Removal of nitrogen and phosphorus from waste water | |
JPS6316100A (en) | Biological nitraification and denitrification for drainage containing ammonia | |
JPS6153120B2 (en) | ||
JP3937625B2 (en) | Biological treatment method for organic waste | |
JPS6222678B2 (en) | ||
JPH0141115B2 (en) | ||
JPS58150496A (en) | Process for methane fermentation of waste liquid highly contg. nitrogen | |
JPH11216493A (en) | Intermittent-aeration activated sludge treatment | |
JP2003117584A (en) | Sewage treating method | |
JPH0116560B2 (en) | ||
JPH0249159B2 (en) | ||
JP2594733B2 (en) | Sewage nitrification denitrification method | |
JPH0291000A (en) | Batch-wise type soil water treatment process | |
JPH0131959B2 (en) | ||
JPH03161096A (en) | Treatment process for organic soil water | |
JPH0218155B2 (en) | ||
JPH03161095A (en) | Raw sewage treatment process | |
JPS62286596A (en) | Biological treatment of nitrogen-containing waste water | |
KR19980076922A (en) | Biological and chemical treatment method of sewage and wastewater and sewage and wastewater treatment system | |
JPS6253238B2 (en) |