JPS6316100A - Biological nitraification and denitrification for drainage containing ammonia - Google Patents

Biological nitraification and denitrification for drainage containing ammonia

Info

Publication number
JPS6316100A
JPS6316100A JP15804586A JP15804586A JPS6316100A JP S6316100 A JPS6316100 A JP S6316100A JP 15804586 A JP15804586 A JP 15804586A JP 15804586 A JP15804586 A JP 15804586A JP S6316100 A JPS6316100 A JP S6316100A
Authority
JP
Japan
Prior art keywords
nitrification
denitrification
ammonia
inflow end
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15804586A
Other languages
Japanese (ja)
Other versions
JPS6365399B2 (en
Inventor
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP15804586A priority Critical patent/JPS6316100A/en
Publication of JPS6316100A publication Critical patent/JPS6316100A/en
Publication of JPS6365399B2 publication Critical patent/JPS6365399B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the operating cost of the title method by comparting a nitrifying stage so that a plug flow is caused, and introducing both raw water and returned sludge into an inflow end of the nitrifying stage which is held at a specified pH. CONSTITUTION:Raw water 1 contg. ammonia is introduced into an inflow end 4 of a nitrifying stage 3 together with returned sludge 2. The nitrifying stage 3 is comparted and only the inflow end 4 is maintained at pH not less than 8.5. One part of ammonia contained in the raw water 1 is nitrified in the inflow end 4, and thereafter the residual ammonia is mixed with circulated denitrifying liquid 9 in the following nitration tanks 5-8 and successively nitrified. NO2<-> formed in the nitrifying stage is introduced into a denitrifying stage 11 and denitrified by adding alcohol 13 or the like as a hydrogen donor. Thereby the stable nitration can be performed.

Description

【発明の詳細な説明】 窒素分を生物学的にNo、−に硝化したのち脱窒する省
エネルギー、省資源的な生物学的硝化脱窒法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy-saving and resource-saving biological nitrification-denitrification method in which nitrogen is biologically nitrified to No, - and then denitrified.

〔発明の技術的背景並びに従来の技術〕生物学的脱窒素
法は、硝化菌(亜硝酸菌、硝酸菌)の作用を利用して窒
素化合物を好気的条件下でN0x(1101,N0I)
に硝化(酸化)したのち、脱窒素菌の作用を利用してH
oxを嫌気的条件下でN、ガスにまで還元除去するもの
である。脱窒素が終了するまでの反応過程を化学量論的
に表わすと次式のようになる。
[Technical Background and Prior Art of the Invention] Biological denitrification methods utilize the action of nitrifying bacteria (nitrite bacteria, nitrate bacteria) to convert nitrogen compounds into NOx (1101, NOI) under aerobic conditions.
After nitrification (oxidation), H is removed using the action of denitrifying bacteria.
This method reduces and removes ox to nitrogen and gas under anaerobic conditions. The reaction process until the completion of denitrification is expressed stoichiometrically as shown in the following equation.

硝化反応(好気的条件) HTh” + 1.50鵞→110!−+2B”+E、
O亜硝酸菌−一(1)MO,−+α50.→MO,−硝
酸菌−一(2)脱窒素反応(嫌気的条件) 110、”+4→N O,−十40      脱窒素
菌−−−−(3)No、”+ 1.5馬→α5N、↑+
OH−十馬0 脱窒素菌−−−−(4)上記硝化反応の
条件は、他の好気的微生物反応と同様に、溶存酸素、水
温、pHが適当に維持されていることであるが、硝化反
応は炭素性化合物を酸化する場合と異なり7%(”)式
に示されているように、アンモニア1当量に対して2当
量の■+ を発生する虫酸反応なので、硝化が進行すれ
ば、p″Hは低下する。ところが、硝化菌の至適pH範
囲は7.8〜a8にあり、pTiが5程度まで低下する
と硝化はほとんど停止する。このため、順調な硝化反応
が行なわれるには、廃水のpiが中性付近に維持されな
ければならない。
Nitrification reaction (aerobic conditions) HTh” + 1.50 → 110!-+2B”+E,
O nitrite bacteria-1(1) MO,-+α50. → MO, - Nitrate bacteria - 1 (2) Denitrification reaction (anaerobic conditions) 110, ``+4 → N O, - 140 Denitrification bacteria ---- (3) No, ''+ 1.5 horses → α5N , ↑+
OH-Juma0 Denitrification bacteria---(4) The conditions for the above nitrification reaction, like other aerobic microbial reactions, are that dissolved oxygen, water temperature, and pH are maintained appropriately. Unlike the case of oxidizing carbonaceous compounds, the nitrification reaction is an insect acid reaction that generates 2 equivalents of ■+ for 1 equivalent of ammonia, as shown in the 7% ('') formula, so as the nitrification progresses, , p″H decreases. However, the optimum pH range for nitrifying bacteria is 7.8 to a8, and when pTi drops to about 5, nitrification almost stops. Therefore, in order for the nitrification reaction to proceed smoothly, the pi of the wastewater must be maintained near neutrality.

上記(1)〜(4)式に示されるように、硝化には酸素
、脱窒素には水素供与体の供給が必要があるが、廃水に
含有される大量の窒素分を処理する場合には、酸素供給
動力費、水素供与体として使用されているメタノール、
pT1制御用のアルカリ剤など有価の工業薬品が大量に
消費され、脱窒素処理装置の運転経費のうえから大きな
問題となっている。
As shown in equations (1) to (4) above, it is necessary to supply oxygen for nitrification and a hydrogen donor for denitrification, but when treating a large amount of nitrogen contained in wastewater, , oxygen supply power cost, methanol used as hydrogen donor,
Large amounts of valuable industrial chemicals such as alkaline agents for pT1 control are consumed, which poses a major problem in terms of operating costs for denitrification treatment equipment.

脱窒素処理装置の硝化工程では、通常アンモニアをNO
5にまで硝化しているが、上記(1)〜(4)式かられ
かるように、硝化をNo、でとどめて脱窒素処理する方
が、硝化の酸素供給、脱窒素の水素供与体供給量が少な
くて済み、運転経費の点で有利である。すなわち、No
、型硝化の酸素量はNo、型硝化のI/4(1,5ot
 /20z)で済み、NOxの還元に消費される水素供
与体量もNo、はNo。
In the nitrification process of denitrification equipment, ammonia is normally converted into NO
However, as can be seen from equations (1) to (4) above, it is better to stop nitrification and denitrify at No. It requires less quantity and is advantageous in terms of operating costs. That is, No.
, the amount of oxygen for type nitrification is No, I/4 for type nitrification (1,5 ot
/20z), and the amount of hydrogen donor consumed for NOx reduction is also no.

の5/15(t5H,/2.s−)で足りる。このよう
に、No、型硝化の脱窒素処理には自明の利点があるに
もかかわらず、実際の脱窒素処理のほとんどがNOs型
硝化で行なわれている。これは、NO1型硝型金脱窒素
処理装置内で維持することが極めて困難であるからに外
ならない。しかしながら、pHおよびアンモニア濃度が
高いほどNO1型硝型金化りやすいという報告(下水運
動会誌701、7、JI&74.1970/7、遠矢泰
典「生物学的脱窒素法に関する研究(1)J)がなされ
ている。これは次の化学平衡式から、遊離のNH,がN
o、をNo、に硝化する硝酸菌の活性を阻害するためで
あるということが容易に推定できる。
5/15 (t5H, /2.s-) is sufficient. As described above, most of the actual denitrification treatments are carried out by NOs type nitrification, even though the denitrification treatment using No type nitrification has obvious advantages. This is because it is extremely difficult to maintain this in the NO1 type nitrate gold denitrification treatment equipment. However, there is a report that the higher the pH and ammonia concentration, the easier it is for NO1 type nitrification to occur (Journal of the Sewage Sports Association 701, 7, JI & 74. 1970/7, Yasunori Toya "Study on biological denitrification method (1) J)". From the following chemical equilibrium equation, free NH,
It can be easily inferred that this is to inhibit the activity of nitrate bacteria that nitrifies o to no.

NH4++0Tl−→NH,+4O−−(5)NH,:
遊離アンモニア この(5)式から、アンモニア濃度、pHの高いほど遊
離HE、濃度が増加し、No、型硝化の条件範囲となる
が、硝化をこのような条件で行なうことは窒素除去率、
アルカリ剤の供給経費のうえから困難であり、実施され
るに至っていない。
NH4++0Tl-→NH, +4O--(5)NH,:
Free ammonia From this equation (5), the higher the ammonia concentration and pH, the higher the free HE concentration, which falls within the condition range of No. type nitrification. However, performing nitrification under these conditions increases the nitrogen removal rate,
This is difficult due to the cost of supplying alkaline agents, and has not yet been implemented.

〔発明の目的〕[Purpose of the invention]

本発明は、排水中に含有されているアンモニアの硝化型
式を、省エネルギー、省資源の点で有利なNo、型硝化
型式に制御する方法を提供することを目的とするもので
ある。
An object of the present invention is to provide a method for controlling the nitrification type of ammonia contained in wastewater to the No. 1 nitrification type, which is advantageous in terms of energy saving and resource saving.

〔発明の構成〕[Structure of the invention]

本発明は、アンモニアを生物学的に硝化脱窒素する方法
において、硝化工程を栓流が生ずるように区画形成し、
原水と返送汚泥をpHがa5〜1(L5に保持されてい
る硝化工程の流入端に流入せしめてアンモニアの一部を
硝化したのちに、残部のアンモニアを該流入端に後続す
る硝化工程で硝化することによって硝化工程で亜硝酸イ
オンを蓄積し、次に該亜硝酸イオンを嫌気条件下で脱窒
したのち、該脱窒液を原水流入端に後続する硝化槽に循
環することを特徴とするアンモニア含有排水の生物学的
硝化脱窒法である。
The present invention provides a method for biologically nitrifying and denitrifying ammonia, in which the nitrification process is sectioned so that a plug flow occurs;
Raw water and returned sludge are allowed to flow into the inflow end of the nitrification process where the pH is maintained at a5 to 1 (L5) to nitrify some of the ammonia, and then the remaining ammonia is nitrified in the nitrification process that follows the inflow end. The method is characterized in that nitrite ions are accumulated in the nitrification process, and then the nitrite ions are denitrified under anaerobic conditions, and then the denitrification solution is circulated to the nitrification tank following the raw water inflow end. This is a biological nitrification and denitrification method for wastewater containing ammonia.

次に本発明の一実施態様を図面を参照しつつ説明する。Next, one embodiment of the present invention will be described with reference to the drawings.

第1図において、アンモニア含有原水1は返送汚泥2と
ともに硝化工程3の流入端4(第1硝化槽)に流入する
。硝化工程3は各硝化槽4〜8の液の混合を防止するた
め、区画形成されておシ、該流入端4のみpFlがa5
以上に維持されている。原水1中のアンモニアの一部が
該流入端4で硝化されたのち、残部のアンモニアは後続
硝化槽5〜8において循環脱窒液9と混合され、順次硝
化されていく。
In FIG. 1, ammonia-containing raw water 1 flows into an inflow end 4 (first nitrification tank) of a nitrification process 3 together with return sludge 2. In the nitrification step 3, in order to prevent the liquids in the nitrification tanks 4 to 8 from mixing, compartments are formed, and only the inlet end 4 has a pFl of a5.
It is maintained above. After a part of the ammonia in the raw water 1 is nitrified at the inflow end 4, the remaining ammonia is mixed with the circulating denitrification liquid 9 in the subsequent nitrification tanks 5 to 8, and is successively nitrified.

後続硝化槽5〜8のpHは特にアルカリ側に維持する必
要はないが、過度のpH低下によって硝化活性が低下す
る場合には、pHを7.0±15程度に制御すればよい
。脱窒液9を循環しているのは、脱窒に際して生じたア
ルカリ分を後続硝化槽5〜8の中和に利用するためであ
る。
The pH of the subsequent nitrification tanks 5 to 8 does not particularly need to be maintained on the alkaline side, but if the nitrification activity decreases due to excessive pH decrease, the pH may be controlled to about 7.0±15. The reason why the denitrification liquid 9 is circulated is to use the alkali content generated during denitrification for neutralizing the subsequent nitrification tanks 5 to 8.

このような条件の下に硝化を行うことにより、硝化工程
Sで生成するNO!−(No、” + NO,−)の大
部分はNO□−となる。流入端4のpTlを後続硝化槽
5〜8と同レベルのpH7,0±15に設定しても、硝
化゛は完全に遂行されるが、No!″″はほとんど蓄積
しない。NOx−を大量に蓄積するには流入端4のpT
lを高レベルに維持することが必要である。
By performing nitrification under these conditions, NO! produced in the nitrification process S! Most of -(No, " + NO, -) becomes NO□-. Even if the pTl of the inflow end 4 is set to pH 7.0 ± 15, which is the same level as the subsequent nitrification tanks 5 to 8, nitrification It is carried out perfectly, but No!"" hardly accumulates. To accumulate a large amount of NOx-, the pT of the inlet end 4
It is necessary to maintain l at a high level.

一方、硝化工程S全体のpE[をa5〜1(L5に制御
しても110!−を蓄積できるが、この場合pHつ 調整用のアルカリ剤10A消費量が本発明に比べて過大
となり、経済効果が損われる。
On the other hand, even if the pE[ of the entire nitrification process S is controlled to a5~1 (L5), 110!- can be accumulated, but in this case, the consumption of 10A of alkaline agent for pH adjustment becomes excessive compared to the present invention, and it is economical. The effect will be lost.

硝化工程3は第1図に示す如く多段の槽を用いてもよい
が、第2図に示す如く栓流が形成されるような細長い槽
を用いてもよい。また、NO2型硝化を誘起するには、
特に硝化工程Sの中で流入端4のみpFiをa5〜1(
L5に制御することが肝要なので、後続槽5〜8は1槽
の完全混合型でも可能である。しかしながら、多段槽あ
るいは栓流の形成される槽を用いて、流入端4から流れ
方向に順次アンモニアを硝化する方が確実に安定して1
01型硝化を行うことができる。
In the nitrification step 3, a multistage tank may be used as shown in FIG. 1, but a long and narrow tank in which a plug flow is formed as shown in FIG. 2 may also be used. In addition, to induce NO2 type nitrification,
In particular, in the nitrification process S, only the inlet end 4 has pFi set to a5~1(
Since it is important to control the temperature to L5, the succeeding tanks 5 to 8 may be of a one-tank complete mixing type. However, it is more reliable and stable to nitrify ammonia sequentially in the flow direction from the inflow end 4 using a multistage tank or a tank in which a plug flow is formed.
Type 01 nitrification can be performed.

硝化工程で生成したNo、″は脱窒工程11に流入し、
水素供与体としてアルコール13などが添加されて脱窒
される。脱窒液の大部分は後続硝化槽5〜6に循環され
、残部は再曝気槽14、沈殿槽15を経由して放流され
る。流入端のpHをa5にしでも硝化工程のNOx−中
のNo1−が増加しない場合には、pllを1時的に9
.0〜115程度に上昇し、No1−が蓄積したのちに
pHをa5に設定すればよい。ただし、長時間pHを1
1.0以上にすると、硝化菌の活性が著しく損われるの
で、この点注意が必要である。
No.'' generated in the nitrification process flows into the denitrification process 11,
Alcohol 13 or the like is added as a hydrogen donor for denitrification. Most of the denitrification liquid is circulated to the subsequent nitrification tanks 5 to 6, and the remainder is discharged via the reaeration tank 14 and the settling tank 15. If No1- in NOx- in the nitrification process does not increase even if the pH at the inflow end is set to a5, temporarily set pll to 9.
.. After the pH increases to about 0 to 115 and No. 1- is accumulated, the pH may be set to a5. However, if the pH is kept at 1 for a long time,
If it is over 1.0, the activity of nitrifying bacteria will be significantly impaired, so care must be taken in this regard.

次に本発明の1実施例について説明する。Next, one embodiment of the present invention will be described.

実施にあたシ、第1図に示すフローの装置を用い硝化、
脱窒処理を行った。実施の条件は次の通りである。
For implementation, nitrification was carried out using an apparatus with the flow shown in Figure 1.
Denitrification treatment was performed. The conditions for implementation are as follows.

硝化槽 50j(流入端1011後続硝化槽は第2〜第
5槽の4槽に均 等分割、それぞれ101) 脱窒槽 Sat 原 水  1111,0419 %、ボリヘプ)y5%
濃厚溶液を適宜希釈したものを原 水とした。
Nitrification tank 50j (Inflow end 1011, subsequent nitrification tank is equally divided into 4 tanks, 2nd to 5th tanks, 101% each) Denitrification tank Sat Raw water 1111,0419%, Borihep) y5%
The concentrated solution was appropriately diluted and used as raw water.

pll調−用アルカリ剤  MhOT1溶液返送汚泥量
   原水流入量と等量に設定循環脱窒液量  原水流
入量の5倍に設定設定p1!    流入端 a5 後続硝化槽第3槽 7.0 実施結果を表1に示す。
Alkaline agent for PLL adjustment MhOT1 solution Return sludge volume Set to the same volume as the raw water inflow volume Circulating denitrification liquid volume Set to 5 times the raw water inflow volume Set p1! Inlet end a5 Subsequent nitrification tank 3rd tank 7.0 The implementation results are shown in Table 1.

表1より硝化水の110x−の大部分がMO,″であり
、またメタノールの添加量もNO,″の脱窒必要量(0
11,01!/110.”−N中2.50に#/に#)
よシも少なくて済むことが実証された。また表示してい
ないが、流入端のpHを9.0〜10.5にしても表1
とは埋同様の結果を見られた。さらにpHを11.0に
設定したところ、硝化活性が著しく低下した。
From Table 1, most of the 110x- of nitrified water is MO,'', and the amount of methanol added is also the required denitrification amount of NO,'' (0
11,01! /110. ”-N to 2.50#/to#)
It has been proven that less waste is required. Although not shown, even if the pH at the inflow end is set to 9.0 to 10.5, Table 1
Similar results were seen. Furthermore, when the pH was set to 11.0, the nitrification activity decreased significantly.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によって硝化脱窒法を次のように
経済的な方法に改良することができる。
As described above, according to the present invention, the nitrification-denitrification method can be improved into an economical method as follows.

■ 硝化の酸素消費量が少ないので、酸素供給動力費を
節減することができる。
■ Oxygen consumption for nitrification is small, so oxygen supply power costs can be reduced.

■ 脱窒のためのアルコールが少なくて済む。■ Less alcohol is needed for denitrification.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を説明するための70−
概略図、第2図は他の実施例を説明するための70−概
略図で・ちる。 1−原水、2−返送汚泥、3−硝化工程、4−R,大端
(第1)硝化槽、9−循環脱窒液、10−アルカリ剤
FIG. 1 shows a 70-
FIG. 2 is a 70-schematic diagram for explaining another embodiment. 1-Raw water, 2-Return sludge, 3-Nitrification process, 4-R, big end (first) nitrification tank, 9-Circulating denitrification liquid, 10-Alkaline agent

Claims (1)

【特許請求の範囲】[Claims] 1、アンモニアを生物学的に硝化脱窒素する方法におい
て、硝化工程を栓流が生ずるように区画形成し、原水と
返送汚泥をpHが8.5〜10.5に保持されている硝
化工程の流入端に流入せしめてアンモニアの一部を硝化
したのちに、残部のアンモニアを該流入端に後続する硝
化工程で硝化することによつて硝化工程で亜硝酸イオン
を蓄積し、次に該亜硝酸イオンを嫌気条件下で脱窒した
のち、該脱窒液を原水流入端に後続する硝化槽に循環す
ることを特徴とするアンモニア含有排水の生物学的硝化
脱窒法。
1. In the method of biologically nitrifying and denitrifying ammonia, the nitrification process is divided into sections to generate plug flow, and the raw water and returned sludge are kept at a pH of 8.5 to 10.5. After a part of the ammonia is nitrified by flowing into the inlet end, the remaining ammonia is nitrified in the nitrification step subsequent to the inflow end, thereby accumulating nitrite ions in the nitrification step, and then the nitrite ions are accumulated in the nitrification step. A biological nitrification and denitrification method for ammonia-containing wastewater, which comprises denitrifying ions under anaerobic conditions and then circulating the denitrification solution to a nitrification tank following the raw water inflow end.
JP15804586A 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia Granted JPS6316100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15804586A JPS6316100A (en) 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15804586A JPS6316100A (en) 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia

Publications (2)

Publication Number Publication Date
JPS6316100A true JPS6316100A (en) 1988-01-23
JPS6365399B2 JPS6365399B2 (en) 1988-12-15

Family

ID=15663084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15804586A Granted JPS6316100A (en) 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia

Country Status (1)

Country Link
JP (1) JPS6316100A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198695A (en) * 1989-01-25 1990-08-07 Kurita Water Ind Ltd Nitrite type nitrification method
KR100315874B1 (en) * 1999-07-30 2001-12-13 채문식 Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
JP2006088092A (en) * 2004-09-27 2006-04-06 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing liquid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198695A (en) * 1989-01-25 1990-08-07 Kurita Water Ind Ltd Nitrite type nitrification method
KR100315874B1 (en) * 1999-07-30 2001-12-13 채문식 Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
JP2006088092A (en) * 2004-09-27 2006-04-06 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing liquid
JP4691938B2 (en) * 2004-09-27 2011-06-01 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus

Also Published As

Publication number Publication date
JPS6365399B2 (en) 1988-12-15

Similar Documents

Publication Publication Date Title
CA2780017A1 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
JPH0122039B2 (en)
JPS6316100A (en) Biological nitraification and denitrification for drainage containing ammonia
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JP2543745Y2 (en) Anaerobic / aerobic activated sludge treatment equipment
JPS62286598A (en) Biological nitration and denitrification of high temperature ammonia-containing waste water
JPH0149555B2 (en)
JPS58146495A (en) Treatment of organic waste liquid
JP3396959B2 (en) Nitrification method and apparatus
JPH09290290A (en) Treatment of coke-oven gas liquor
JPH11216493A (en) Intermittent-aeration activated sludge treatment
JPS59109293A (en) Biological denitrification method of waste water
JPS6015399B2 (en) Biological denitrification method for ammonia-containing wastewater
JPS58150496A (en) Process for methane fermentation of waste liquid highly contg. nitrogen
JPH0116560B2 (en)
JP2980534B2 (en) Carrier circulation method
JP2594733B2 (en) Sewage nitrification denitrification method
JPS6014997A (en) Treatment of organic filthy water
JPH04166297A (en) Treatment of simultaneous removal of nitrogen and phosphorous and method for mixed integral incubation of nitrification bacteria and phosphorous accumulative bacteria
JPS6015400B2 (en) Biological denitrification method for ammonia-containing wastewater
JPH0312958B2 (en)
JPS643558B2 (en)
JPH09290296A (en) Biological denitrification treatment of cyan-containing coke-oven gas liquor
JPS5949076B2 (en) Biological denitrification method for organic wastewater