JPS58146495A - Treatment of organic waste liquid - Google Patents

Treatment of organic waste liquid

Info

Publication number
JPS58146495A
JPS58146495A JP2879782A JP2879782A JPS58146495A JP S58146495 A JPS58146495 A JP S58146495A JP 2879782 A JP2879782 A JP 2879782A JP 2879782 A JP2879782 A JP 2879782A JP S58146495 A JPS58146495 A JP S58146495A
Authority
JP
Japan
Prior art keywords
liquid
tank
treatment
treated
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2879782A
Other languages
Japanese (ja)
Other versions
JPH0125633B2 (en
Inventor
Yoshitaka Matsuo
松尾 吉高
Masami Kitagawa
政美 北川
Toshihiro Tanaka
俊博 田中
Akiko Miya
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP2879782A priority Critical patent/JPS58146495A/en
Publication of JPS58146495A publication Critical patent/JPS58146495A/en
Publication of JPH0125633B2 publication Critical patent/JPH0125633B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove BOD, N and P at high rates from org. waste liquid by conducting only the nitrified liquid mixture to be conducted into a final settling basin into an oxygen enriching tank and subjecting the same to an oxygen enriching treatment then to solid-liquid sepn. in the final settling basin. CONSTITUTION:Liquid 11 to be treated contg. BOD, PO<3->4, NH<+>4, etc. is conducted into an anaeration tank 1, where the liquid is mixed with return sludge 17, and is anaerated. The anaerated liquid mixture 12 formed by said treatment is conducted to a denitrification tank 2, where the liquid is mixed with circulating liquid 18 contg. NO<->x fed from the terminal of a nitrification tank 3 to denitrify the liquid. The denitrified liquid mixture 13 formed by said treatment is conducted into the tank 3, where the liquid is aerated with the air 20 from air diffusion pipes 3' and is thus nitrified. Part of the nitrified liquid mixture 14 formed by the treatment is used as circulating liquid 18 and the rest is conducted into an oxygen enriching tank 4 where the liquid is aerated with the air 20 from an air diffusion pipe 4'. The oxygen enriched liquid mixture 15 is conducted to a final settling basin 5, where the liquid is separated to treated liquid 16 and settled activated sludge. The greater part of the sludge is used as return sludge 17 and the rest as excess sludge 19.

Description

【発明の詳細な説明】 本発明は、家庭下水ないし、産業廃液、それに類する有
機性廃水などの有機物とリンを含む廃水の処理法に関す
るもので、特にリン含有率の高い活性汚泥を生成するこ
とによって、有機性廃液からBOD、窒素ばかりでなく
リンをも除去する嫌気−好気活性汚泥法と言われる循環
式硝化脱室法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing organic matter and phosphorus, such as domestic sewage, industrial wastewater, and similar organic wastewater, and particularly to a method for producing activated sludge with a high phosphorus content. This paper relates to an improvement of a circulating nitrification and dechambering method called the anaerobic-aerobic activated sludge method, which removes not only BOD and nitrogen but also phosphorus from organic wastewater.

一般に、循環式硝化脱窒変法は1975年約後に南ア連
邦で開発された生物処理法で、第1図に示めされるよう
に、従前のBODと窒素の除去を主目的とした循環式硝
化脱窒法の被処理液および返送汚泥の流入端に、poも
NOx″も存在しない嫌気槽を付設し被処理液と返送汚
泥を脱窒槽KIL<まえにそこで定時間攪拌するだけの
技術である。報告(A、 R,Mc Laren et
 al :Effective Phosphorus
 Removal from SewagebyBio
logical Means l Wat8r 8. 
)’−Vo12 Nn(1976) )によればこのよ
り−な簡単ζ改変によって、リン含有能の高い活性汚泥
が選択的に生成され、有機性廃液からBOD、窒素ばか
りでなくリンをも高い効率で除去できるとしている。
In general, the modified cyclic nitrification and denitrification method is a biological treatment method developed in the Federation of South Africa around 1975. This is a technology that involves simply attaching an anaerobic tank in which neither PO nor NOx exists to the inflow end of the treated liquid and returned sludge in the nitrification-denitrification method, and stirring the treated liquid and returned sludge there for a fixed period of time before transferring the treated liquid and returned sludge to the denitrification tank KIL. Report (A, R, Mc Laren et al.
al: Effective Phosphorus
Removal from SewagebyBio
Logical Means l Wat8r 8.
)'-Vo12 Nn (1976)), this more simple ζ modification selectively produces activated sludge with a high phosphorus content, and can remove not only BOD and nitrogen but also phosphorus from organic wastewater with high efficiency. It is said that it can be removed by

発明者らは、この技術をわが国の都市下水処理に適用す
べく、住宅団地から排出される生活廃水を被処理液とし
て、その追認実験を行なった結果、その技術の有効性を
確認できたが、同時にこの実験によって、南ア連邦の下
水に較べBODil11度や窒素濃度が低く、シかもB
OD/N比が低いわが国の下水に本技術をそのままの形
で適用することは不都合であることもわかったこの従来
の循環式硝化脱窒法は、硝化槽末端から硝化処理済混合
液の一部を循環液として脱窒槽に循環返送し、循環液に
含まれているNO;を被処理液のHODないしそれに起
因する活性汚泥細胞内有機物を水素供与体として脱窒す
ることを特徴とし、その特徴によってメタノール等の薬
品性水素供与体を不要とすることを利点としている。も
し、循環液にNOx″とともに多量のDOが含まれれば
、被処理液のBODはり。
In order to apply this technology to urban sewage treatment in Japan, the inventors conducted a follow-up experiment using domestic wastewater discharged from residential complexes as the liquid to be treated, and were able to confirm the effectiveness of the technology. At the same time, this experiment revealed that the BODil was 11 degrees lower and the nitrogen concentration was lower than that of the sewage in South Africa.
It has been found that it is inconvenient to apply this technology in its original form to Japan's sewage, which has a low OD/N ratio. is circulated back to the denitrification tank as a circulating fluid, and the NO contained in the circulating fluid is denitrified using the HOD of the treated fluid or activated sludge intracellular organic matter caused by it as a hydrogen donor. The advantage of this method is that it eliminates the need for chemical hydrogen donors such as methanol. If the circulating fluid contains a large amount of DO as well as NOx, the BOD of the treated fluid will increase.

消費に使用され、それだけ脱窒できるNO7量も減り、
脱窒速度も低下することになる。このことは生し尿のよ
−うなりOD、窒素とも高濃度に存在する廃液や、南ア
連邦の下水のようにBOD/N比が高い下水を被処理液
とする限抄余り問題にならない。しかし、わが国の下水
のように総体的に稀薄で、しかもBOD/N比が低い廃
水を被処理液とする場合には非常に大きな問題□ であり、これを防ぐために少なくとも硝化槽末端のDo
を低く制御することが慣行されている。
The amount of NO7 that can be denitrified decreases as it is used for consumption.
The denitrification rate will also decrease. This does not become a problem when the liquid to be treated is waste liquid in which both OD and nitrogen are present in high concentrations, such as raw human waste, or sewage with a high BOD/N ratio, such as sewage in the Federation of South Africa. However, when the wastewater to be treated is wastewater that is generally dilute and has a low BOD/N ratio, such as sewage in Japan, this is a very big problem.To prevent this, at least the Do
It is customary to control this at a low level.

発明者らが行なった循環式硝化脱窒変法の追実験でもこ
のような制御なしには高い窒素除去率を得ることはでき
ず、この慣行技術の妥当性が確認できた。しかし、同時
に、循環式硝化脱窒変法に対してこのような硝化槽末端
のDO副制御行なうことはリン除去や処理液の清溌性に
障害を及ぼすという知見も得られた。すなわち硝化槽末
端のDOを制御すると、硝化済混合処理液が最終沈殿池
に流下するとそこに含まれている活性汚泥はただちに嫌
気化し、細胞内に保有していたリンを放出しはじめる。
Even in additional experiments of the modified circulating nitrification and denitrification method conducted by the inventors, it was not possible to obtain a high nitrogen removal rate without such control, confirming the validity of this conventional technique. However, at the same time, it was also found that performing such sub-control of DO at the end of the nitrification tank in the modified circulating nitrification-denitrification method impairs phosphorus removal and the cleanliness of the treated solution. That is, when the DO at the end of the nitrification tank is controlled, when the nitrified mixed treated liquid flows into the final settling tank, the activated sludge contained therein immediately becomes anaerobic and begins to release the phosphorus held within the cells.

そのために硝化済混合処理液に含まれる溶解性リンより
も高い濃度の溶解性リンが処理液に含まれ、それだけリ
ン除去率が低下する。また、その因果関係はまだ明らか
でないがこのような低Do制御を行なうと処理液のSS
濃度が高くな松、処理液が極端に濁る不都合が生じるの
である。
Therefore, the treatment liquid contains soluble phosphorus at a higher concentration than the soluble phosphorus contained in the nitrified mixed treatment liquid, and the phosphorus removal rate decreases accordingly. Also, although the causal relationship is not yet clear, such low Do control will reduce the SS of the processing liquid.
If the concentration is high in pine trees, the problem arises that the treatment solution becomes extremely cloudy.

本発明の目的は、これら従来の循環式硝化脱窒変法が有
するこのような二律背反性を解消する改良された循環式
硝化脱窒方法を提供するところにある。
An object of the present invention is to provide an improved cyclic nitrification-denitrification method that eliminates the trade-offs of these conventional modified cyclic nitrification-denitrification methods.

本発明は最終沈殿池に導かれる硝化処理済混合液だけ、
より高濃度のDoが存在する動的状態で気曝されている
酸素富化槽に導いて酸素富化処理を行ない、得られた酸
素富化処理済混合液を最終沈殿池に供して固液分離処理
することを特徴とするものである。
In the present invention, only the nitrified mixed liquid is led to the final settling tank.
The oxygen-enriched mixture is introduced into an oxygen enrichment tank that is exposed to air in a dynamic state where a higher concentration of Do is present, and the resulting oxygen-enriched mixed solution is sent to a final settling tank to form a solid-liquid. It is characterized by separate processing.

即ち、最終沈殿池からの返送汚泥と被処理液を嫌気槽に
導いて嫌気処理を行ない、そこで得られた嫌気処理済混
合液を脱窒槽に導き、ここで後段の硝化槽から送られて
くるNO7を含む循環液と接触混合させて脱窒処理を行
ない、そこで得られた脱窒処理済混合液を酸素含有気体
で気曝される硝化槽に導いて硝化処理を行ない。
That is, the returned sludge and liquid to be treated from the final settling tank are led to an anaerobic tank for anaerobic treatment, and the anaerobically treated mixed liquid obtained there is led to a denitrification tank, where it is sent from the subsequent nitrification tank. The denitrification treatment is carried out by contacting and mixing with the circulating fluid containing NO7, and the denitrification-treated mixed liquid obtained therein is led to a nitrification tank exposed to oxygen-containing gas to carry out the nitrification treatment.

得られた硝化処理済混合液の一部は循環液として前記脱
窒槽に返送し、残部は酸素含有気体で気曝される酸素富
化槽に導いて気曝処、埋を行なった後に最終沈殿池に導
き処理液と返送用の濃縮活性汚泥に固液分離することを
特徴とした有機性廃液からBOD、窒素、リンを同時に
除去する方法である。
A part of the obtained nitrified mixed liquid is returned to the denitrification tank as a circulating liquid, and the remaining part is led to an oxygen enrichment tank where it is aerated with an oxygen-containing gas, and then subjected to final precipitation after being buried. This is a method for simultaneously removing BOD, nitrogen, and phosphorus from organic waste liquid, which is characterized by solid-liquid separation into a treated liquid sent to a pond and concentrated activated sludge for return.

本発明の一実施態様を第2図を参照して説明すると、B
OD、PO4およびNH4などの還元性窒素化合物を含
む被処理液11は嫌気槽1に導かれ、DOもNOlも実
質的に存在しない状態下で返送汚泥17と攪拌機10で
混合され。
One embodiment of the present invention will be described with reference to FIG.
The liquid to be treated 11 containing reducing nitrogen compounds such as OD, PO4, and NH4 is led to the anaerobic tank 1, and mixed with the returned sludge 17 by the stirrer 10 in a state where neither DO nor NOl is substantially present.

嫌気処理を受ける。この嫌気処理過程で活性汚泥はその
細胞内リンをpoニーに転化したのちそれを溶液側に放
出する。このリン放出と共役して、溶液側に存在するB
ODの少なくとも一部は活性汚泥に非酸化的に摂取され
、細胞内有機ここで後続の硝化槽6端末より送られるN
O;を含む循環液18と混合され、酸素含有気体例えば
空気20を散気器6′から供給し気曝しつつ脱窒処理を
受ける。この脱窒処理過程において活性汚泥は、その細
胞内有機物および溶液側に残留するBODを水素供与体
とする脱窒反応によってそれら有機物を酸化しながら循
環液18とともに送られてたNOfをN2. Neoな
どに転換するとともに溶液側に存在するP〇七の少なく
とも一部を細胞内に摂取し、細胞内リンとして蓄積する
。このようにして生成された脱窒処理済混合液13は空
気あるいはそれに準する酸素含有気体20を散気器5′
から供給している気曝された硝化槽6に導かれ、ここで
硝化処理を受ける。この硝化処理過程で、 NH:ない
しそれと同等の還元性窒素化合物が活性汚泥に共生する
硝化附の作用により、NO′x(NOlないしNo1)
へと酸化される。また、硝化に並行して活性汚泥は脱窒
処理過程で酸化しきれなかった細胞内有機物および溶液
側BODを更に酸化しそれと共役して未摂取の溶液側P
O;−を細胞内に摂取し、細胞内リンとして蓄積する。
undergo anaerobic treatment. During this anaerobic treatment process, the activated sludge converts its intracellular phosphorus into pony and then releases it into the solution. Coupled with this phosphorus release, B present on the solution side
At least a portion of the OD is ingested into the activated sludge in a non-oxidative manner, where it is converted into intracellular organic matter and N, which is sent from the subsequent 6 terminals of the nitrification tank.
It is mixed with the circulating liquid 18 containing O; and undergoes denitrification treatment while being aerated with an oxygen-containing gas such as air 20 supplied from the diffuser 6'. In this denitrification treatment process, the activated sludge oxidizes the organic matter through a denitrification reaction using the intracellular organic matter and BOD remaining on the solution side as hydrogen donors, while converting NOf, which was sent together with the circulating fluid 18, into N2. At the same time as it is converted to Neo etc., at least a part of P07 present in the solution is taken into the cells and accumulated as intracellular phosphorus. The denitrified mixed liquid 13 generated in this way is transferred to air or a similar oxygen-containing gas 20 to the diffuser 5'.
It is guided to an aerated nitrification tank 6 supplied from the nitrification tank 6, where it undergoes nitrification treatment. In this nitrification process, NH: or an equivalent reducing nitrogen compound coexists with the activated sludge, and due to the nitrification action, NO'x (NOl or No. 1) is produced.
oxidized to In addition, in parallel with nitrification, activated sludge further oxidizes intracellular organic matter and solution-side BOD that could not be oxidized during the denitrification process, and conjugates with this to cause uningested solution-side P.
O;- is taken into cells and accumulated as intracellular phosphorus.

このようにして生成された硝化処理済混合液最終沈殿池
5ではなく酸素富化槽4に送られる。
The nitrified mixed liquid thus generated is sent to the oxygen enrichment tank 4 instead of the final settling tank 5.

この場合前記硝化槽3の末端部、とりわけ循環液18を
取り出す近傍のDoを硝化に悪影響を及ぼさない範囲で
低く制御することが重要である。都市下水処理に本性を
適用する場合の最適DO制御範囲は0.2〜0.8■/
lであるがB OD/N比の高い廃液や、BOD、Nと
も高濃度な生し尿の廃液を被処理液とする場合にはその
範囲を0.2〜1.8 m9/l tlc詐容できる。
In this case, it is important to control the Do at the end of the nitrification tank 3, particularly in the vicinity where the circulating fluid 18 is taken out, to a low level within a range that does not adversely affect nitrification. The optimal DO control range when applying nature to urban sewage treatment is 0.2 to 0.8 ■/
However, if the liquid to be treated is waste liquid with a high BOD/N ratio or waste liquid of human waste with high concentrations of both BOD and N, the range is 0.2 to 1.8 m9/l TLC fraud can.

−この制御は手動的に行なってもよいが、第2図例のご
とく循環液18の経路にDO計8を設置し、その指示信
号によって通気量調整器9を自動的に作動させれば容易
に自動制御できる。
- This control may be performed manually, but it is easy if a DO meter 8 is installed in the path of the circulating fluid 18 as shown in the example in Fig. 2, and the ventilation amount regulator 9 is automatically activated by the instruction signal from the DO meter 8. can be automatically controlled.

前記酸素富化槽4に流下した硝化処理済混合液14はこ
こで更に酸素含有気体20を放出する散気器4′で気曝
処理を受ける。この気曝処理の目的は厳終沈殿池におけ
る嫌気化を防ぐことであり、具体的にはDo濃度の高い
状態で気曝することによって、活性汚泥に残留する細胞
内有機物を減少させることである。
The nitrified mixed liquid 14 flowing down into the oxygen enrichment tank 4 is further subjected to aeration treatment in an aerator 4' which releases an oxygen-containing gas 20. The purpose of this aeration treatment is to prevent anaerobic conditions in the final sedimentation tank, and specifically, by aerating at a high Do concentration, the intracellular organic matter remaining in the activated sludge is reduced. .

この場合DO濃度は2.0■/lでは不足で、4.01
1に9/lで十分であるのでそれ以上にするのが好まし
い。この酸素富化槽4の規模は単純な滞留時間で決める
べきではなく、被処理液11の強度や、混合液の活性汚
泥(MLSS)濃度を魁酌した1みかげF/M比1をパ
ラメータとして決定されるべきである。ここでFはこの
システム全体に1日当り負荷されるBOD量jkp−B
OD/日〕であり、Mは酸素富化槽4に存在する1、f
 L S Sで表示される活性汚泥量(4−h<Lss
)である。こきいはと高い数値をとることができる傾向
にあるが、それでも最大7 kg−BOQ/kf’−m
r、s s x日にとどめることが好ましい。なお、前
記酸素富化槽4と硝化槽3は必ずしも硝化槽3と仕切ら
れている必要はなく、たとえばその種形状が栓流型を保
障し、帯域別にDO′a度を保障し得る曝気槽であるな
らば、硝化槽6と酸素富化[4は物理的に一体化された
曝気槽であってもよい。
In this case, the DO concentration is insufficient at 2.0 ■/l, and 4.01
Since 1 to 9/l is sufficient, it is preferable to use more than that. The scale of this oxygen enrichment tank 4 should not be determined simply by the residence time, but should be determined based on the F/M ratio 1, which takes into account the strength of the liquid 11 to be treated and the activated sludge (MLSS) concentration of the mixed liquid. It should be determined as follows. Here, F is the BOD amount jkp-B loaded on this entire system per day.
OD/day], M is 1, f present in the oxygen enrichment tank 4
Activated sludge amount displayed as LSS (4-h<Lss
). Kokii tends to be able to take very high numbers, but still up to 7 kg-BOQ/kf'-m
r, s s It is preferable to limit it to x days. Note that the oxygen enrichment tank 4 and the nitrification tank 3 do not necessarily have to be separated from the nitrification tank 3; for example, the oxygen enrichment tank 4 and the nitrification tank 3 need not be separated from each other; for example, an aeration tank whose shape ensures a plug flow type and which can ensure DO'a degrees in each zone is used. If so, the nitrification tank 6 and the oxygen enrichment tank [4] may be a physically integrated aeration tank.

このような条件下で生成された高濃度のDOを含み、し
かも、そこに含まれる活性汚泥がより安定化された酸素
富化処理済混合液は最終沈殿池5に導かれ、ここで処理
液16と沈殿活性汚泥とに固液分離される。この沈殿活
性汚泥の大部分は返送汚泥17として撮気槽1に送られ
The oxygen-enriched mixed liquid, which contains a high concentration of DO and which has more stabilized activated sludge, generated under these conditions is led to the final settling tank 5, where the treated liquid is Solid-liquid separation is performed into 16 and precipitated activated sludge. Most of this settled activated sludge is sent to the aeration tank 1 as return sludge 17.

残部は余剰汚泥19として系外に排出される。The remainder is discharged outside the system as surplus sludge 19.

次に本発明の夾施例及び比較例を以下に示す。Next, examples of the present invention and comparative examples are shown below.

(比較例) EM社住宅団地から排出される生活廃水を被処理液とし
て、第1図に示される従来の循環式硝化脱窒変法の追試
験を行なった。この試験施設の仕様と流量条件を第1狭
に示す。
(Comparative Example) A supplementary test was conducted using a modified conventional circulating nitrification-denitrification method shown in FIG. 1 using domestic wastewater discharged from an EM housing complex as the liquid to be treated. The specifications and flow conditions of this test facility are shown in the first column.

第1実験区では、硝化槽端末すなわち第4画室ノD O
ヲ4.5 MVl 〜5.2 m9/lにして運転した
ところ、リン除去や処理液の清皺性の点では優れた処理
成績が得られた。しかし、脱窒槽に持込まれるDo量は
被処理液がシステム全体に持込む溶解性BODitの4
2%に達し、脱窒処理済混合液には常時NOxが残留し
、全体の窒素除去率は64チにとどまった(第2表参照
)第2表 第1実験区の運転条件と水質分析平均値(w
V′t)註ン脱窒液、硝化液は混合液上置について分析
そこで第2実験区、第3実験区では、硝化槽第4画室の
00をそれぞれ2.7〜1.8 TlVt、 0゜8〜
0.2 ”Q/lの範囲に制御して運転した。その結果
Doが低い程高い窒素除去率が得られたが。
In the first experimental section, the nitrification tank terminal, that is, the fourth compartment D O
When operated at 4.5 MVl to 5.2 m9/l, excellent treatment results were obtained in terms of phosphorus removal and treatment liquid cleanliness. However, the amount of Do brought into the denitrification tank is 4
2%, NOx remained in the denitrified mixed liquid at all times, and the overall nitrogen removal rate remained at 64 cm (see Table 2).Table 2 Operating conditions and water quality analysis average of the first experimental area value (w
V't) Note: Denitrification solution and nitrification solution are analyzed by placing the mixed solution on top. Therefore, in the second and third experiment sections, 00 in the fourth compartment of the nitrification tank was set to 2.7 to 1.8 TlVt, 0, respectively.゜8~
The operation was controlled within the range of 0.2"Q/l. As a result, the lower the Do, the higher the nitrogen removal rate was obtained.

リン除去や処理液の装置性は逆圧悪化した。とりわけ、
顕著な現象は、最終沈殿池でのリン溶出である。すなわ
ち、硝化槽第4画室のDoを低下させても、硝化処理済
混合液の溶解po4  濃度は第1実験区のそれとはと
変らなかったが、処理液の溶解PO4濃度はDoが低い
ほど高くなり、硝化処理済混合液のそれとの差は大きく
なった(第3表、第4表参照)。また処理液のSS濃度
は、−2実験区までは2次処理水として許容できる濃度
であったが、第3実験区になると極端に高くなった。こ
のSSはリン含有率が高いため処理液の全リン濃度もそ
れに劉応して高くなった。
Phosphorus removal and treatment liquid equipment performance deteriorated due to back pressure. Above all,
A notable phenomenon is phosphorus leaching in the final settling basin. In other words, even if the Do in the fourth compartment of the nitrification tank was lowered, the dissolved PO4 concentration in the nitrified mixed solution did not change from that in the first experimental section, but the lower the Do, the higher the dissolved PO4 concentration in the treated solution. The difference from that of the nitrified mixed liquid was large (see Tables 3 and 4). Further, the SS concentration of the treated liquid was acceptable as secondary treated water up to the -2 experimental group, but became extremely high in the third experimental group. Since this SS had a high phosphorus content, the total phosphorus concentration of the treatment solution also increased accordingly.

第3表 第2実験区の運転条件と水質分析平均値註)脱
窒液、硝化液は混合液上澄について分析第4表第3実験
区の運転条件と水質分析平均値註)脱室液、硝化液は混
合液上置について分析このような硝化槽端末Do制御値
の二律背反性を解決するために第2図例に相当する本発
明法の処理試験を第4.第5実験区で行なった。
Table 3 Operating conditions and water quality analysis average values for the 2nd experimental area Note) Denitrifying and nitrifying solutions are analyzed for the mixed liquid supernatant Table 4 Operating conditions and water quality analysis average values for the 3rd experimental area Note) Derooming liquid , the nitrifying solution was analyzed by placing the mixed solution above. In order to solve this trade-off of the Do control value at the terminal of the nitrifying tank, a treatment test of the method of the present invention corresponding to the example in FIG. 2 was carried out in the fourth section. This was carried out in the 5th experimental area.

第4実験区では循環液はそのまま硝化檜第4画室より取
出し硝化槽と最終沈殿池の間に新たに15t(みかけF
/M比は6.6kf−BODA−ML88X日に相当)
の円筒形曝気塔を酸素富化槽として設置し、そのDO濃
度を4.5〜5.5■/lに制御した。しかし、第5表
にみる通り。
In the 4th experimental area, the circulating fluid was directly taken out from the 4th compartment of the nitrifying cypress, and 15 t (apparent F.
/M ratio is equivalent to 6.6kf-BODA-ML88X days)
A cylindrical aeration tower was installed as an oxygen enrichment tank, and its DO concentration was controlled at 4.5 to 5.5 μ/l. However, as shown in Table 5.

処理状況は余り改善されなかった。このことから、最終
沈殿池でのリン溶出を防ぐためには。
The processing situation did not improve much. From this, in order to prevent phosphorus elution in the final sedimentation tank.

単に流出混合液のDo濃度を高めるだけでは不十分であ
り、活性汚泥を高りO11度下で安定化させる必要があ
り、そ、れには一定程度規模の酸素富化槽が必要である
と判断した。
It is not enough to simply increase the Do concentration in the effluent mixture; it is necessary to stabilize the activated sludge at a high temperature of 11 degrees Celsius, which requires an oxygen enrichment tank of a certain size. It was judged.

(実施例−2) そこで第5実験【では、硝化槽としては3画室分(0,
47m’)だけ利用し、その末端(第3@J室)のDO
を0.2〜0.8119/l Itこ制御し、循環液は
そ、こから取りんした。また旧硝化槽第4画室(0,1
7m’)は酸素富化槽として利用し、そのり。
(Example-2) Therefore, in the fifth experiment [3 compartments (0, 0,
47m') and the DO at its end (3rd @ Room J)
was controlled at 0.2 to 0.8119/l, and the circulating fluid was taken from there. Also, the 4th compartment of the former nitrification tank (0, 1
7m') will be used as an oxygen enrichment tank.

濃度を4.2〜5.5 ’l’9/lに制御した。この
時の酸素富化室に?けるみかけF/M比は0.6’f−
BOD/J−MLSSX日に相当する。第5表及び第6
表にみる通り、その処理状況は、すべての水項目からみ
て満足すべきものであった。
The concentration was controlled at 4.2-5.5'l'9/l. In the oxygen enrichment chamber at this time? The apparent F/M ratio is 0.6'f-
Corresponds to BOD/J-MLSSX day. Tables 5 and 6
As shown in the table, the treatment status was satisfactory in terms of all water items.

第5表 第4実験区の運転条件と水質分析平均値(my
7t )第6表 第5実験区の運転条件と水質分析平均
値(rIVt)本発明は、従来の罐気−好気活性汚泥法
における従来の問題点を解消でき、嫌気−好気活性汚泥
法−での処理水に含まれる溶解性リンは大巾に減少しリ
ン除去率が著しく向上し得て、SS濃度も低くなってS
Sの少ない?*溌な、しかも実質的にリンの存在しない
(全リン濃度とじて03■/を以下)の処理液を得られ
るとともに。
Table 5 Operating conditions and water quality analysis average values (my
7t) Table 6 Operating conditions and water quality analysis average value (rIVt) of the 5th experimental area The present invention can solve the conventional problems in the conventional canned-aerobic activated sludge method, - The soluble phosphorus contained in the treated water can be greatly reduced, the phosphorus removal rate can be significantly improved, and the SS concentration can also be lowered.
Less S? * It is possible to obtain a processing solution that is vibrant and substantially free of phosphorus (total phosphorus concentration of 0.3 mm/l or less).

家庭下水のように稀薄な廃液を対象とし、ても。Even for dilute waste liquids such as domestic sewage.

好気槽に所要の活性汚装置が容易に維持でき。The activated septic equipment required for the aerobic tank can be easily maintained.

そのことによって安定して高率のBOD除去を達成し得
るし、また微粒状SSに対して完全な沈降分離を配慮す
る必要がなく、嫌気−好気活性汚泥法における固液分離
法として施設面積や固液分離効率の点で著しく効果的で
ある。
As a result, it is possible to achieve a stable and high rate of BOD removal, and there is no need to consider complete sedimentation separation for fine particulate SS. It is extremely effective in terms of solid-liquid separation efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の循環式硝化説望法のフローシート、第2
図は本発明方法のフローシートである。 1・・・様気槽、2・・・脱窒紫檀、6・・・硝化槽、
4・・・酸素富化槽、5・・・最終沈殿池、6,7・・
・循環ポンプ、8・・・Do計、9・・・通気量調整器
、10・・・攪拌機、11・・・被処理液、  12.
1.5.14.15・・・混合液、16・・・処理液1
7・・・返送汚泥、18・・・循環液、1ν・・・余剰
汚泥、20・・・酸素含有気体。
Figure 1 is a flow sheet for the conventional cyclic nitrification process;
The figure is a flow sheet of the method of the present invention. 1... air tank, 2... denitrification rosewood, 6... nitrification tank,
4...Oxygen enrichment tank, 5...Final sedimentation tank, 6,7...
- Circulation pump, 8... Do meter, 9... Aeration amount regulator, 10... Stirrer, 11... Liquid to be treated, 12.
1.5.14.15...Mixed liquid, 16...Treatment liquid 1
7...Return sludge, 18...Circulating liquid, 1ν...Excess sludge, 20...Oxygen-containing gas.

Claims (1)

【特許請求の範囲】 1、最終沈殿池からの返送汚泥と被処理液とを混合して
棹気性状態下で様気処理し、この嫌気処理済混合液をN
Oxを含む硝化循環液と接触混合させて脱窒処理するも
のにおいて、核脱窒処理済混合液を酸素含有気体で気曝
しつつ硝化処理すると共に、該硝化処理済混合液の一部
を循環液とし−て前記脱窒工程に返送し。 残部を酸素含有気体で気曝しつつ酸素富化処理を行なっ
て前記最終沈殿池に導き処理液と返送用の濃縮活性汚泥
とに固液分離することを%徴とする有機性廃液の処理方
法。 2、前記酸素富化処理工程が、DO量を4.0〜を以上
に制御して処理するものである特許請求の範囲第1項記
載の処理方法。 6、前記酸素富化処理工程が1日当り負荷され6 HO
Dt (kf−BOD/日) (F) ト酸素富化処理
工程に存在する活性汚泥量(1w−uLss )(M)
kノ比を7 kg−B ODA「M L S S ・日
以下に制御されて処理するものである特許請求の範囲第
1項又は第2項記載の処理方法。 4、前記硝化処理工程が、気鳴される硝化槽内で処理さ
れるものであって、該硝化槽の末端部をD O0,2〜
08〜/lの範囲kC制御して処理するものである特許
請求の範囲第1項乃至第3項の少なくともいずれか一つ
の項記載の処理方法。
[Claims] 1. The sludge returned from the final settling tank and the liquid to be treated are mixed and treated under an aerobic condition, and the anaerobically treated mixed liquid is
In a device that performs denitrification treatment by contacting and mixing with a nitrification circulating liquid containing Ox, the nuclear denitrified mixed liquid is nitrified while being aerated with oxygen-containing gas, and a part of the nitrified mixed liquid is transferred to the circulating liquid. It is then returned to the denitrification process. A method for treating an organic waste liquid, which comprises carrying out an oxygen enrichment treatment while aerating the remainder with an oxygen-containing gas, leading it to the final settling tank, and performing solid-liquid separation into a treated liquid and concentrated activated sludge for return. 2. The treatment method according to claim 1, wherein the oxygen enrichment treatment step is performed by controlling the amount of DO to 4.0 or more. 6. The oxygen enrichment treatment step is loaded per day with 6 HO
Dt (kf-BOD/day) (F) Amount of activated sludge present in the oxygen enrichment treatment process (1w-uLss) (M)
The treatment method according to claim 1 or 2, wherein the treatment is carried out by controlling the k ratio to 7 kg-B ODA "MLSS · days or less. 4. The nitrification treatment step comprises: The process is carried out in a nitrification tank where air is removed, and the end of the nitrification tank is
A processing method according to at least one of claims 1 to 3, wherein the processing is carried out under kC control in the range of 08 to /l.
JP2879782A 1982-02-26 1982-02-26 Treatment of organic waste liquid Granted JPS58146495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2879782A JPS58146495A (en) 1982-02-26 1982-02-26 Treatment of organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2879782A JPS58146495A (en) 1982-02-26 1982-02-26 Treatment of organic waste liquid

Publications (2)

Publication Number Publication Date
JPS58146495A true JPS58146495A (en) 1983-09-01
JPH0125633B2 JPH0125633B2 (en) 1989-05-18

Family

ID=12258410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2879782A Granted JPS58146495A (en) 1982-02-26 1982-02-26 Treatment of organic waste liquid

Country Status (1)

Country Link
JP (1) JPS58146495A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129194A (en) * 1983-12-16 1985-07-10 Kurita Water Ind Ltd Treatment of sewage
WO1994011313A1 (en) * 1992-11-06 1994-05-26 THE MINISTER FOR PUBLIC WORKS for and on behalf ofTHE STATE OF NEW SOUTH WALES Biological phosphorus removal from waste water
US6921486B2 (en) * 2002-11-14 2005-07-26 Stephen Hough Waste activated sludge anaerobic contact waste stream treatment process
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2013537107A (en) * 2010-09-20 2013-09-30 アメリカン・ウォーター・ワークス・カンパニー,インコーポレーテッド Optimized nutrient removal from wastewater
US9656893B2 (en) 2010-09-20 2017-05-23 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal with energy recovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223857A (en) * 1975-08-15 1977-02-23 Kurita Water Ind Ltd Biological denitrification disposal apparatus
JPS6254076A (en) * 1985-09-02 1987-03-09 Ishikawajima Harima Heavy Ind Co Ltd Ion plating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223857A (en) * 1975-08-15 1977-02-23 Kurita Water Ind Ltd Biological denitrification disposal apparatus
JPS6254076A (en) * 1985-09-02 1987-03-09 Ishikawajima Harima Heavy Ind Co Ltd Ion plating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129194A (en) * 1983-12-16 1985-07-10 Kurita Water Ind Ltd Treatment of sewage
WO1994011313A1 (en) * 1992-11-06 1994-05-26 THE MINISTER FOR PUBLIC WORKS for and on behalf ofTHE STATE OF NEW SOUTH WALES Biological phosphorus removal from waste water
US5543051A (en) * 1992-11-06 1996-08-06 The Minister For Public Works And Services For And On Behalf Of The State Of New South Wales Biological phosphorus removal from waste water
US6921486B2 (en) * 2002-11-14 2005-07-26 Stephen Hough Waste activated sludge anaerobic contact waste stream treatment process
AU2003287662B2 (en) * 2002-11-14 2009-08-13 Wasac Llc Waste activated sludge anaerobic contact waste stream treatment process
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2013537107A (en) * 2010-09-20 2013-09-30 アメリカン・ウォーター・ワークス・カンパニー,インコーポレーテッド Optimized nutrient removal from wastewater
US9505644B2 (en) 2010-09-20 2016-11-29 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal
US9656893B2 (en) 2010-09-20 2017-05-23 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal with energy recovery

Also Published As

Publication number Publication date
JPH0125633B2 (en) 1989-05-18

Similar Documents

Publication Publication Date Title
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
JPH029879B2 (en)
JPS58146495A (en) Treatment of organic waste liquid
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JPS6254075B2 (en)
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JPH04151000A (en) Method and apparatus for simultaneous removal of nitrogen and phosphorus
CN113620426B (en) Multistage anoxic-aerobic sewage treatment equipment and method
CN113620427B (en) Biochemical treatment equipment and method for denitrification and dephosphorization
CN110746035B (en) Sewage denitrification reactor and control method thereof
JPS59109293A (en) Biological denitrification method of waste water
JPS6216159B2 (en)
JPS6244998B2 (en)
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JPH09271796A (en) Sewage treating device
JPS6218237B2 (en)
JPS61125490A (en) Treatment of organic waste water
JPS61197097A (en) Method for denitrifying waste water
JPS61125491A (en) Treatment of organic waste water
JPH0135718B2 (en)
JPS60206493A (en) Simultaneous removal of nitrogen and phosphorus in sewage
JP2001286883A (en) Method and device for treating sewerage flowing into terminal disposal plant
JPH03146195A (en) Removal of nitrogen from contaminated water and its device
JPH0125635B2 (en)