JPS61125490A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPS61125490A
JPS61125490A JP24776384A JP24776384A JPS61125490A JP S61125490 A JPS61125490 A JP S61125490A JP 24776384 A JP24776384 A JP 24776384A JP 24776384 A JP24776384 A JP 24776384A JP S61125490 A JPS61125490 A JP S61125490A
Authority
JP
Japan
Prior art keywords
sludge
tank
water
phosphorus
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24776384A
Other languages
Japanese (ja)
Inventor
Takao Ikehata
池幡 隆夫
Masaaki Ito
公明 伊藤
Ichiro Sato
一郎 佐藤
Yoji Ogaki
陽二 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24776384A priority Critical patent/JPS61125490A/en
Publication of JPS61125490A publication Critical patent/JPS61125490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove stably phosphorus from feed water by preventing the outflow of the sludge having the larger BOD quantity from a water way for treating sewage into a settling basin owing to an increase in the BOD load of the feed water. CONSTITUTION:The feed water is passed through an absolute anaerobic tank 14 and is introduced into the water way 11 for treating sewage which has a water circulator 16 and aerators 17, 172 and forms flatly a closed circuit. The sludge discharged from said water way is introduced into the settling basin 13 and the water treated in the basin 13 is discharged to the outside of the system. At least part of the settled sludge is returned to the tank 14 from which the sludge is introduced together with the feed water again into the above- mentioned water way. The sludge from said water way is post-aerated by a post-aerator 18 in the mid-way of introducing the same into the basin 13. As a result not only the nitrogen can be effectively removed but also the outflow of the sludge having the large BOD quantity from the water way 11 into the settling basin owing to the fluctuation of the BOD load (more particularly the increase of the BOD load) of the feed water is prevented. The stable removal of phosphorus is thus made possible.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、有機性排水の処理方法に関し、特に排水中の
窒素及びリンの除去を行う処理方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for treating organic wastewater, and particularly to a method for removing nitrogen and phosphorus from wastewater.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、中小規模向は下水処理設備として、オキシデーシ
ョン・ディッチ法(00法)が注目されている。かかる
00法が注目される理由としては、■省エネルギー型の
システムである、■前段の沈澱池を省略できる、■維持
管理が容易である、■負荷変動に強い、■汚泥の発生量
が少ない、等が挙げられる。
In recent years, the oxidation ditch method (00 method) has been attracting attention as a sewage treatment facility for small and medium-sized businesses. The reasons why the 00 method is attracting attention are: ■ It is an energy-saving system; ■ It is possible to omit the sedimentation tank in the previous stage; ■ It is easy to maintain; ■ It is resistant to load fluctuations; ■ It generates little sludge. etc.

一方、湖沼、内湾等の閉鎖性水域においては、近年、富
栄養化防止を目的として汚染の原因である窒素とリンを
規制する動きがあり、一部の地域では既に排出規制が実
施されている。このような情勢に素早く対応するため、
本出願人は既に嫌気槽とODとを組合わせた生物脱窒、
説リン方法を提案したく特願昭58−174328号)
。この方法を第2図に示す排水処理装置を参照して説明
する。図中の1は、中央に仕切り板2が配置されたオキ
シデーション・ディッチ槽である。こうした仕切り板2
をディッチ槽1に配置することにより、同槽1に平面的
な閉回路が形成される。前記ディッチ槽1には、水循環
を目的とした水中ブOベラ3及び酸素を供給するための
曝気器としての散気管4が配置されている。前記水中ブ
Oベラ3と、前記散気管4とは分離され、置数気管4を
適宜の位置に配置することによって、前記ディッチ槽1
を斜線で示す嫌気ゾーンAと好気ゾーンBとを形成でき
るようにしである。また、前記ディッチ槽1は、沈澱池
5に連結されている。この沈澱池5は絶対嫌気槽6に連
結され、かつ該嫌気槽6は前記ディッチ槽1に連結され
ている。なお、絶対嫌気槽6内には水中プロペラ等を設
置して汚泥が沈降しない程度の流速を与える必要がある
On the other hand, in recent years there has been a movement to regulate nitrogen and phosphorus, which are the causes of pollution, in closed water bodies such as lakes and inner bays, with the aim of preventing eutrophication, and some regions have already implemented emission controls. . In order to quickly respond to such situations,
The applicant has already developed biological denitrification using a combination of an anaerobic tank and OD.
(Special Application No. 174328/1982)
. This method will be explained with reference to the wastewater treatment apparatus shown in FIG. 1 in the figure is an oxidation ditch tank in which a partition plate 2 is arranged in the center. Such a partition plate 2
By arranging this in the ditch tank 1, a planar closed circuit is formed in the ditch tank 1. In the ditch tank 1, an underwater blower 3 for the purpose of water circulation and an aeration pipe 4 as an aerator for supplying oxygen are arranged. The underwater blower 3 and the aeration pipe 4 are separated, and the ditch tank 1 is
This allows the formation of an anaerobic zone A and an aerobic zone B, which are indicated by diagonal lines. Further, the ditch tank 1 is connected to a sedimentation tank 5. This sedimentation tank 5 is connected to an absolute anaerobic tank 6, and the anaerobic tank 6 is connected to the ditch tank 1. Note that it is necessary to install a submersible propeller or the like in the absolute anaerobic tank 6 to provide a flow velocity that prevents the sludge from settling.

上述した装置において、原水7をNOx (tilil
!、亜硝酸)がほとんど存在しない絶対嫌気槽6に導′
  入し、該絶対嫌気槽6で沈澱池5からの返送汚泥8
と混合し、その後混合液をディッチ槽1の水中プロペラ
3の位置に導入する。ディッチ槽1に導入された原水と
返送汚泥の混合液は同種1内を循環する。この時、原水
と返送汚泥の混合液は嫌気ゾーンAから好気ゾーンBに
導入され、好気ゾーンAで碕化反応がなされ、N1−1
4−Nが酸化されてNOxが生成される。更に、嫌気ゾ
ーンで原水中のBOD成分を有機炭素源として脱窒反応
が進行し、生成されたNOxは窒素ガスになり、大気に
放出される。ディッチ槽1での生物活性により生成され
た汚泥は、沈澱池5に導入され、ここで処理水9は系外
に排出され、沈澱汚泥は返送汚泥8として絶対嫌気槽6
に戻される。このようなディッチ槽1→沈澱池5→絶対
嫌気槽6→ディッチ槽1の循環により汚泥を嫌気→好気
のストレスが与えられ、生物学的にリンが除去される。
In the above-mentioned apparatus, the raw water 7 is treated with NOx (tilil
! , nitrous acid) is introduced into the absolute anaerobic tank 6.
The sludge returned from the settling tank 5 in the absolute anaerobic tank 6
After that, the mixed liquid is introduced into the ditch tank 1 at the position of the underwater propeller 3. A mixed solution of raw water and returned sludge introduced into the ditch tank 1 circulates within the same type 1. At this time, the mixed liquid of raw water and returned sludge is introduced from anaerobic zone A to aerobic zone B, where a sludge formation reaction takes place, resulting in N1-1
4-N is oxidized to produce NOx. Furthermore, a denitrification reaction proceeds in the anaerobic zone using the BOD component in the raw water as an organic carbon source, and the generated NOx becomes nitrogen gas and is released into the atmosphere. The sludge generated by biological activity in the ditch tank 1 is introduced into the settling tank 5, where the treated water 9 is discharged outside the system, and the settled sludge is returned to the absolute anaerobic tank 6 as return sludge 8.
will be returned to. Through this circulation of ditch tank 1 → sedimentation tank 5 → absolute anaerobic tank 6 → ditch tank 1, anaerobic → aerobic stress is applied to the sludge, and phosphorus is removed biologically.

即ち、かかる活性汚泥に使用される微生物は好気性状態
でリンを吸収し、嫌気性状態でリンを吐出する。
That is, the microorganisms used in such activated sludge absorb phosphorus under aerobic conditions and discharge phosphorus under anaerobic conditions.

この嫌気性状態でのリンの吐出は、系中の有機炭素源と
してのBODの存在により促進され、NOxの存在によ
り阻害される。このため、航記絶対嬉気槽6において、
原水中の800の存在により返送汚泥中の微生物からリ
ンが充分に吐出され、ディッチ槽1に導入された原水と
返送汚泥の混合液が好気ゾーンBに入ると、微生物によ
りリンが吸収され、該リンを吸収した状態で沈澱池5に
導入され。この沈澱池5は、通常、嫌気性状層であるが
、BODがほとんど存在せず、嫌気性生物反応が進行し
ない状態においては微生物によるリンの吐出がほとんど
起こらない。このため、処理水9中にリンが再度含まれ
て排出されることはない。こうした絶対嫌気槽6でのリ
ン吐出、ディッチ槽1でのリンの吸収という汚泥の嫌気
→好気のストレスが与えられることにより、絶対嫌気槽
6を配置せずに、返送汚泥を直接ディッチ槽1に導入し
て処理する形態に比べてリンの汚泥への蓄積量を格段に
向上できる。そして、リン含量の増加した汚泥は余剰汚
泥10として系外に排出し、別途処理を施す。
This anaerobic discharge of phosphorus is promoted by the presence of BOD as an organic carbon source in the system and inhibited by the presence of NOx. For this reason, in Kouki Zettai Kiki Tank 6,
Due to the presence of 800 in the raw water, phosphorus is sufficiently discharged from the microorganisms in the returned sludge, and when the mixed solution of raw water and returned sludge introduced into the ditch tank 1 enters the aerobic zone B, the phosphorus is absorbed by the microorganisms. The phosphorus is introduced into the sedimentation tank 5 in a state in which it has been absorbed. This sedimentation tank 5 is normally an anaerobic layer, but in a state where there is almost no BOD and no anaerobic biological reaction is progressing, microorganisms hardly discharge phosphorus. Therefore, phosphorus is not contained in the treated water 9 again and is not discharged. By applying anaerobic to aerobic stress to the sludge such as phosphorus discharge in the absolute anaerobic tank 6 and phosphorus absorption in the ditch tank 1, the returned sludge is directly transferred to the ditch tank 1 without installing the absolute anaerobic tank 6. The amount of phosphorus accumulated in sludge can be significantly improved compared to the method in which phosphorus is introduced into the sludge for treatment. Then, the sludge with increased phosphorus content is discharged outside the system as surplus sludge 10 and is treated separately.

上述した方法ではディッチ槽内に好気ゾーン及びこの後
段に嫌気ゾーンを形成する関係から、散気w4による酸
素供給(曝気)を無闇に高くできない。このため、原水
のBODffiの変動によりBOD濃度の高い原水が絶
対嫌気槽6を通してディッチ槽1に流入されると、核種
1でのBOD除去が充分になされないため、BODの高
い汚泥が沈澱池5に流出され、ここで微生物によるリン
の吐出反応が生じて、処理水9中へのリン量が多くなる
In the above-mentioned method, since an aerobic zone is formed in the ditch tank and an anaerobic zone is formed in the subsequent stage thereof, the oxygen supply (aeration) by the aeration w4 cannot be increased arbitrarily. Therefore, when raw water with a high BOD concentration flows into the ditch tank 1 through the absolute anaerobic tank 6 due to fluctuations in the BODffi of the raw water, BOD removal with the nuclide 1 is not performed sufficiently, and the sludge with a high BOD is transferred to the settling tank 5. There, a discharge reaction of phosphorus by microorganisms occurs, and the amount of phosphorus in the treated water 9 increases.

〔発明の目的〕[Purpose of the invention]

本発明は、原水のBOD負荷の増大により汚水処理水路
からBOD量の多い汚泥が沈澱池に流出されるのを防止
し得る有機性排水の処理方法を提供しようとするもので
ある。
The present invention aims to provide a method for treating organic wastewater that can prevent sludge with a large amount of BOD from being discharged from a sewage treatment channel to a settling pond due to an increase in the BOD load of raw water.

〔発明の概要〕[Summary of the invention]

本発明は、原水を絶対嫌気槽を通して水循環器及び曝気
器を有し、平面的に閉回路を形成した汚水処理水路に導
入し、該水路から流出される汚泥を沈澱池に導入し、該
沈澱池で処理水を系外に排出すると共に、沈澱汚泥の少
なくとも一部を前記絶対嫌気槽に返送して原水と共に再
び前記水路に導入して循環させる有機性排水の処理にあ
たり、前記水路からの汚泥を前記沈澱池に導入する途中
で後曝気することを特徴とするものである。
The present invention introduces raw water through an absolute anaerobic tank into a sewage treatment waterway that has a water circulator and an aerator and forms a closed circuit on a plane, and introduces sludge flowing out from the waterway into a settling tank. The treated water in the pond is discharged out of the system, and at least a portion of the settled sludge is returned to the absolute anaerobic tank and is reintroduced to the waterway together with the raw water for circulation. The method is characterized in that post-aeration is performed during the introduction of the sediment into the sedimentation tank.

以下、本発明を第1図を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to FIG.

第1図は本発明の有機性排水処理に使用する装置の一形
態を示す概略図である。この装置は、大別して汚水処理
水路としてのオキシデーション・ディッチ槽11と、こ
のディッチ槽11に配管12aを介して連結され、該デ
ィッチ槽11の汚泥が流入される沈澱池13と、この沈
澱池13に配管12t)を介して連結され、配管12G
より原水が流入されると共に、原水と返送汚泥を配管1
2dより前記ディッチ槽11に供給する絶対嫌気槽14
とから構成されている。
FIG. 1 is a schematic diagram showing one embodiment of an apparatus used for organic wastewater treatment of the present invention. This device is roughly divided into an oxidation ditch tank 11 as a sewage treatment waterway, a settling tank 13 connected to this ditch tank 11 via piping 12a and into which sludge from the ditch tank 11 flows, and this settling tank. 13 via piping 12t), and piping 12G
At the same time, raw water and return sludge are transferred to pipe 1.
Absolute anaerobic tank 14 supplied from 2d to the ditch tank 11
It is composed of.

前記ディッチ槽11の中央には、仕切り板15が配置さ
れており、該仕切り板15により同種11に平面的な閉
回路を形成している。また、前記ディッチ槽11内には
、水循環を目的とした水中プロペラ16及び酸素を供給
するための曝気器としての2つの第1、第2の散気管1
71.172が夫々配置されている。前記水中プロペラ
16と各散気管171.172とは分離され、各散気管
171.172を適宜な位置に配置することによって、
前記ディッチ槽11を斜線で示す嫌気ゾーンAと好気ゾ
ーンBとを形成できるようになっている。前記各散気管
171,172は夫々図示しないブロアに連結されてい
る。また、前記ディッチ槽11と沈澱池13とを連結す
る前記配置!12aには第3の散気管173を有する後
曝気槽18が介装されている。この散気管173には図
示しないブロアが連結されている。なお、前記絶対嫌気
槽14内には撹拌プロペラ19等を設置して汚泥が沈降
しない程度の流速が与えられている。
A partition plate 15 is arranged in the center of the ditch tank 11, and the partition plate 15 forms a planar closed circuit in the same type 11. Further, inside the ditch tank 11, there are an underwater propeller 16 for the purpose of water circulation and two first and second aeration pipes 1 as an aerator for supplying oxygen.
71 and 172 are arranged respectively. By separating the underwater propeller 16 and each diffuser pipe 171, 172, and arranging each diffuser pipe 171, 172 at an appropriate position,
The ditch tank 11 can be formed into an anaerobic zone A and an aerobic zone B, which are indicated by diagonal lines. Each of the diffuser pipes 171 and 172 is connected to a blower (not shown). Also, the arrangement that connects the ditch tank 11 and the sedimentation tank 13! A post aeration tank 18 having a third aeration pipe 173 is interposed in the aeration tank 12a. A blower (not shown) is connected to this diffuser pipe 173. Note that a stirring propeller 19 and the like are installed in the absolute anaerobic tank 14 to provide a flow rate that does not allow the sludge to settle.

前記沈澱池13から汚泥を前記絶対嫌気槽14に返送す
る配管12bには、返送ポンプ20が介装されている。
A return pump 20 is installed in the pipe 12b that returns the sludge from the settling tank 13 to the absolute anaerobic tank 14.

また、前記配管12bには、汚泥を余剰タンクに排出す
るための分岐配管21が連結されている。これら配管1
2b及び分岐配管21には、夫々図示しない制御器によ
り開閉される第1、第2の電磁弁221.222が介装
されている。
Further, a branch pipe 21 for discharging sludge to a surplus tank is connected to the pipe 12b. These piping 1
2b and the branch pipe 21 are provided with first and second electromagnetic valves 221 and 222, respectively, which are opened and closed by a controller (not shown).

次に、前述した排水処理装置を参照して処理方法を説明
する。
Next, a treatment method will be explained with reference to the above-mentioned wastewater treatment apparatus.

まず、原水を配管12cを通して沈澱池13から返送ポ
ンプ23及び配管12bにより汚泥が返送される絶対嫌
気槽14に導入し、原水と返送汚泥の混合液を配管12
dを通してディッチ槽11に供給する。ディッチ槽11
に導入された混合液は、水中プロペラ16によりディッ
チ槽1内の仕切り板15で区画された閉回路を循環する
。この時、前記混合液は嫌気ゾーンAから好気ゾーンB
に導入され、好気ゾーンAで硝化反応がなされ、NH4
−Nが酸化されてNOxが生成される。更に、嫌気ゾー
ンで原水中のBOD成分を有機炭素源として脱窒反応が
進行し、生成されたNOxは窒素ガスになり、大気に放
出される。
First, raw water is introduced from the sedimentation tank 13 through the pipe 12c to the absolute anaerobic tank 14 to which sludge is returned by the return pump 23 and the pipe 12b, and the mixed liquid of raw water and returned sludge is introduced into the pipe 12.
It is supplied to the ditch tank 11 through d. Ditch tank 11
The mixed liquid introduced into the ditch tank 1 is circulated by an underwater propeller 16 in a closed circuit partitioned by a partition plate 15 in the ditch tank 1 . At this time, the mixed liquid is transferred from anaerobic zone A to aerobic zone B.
The nitrification reaction takes place in the aerobic zone A, and NH4
-N is oxidized to generate NOx. Furthermore, a denitrification reaction proceeds in the anaerobic zone using the BOD component in the raw water as an organic carbon source, and the generated NOx becomes nitrogen gas and is released into the atmosphere.

次いで、ディッチ槽11内の汚泥は、配管12a及び後
曝気槽18を通して沈澱池13に流入される。このよう
にディッチ槽11の汚泥を散気管173がら空気(It
素)が供給される後曝気11118を通して沈澱池13
に導入することによって、800負荷の高い原水が絶対
嫌気槽14を通してディッチ槽11内に導入され、ここ
でBODが充分に除去されず、BODが残留した汚泥が
該ディッチ槽11から流出されても、前記後曝気槽18
(つまり好気状態の後曝気槽18)を通る間にBODが
除去されるため、沈澱池13にBODを含む汚泥が流入
されるのを防止できる。しかも、汚泥が後−気槽18を
通ることにより、咳汚泥が導入される沈澱池13を好気
状態にすることができる。その結果、沈殿池13にBO
Dが流入すること、及び嫌気状態となることによる微生
物のリンの吐出を抑制でき、一旦汚泥中に蓄積したリン
が処理水中に吐出されて、そのリン濃度が高くなるのを
防止できる。
Next, the sludge in the ditch tank 11 flows into the settling tank 13 through the pipe 12a and the post-aeration tank 18. In this way, the sludge in the ditch tank 11 is flushed with air (It) through the aeration pipe 173.
After aeration 11118 is supplied, sedimentation tank 13
By introducing raw water with a high 800 load into the ditch tank 11 through the absolute anaerobic tank 14, even if BOD is not sufficiently removed here and sludge with residual BOD flows out from the ditch tank 11. , the post-aeration tank 18
Since BOD is removed while passing through the aeration tank 18 (that is, after the aerobic state), it is possible to prevent sludge containing BOD from flowing into the settling tank 13. Moreover, by passing the sludge through the after-air tank 18, the settling tank 13 into which the cough sludge is introduced can be brought into an aerobic state. As a result, BO is added to the sedimentation tank 13.
It is possible to suppress the discharge of phosphorus by microorganisms due to the inflow of D and the anaerobic state, and it is possible to prevent the phosphorus concentration from increasing due to discharge of phosphorus that has accumulated in the sludge into the treated water.

汚泥が導入された沈澱池13においては、処理水が系外
に排出され、沈澱汚泥の一部は配管12b及び返送ポン
プ20により前記絶対嫌気槽14に返送される。こうし
たディッチ槽11→沈澱池13→絶対嫌気槽14→ディ
ッチ槽11の循環により汚泥を嫌気→好気のストレスが
与えられ、既述したように生物学的にリンが汚泥に蓄積
される。
In the settling tank 13 into which the sludge has been introduced, treated water is discharged outside the system, and a portion of the settled sludge is returned to the absolute anaerobic tank 14 via the piping 12b and the return pump 20. Through this circulation of the ditch tank 11 → settling tank 13 → absolute anaerobic tank 14 → ditch tank 11, anaerobic → aerobic stress is applied to the sludge, and as described above, phosphorus is biologically accumulated in the sludge.

そして、リン含量の増加した汚泥は、分岐配管21から
余剰タンクに排出し、別途処理を施す。
Then, the sludge with increased phosphorus content is discharged from the branch pipe 21 to the surplus tank and is treated separately.

しかして、本発明によれば原水の80DjMが増大して
も、ディッチ槽11からBOD量の多い混合液が沈澱池
に流出されるのを防止して、窒素とリンの除去を効果的
に行うことができる有機性排水の処理方法を提供できる
Therefore, according to the present invention, even if the raw water increases by 80 DjM, the mixed liquid with a large amount of BOD is prevented from flowing out from the ditch tank 11 to the sedimentation tank, and nitrogen and phosphorus are effectively removed. A method for treating organic wastewater can be provided.

なお、上記方法では曝気器として散気管を使用したが、
これに限定されない。例えば櫟械方式(エアレータ、水
車等)でも同様な効果を達成できる。
In addition, in the above method, a diffuser pipe was used as an aerator, but
It is not limited to this. For example, a similar effect can be achieved using a mechanical system (aerator, water wheel, etc.).

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を前述した第1図を参照して説明
する。
Hereinafter, embodiments of the present invention will be described with reference to FIG. 1 mentioned above.

前述した第1図の排水処理装置を用いて原水を以下に示
す条件で処理し、原水及び処理水中のリン濃度の変化を
第3図に示した。なお、第3図中には排水処理から50
日間を前述した第2図図示の既に提案した方法によるリ
ン濃度の変化を、それ以降を本発明方法によるリン濃度
の変化を示す。
Raw water was treated under the conditions shown below using the wastewater treatment apparatus shown in FIG. 1, and the changes in phosphorus concentration in the raw water and treated water are shown in FIG. 3. In addition, in Figure 3, 50% of water from wastewater treatment is shown.
The changes in phosphorus concentration according to the previously proposed method shown in FIG.

〈排水処理の条件〉 ■原水(沈砂池処理水) 沈処理量: 2 m3/day ■嫌気槽 滞留時間;1〜2時間 Do;0〜0.5II1g/2 ■ディッチ槽; 容量;ディッチ管路長で6m ブロアの0N−OFF運転間隔:30分間MLSS ;
約4000η/Q BOD負荷:0.05Ny/Ky−MLSS−day■
後曝気器 滞留時間;2時間 ■沈澱池 滞留時間:3時間 返送率:100% 第3図より明らかな如く既に提案した方法では、流入原
水のリン濃度が約31N9/Q以下の場合、処理水の濃
度は0.5118/λ以下になるが、流入原水のリン濃
度が高くなると、処理水の水賀が悪化する。これに対し
、本発明方法の場合には、流入原水のリン濃度の変動に
対しても安定してリン濃度の低い処理水を排出すること
ができる。
<Conditions for wastewater treatment> ■Raw water (sand treatment tank water) Sedimentation treatment amount: 2 m3/day ■Anaerobic tank residence time: 1 to 2 hours Do: 0 to 0.5II1g/2 ■Ditch tank; Capacity: ditch pipe line 6m in length Blower ON-OFF operation interval: 30 minutes MLSS;
Approximately 4000η/Q BOD load: 0.05Ny/Ky-MLSS-day■
Post-aerator residence time: 2 hours ■ Sedimentation tank residence time: 3 hours Return rate: 100% As is clear from Figure 3, in the method already proposed, if the phosphorus concentration of the inflow raw water is about 31N9/Q or less, the treated water The concentration of phosphorus becomes 0.5118/λ or less, but as the phosphorus concentration of the inflow raw water increases, the water quality of the treated water worsens. On the other hand, in the case of the method of the present invention, treated water with a low phosphorus concentration can be discharged stably even when the phosphorus concentration of inflow raw water fluctuates.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば窒素を効果的に除去
できることは勿論、原水のBOD負荷の変動(特にBO
D負荷の増大)により汚水処理水路(ディッチ槽)から
BOD量の多い汚泥が沈澱池に流出されるのを防止して
リンを安定的に除去し得る有機性排水の処理方法を提供
できる。
As detailed above, according to the present invention, not only can nitrogen be effectively removed, but also changes in the BOD load of raw water (especially BOD
It is possible to provide a method for treating organic wastewater that can stably remove phosphorus by preventing sludge with a large amount of BOD from flowing out from a sewage treatment waterway (ditch tank) into a settling tank due to an increase in D load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機性排水の処理方法に使用される排
水処理装置の一形態を示す概略図、第2図は本出願人が
既に提案した有機性排水処理方法に使用される排水処理
装置の概略図、第3図は本実施例及び既に提案した方法
による排水処理時に原水及び処理水のリン濃度の変化を
示す特性図である。 11・・・オキシデーション・ディッチ槽、13・・・
沈澱池、14・・・絶対嫌気槽、16・・・水Φプロペ
ラ、171〜173・・・散気管、18・・・後曝気器
、20・・・返送ポンプ、221.222・・・電磁弁
。 出願人代理人 弁理士 鈴江武彦 第3図 壮通5敗 (日) スQ、121 昭和 年 月 日 特許庁長官  志 賀   学  殿 1、事件の表示 特願昭59−247763号 2、発明の名称 有機性排水の処理方法 3、補正をする者 事件との関係 特許出願人 (412) 日本−営株式会社 4、代理人 7、補正の内容 (1)  明細書中第3頁14〜15行目C二かけて、
「水中プロペラ3の位置(二桿入する。」とあるを[嫌
気ゾーンの開始位置に導入する。」と訂正する。 (2)  明細書中第3貝18〜19行目C二か(すで
、「吐気ゾーンA」とあるを「好気ゾーンB」と訂正す
る。 (3)  明細書中?!S4貫3〜4行目(二か(すで
、「ディッチ槽1での生物活性により生成された汚泥は
」とあるを「ディッチ槽1から流出した混合液は」と訂
正する。 (明 明細書中剤8貞20?′T目において、「返送ポ
ンプ23」とあるを「返送ボンデ20Jと訂正する。 (5)  明細書中第9自4行目(=おいて、「ディッ
チ槽1」とあるを「?′イッチ槽Z1」と訂正する。
FIG. 1 is a schematic diagram showing one form of a wastewater treatment device used in the organic wastewater treatment method of the present invention, and FIG. 2 is a wastewater treatment device used in the organic wastewater treatment method already proposed by the applicant. FIG. 3, which is a schematic diagram of the apparatus, is a characteristic diagram showing changes in the phosphorus concentration of raw water and treated water during wastewater treatment according to this embodiment and the previously proposed method. 11... Oxidation ditch tank, 13...
Sedimentation tank, 14...Absolute anaerobic tank, 16...Water Φ propeller, 171-173...Diffuser pipe, 18...After aerator, 20...Return pump, 221.222...Electromagnetic valve. Applicant's representative Patent attorney Takehiko Suzue Figure 3 Sotsu 5 losses (Japanese) SQ, 121 Showa year, month, day, Japan Patent Office Commissioner Manabu Shiga 1, Indication of case Patent application No. 59-247763 2, Title of invention Organic wastewater treatment method 3, relationship with the case of the person making the amendment Patent applicant (412) Nippon-ei Co., Ltd. 4, agent 7, content of amendment (1) Page 3, lines 14-15 of the specification Multiply by C2,
"Position of the underwater propeller 3 (introduces two rods.") should be corrected to "Introduce it to the starting position of the anaerobic zone." So, "Exhale zone A" should be corrected to "Aerobic zone B." The phrase "The sludge produced by It is corrected as Bonde 20J. (5) In the 9th line, 4th line of the specification (=, the phrase "Ditch tank 1" is corrected as "?' Ditch tank Z1".

Claims (1)

【特許請求の範囲】[Claims] 原水を絶対嫌気槽を通して水循環器及び曝気器を有し、
平面的に閉回路を形成した汚水処理水路に導入し、該水
路から流出される汚泥を沈澱池に導入し、該沈澱池で処
理水を系外に排出すると共に、沈澱汚泥の少なくとも一
部を前記絶対嫌気槽に返送して原水と共に再び前記水路
に導入して循環させる有機性排水の処理にあたり、前記
水路からの汚泥を前記沈澱池に導入する途中で後曝気す
ることを特徴とする有機性排水の処理方法。
The raw water is passed through an absolute anaerobic tank, equipped with a water circulator and an aerator,
The sludge is introduced into a sewage treatment waterway that forms a planar closed circuit, and the sludge flowing out from the waterway is introduced into a settling tank, where the treated water is discharged outside the system, and at least a portion of the settled sludge is In the treatment of organic wastewater that is returned to the absolute anaerobic tank and recycled by being introduced into the waterway together with the raw water, the organic wastewater is subjected to post-aeration while the sludge from the waterway is being introduced into the settling tank. How to treat wastewater.
JP24776384A 1984-11-22 1984-11-22 Treatment of organic waste water Pending JPS61125490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24776384A JPS61125490A (en) 1984-11-22 1984-11-22 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24776384A JPS61125490A (en) 1984-11-22 1984-11-22 Treatment of organic waste water

Publications (1)

Publication Number Publication Date
JPS61125490A true JPS61125490A (en) 1986-06-13

Family

ID=17168293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24776384A Pending JPS61125490A (en) 1984-11-22 1984-11-22 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS61125490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036517A (en) * 2006-08-04 2008-02-21 Kochi Univ Wastewater treatment apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814996A (en) * 1981-07-21 1983-01-28 Ishikawajima Harima Heavy Ind Co Ltd Waste water disposing apparatus
JPS58174294A (en) * 1982-04-02 1983-10-13 Kyowa Kako Kk Method for denitrification and dephosphorization at high rate without feeding of chemical
JPS5910395A (en) * 1982-07-09 1984-01-19 Japan Organo Co Ltd Biological treatment device using 6-shaped water channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814996A (en) * 1981-07-21 1983-01-28 Ishikawajima Harima Heavy Ind Co Ltd Waste water disposing apparatus
JPS58174294A (en) * 1982-04-02 1983-10-13 Kyowa Kako Kk Method for denitrification and dephosphorization at high rate without feeding of chemical
JPS5910395A (en) * 1982-07-09 1984-01-19 Japan Organo Co Ltd Biological treatment device using 6-shaped water channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036517A (en) * 2006-08-04 2008-02-21 Kochi Univ Wastewater treatment apparatus and method

Similar Documents

Publication Publication Date Title
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
JPS5881491A (en) Purification of filthy water with activated sludge
JPS58146495A (en) Treatment of organic waste liquid
JPS61125490A (en) Treatment of organic waste water
JPS61125491A (en) Treatment of organic waste water
JP3380002B2 (en) Sewage treatment method
JPH1157778A (en) Waste water treating device and treatment
JPS61125493A (en) Treatment of organic waste water
JPH0421559B2 (en)
JPS6355999B2 (en)
KR100244536B1 (en) Device for removing high concentration of organism and nitrogen using biological membrane
JPH0437760B2 (en)
KR100446554B1 (en) Simultaneous removal apparatus of organic matter, nitrogen and phosphorus in sewage water
JPH04110198U (en) Anaerobic/aerobic activated sludge treatment equipment
JPS61125492A (en) Treatment of organic waste water
JPS6216159B2 (en)
JPH03245897A (en) Method and apparatus for removing nitrogen from sewage
JPS5910395A (en) Biological treatment device using 6-shaped water channel
JP2000024698A (en) Biological treatment of waste water and device therefor
JP2607030B2 (en) Wastewater treatment method and apparatus
JPS6068096A (en) Treatment of organic waste water
JPS6244998B2 (en)
JPS61118194A (en) Biological treatment of waste water
KR200295688Y1 (en) Simultaneous removal apparatus of organic matter, nitrogen and phosphorus in sewage water