JP2008036517A - Wastewater treatment apparatus and method - Google Patents

Wastewater treatment apparatus and method Download PDF

Info

Publication number
JP2008036517A
JP2008036517A JP2006213314A JP2006213314A JP2008036517A JP 2008036517 A JP2008036517 A JP 2008036517A JP 2006213314 A JP2006213314 A JP 2006213314A JP 2006213314 A JP2006213314 A JP 2006213314A JP 2008036517 A JP2008036517 A JP 2008036517A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
ditch
sludge
raw water
oxygen supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006213314A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujiwara
拓 藤原
Kazuo Nakamachi
和雄 中町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Maezawa Industries Inc
Original Assignee
Kyushu University NUC
Kochi University NUC
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC, Maezawa Industries Inc filed Critical Kyushu University NUC
Priority to JP2006213314A priority Critical patent/JP2008036517A/en
Publication of JP2008036517A publication Critical patent/JP2008036517A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus which combines a ditch of an oxidation ditch method and an anaerobic treatment means to remove organic matter, nitrogen, and phosphorus in raw water and to provide a method. <P>SOLUTION: The wastewater treatment apparatus comprises an endless water passage (a ditch 11) which includes an aerobic zone 14 and an anoxic zone 15 and the ditch 11 which controls an oxygen supply means (an aeration device 13) and a circulation flow generation means (an underwater propeller 12) from the upstream side dissolved oxygen concentration and downstream side dissolved oxygen concentration of the aerobic zone 14, the anaerobic means (an anaerobic tank 19) installed in a raw water inflow passage 18 for making the raw water flow into the ditch 11, a solid-liquid separation means (a final settling basin 17) for performing the solid-liquid separation of treated liquid treated in the ditch 11, and a return sludge passage 21 for returning sludge separated by the solid-liquid separation means 17 to the anaerobic tank 19 to mix the sludge with the raw water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排水処理装置及び方法に関し、詳しくは、オキシデーションディッチを含む排水処理装置で原水中の有機物(BOD)、窒素及びリンを除去する排水処理装置及び方法に関する。   The present invention relates to a wastewater treatment apparatus and method, and more particularly to a wastewater treatment apparatus and method for removing organic matter (BOD), nitrogen and phosphorus in raw water with a wastewater treatment apparatus including an oxidation ditch.

生物学的な排水処理を行う方法として、オキシデーションディッチ法が広く知られている。このオキシデーションディッチ法は、無端状に形成したディッチ(無終端水路)内の水を循環させながら一部で曝気することにより、ディッチ内に好気域と無酸素域とを形成し、有機物の分解だけでなく、好気域での硝化反応と無酸素域での脱窒反応とによって窒素分も除去するようにしている。   The oxidation ditch method is widely known as a biological wastewater treatment method. This oxidation ditch method forms an aerobic region and an anoxic region in the ditch by aerating part of the water in the endlessly formed ditch (endless water channel) while circulating it. In addition to decomposition, nitrogen is also removed by a nitrification reaction in an aerobic region and a denitrification reaction in an anoxic region.

オキシデーションディッチ法は、大規模処理場に比べて日間変動が大きい小規模処理場に適しているが、日間変動によってディッチ内における負荷が大きく変動するため、負荷に応じてディッチ内の流速や酸素供給量(曝気量)を調節し、前記好気域と無酸素域とのバランスを適正に保つことが重要となる。このため、好気域の適当な位置に溶存酸素計(DO計)を設置し、このDO計の測定値(DO値)に基づいて循環液の流速及び酸素の供給量をそれぞれ調節することにより、好気域と無酸素域とのバランスを適正に保つようにしている(例えば、特許文献1参照。)。   The oxidation ditch method is suitable for small-scale treatment plants that have large daily fluctuations compared to large-scale treatment plants, but the load in the ditch varies greatly due to daily fluctuations. It is important to adjust the supply amount (aeration amount) and maintain a proper balance between the aerobic region and the anoxic region. For this reason, a dissolved oxygen meter (DO meter) is installed at an appropriate position in the aerobic region, and the flow rate of the circulating fluid and the supply amount of oxygen are adjusted based on the measured value (DO value) of the DO meter. The balance between the aerobic region and the anoxic region is appropriately maintained (see, for example, Patent Document 1).

一方、下水、排水中のリンを除去する方法として、従来から、嫌気状態で微生物が有機物を摂取する際に体内に蓄積したリンを水中に放出し、嫌気状態で放出した量以上のリンを好気状態で微生物が過剰摂取することを利用し、生物学的に水中からリンを除去することが行われている。この方法とオキシデーションディッチ法とを組み合わせ、ディッチ(曝気槽)の前段に嫌気槽(流量調整槽)を配置し、流入原水と返送汚泥とを嫌気槽で混合して微生物からリンを放出させるようにした方法が提案されている(例えば、特許文献2参照。)。
特開2005−52804号公報 特開平7−290086号公報
On the other hand, as a method for removing phosphorus in sewage and wastewater, conventionally, when microorganisms ingest an organic substance in an anaerobic state, the phosphorus accumulated in the body is released into the water, and more phosphorus than the amount released in the anaerobic state is favored. Biological removal of phosphorus from water is carried out by utilizing the excessive intake of microorganisms in the air state. Combining this method with the oxidation ditch method, an anaerobic tank (flow control tank) is placed in front of the ditch (aeration tank), and the inflow raw water and return sludge are mixed in the anaerobic tank to release phosphorus from microorganisms. A method described above has been proposed (see, for example, Patent Document 2).
JP 2005-52804 A JP-A-7-290086

しかし、特許文献2に記載されているように、単にオキシデーションディッチに嫌気槽を付加しただけでは、日間変動によるディッチ内の状態変化により、嫌気槽内を所定の嫌気状態に保つことができず、返送汚泥と共に硝酸性窒素が大量に嫌気槽内に流入すると、微生物からのリンの放出が十分に行えなくなって生物学的なリンの除去が阻害されるため、複雑な流量制御を行うなどの対策を講じる必要があり、装置が複雑になってコスト上昇の大きな要因となっていた。さらに、特許文献2では、ディッチで間欠曝気を行って硝化・脱窒効率を高めることが行われているが、間欠曝気を行うと返送汚泥中の硝酸性窒素の濃度が大きく変化し、これが嫌気槽でのリン放出に大きな影響を及ぼしてリンの除去効率を低下させる要因ともなる。   However, as described in Patent Document 2, simply adding an anaerobic tank to the oxidation ditch cannot keep the anaerobic tank in a predetermined anaerobic state due to a state change in the ditch due to daily fluctuations. When a large amount of nitrate nitrogen flows into the anaerobic tank together with the returned sludge, the release of phosphorus from microorganisms cannot be sufficiently performed and the removal of biological phosphorus is hindered. It was necessary to take measures, and the apparatus became complicated, which was a major factor in increasing costs. Furthermore, in Patent Document 2, intermittent aeration is performed in the ditch to increase nitrification / denitrification efficiency. However, when intermittent aeration is performed, the concentration of nitrate nitrogen in the returned sludge changes greatly, which is anaerobic. It also has a great influence on the release of phosphorus in the tank and becomes a factor of reducing the phosphorus removal efficiency.

そこで本発明は、上流側の溶存酸素測定値と下流側の溶存酸素測定値とに基づいて循環液の流速及び曝気量を制御するオキシデーションディッチ法の利点を有効利用し、原水中の有機物及び窒素だけでなく、リンも確実に除去することができる排水処理装置及び方法を提供することを目的としている。   Therefore, the present invention effectively uses the advantage of the oxidation ditch method for controlling the flow rate and aeration amount of the circulating fluid based on the measured dissolved oxygen value on the upstream side and the measured dissolved oxygen value on the downstream side, An object of the present invention is to provide a wastewater treatment apparatus and method that can reliably remove not only nitrogen but also phosphorus.

上記目的を達成するため、本発明の排水処理装置は、無終端水路に循環流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気域と、該好気域の終端から前記酸素供給手段に至る無酸素域とを形成し、前記好気域における上流側と下流側とに、循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設けるとともに、該上流側溶存酸素計及び下流側溶存酸素計で測定した溶存酸素濃度に基づいて前記酸素供給手段による酸素の供給量及び前記循環流発生手段による循環液の流速をそれぞれ調節する制御手段を設けた排水処理装置において、前記無終端水路に原水を流入させる原水流入経路に設けた嫌気処理手段と、前記無終端水路で処理した処理液の固液分離を行う固液分離手段と、該固液分離手段で分離した汚泥を前記嫌気処理手段に返送して原水に混合する返送汚泥経路とを備えていることを特徴としている。   In order to achieve the above object, the waste water treatment apparatus of the present invention comprises a circulation flow generating means and an oxygen supply means in an endless water channel, and includes an aerobic region downstream of the oxygen supply unit and an end of the aerobic region. Forming an oxygen-free region leading to the oxygen supply means, and an upstream dissolved oxygen meter and a downstream dissolved oxygen meter for measuring the dissolved oxygen concentration in the circulating liquid on the upstream side and the downstream side in the aerobic region, respectively And a control means for adjusting the supply amount of oxygen by the oxygen supply means and the flow rate of the circulating fluid by the circulating flow generation means based on the dissolved oxygen concentration measured by the upstream dissolved oxygen meter and the downstream dissolved oxygen meter. An anaerobic treatment means provided in the raw water inflow path for allowing raw water to flow into the endless water channel, a solid-liquid separation means for performing solid-liquid separation of the treatment liquid treated in the endless water channel, Solid-liquid separation hand In is characterized in that the separated sludge and a return sludge passage to be mixed with the raw water and returned to the anaerobic treatment means.

また、本発明の排水処理方法は、無終端水路に設けた循環流発生手段及び酸素供給手段により、該酸素供給手段の下流側に好気域を、該好気域の終端から前記酸素供給手段との間に無酸素域をそれぞれ形成し、前記好気域における上流側の溶存酸素濃度と下流側の溶存酸素濃度とをそれぞれ測定し、各溶存酸素濃度の測定値に基づいて前記酸素供給手段による酸素の供給量及び前記循環流発生手段による循環液の流速をそれぞれ調節する排水処理方法において、前記無終端水路で処理した処理液を固液分離し、分離した汚泥を前記無終端水路に流入する原水と混合させて嫌気処理を行い、該嫌気処理を行った原水及び汚泥の混合液を前記無終端水路に流入させることを特徴としている。   Further, the wastewater treatment method of the present invention includes a circulating flow generating means and an oxygen supply means provided in an endless water channel, and an aerobic region downstream from the oxygen supply means, and the oxygen supply means from the end of the aerobic region. An oxygen-free region is formed between each of them, and an upstream dissolved oxygen concentration and a downstream dissolved oxygen concentration in the aerobic region are respectively measured, and the oxygen supply means is based on a measured value of each dissolved oxygen concentration. In the wastewater treatment method for adjusting the oxygen supply amount by the circulating flow and the flow rate of the circulating fluid by the circulating flow generating means, the treatment liquid treated in the endless water channel is separated into solid and liquid, and the separated sludge flows into the endless water channel Anaerobic treatment is performed by mixing with raw water, and the mixed solution of raw water and sludge subjected to the anaerobic treatment is caused to flow into the endless water channel.

本発明によれば、無終端水路(ディッチ)における好気域の上流側及び下流側でそれぞれ測定した各溶存酸素濃度に基づいて酸素の供給量及び循環液の流速をそれぞれ調節することにより、流入水の負荷が大きく変動してもディッチ内が一定の好気・無酸素状態に保たれているので、原水流入経路に嫌気処理手段を設け、この嫌気処理手段で、固液分離手段で分離した汚泥と流入する原水とを混合して嫌気状態を一定時間保持することにより、微生物による有機物の摂取とリンの放出とが確実に行われ、ディッチの好気域における好気性処理で放出量以上のリンを微生物が過剰摂取することにより、生物学的に水中からリンを除去することができる。すなわち、ディッチ内の状態を一定に保つことによって嫌気処理手段における嫌気状態も一定に保つことができるので、原水中のリンを確実に除去することができる。   According to the present invention, by adjusting the supply amount of oxygen and the flow rate of the circulating fluid based on the dissolved oxygen concentrations measured respectively upstream and downstream of the aerobic region in the endless water channel (ditch), Even if the load of water fluctuates greatly, the ditch is kept in a constant aerobic / anoxic condition. By mixing the sludge and the inflowing raw water and maintaining the anaerobic state for a certain period of time, the intake of organic substances by microorganisms and the release of phosphorus are ensured, and the aerobic treatment in the aerobic region of the ditch will exceed the released amount When microorganisms ingest phosphorus excessively, phosphorus can be biologically removed from water. That is, by keeping the state in the ditch constant, the anaerobic state in the anaerobic treatment means can also be kept constant, so that phosphorus in the raw water can be reliably removed.

図1は本発明の排水処理装置の一形態例を示す説明図、図2は間欠曝気を行ったときの返送汚泥中の硝酸性窒素濃度及びアンモニア性窒素濃度の変動状態の一例を示す図、図3は循環液の流速及び酸素の供給量をそれぞれ調節したときの返送汚泥中の硝酸性窒素濃度及びアンモニア性窒素濃度の変動状態の一例を示す図である。   FIG. 1 is an explanatory view showing an embodiment of the wastewater treatment apparatus of the present invention, FIG. 2 is a view showing an example of the fluctuation state of nitrate nitrogen concentration and ammonia nitrogen concentration in the returned sludge when intermittent aeration is performed, FIG. 3 is a diagram showing an example of fluctuation states of nitrate nitrogen concentration and ammonia nitrogen concentration in the return sludge when the flow rate of the circulating fluid and the supply amount of oxygen are adjusted.

この排水処理装置は、無終端水路からなるディッチ11に循環流発生手段である水中プロペラ12と酸素供給手段である曝気装置13とを設け、ディッチ11内に矢印で示す方向の循環流を形成することにより、曝気装置13から所定の距離までの間に好気域14を、この好気域14の終端から曝気装置13までの間に無酸素域15をそれぞれ所定のバランスで形成している。   This waste water treatment apparatus is provided with an underwater propeller 12 as a circulation flow generating means and an aeration device 13 as an oxygen supply means in a ditch 11 comprising an endless water channel, and forms a circulation flow in the direction indicated by an arrow in the ditch 11. Thus, an aerobic region 14 is formed between the aeration device 13 and a predetermined distance, and an anoxic region 15 is formed between the end of the aerobic region 14 and the aeration device 13 with a predetermined balance.

好気域14の終端部には、出口流路16を介して最終沈殿池17が設けられ、無酸素域15の上流部分には原水流入経路18が設けられるとともに、該原水流入経路18の途中には嫌気処理手段である嫌気槽19が設けられている。さらに、最終沈殿池17には、分離した上澄み水が流出する処理水流出経路20と、沈降分離した汚泥を返送する返送汚泥経路21と、汚泥の一部を余剰汚泥として抜き取る汚泥抜出経路22とが設けられている。前記嫌気槽19は、該嫌気槽19に流入した原水と返送汚泥経路21から返送された汚泥とを混合して嫌気状態に所定時間保持する。   A final sedimentation basin 17 is provided at the end portion of the aerobic region 14 via an outlet channel 16, and a raw water inflow path 18 is provided in an upstream portion of the anoxic region 15, and the middle of the raw water inflow path 18. Is provided with an anaerobic tank 19 which is an anaerobic treatment means. Further, in the final sedimentation basin 17, a treated water outflow path 20 through which the separated supernatant water flows out, a return sludge path 21 through which the sludge separated and separated is returned, and a sludge extraction path 22 through which part of the sludge is extracted as excess sludge. And are provided. The anaerobic tank 19 mixes the raw water flowing into the anaerobic tank 19 and the sludge returned from the return sludge path 21 and keeps them in an anaerobic state for a predetermined time.

また、前記好気域14には、上流側と下流側とに循環液中の溶存酸素濃度を測定する上流側溶存酸素計(第1DO計)23と下流側溶存酸素計(第2DO計)24とがそれぞれ設けられるとともに、第1DO計23及び第2DO計24で測定した溶存酸素濃度に基づいて前記曝気装置13による酸素の供給量及び前記水中プロペラ12による循環液の流速をそれぞれ調節するための制御手段25が設けられている。   The aerobic region 14 includes an upstream dissolved oxygen meter (first DO meter) 23 and a downstream dissolved oxygen meter (second DO meter) 24 for measuring the dissolved oxygen concentration in the circulating fluid upstream and downstream. Are respectively provided, and based on the dissolved oxygen concentration measured by the first DO meter 23 and the second DO meter 24, for adjusting the supply amount of oxygen by the aeration device 13 and the flow rate of the circulating fluid by the underwater propeller 12, respectively. Control means 25 is provided.

原水流入経路18から嫌気槽19に流入した原水は、最終沈殿池17から返送汚泥経路21を通って返送された汚泥と混合し、嫌気槽19で嫌気状態に保持される。この嫌気状態において、汚泥中の微生物は、原水中の有機物を摂取するとともに体内からリンを放出する。所定時間嫌気状態に保持された後、放出されたリンを含む汚泥と原水との混合液は、ディッチ11の無酸素域15の上流部分に流入して循環液に合流し、無酸素域15で無酸素状態に保持されることにより硝酸性窒素の脱窒が行われ、循環液中から窒素が除去される。   The raw water flowing into the anaerobic tank 19 from the raw water inflow path 18 is mixed with the sludge returned from the final sedimentation basin 17 through the return sludge path 21 and held in an anaerobic state in the anaerobic tank 19. In this anaerobic state, microorganisms in the sludge ingest organic substances in the raw water and release phosphorus from the body. After being kept in an anaerobic state for a predetermined time, the mixed liquid of the released sludge containing phosphorus and raw water flows into the upstream portion of the anoxic region 15 of the ditch 11 and joins the circulating fluid. By maintaining the oxygen-free state, nitrate nitrogen is denitrified and nitrogen is removed from the circulating fluid.

循環液は、水中プロペラ12を経て曝気装置13を通過する際に、ブロワから圧送されて循環液中に噴出した空気と接触することにより、液中に酸素を取り込んで好気性状態となり、好気域14を流れながら有機物の分解やアンモニア性窒素の硝化が行われるとともに、微生物によるリンの過剰摂取が行われ、循環液中から有機物及びリンが除去され、アンモニア性窒素の硝化が行われる。   When the circulating fluid passes through the aeration device 13 through the underwater propeller 12, it comes into contact with the air pumped from the blower and ejected into the circulating fluid, so that oxygen is taken into the fluid and becomes an aerobic state. While the organic substance is decomposed and ammonia nitrogen is nitrified while flowing through the zone 14, an excessive intake of phosphorus by microorganisms is performed, the organic substance and phosphorus are removed from the circulating liquid, and ammonia nitrogen is nitrified.

好気域14の終端部を流れる循環液の一部は、出口流路16を通って最終沈殿池17に抜き出され、最終沈殿池17で混合液の固液分離が行われる。最終沈殿池17で分離した上澄み液は、処理水流出経路20から流出し、沈殿した汚泥の一部は汚泥抜出経路22から余剰汚泥として抜き取られ、残りの汚泥は、返送汚泥経路21を通って前記嫌気槽19に返送される。また、最終沈殿池17に抜き出されなかった循環液は、溶存酸素の減少によって無酸素状態となり、無酸素域15の上流部分で嫌気槽19からの前記混合液と合流し、ディッチ11内を循環する。   A part of the circulating liquid flowing through the end portion of the aerobic region 14 is extracted to the final sedimentation basin 17 through the outlet channel 16, and the liquid mixture is separated in the final sedimentation basin 17. The supernatant liquid separated in the final sedimentation basin 17 flows out from the treated water outflow path 20, a part of the settled sludge is extracted as excess sludge from the sludge extraction path 22, and the remaining sludge passes through the return sludge path 21. And returned to the anaerobic tank 19. In addition, the circulating liquid that has not been extracted to the final sedimentation basin 17 becomes oxygen-free due to a decrease in dissolved oxygen, and joins the mixed liquid from the anaerobic tank 19 in the upstream portion of the oxygen-free zone 15, and the inside of the ditch 11 Circulate.

一方、前記制御手段25では、第1DO計23及び第2DO計24で測定した各溶存酸素濃度に基づいて前記曝気装置13と前記水中プロペラ12とを制御し、流入負荷が変動してもディッチ11内の好気域14と無酸素域15とのバランスを一定に保持する。   On the other hand, the control means 25 controls the aeration apparatus 13 and the underwater propeller 12 based on the dissolved oxygen concentrations measured by the first DO meter 23 and the second DO meter 24 so that the ditch 11 can be used even if the inflow load varies. The balance between the aerobic region 14 and the anoxic region 15 is kept constant.

例えば、流入原水の負荷の変動により、第1DO計23で測定した溶存酸素濃度(以下、上流側測定値という)が適正範囲で、第2DO計24で測定した溶存酸素濃度(以下、下流側測定値という)が適正範囲を超えた場合は、水中プロペラ12を減速して循環液の流速を低下させることにより、下流側測定値が適正範囲に入るようにする。また、下流側測定値が適正範囲を下回った場合は、水中プロペラ12を増速して循環液の流速を上昇させることにより、下流側測定値が適正範囲に入るようにする。   For example, the dissolved oxygen concentration measured by the first DO meter 23 (hereinafter referred to as upstream measurement value) is within an appropriate range due to fluctuations in the load of the inflow raw water, and the dissolved oxygen concentration measured by the second DO meter 24 (hereinafter referred to as downstream measurement). (Referred to as “value”) exceeds the proper range, the underwater propeller 12 is decelerated to reduce the flow rate of the circulating fluid so that the downstream measurement value falls within the proper range. When the downstream measurement value falls below the appropriate range, the downstream measurement value falls within the appropriate range by increasing the underwater propeller 12 and increasing the flow rate of the circulating fluid.

一方、上流側測定値が適正範囲を超えた場合は、酸素過剰状態であるから、曝気装置13による曝気量を減少させて上流側測定値が適正範囲に入るようにした後、下流側測定値が適正範囲に入るように、前述のように水中プロペラ12を増速又は減速して循環液の流速を調節する。   On the other hand, when the upstream measurement value exceeds the appropriate range, it is an oxygen excess state. Therefore, after the aeration amount by the aeration apparatus 13 is decreased so that the upstream measurement value falls within the appropriate range, the downstream measurement value is As described above, the underwater propeller 12 is accelerated or decelerated so as to adjust the flow rate of the circulating fluid.

逆に、上流側測定値が適正範囲を下回った場合は、酸素不足状態であるから、曝気装置13による曝気量を増大させて上流側測定値が適正範囲に入るようにした後、下流側測定値が適正範囲に入るように、前述のように水中プロペラ12を増速又は減速して循環液の流速を調節する。   On the contrary, when the upstream measurement value falls below the appropriate range, it is in an oxygen-deficient state. Therefore, after the aeration amount by the aeration device 13 is increased so that the upstream measurement value falls within the appropriate range, the downstream measurement is performed. As described above, the underwater propeller 12 is accelerated or decelerated to adjust the flow rate of the circulating fluid so that the value falls within the appropriate range.

このようにして循環流発生手段である水中プロペラ12や、酸素供給手段である曝気装置13を制御することにより、ディッチ11内の好気域14及び無酸素域15のバランスを一定に保持することができ、安定した処理を行うことができる。   In this way, the balance between the aerobic region 14 and the anaerobic region 15 in the ditch 11 is kept constant by controlling the underwater propeller 12 that is the circulating flow generating means and the aeration device 13 that is the oxygen supplying means. And stable processing can be performed.

そして、ディッチ11内での処理が安定することにより、ディッチ11から最終沈殿池17に抜き出される混合液の状態も安定し、混合液中に含まれる窒素分の濃度も安定する。   And since the process in the ditch 11 is stabilized, the state of the liquid mixture extracted from the ditch 11 to the final sedimentation tank 17 is also stabilized, and the concentration of nitrogen contained in the liquid mixture is also stabilized.

例えば、図2は、前記制御を行わずに曝気装置13を間欠運転したときの返送汚泥中の硝酸性窒素濃度(A)及びアンモニア性窒素濃度(B)の変動状態の一例を示すもので、曝気時にはディッチ11内が好気状態になることから、最終沈殿池17に抜き出されて分離した汚泥中の硝酸性窒素濃度(A)が上昇し、その上昇分に応じてアンモニア性窒素濃度(B)が低下する。また、曝気停止時には、硝酸性窒素濃度(A)が低下してアンモニア性窒素濃度(B)が上昇する。さらに、両窒素濃度の変化は、流入負荷に大きく影響されるため、最終沈殿池17から嫌気槽19に返送される返送汚泥中に硝酸性窒素が高濃度になることがあり、微生物からのリンの放出が阻害されてリンの除去を十分に行えなくなる。   For example, FIG. 2 shows an example of the fluctuation state of the nitrate nitrogen concentration (A) and the ammonia nitrogen concentration (B) in the return sludge when the aeration apparatus 13 is intermittently operated without performing the control. Since the inside of the ditch 11 is in an aerobic state at the time of aeration, the nitrate nitrogen concentration (A) in the sludge extracted and separated into the final sedimentation basin 17 rises, and the ammonia nitrogen concentration ( B) decreases. When aeration is stopped, the nitrate nitrogen concentration (A) decreases and the ammonia nitrogen concentration (B) increases. Furthermore, since the change in both nitrogen concentrations is greatly influenced by the inflow load, nitrate nitrogen may become high in the return sludge returned from the final sedimentation tank 17 to the anaerobic tank 19, and phosphorous from microorganisms. The release of phosphorus is inhibited, and phosphorus cannot be sufficiently removed.

一方、前述のように、上流側測定値と下流側測定値とに基づいて流速及び曝気量を制御した場合は、図3に示すように、流入負荷が変動しても返送汚泥中の硝酸性窒素濃度(A)は略一定の低濃度状態となり、アンモニア性窒素濃度(B)も、好気域14が安定して形成されることから流入負荷に関係なく略一定の状態となる。したがって、嫌気槽19に返送される汚泥中の硝酸性窒素濃度が低濃度で安定した状態になることから、嫌気槽19における微生物からのリンの放出も安定して行えることになる。   On the other hand, as described above, when the flow velocity and the aeration amount are controlled based on the upstream measurement value and the downstream measurement value, as shown in FIG. The nitrogen concentration (A) is in a substantially constant low concentration state, and the ammoniacal nitrogen concentration (B) is also in a substantially constant state regardless of the inflow load because the aerobic region 14 is stably formed. Accordingly, since the nitrate nitrogen concentration in the sludge returned to the anaerobic tank 19 becomes stable at a low concentration, the release of phosphorus from the microorganisms in the anaerobic tank 19 can be performed stably.

また、ディッチ11内を高負荷状態として運転することにより、低負荷時に比べて汚泥の自己分解を抑えることができるので、汚泥抜出経路22から抜き出す汚泥中のリン濃度を高めることができ、処理水中のリン濃度を更に低下させることが可能となる。   Further, by operating the interior of the ditch 11 in a high load state, it is possible to suppress the self-decomposition of the sludge as compared with the low load state, so that the phosphorus concentration in the sludge extracted from the sludge extraction path 22 can be increased, It becomes possible to further reduce the phosphorus concentration in water.

さらに、嫌気槽19で放出されたリンは、ディッチ11内が好気状態あるいは無酸素状態のときに汚泥中に摂取され、特に好気状態ではリンの摂取速度が早いので、曝気装置13を間欠運転したときの曝気運転中に水中プロペラ12や曝気装置13を適宜制御してディッチ11内の全体を好気状態にすることにより、汚泥によるリンの摂取を促進させてリンの除去効率を向上させることができる。   Furthermore, phosphorus released in the anaerobic tank 19 is taken into sludge when the ditch 11 is in an aerobic state or anoxic state, and in particular in an aerobic state, the intake rate of phosphorus is fast, so the aeration apparatus 13 is intermittently operated. By appropriately controlling the underwater propeller 12 and the aeration device 13 during aeration operation to bring the entire ditch 11 into an aerobic state, intake of phosphorus by sludge is promoted and phosphorus removal efficiency is improved. be able to.

このように、従来のオキシデーションディッチ法に嫌気槽のような嫌気処理手段を単に組み合わせた場合に比べて、上流側測定値と下流側測定値とに基づいて流速及び曝気量を制御するオキシデーションディッチ法に嫌気槽のような嫌気処理手段を組み合わせることにより、リンを安定して除去できるとともに、リンの除去効率を大幅に向上させることができる。   In this way, compared to the case where an anaerobic treatment means such as an anaerobic tank is simply combined with the conventional oxidation ditch method, the oxidation for controlling the flow velocity and the amount of aeration based on the upstream measurement value and the downstream measurement value. By combining an anaerobic treatment means such as an anaerobic tank with the ditch method, phosphorus can be stably removed, and phosphorus removal efficiency can be greatly improved.

本発明の排水処理装置の一形態例を示す説明図である。It is explanatory drawing which shows one example of the waste water treatment apparatus of this invention. 間欠曝気を行ったときの返送汚泥中の硝酸性窒素濃度及びアンモニア性窒素濃度の変動状態の一例を示す図である。It is a figure which shows an example of the fluctuation | variation state of nitrate nitrogen concentration and ammonia nitrogen concentration in the return sludge when performing intermittent aeration. 循環液の流速及び酸素の供給量をそれぞれ調節したときの返送汚泥中の硝酸性窒素濃度及びアンモニア性窒素濃度の変動状態の一例を示す図である。It is a figure which shows an example of the fluctuation | variation state of the nitrate nitrogen density | concentration in the returned sludge, and ammonia nitrogen density | concentration when adjusting the flow rate of circulating fluid, and the supply amount of oxygen, respectively.

符号の説明Explanation of symbols

11…ディッチ、12…水中プロペラ、13…曝気装置、14…好気域、15…無酸素域、16…出口流路、17…最終沈殿池、18…原水流入経路、19…嫌気槽、20…処理水流出経路、21…返送汚泥経路、22…汚泥抜出経路、23…上流側溶存酸素計(第1DO計)、24…下流側溶存酸素計(第2DO計)、25…制御手段   DESCRIPTION OF SYMBOLS 11 ... Ditch, 12 ... Underwater propeller, 13 ... Aeration apparatus, 14 ... Aerobic area, 15 ... Anoxic area, 16 ... Outlet flow path, 17 ... Final sedimentation basin, 18 ... Raw water inflow path, 19 ... Anaerobic tank, 20 ... treated water outflow route, 21 ... return sludge route, 22 ... sludge extraction route, 23 ... upstream dissolved oxygen meter (first DO meter), 24 ... downstream dissolved oxygen meter (second DO meter), 25 ... control means

Claims (2)

無終端水路に循環流発生手段及び酸素供給手段を備え、該酸素供給手段の下流側の好気域と、該好気域の終端から前記酸素供給手段に至る無酸素域とを形成し、前記好気域における上流側と下流側とに、循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計をそれぞれ設けるとともに、該上流側溶存酸素計及び下流側溶存酸素計で測定した溶存酸素濃度に基づいて前記酸素供給手段による酸素の供給量及び前記循環流発生手段による循環液の流速をそれぞれ調節する制御手段を設けた排水処理装置において、前記無終端水路に原水を流入させる原水流入経路に設けた嫌気処理手段と、前記無終端水路で処理した処理液の固液分離を行う固液分離手段と、該固液分離手段で分離した汚泥を前記嫌気処理手段に返送して原水に混合する返送汚泥経路とを備えていることを特徴とする排水処理装置。   A circulation flow generating means and an oxygen supply means are provided in the endless water channel, and an aerobic area downstream of the oxygen supply means and an anoxic area from the end of the aerobic area to the oxygen supply means are formed, An upstream dissolved oxygen meter and a downstream dissolved oxygen meter for measuring the dissolved oxygen concentration in the circulating fluid are provided on the upstream side and the downstream side in the aerobic region, respectively, and the upstream dissolved oxygen meter and the downstream dissolved oxygen meter are provided. In the wastewater treatment apparatus provided with control means for adjusting the amount of oxygen supplied by the oxygen supply means and the flow rate of the circulating fluid by the circulating flow generation means based on the dissolved oxygen concentration measured in step 1, the raw water is supplied to the endless water channel. Anaerobic treatment means provided in the raw water inflow path to be introduced, solid-liquid separation means for performing solid-liquid separation of the treatment liquid treated in the endless water channel, and sludge separated by the solid-liquid separation means are returned to the anaerobic treatment means Raw water Wastewater treatment apparatus characterized by and a return sludge path to be mixed. 無終端水路に設けた循環流発生手段及び酸素供給手段により、該酸素供給手段の下流側に好気域を、該好気域の終端から前記酸素供給手段との間に無酸素域をそれぞれ形成し、前記好気域における上流側の溶存酸素濃度と下流側の溶存酸素濃度とをそれぞれ測定し、各溶存酸素濃度の測定値に基づいて前記酸素供給手段による酸素の供給量及び前記循環流発生手段による循環液の流速をそれぞれ調節する排水処理方法において、前記無終端水路で処理した処理液を固液分離し、分離した汚泥を前記無終端水路に流入する原水と混合させて嫌気処理を行い、該嫌気処理を行った原水及び汚泥の混合液を前記無終端水路に流入させることを特徴とする排水処理方法。   An aerobic zone is formed on the downstream side of the oxygen supply means and an anoxic zone is formed between the end of the aerobic zone and the oxygen supply means by the circulating flow generating means and the oxygen supply means provided in the endless water channel. And measuring the upstream dissolved oxygen concentration and the downstream dissolved oxygen concentration in the aerobic region, respectively, and based on the measured values of each dissolved oxygen concentration, the oxygen supply amount and the circulation flow generation by the oxygen supply means In the wastewater treatment method for adjusting the flow rate of the circulating fluid by each means, the treatment liquid treated in the endless water channel is subjected to solid-liquid separation, and the separated sludge is mixed with the raw water flowing into the endless water channel to perform anaerobic treatment. A wastewater treatment method characterized by causing the mixed solution of raw water and sludge subjected to the anaerobic treatment to flow into the endless water channel.
JP2006213314A 2006-08-04 2006-08-04 Wastewater treatment apparatus and method Pending JP2008036517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213314A JP2008036517A (en) 2006-08-04 2006-08-04 Wastewater treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213314A JP2008036517A (en) 2006-08-04 2006-08-04 Wastewater treatment apparatus and method

Publications (1)

Publication Number Publication Date
JP2008036517A true JP2008036517A (en) 2008-02-21

Family

ID=39172142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213314A Pending JP2008036517A (en) 2006-08-04 2006-08-04 Wastewater treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP2008036517A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628775B (en) * 2009-08-09 2011-07-27 江苏鼎泽环境工程有限公司 Improved Carrousel oxidation ditch
JP2012143696A (en) * 2011-01-11 2012-08-02 Japan Sewage Works Agency Wastewater treatment apparatus, and method for driving the same
CN103011410A (en) * 2012-12-06 2013-04-03 杭州绿色环保技术开发有限公司 Synchronous degradation process and device for COD (Chemical Oxygen Demand) and N (Nitrogen) of high concentration wastewater in same pool
JP2013103185A (en) * 2011-11-15 2013-05-30 Japan Sewage Works Agency Wastewater treatment apparatus
CN106277619A (en) * 2016-08-31 2017-01-04 柳州市润广科技有限公司 A kind of technique utilizing biochemical process to process oil-polluted water
CN107417053A (en) * 2017-09-18 2017-12-01 广东益康生环保服务有限公司 A kind of multistage OA oxidation ditches

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068096A (en) * 1983-09-22 1985-04-18 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JPS61125491A (en) * 1984-11-22 1986-06-13 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JPS61125490A (en) * 1984-11-22 1986-06-13 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JPH07290086A (en) * 1994-04-26 1995-11-07 Hitachi Kiden Kogyo Ltd Dephosphorization method in oxidation ditch
JP2002186989A (en) * 2000-12-19 2002-07-02 Taiyo Toyo Sanso Co Ltd Method for biologically removing phosphorous in oxidation ditch
JP2004321908A (en) * 2003-04-23 2004-11-18 Ataka Construction & Engineering Co Ltd Sewage treatment apparatus and sewage treatment method
JP2005052804A (en) * 2003-08-07 2005-03-03 Hiroshi Tsuno Waste water treatment equipment and operation method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068096A (en) * 1983-09-22 1985-04-18 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JPS61125491A (en) * 1984-11-22 1986-06-13 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JPS61125490A (en) * 1984-11-22 1986-06-13 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JPH07290086A (en) * 1994-04-26 1995-11-07 Hitachi Kiden Kogyo Ltd Dephosphorization method in oxidation ditch
JP2002186989A (en) * 2000-12-19 2002-07-02 Taiyo Toyo Sanso Co Ltd Method for biologically removing phosphorous in oxidation ditch
JP2004321908A (en) * 2003-04-23 2004-11-18 Ataka Construction & Engineering Co Ltd Sewage treatment apparatus and sewage treatment method
JP2005052804A (en) * 2003-08-07 2005-03-03 Hiroshi Tsuno Waste water treatment equipment and operation method for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628775B (en) * 2009-08-09 2011-07-27 江苏鼎泽环境工程有限公司 Improved Carrousel oxidation ditch
JP2012143696A (en) * 2011-01-11 2012-08-02 Japan Sewage Works Agency Wastewater treatment apparatus, and method for driving the same
JP2013103185A (en) * 2011-11-15 2013-05-30 Japan Sewage Works Agency Wastewater treatment apparatus
CN103011410A (en) * 2012-12-06 2013-04-03 杭州绿色环保技术开发有限公司 Synchronous degradation process and device for COD (Chemical Oxygen Demand) and N (Nitrogen) of high concentration wastewater in same pool
CN106277619A (en) * 2016-08-31 2017-01-04 柳州市润广科技有限公司 A kind of technique utilizing biochemical process to process oil-polluted water
CN107417053A (en) * 2017-09-18 2017-12-01 广东益康生环保服务有限公司 A kind of multistage OA oxidation ditches

Similar Documents

Publication Publication Date Title
US8246830B2 (en) Method and device for removing biological nitrogen and support therefor
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP6720100B2 (en) Water treatment method and water treatment device
TWI403467B (en) Treatment device for drainage containing organic sulfur compounds
JP2010194481A (en) Sewage treatment apparatus and operation method of sewage treatment apparatus
JP2006281003A (en) Biological waste water treatment method
JP2008036517A (en) Wastewater treatment apparatus and method
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP2008114215A (en) Method and apparatus for treating sludge
JP5725869B2 (en) Waste water treatment apparatus and operation method thereof
JP5863409B2 (en) Wastewater treatment equipment
JP3649632B2 (en) Biological nitrogen removal method
JP5951531B2 (en) Wastewater treatment equipment
JP2007326030A (en) Operation method of oxidation ditch
JP2006231211A (en) Waste water treatment apparatus
KR20130041598A (en) Waste water treatment system and method having dissolved oxygen level controlling apparatus
KR101709451B1 (en) Method for treating wastewater
KR101709452B1 (en) Method for treating wastewater
JP2006231206A (en) Waste water treatment method and equipment
KR101743346B1 (en) Apparatus and method for treating wastewater
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
KR101177670B1 (en) Apparatus and method for removing total phosphorus in wastewater
KR20160141383A (en) Apparatus for treating wastewater
KR101709449B1 (en) Method for treating wastewater
KR101709448B1 (en) Method for treating wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213