JP2010194481A - Sewage treatment apparatus and operation method of sewage treatment apparatus - Google Patents

Sewage treatment apparatus and operation method of sewage treatment apparatus Download PDF

Info

Publication number
JP2010194481A
JP2010194481A JP2009044165A JP2009044165A JP2010194481A JP 2010194481 A JP2010194481 A JP 2010194481A JP 2009044165 A JP2009044165 A JP 2009044165A JP 2009044165 A JP2009044165 A JP 2009044165A JP 2010194481 A JP2010194481 A JP 2010194481A
Authority
JP
Japan
Prior art keywords
tank
membrane separation
water
treated
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009044165A
Other languages
Japanese (ja)
Inventor
Soichiro Yatsugi
壮一郎 矢次
Hideki Akiyoshi
秀樹 秋吉
Yasuhiro Okawa
泰弘 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2009044165A priority Critical patent/JP2010194481A/en
Publication of JP2010194481A publication Critical patent/JP2010194481A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage treatment apparatus which keeps DO of a membrane separation tank a suitable value, controls generation of a causative agent of membrane fouling, and further maintains denitrification reaction in an anaerobic tank and phosphorous release reaction in an aerobic tank a good state. <P>SOLUTION: The sewage treatment apparatus includes an aerobic tank 3 which has an air diffuser 5 and aerobically treats a water to be treated by a microorganism, a membrane separation tank 4 which is arranged in the latter step of the aerobic tank 3 and has a membrane separation apparatus 6 for solid-liquid separating the water to be treated, and a first circulation passage 8 for making the water to be treated in the membrane separation tank 4 circulate to the aerobic tank 3, wherein the sewage treatment apparatus includes a first measuring apparatus 20 for measuring an indicator of the aerobic treatment in the membrane separation tank 4, and a first control apparatus 21 which adjusts a circulation amount of the water to be treated through the first circulation passage 8 based on a measured value by the first measuring apparatus 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、散気装置を備え微生物により被処理水を好気性処理する好気槽と、前記好気槽の後段に配置され被処理水を固液分離する膜分離装置が設置される膜分離槽と、前記膜分離槽内の被処理水を前記好気槽へ循環させる第一の循環路を備えている汚水処理装置及びその運転方法に関する。   The present invention relates to a membrane separation in which an aerobic tank provided with an air diffuser and aerobically treating water to be treated with microorganisms, and a membrane separation device disposed at a subsequent stage of the aerobic tank and separating the water to be treated solid-liquid The present invention relates to a sewage treatment apparatus including a tank and a first circulation path for circulating water to be treated in the membrane separation tank to the aerobic tank, and an operation method thereof.

特許文献1には、図6に示すように、汚水中の窒素やリン等を、活性汚泥を利用して除去する汚水処理装置として、汚水を嫌気槽、無酸素槽、好気槽、分離膜が浸漬された膜分離槽の順に通水し、膜分離槽の処理水の一部を無酸素槽に返送するとともに、無酸素槽の処理水の一部を嫌気槽に返送する廃水処理装置が提案されている。   In Patent Document 1, as shown in FIG. 6, sewage is treated as an anaerobic tank, an anaerobic tank, an aerobic tank, a separation membrane as a sewage treatment apparatus that removes nitrogen, phosphorus, and the like in sewage using activated sludge. A wastewater treatment device that passes water in the order of the membrane separation tank in which the water is immersed, returns a part of the treated water of the membrane separation tank to the anaerobic tank, and returns a part of the treated water of the anoxic tank to the anaerobic tank. Proposed.

汚水が嫌気槽で嫌気処理され、BOD成分が微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてりんが放出される。嫌気槽の被処理水が移送された無酸素槽で脱窒処理、つまり、硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処理が行なわれる。更に、無酸素槽の被処理水が移送された好気槽で好気処理され、微生物によるアンモニアの硝化と正リン酸の取り込みが行われ、分離膜を介して被処理水が移送される。   The sewage is anaerobically treated in an anaerobic tank, the BOD component is taken into the microorganism, and the phosphorus compound is hydrolyzed to release phosphorus as normal phosphoric acid. In the anaerobic tank to which the water to be treated in the anaerobic tank is transferred, denitrification treatment, that is, reduction treatment of nitrate ions and nitrite ions to nitrogen gas is performed. Furthermore, aerobic treatment is performed in the aerobic tank to which the water to be treated in the anoxic tank has been transferred, nitrification of ammonia and uptake of normal phosphoric acid are performed by the microorganisms, and the water to be treated is transferred through the separation membrane.

好気槽から活性汚泥を含む被処理水が無酸素槽に返送され、無酸素槽から被処理水が嫌気槽に返送されるように構成されているため、無酸素槽で脱窒処理され硝酸性窒素、亜硝酸性窒素を含まず、酸素が消費された被処理水が嫌気槽に返送され、嫌気槽でのリンの放出条件である無NOx及び無酸素状態が保たれる。   Since the water to be treated containing activated sludge is returned from the aerobic tank to the anaerobic tank, and the water to be treated is returned from the anaerobic tank to the anaerobic tank, it is denitrified in the anaerobic tank and is treated with nitric acid. The non-nitrogen and nitrite nitrogen-free treated water in which oxygen is consumed is returned to the anaerobic tank, and NO-free and oxygen-free conditions, which are phosphorus release conditions in the anaerobic tank, are maintained.

つまり、嫌気槽ではリン化合物が正リン酸として効率的に放出され、放出された正リン酸が後段の好気槽において嫌気槽で放出した以上に活性汚泥に取り込まれることにより、被処理水からリンを高度に除去することが可能となる。活性汚泥は、余剰汚泥として処理系外に排出される。   That is, in the anaerobic tank, the phosphorus compound is efficiently released as normal phosphoric acid, and the released normal phosphoric acid is taken into the activated sludge more than released in the anaerobic tank in the subsequent aerobic tank. It becomes possible to remove phosphorus highly. The activated sludge is discharged out of the treatment system as excess sludge.

膜分離槽に浸漬配置された膜分離装置は、その下方に膜表面を洗浄するための曝気装置が配置されているが、曝気装置から供給される酸素量が膜分離槽に滞留する活性汚泥の内生呼吸で消費される酸素量よりも少ない場合、膜分離槽の溶存酸素濃度(DO:Dissolved Oxygen)が増加することは無い。また、DOが不足する場合は、前段の好気槽の散気量を増やすことにより好気槽から膜分離槽へのDO供給量を増加させればよい。   The membrane separation device immersed in the membrane separation tank is equipped with an aeration device for cleaning the membrane surface below, but the amount of oxygen supplied from the aeration device is the activated sludge that stays in the membrane separation tank. When it is less than the amount of oxygen consumed by endogenous respiration, the dissolved oxygen concentration (DO: Dissolved Oxygen) in the membrane separation tank does not increase. Moreover, when DO runs short, what is necessary is just to increase DO supply amount from an aerobic tank to a membrane separation tank by increasing the amount of aeration of a previous aerobic tank.

特開2001−314890号公報JP 2001-314890 A

しかし、膜分離槽のDOが高過ぎると、活性汚泥の自己解体が生じて、膜ファウリングの原因物質が発生する原因になり、膜分離槽のDO抑制のために、無酸素槽への活性汚泥の循環量を増加させると、無酸素槽での滞留時間が確保できず、脱窒反応に障害が生じる虞がある。   However, if the DO in the membrane separation tank is too high, self-disassembly of activated sludge occurs, causing the cause of membrane fouling. When the amount of sludge circulation is increased, the residence time in the oxygen-free tank cannot be secured, and there is a possibility that the denitrification reaction may be impaired.

特許文献1には、好気槽内に膜分離装置を設置する装置も提案されている。この方法によると、好気槽のDOを適正に調節することが可能となるため、膜ファウリング原因物質の発生を抑制することが可能である。しかし、膜分離槽に膜分離装置を設置する方法に比べ、好気槽の活性汚泥濃度が高くなるため、散気装置の酸素移動供給性能が低下し、好気処理に必要な散気量が増加する問題がある。   Patent Document 1 also proposes an apparatus in which a membrane separation device is installed in an aerobic tank. According to this method, it is possible to appropriately adjust the DO of the aerobic tank, and thus it is possible to suppress the occurrence of a membrane fouling-causing substance. However, since the activated sludge concentration in the aerobic tank is higher than the method of installing the membrane separation apparatus in the membrane separation tank, the oxygen transfer supply performance of the aeration apparatus is reduced, and the amount of aeration required for aerobic treatment is reduced. There are increasing problems.

本発明の目的は、上述した問題点に鑑み、膜分離槽のDOを適正な値に保ち、膜ファウリングの原因物質の発生を抑制しつつ、好気槽の散気量を低減し、さらには、無酸素槽での脱窒反応及び嫌気槽でのりん放出反応を良好な状態に維持することができる汚水処理装置及びその運転方法を提供する点にある。   The object of the present invention is to reduce the amount of air diffused in the aerobic tank while keeping the DO in the membrane separation tank at an appropriate value and suppressing the generation of causative substances of the membrane fouling in view of the above-mentioned problems, Is to provide a sewage treatment apparatus capable of maintaining a denitrification reaction in an anaerobic tank and a phosphorus release reaction in an anaerobic tank in an excellent state and an operation method thereof.

上述の目的を達成するため、本発明による汚水処理装置の特徴構成は、特許請求の範囲の請求項1に記載した通り、散気装置を備え微生物により被処理水を好気性処理する好気槽と、前記好気槽の後段に配置され被処理水を固液分離する膜分離装置が設置される膜分離槽と、前記膜分離槽内の被処理水を前記好気槽へ循環させる第一の循環路を備えている汚水処理装置であって、前記膜分離槽内の好気性処理の指標を測定する第一の測定装置と、前記第一の測定装置による測定値に基づいて、前記第一の循環路を介した被処理水の循環量を調節する第一の制御装置を備える点にある。   In order to achieve the above-described object, the characteristic configuration of the sewage treatment apparatus according to the present invention is, as described in claim 1, comprising an aeration device and an aerobic tank for aerobically treating treated water with microorganisms. A membrane separation tank disposed downstream of the aerobic tank and provided with a membrane separation device for solid-liquid separation of the treated water; and a first for circulating the treated water in the membrane separation tank to the aerobic tank A sewage treatment apparatus comprising a circulation path of the first measurement device for measuring an aerobic treatment index in the membrane separation tank, and the first measurement device based on the measurement value by the first measurement device, It is in the point provided with the 1st control apparatus which adjusts the circulation amount of to-be-processed water via one circulation path.

上述の構成によれば、第一の測定装置により膜分離槽内の好気性処理の指標が求まるので、第一の制御装置はその状態に応じて第一の循環路を介して膜分離槽から好気槽へ循環させる被処理水の循環量が適正な値に調整されるのである。   According to the above-described configuration, since the index of the aerobic treatment in the membrane separation tank is obtained by the first measuring device, the first control device can be removed from the membrane separation tank via the first circulation path according to the state. The amount of treated water to be circulated to the aerobic tank is adjusted to an appropriate value.

例えば、膜分離槽のDOの上昇にあわせて、第一の循環路を介した被処理水の循環量を増加させると、膜分離槽よりDOの低い好気槽からの汚泥の流入量が増加し、膜分離槽のDOが低下する。さらに、汚泥の好気槽での滞留時間が短くなり、膜分離槽に流入する未硝化のアンモニアが増加し、膜分離槽でのアンモニアの硝化に酸素が消費され、その結果、膜分離槽内のDOの異常な上昇を効果的に抑制でき、活性汚泥の自己分解による膜ファウリングの原因物質の発生を抑制することができるようになる。   For example, if the amount of treated water circulating through the first circulation path is increased in accordance with the rise in DO in the membrane separation tank, the amount of sludge inflow from the aerobic tank having a lower DO than the membrane separation tank is increased. In addition, the DO of the membrane separation tank decreases. Furthermore, the residence time of the sludge in the aerobic tank is shortened, the unnitrified ammonia flowing into the membrane separation tank is increased, and oxygen is consumed in the nitrification of ammonia in the membrane separation tank. The abnormal rise of DO can be effectively suppressed, and generation of substances causing membrane fouling due to self-decomposition of activated sludge can be suppressed.

逆に、膜分離槽のDOが低くなり、第一の循環路を介した被処理水の循環量を減少させると、膜分離槽よりDOの低い好気槽からの汚泥の流入量が減少し、膜分離槽に備えた曝気装置から供給される酸素によりDOを適正な値に調整することができるのである。   Conversely, when the DO in the membrane separation tank becomes low and the circulation rate of the treated water through the first circulation path is reduced, the inflow of sludge from the aerobic tank with a lower DO than the membrane separation tank is reduced. The DO can be adjusted to an appropriate value by the oxygen supplied from the aeration apparatus provided in the membrane separation tank.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記第一の測定装置により少なくとも溶存酸素濃度、酸化還元電位、硝酸性窒素濃度の何れか1つの指標が測定され、測定値が予め設定された基準値より大きくなると、前記第一の制御装置は被処理水の循環量を増加するように調整する点にある。   As described in claim 2, the second characteristic configuration includes at least one of dissolved oxygen concentration, redox potential, and nitrate nitrogen concentration by the first measuring device in addition to the first characteristic configuration described above. When one index is measured and the measured value becomes larger than a preset reference value, the first control device adjusts so as to increase the circulation amount of the water to be treated.

膜分離槽内の好気性処理の指標とは、膜分離槽で好気性処理、つまり、微生物によるアンモニアの硝化や正リン酸の取込処理の程度を評価可能な指標であり、少なくともDOつまり溶存酸素濃度、酸化還元電位、硝酸性窒素濃度の何れか1つを測定すればよい。測定値が予め設定された基準値より大きくなると、第一の制御装置により被処理水の循環量が増加するように調整される。   The aerobic treatment index in the membrane separation tank is an index capable of evaluating the degree of aerobic treatment in the membrane separation tank, that is, the nitrification of ammonia and the uptake of orthophosphoric acid by microorganisms. Any one of oxygen concentration, oxidation-reduction potential, and nitrate nitrogen concentration may be measured. When the measured value becomes larger than a preset reference value, the first control device adjusts the amount of treated water to increase.

酸化還元電位(ORP:oxidation-reduction potential)が高い場合には処理水がDOの高い酸化状態にあると判定でき、硝酸性窒素濃度が高い場合にも高DOにより硝化反応が著しい状態であると判定できるのである。   When the oxidation-reduction potential (ORP) is high, it can be determined that the treated water is in a highly oxidized state of DO, and even when the nitrate nitrogen concentration is high, the nitrification reaction is significant due to the high DO. It can be judged.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一特徴構成に加えて、前記第一の測定装置により少なくともpH、アンモニア性窒素濃度の何れか1つの指標が測定され、測定値が予め設定された基準値より小さくなると、前記第一の制御装置は被処理水の循環量を増加するように調整する点にある。   In the third feature configuration, as described in claim 3, in addition to the first feature configuration described above, at least one index of pH and ammoniacal nitrogen concentration is measured by the first measurement device. When the measured value becomes smaller than a preset reference value, the first control device adjusts so as to increase the circulation amount of the water to be treated.

また、膜分離槽内の好気性処理の指標として、少なくともpH、アンモニア性窒素濃度の何れか一つを測定してもよい。pH値が小さくなり、或いはアンモニア性窒素濃度が低くなると、高DOの下で硝化反応が進行していると判定できるので、測定値が予め設定された基準値より小さくなると、第一の制御装置により被処理水の循環量が増加するように調整されるのである。   Further, at least one of pH and ammonia nitrogen concentration may be measured as an aerobic treatment index in the membrane separation tank. When the pH value becomes small or the ammoniacal nitrogen concentration becomes low, it can be determined that the nitrification reaction is proceeding under high DO. Therefore, when the measured value becomes smaller than the preset reference value, the first control device Thus, the amount of water to be treated is adjusted so as to increase.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記好気槽内の好気性処理の指標を測定する第二の測定装置と、前記第二の測定装置による測定値に基づいて、溶存酸素濃度を調節する第二の制御装置を備える点にある。   In the fourth feature configuration, in addition to any one of the first to third feature configurations described above, the second feature configuration measures an aerobic treatment index in the aerobic tank. And a second control device for adjusting the dissolved oxygen concentration based on the measurement value obtained by the second measurement device.

第一の循環路を介した処理水の循環量によって好気槽内の好気性処理の指標が変動するが、第二の測定装置により好気槽内の好気性処理の指標を測定した結果に基づいて、第二の制御装置により散気装置の散気量または酸素移動効率が調節され、適正な値に調整することができる。その結果、膜分離槽の好気性処理の指標もより速やかに調整できるようになる。例えば、好気槽内のDOが適正な値より上昇すれば、散気装置の散気量が少なくなるように調整したり、酸素移動効率が小さくなるように調整することにより、好気槽内のDOを低下させることができる。   The aerobic treatment index in the aerobic tank varies depending on the amount of treated water circulating through the first circulation path, but the second measurement device measured the aerobic treatment index in the aerobic tank. Based on this, the amount of air diffused or the oxygen transfer efficiency of the air diffuser is adjusted by the second control device, and can be adjusted to an appropriate value. As a result, the aerobic treatment index of the membrane separation tank can be adjusted more quickly. For example, if the DO in the aerobic tank rises from an appropriate value, the aeration apparatus can be adjusted so that the amount of air diffused is reduced or the oxygen transfer efficiency is reduced, so that the inside of the aerobic tank is reduced. The DO can be reduced.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記好気槽の前段に、微生物からりんを放出させる嫌気槽と、微生物により脱窒処理する無酸素槽を備え、前記膜分離槽内の被処理水を前記無酸素槽へ循環させる第二の循環路と、前記無酸素槽内の被処理水を前記嫌気槽へ移送する流路を備える点にある。   In addition to any one of the first to fourth characteristic configurations described above, the fifth characteristic configuration is an anaerobic tank in which phosphorus is released from microorganisms before the aerobic tank. And a second circulation path that circulates the water to be treated in the membrane separation tank to the oxygen-free tank, and the anaerobic water to be treated in the oxygen-free tank. It is in the point provided with the channel which transfers to a tank.

DOの高い膜分離槽の汚泥を無酸素槽へ循環させると、脱窒・脱りん処理に支障が発生するが、上述した第一から第四の何れかの特徴構成により、膜分離槽のDOが適正な値に調整されているため、DOが抑制された膜分離槽の汚泥が無酸素槽へ循環されると、無酸素槽での脱窒処理の効率が上昇し、十分に脱窒処理された無酸素槽の汚泥つまり硝酸性窒素の無い汚泥を嫌気槽へ流入させることにより、嫌気槽での脱りん処理の効率も上昇する。従って、安定した脱窒・脱りん処理が行なわれるようになる。   Circulating sludge from a membrane separation tank having a high DO to an oxygen-free tank will cause problems in the denitrification / dephosphorization treatment. However, according to any one of the first to fourth features described above, the DO of the membrane separation tank Is adjusted to an appropriate value, so if the sludge in the membrane separation tank in which DO is suppressed is circulated to the oxygen-free tank, the efficiency of the denitrification process in the oxygen-free tank will increase and the denitrification process will be sufficient. The efficiency of dephosphorization treatment in the anaerobic tank is also increased by flowing the sludge in the anaerobic tank, that is, the sludge without nitrate nitrogen, into the anaerobic tank. Accordingly, a stable denitrification / dephosphorization process is performed.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記好気槽の前段に、微生物からりんを放出する嫌気槽と、微生物により脱窒処理する無酸素槽とをこの順に備え、前記膜分離槽内の被処理水を前記無酸素槽へ循環させる第二の循環路と、前記無酸素槽内の被処理水を前記嫌気槽へ循環させる第三の循環路を備えている点にある。   In addition to any one of the first to fourth characteristic configurations described above, the sixth characteristic configuration is an anaerobic tank that releases phosphorus from microorganisms in the front stage of the aerobic tank. And an oxygen-free tank that is denitrified by microorganisms in this order, a second circulation path that circulates the water to be treated in the membrane separation tank to the oxygen-free tank, and the water to be treated in the oxygen-free tank Is provided with a third circulation path for circulating the gas to the anaerobic tank.

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記好気槽の前段に、微生物からりんを放出する嫌気槽と、微生物により脱窒処理する無酸素槽とをこの順に備え、前記膜分離槽内の被処理水を前記無酸素槽へ循環させる第二の循環路と、前記膜分離槽内の被処理水を前記嫌気槽へ循環させる第三の循環路を備えている点にある。   In addition to any one of the first to fourth characteristic configurations described above, the seventh characteristic configuration is an anaerobic tank that releases phosphorus from microorganisms in the previous stage of the aerobic tank. And an oxygen-free tank for denitrification treatment with microorganisms in this order, a second circulation path for circulating the water to be treated in the membrane separation tank to the oxygen-free tank, and the water to be treated in the membrane separation tank Is provided with a third circulation path for circulating the gas to the anaerobic tank.

本発明による汚水処理装置の運転方法の特徴構成は、同請求項8に記載した通り、散気装置を備え微生物により被処理水を好気性処理する好気槽と、前記好気槽の後段に配置され被処理水を固液分離する膜分離装置が設置される膜分離槽と、前記膜分離槽内の被処理水を前記好気槽へ循環させる循環路を備えている汚水処理装置の運転方法であって、前記膜分離槽内の好気性処理の指標を測定し、測定値に基づいて前記循環路の循環量を調節する点にある。   The characteristic configuration of the operation method of the sewage treatment apparatus according to the present invention includes an aerobic tank provided with an air diffuser and an aerobic treatment of water to be treated by microorganisms, as described in claim 8, and a stage subsequent to the aerobic tank. Operation of a sewage treatment apparatus provided with a membrane separation tank in which a membrane separation apparatus is disposed for separating the treated water into solid and liquid, and a circulation path for circulating the treated water in the membrane separation tank to the aerobic tank A method is to measure an aerobic treatment index in the membrane separation tank and adjust a circulation amount of the circulation path based on a measured value.

以上説明した通り、本発明によれば、膜分離槽のDOを適正な値に保ち、膜ファウリングの原因物質の発生を抑制し、さらには、無酸素槽での脱窒反応及び嫌気槽でのりん放出反応を良好な状態に維持することができる汚水処理装置及びその運転方法を提供することができるようになった。   As described above, according to the present invention, the DO in the membrane separation tank is maintained at an appropriate value, the generation of the causative substance of the membrane fouling is suppressed, and further, the denitrification reaction in the oxygen-free tank and the anaerobic tank are performed. It is now possible to provide a sewage treatment apparatus capable of maintaining a good phosphorus release reaction and its operating method.

さらに、膜分離槽内の過剰な酸素を好気槽内で有効に利用することが可能になるので、好気槽の散気量を低減することができる。   Furthermore, since excess oxygen in the membrane separation tank can be effectively used in the aerobic tank, the amount of air diffused in the aerobic tank can be reduced.

本発明による汚水処理装置の第一の説明図1st explanatory drawing of the sewage treatment apparatus by this invention 本発明による汚水処理装置の第二の説明図2nd explanatory drawing of the sewage treatment apparatus by this invention 本発明による汚水処理装置の第三の説明図3rd explanatory drawing of the sewage treatment apparatus by this invention 本発明による汚水処理装置の第四の説明図4th explanatory drawing of the sewage treatment apparatus by this invention 本発明による汚水処理装置の第五の説明図5th explanatory drawing of the sewage treatment apparatus by this invention 従来の汚水処理装置の説明図Explanatory drawing of conventional sewage treatment equipment

以下、本発明による汚水処理装置及びその運転方法の実施形態を説明する。
図1に示すように、汚水処理装置は、未処理の被処理水である原水を流入させる嫌気槽1と、嫌気槽1の下流側に隣接した無酸素槽2と、無酸素槽2の下流側に隣接した好気槽3と、好気槽3の下流側に隣接した膜分離槽4が、それぞれ隔壁で分離されて構成されている。
Hereinafter, embodiments of a sewage treatment apparatus and an operation method thereof according to the present invention will be described.
As shown in FIG. 1, the sewage treatment apparatus includes an anaerobic tank 1 into which raw water, which is untreated water to be treated, an anaerobic tank 2 adjacent to the downstream side of the anaerobic tank 1, and a downstream of the anoxic tank 2. The aerobic tank 3 adjacent to the side and the membrane separation tank 4 adjacent to the downstream side of the aerobic tank 3 are separated from each other by a partition wall.

嫌気槽1では、嫌気条件下で微生物により嫌気処理され、原水に含まれるBOD成分が微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてりんが液中に放出される。   In the anaerobic tank 1, anaerobic treatment is performed by microorganisms under anaerobic conditions, and BOD components contained in the raw water are taken into the microorganisms, and phosphorus compounds are hydrolyzed to release phosphorus as normal phosphoric acid into the liquid.

無酸素槽2では、嫌気条件下で微生物により嫌気処理され、硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処理、つまり脱窒処理が行なわれる。   In the anaerobic tank 2, anaerobic treatment is performed by microorganisms under anaerobic conditions, and nitrate ions and nitrite ions are reduced to nitrogen gas, that is, denitrification treatment is performed.

好気槽3には、底部に散気装置5が設置され、被処理水に含まれるし尿等が由来のアンモニウムイオンが、好気条件下で微生物により酸化され、亜硝酸や硝酸に変換される硝化処理が行われ、さらに、被処理水中の正リン酸が汚泥に取り込まれ、ポリリン酸として蓄積される好気性処理が行われる。   In the aerobic tank 3, an air diffuser 5 is installed at the bottom, and ammonium ions derived from human waste contained in the water to be treated are oxidized by microorganisms under aerobic conditions and converted into nitrous acid and nitric acid. A nitrification treatment is performed, and an aerobic treatment is performed in which normal phosphoric acid in the water to be treated is taken into sludge and accumulated as polyphosphoric acid.

膜分離槽4には、被処理水を固液分離する膜分離装置6が設置され、膜分離装置6により被処理水から活性汚泥等の固形物が分離され、後段の被処理水槽(図示せず)に排出される。膜分離装置6に用いられる分離膜として、限外ろ過膜、精密ろ過膜等が採用される。膜の形態は、中空糸膜、平膜、チューブラー膜などが採用される。   The membrane separation tank 4 is provided with a membrane separation device 6 for solid-liquid separation of the water to be treated. Solid matter such as activated sludge is separated from the water to be treated by the membrane separation device 6, and a water tank (not shown) in the subsequent stage is separated. Are discharged. As a separation membrane used in the membrane separation device 6, an ultrafiltration membrane, a microfiltration membrane, or the like is employed. As the form of the membrane, a hollow fiber membrane, a flat membrane, a tubular membrane or the like is adopted.

膜分離装置6の下部には、膜分離装置6の膜表面を洗浄する曝気装置7が配設されている。膜分離槽4では、曝気装置7から供給される酸素により、好気条件下で活性汚泥により硝化処理が行なわれる。   An aeration device 7 for cleaning the membrane surface of the membrane separation device 6 is disposed below the membrane separation device 6. In the membrane separation tank 4, nitrification treatment is performed with activated sludge under aerobic conditions with oxygen supplied from the aeration device 7.

さらに、膜分離槽4内の被処理水を好気槽3へ循環させる第一の循環路8が設けられ、膜分離槽4内の被処理水を無酸素槽2へ循環させる第二の循環路9と、無酸素槽2内の被処理水を嫌気槽1へ循環させる第三の循環路10を備えている。   Furthermore, a first circulation path 8 for circulating the treated water in the membrane separation tank 4 to the aerobic tank 3 is provided, and a second circulation for circulating the treated water in the membrane separation tank 4 to the anoxic tank 2. A path 9 and a third circulation path 10 for circulating the water to be treated in the anoxic tank 2 to the anaerobic tank 1 are provided.

各処理槽1,2,3で生物処理された被処理水は、隔壁の下部に形成された開口部を介して下流側に移送され、或いは、隔壁をオーバーフローして下流側に移送される。   The water to be treated biologically treated in each of the treatment tanks 1, 2, 3 is transferred to the downstream side through an opening formed in the lower part of the partition wall, or is transferred to the downstream side after overflowing the partition wall.

このような構成により、硝化処理により被処理水に含まれる硝酸イオン及び亜硝酸イオンが、第二の循環路9を介して無酸素槽2へ循環されて、脱窒処理が行なわれ、さらに、りんを取り込んだ膜分離槽4内の微生物が、第二、第三の循環路10を介して嫌気槽1へ循環されて、正リン酸としてりんが液中に放出される。また、膜分離槽4の活性汚泥は、余剰汚泥として排出される。   With such a configuration, nitrate ions and nitrite ions contained in the water to be treated by nitrification treatment are circulated to the anoxic tank 2 through the second circulation path 9, and denitrification treatment is performed. Microorganisms in the membrane separation tank 4 that have taken in phosphorus are circulated to the anaerobic tank 1 through the second and third circulation paths 10, and phosphorus is discharged into the liquid as normal phosphoric acid. Moreover, the activated sludge of the membrane separation tank 4 is discharged as excess sludge.

膜分離槽4には、槽内の好気性処理の指標として溶存酸素濃度(以下、「DO」と記す。)を測定する第一の測定装置20と、第一の測定装置20による測定値に基づいて、第一の循環路8を介した被処理水の循環量を調節する第一の制御装置21が設けられている。   The membrane separation tank 4 includes a first measurement device 20 that measures a dissolved oxygen concentration (hereinafter referred to as “DO”) as an index of aerobic treatment in the tank, and a measurement value obtained by the first measurement device 20. Based on this, a first control device 21 that adjusts the circulation amount of the water to be treated via the first circulation path 8 is provided.

第一の測定装置20は、DOが予め設定された基準値より大きくなると、第一の循環路8を介した被処理水の循環量を増加するように調整し、溶存酸素濃度が基準値より小さくなるように制御する。具体的には、膜分離槽4に備えたポンプの回転数を調整して循環路8を介した被処理水の循環量を調整するか、ポンプの回転数を一定に維持して循環路8に備えたバルブ24の開度を調整することにより循環量を調整する。   The first measuring device 20 adjusts the amount of water to be treated to be circulated through the first circulation path 8 to increase when the DO becomes larger than a preset reference value, and the dissolved oxygen concentration is higher than the reference value. Control to make it smaller. Specifically, the rotation speed of the pump provided in the membrane separation tank 4 is adjusted to adjust the circulation amount of the water to be treated via the circulation path 8, or the circulation path 8 is maintained by keeping the rotation speed of the pump constant. The amount of circulation is adjusted by adjusting the opening of the valve 24 provided in the above.

例えば、膜分離槽のDOの上昇にあわせて、第一の循環路8を介した被処理水の循環量を増加させると、膜分離槽4よりDOの低い好気槽3からの汚泥の流入量が増加し、膜分離槽4のDOが低下する。さらに、汚泥の好気槽3での滞留時間が短くなり、膜分離槽4に流入する未処理の有機物量が増加し、膜分離槽4での有機物の分解に酸素が消費され、その結果、膜分離槽4内のDOの異常な上昇を効果的に抑制でき、活性汚泥の自己分解による膜ファウリングの原因物質の発生が抑制される。   For example, when the circulation amount of the water to be treated through the first circulation path 8 is increased in accordance with the rise of DO in the membrane separation tank, the inflow of sludge from the aerobic tank 3 having a lower DO than the membrane separation tank 4 The amount increases and the DO of the membrane separation tank 4 decreases. Furthermore, the residence time of the sludge in the aerobic tank 3 is shortened, the amount of untreated organic matter flowing into the membrane separation tank 4 is increased, and oxygen is consumed in the decomposition of the organic matter in the membrane separation tank 4, An abnormal increase in DO in the membrane separation tank 4 can be effectively suppressed, and generation of substances causing membrane fouling due to self-decomposition of activated sludge is suppressed.

逆に、膜分離槽4のDOが低くなり、第一の循環路8を介した被処理水の循環量を減少させると、膜分離槽4よりDOの低い好気槽3からの汚泥の流入量が減少し、膜分離槽4に備えた曝気装置7から供給される酸素によりDOが適正な値に調整される。   Conversely, when the DO in the membrane separation tank 4 becomes low and the circulation amount of the water to be treated through the first circulation path 8 is reduced, the inflow of sludge from the aerobic tank 3 having a lower DO than the membrane separation tank 4 The amount is decreased, and DO is adjusted to an appropriate value by oxygen supplied from the aeration apparatus 7 provided in the membrane separation tank 4.

また、好気槽3には、槽内の好気性処理の指標として溶存酸素濃度を測定する第二の測定装置22と、第二の測定装置22による測定値に基づいて、散気装置5の散気量を調節する第二の制御装置23が設けられている。   The aerobic tank 3 includes a second measuring device 22 that measures the dissolved oxygen concentration as an index of the aerobic treatment in the tank, and a measurement value of the aeration device 5 based on a measurement value obtained by the second measuring device 22. A second control device 23 for adjusting the amount of diffused air is provided.

第二の制御装置23は、DOが所定の目標範囲よりも高ければ、給気ポンプAPの回転数を低くして散気装置5の散気量を減少調節し、DOが所定の目標範囲よりも低ければ、給気ポンプAPの回転数を高くして散気装置5の散気量を増加調節して、溶存酸素濃度が所定の目標範囲に入るように調整する。尚、給気ポンプAPの回転の調整に替えて、給気ポンプAPと散気装置5との管絡に備えた、図1に破線で示したバルブ25を調節してもよい。   If the DO is higher than the predetermined target range, the second control device 23 reduces the amount of air diffused by the air diffuser 5 by decreasing the rotational speed of the air supply pump AP, and the DO is lower than the predetermined target range. If it is lower, the rotational speed of the air supply pump AP is increased and the amount of air diffused by the air diffuser 5 is increased and adjusted so that the dissolved oxygen concentration falls within a predetermined target range. Instead of adjusting the rotation of the air supply pump AP, the valve 25 indicated by the broken line in FIG. 1 provided for the connection between the air supply pump AP and the air diffuser 5 may be adjusted.

第一の循環路8を介した処理水の循環量によって好気槽3内のDOが変動するが、第二の測定装置22により好気槽内のDOを測定した結果に基づいて、第二の制御装置23により散気装置5の散気量が調節され、適正なDOに調整される。その結果、膜分離槽4のDOもより速やかに調整される。例えば、好気槽3内のDOが適正な値より上昇すれば、散気装置5の散気量が少なくなるように調整し、好気槽3内のDOを低下させるのである。   The DO in the aerobic tank 3 varies depending on the circulation amount of the treated water through the first circulation path 8, but based on the result of measuring the DO in the aerobic tank by the second measuring device 22, the second The control device 23 adjusts the amount of air diffused in the air diffuser 5 and adjusts it to an appropriate DO. As a result, the DO of the membrane separation tank 4 is also adjusted more quickly. For example, if the DO in the aerobic tank 3 rises from an appropriate value, the air diffuser 5 is adjusted so that the amount of air diffused is reduced, and the DO in the aerobic tank 3 is lowered.

第一の測定装置20及び第二の測定装置22は、好気性処理の指標として、DOを測定する測定器に限るものではなく、酸化還元電位、硝酸性窒素濃度の何れか1つの指標が測定可能な測定器で構成することができる。   The first measuring device 20 and the second measuring device 22 are not limited to a measuring device that measures DO as an index for aerobic treatment, and any one index of oxidation-reduction potential and nitrate nitrogen concentration is measured. It can consist of possible measuring instruments.

この場合、測定値が予め設定された基準値より大きくなると、第一の制御装置21により被処理水の循環量が増加するように調整され、第二の制御装置23により散気量が減少調節される。   In this case, when the measured value becomes larger than a preset reference value, the first control device 21 adjusts the amount of treated water to increase, and the second control device 23 adjusts the amount of air diffused to decrease. Is done.

さらに、第一の測定装置20及び第二の測定装置22は、好気性処理の指標として、pH、アンモニア性窒素濃度の何れか1つの指標が測定可能な測定器で構成することができる。   Further, the first measuring device 20 and the second measuring device 22 can be configured by a measuring instrument capable of measuring any one of pH and ammoniacal nitrogen concentration as an aerobic treatment index.

この場合、測定値が予め設定された基準値より小さくなると、第一の制御装置21により被処理水の循環量が増加するように調整され、第二の制御装置23により散気量が減少調節される。   In this case, when the measured value becomes smaller than a preset reference value, the first control device 21 adjusts the amount of treated water to increase, and the second control device 23 adjusts the amount of air diffused to decrease. Is done.

第一の測定装置20及び第二の測定装置22は、上述したDO、酸化還元電位、硝酸性窒素濃度、pH、アンモニア性窒素の複数を好気性処理の指標として制御することも可能である。   The first measuring device 20 and the second measuring device 22 can also control a plurality of the above-described DO, redox potential, nitrate nitrogen concentration, pH, and ammoniacal nitrogen as an aerobic treatment index.

このように、第二の測定装置22により、散気装置5を備え微生物により被処理水を好気性処理する好気槽3と、好気槽3の後段に配置され被処理水を固液分離する膜分離装置6が設置され、第一の測定装置20を備える膜分離槽4と、膜分離槽4内の被処理水を好気槽3へ循環させる循環路8を備えている汚水処理装置の運転方法であって、膜分離槽4内の好気性処理の指標を測定し、測定値に基づいて循環路8の循環量を調節する汚水処理装置の運転方法が実行される。   In this way, the second measuring device 22 includes the aeration device 5 and the aerobic tank 3 that aerobically treats the water to be treated with microorganisms, and is disposed in the subsequent stage of the aerobic tank 3 to separate the water to be treated. A sewage treatment apparatus comprising a membrane separation tank 4 having a first measuring device 20 and a circulation path 8 for circulating the water to be treated in the membrane separation tank 4 to the aerobic tank 3. The operation method of the sewage treatment apparatus is measured, in which an aerobic treatment index in the membrane separation tank 4 is measured and the circulation amount of the circulation path 8 is adjusted based on the measured value.

循環量は、好気性処理の指標と、それに応じた流量を複数段設定して制御する方法や、比例制御などのPID制御によって、流量を制御することができる。   The circulation amount can be controlled by a method of controlling aerobic processing by setting a plurality of stages according to the aerobic processing and by PID control such as proportional control.

尚、溶存酸素濃度を調節する第二の制御装置23は、散気装置5の散気量を調節するものに限らず、好気槽3内の酸素移動効率を調節するものであってもよい。例えば、図2に示すように、散気された空気の好気槽3内での上昇ルートを規制板等で制限するように、規制板の姿勢をモータ等のアクチュエータにより調整するような構成であってもよい。上昇する気泡の通路を規制して被処理水との接触機会を制限すれば、散気量を減少調節するのと同様の効果が得られる。   The second control device 23 that adjusts the dissolved oxygen concentration is not limited to the device that adjusts the amount of air diffused by the air diffuser 5, but may be one that adjusts the oxygen transfer efficiency in the aerobic tank 3. . For example, as shown in FIG. 2, the configuration is such that the posture of the regulating plate is adjusted by an actuator such as a motor so that the ascending route of the diffused air in the aerobic tank 3 is restricted by the regulating plate or the like. There may be. If the passage of rising bubbles is restricted to limit the chance of contact with the water to be treated, the same effect as reducing the amount of air diffused can be obtained.

酸素移動効率を調節する方法としては、好気槽3に気泡径の異なる微細気泡散気装置と粗大気泡散気装置を設置し、散気させる散気装置を切替えたり、吹出し量の比率を調節する方法がある。また、散気装置の設置高さを調節可能にし、散気装置を上下させることによって酸素移動効率を調節することもできる。散気装置として水中曝気装置を採用した場合は、曝気装置の空気吹き出し部に回転式の撹拌羽根を取付け、回転数を変えて撹拌強度を調節することによって酸素移動効率を調節することも可能である。   As a method of adjusting the oxygen transfer efficiency, a fine bubble diffuser and a coarse bubble diffuser with different bubble diameters are installed in the aerobic tank 3, and the diffuser to be diffused is switched or the ratio of the blowout amount is adjusted. There is a way to do it. Also, the installation height of the diffuser can be adjusted, and the oxygen transfer efficiency can be adjusted by moving the diffuser up and down. When an underwater aeration device is used as an aeration device, it is possible to adjust the oxygen transfer efficiency by attaching a rotary stirring blade to the air blowing part of the aeration device and adjusting the stirring intensity by changing the rotation speed. is there.

その結果、第二の循環路9、第三の循環路10を介して循環されるDOの低い被処理水により、良好な嫌気性処理が行なわれるようになる。   As a result, good anaerobic treatment is performed by the water to be treated having a low DO circulating through the second circulation path 9 and the third circulation path 10.

以下、別実施形態を説明する。
上述した実施形態では、膜分離槽4内の被処理水を無酸素槽2へ循環させる第二の循環路9と、無酸素槽2内の被処理水を嫌気槽1へ循環させる第三の循環路10を備えた例を説明したが、図3に示すように、膜分離槽4内の被処理水を無酸素槽2へ循環させる第二の循環路9と、膜分離槽4内の被処理水を嫌気槽1へ循環させる第三の循環路11を備えてもよい。
Hereinafter, another embodiment will be described.
In the embodiment described above, the second circulation path 9 that circulates the water to be treated in the membrane separation tank 4 to the anoxic tank 2 and the third circulation path that circulates the water to be treated in the anoxic tank 2 to the anaerobic tank 1. Although the example provided with the circulation path 10 was demonstrated, as shown in FIG. 3, the 2nd circulation path 9 which circulates the to-be-processed water in the membrane separation tank 4 to the anoxic tank 2, and the inside of the membrane separation tank 4 You may provide the 3rd circulation path 11 which circulates to-be-processed water to the anaerobic tank 1. FIG.

また、図4に示すように、好気槽3の前段に、微生物により脱窒処理する無酸素槽2と、微生物からりんを放出させる嫌気槽1をこの順に配置し、膜分離槽4内の被処理水を無酸素槽2へ循環させる第二の循環路12と、無酸素槽2内の被処理水を嫌気槽1へ移送する流路を備えてもよい。この場合、原水は無酸素槽2及び嫌気槽1へ流入される。   In addition, as shown in FIG. 4, an anaerobic tank 2 that is denitrified by microorganisms and an anaerobic tank 1 that releases phosphorus from the microorganisms are arranged in this order in the preceding stage of the aerobic tank 3. You may provide the 2nd circulation path 12 which circulates to-be-processed water to the anaerobic tank 2, and the flow path which transfers the to-be-processed water in the anoxic tank 2 to the anaerobic tank 1. FIG. In this case, raw water flows into the anoxic tank 2 and the anaerobic tank 1.

また、図5に示すように、第一循環路8または、第一循環路8と第二循環路9を、一端が膜分離槽4の底部に対向するように設置された垂直管路30と、垂直管路30から水平方向に延出するように配置された水平管路31とで構成された循環路の一端に、給気ポンプ32で給気して被処理水を好気槽3及び無酸素槽2に送水するエアリフトポンプで構成してもよい。   Further, as shown in FIG. 5, the first circulation path 8 or the first circulation path 8 and the second circulation path 9 are arranged with a vertical pipe line 30 installed so that one end faces the bottom of the membrane separation tank 4. Then, one end of a circulation path composed of a horizontal pipe 31 arranged so as to extend from the vertical pipe 30 in the horizontal direction is supplied with an air supply pump 32 to supply water to be treated to the aerobic tank 3 and You may comprise with the air lift pump which sends water to the anoxic tank 2. FIG.

上述した実施形態では、好気槽3に、第二の測定装置22と、第二の測定装置22による測定値に基づいて、散気装置5の散気量を調節する第二の制御装置23を備えた構成を説明したが、第二の測定装置22及び第二の制御装置23が設けられていない場合であっても、膜分離槽4のDOの調整は可能である。   In the embodiment described above, in the aerobic tank 3, the second control device 23 that adjusts the amount of air diffused by the air diffuser 5 based on the measurement values obtained by the second measurement device 22 and the second measurement device 22. However, even if the second measuring device 22 and the second control device 23 are not provided, the DO of the membrane separation tank 4 can be adjusted.

また、第一の測定装置20は、膜分離槽4に設置する必要はなく、第一の循環路8や、膜透過液配管に設置することも可能である。   The first measuring device 20 does not need to be installed in the membrane separation tank 4 and can be installed in the first circulation path 8 or the membrane permeate pipe.

上述した実施形態では、各処理槽1,2,3,4に活性汚泥が循環供給される汚水処理装置について説明したが、本発明は、活性汚泥に替えて各処理槽1,2,3,4に微生物を担持する担体が設置された汚水処理装置にも適用可能である。   In the above-described embodiment, the sewage treatment apparatus in which activated sludge is circulated and supplied to the treatment tanks 1, 2, 3, and 4 has been described. However, the present invention replaces the activated sludge with each treatment tank 1, 2, 3, and 4. The present invention can also be applied to a sewage treatment apparatus in which a carrier for supporting microorganisms 4 is installed.

上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:嫌気槽
2:無酸素槽
3:好気槽
4:膜分離槽
6:膜分離装置
8:第一の循環路(第一循環路)
9、12:第二の循環路(第二循環路)
10、11:第三の循環路
20:第一の測定装置
21:第一の制御装置
22:第二の測定装置
23:第二の制御装置
1: Anaerobic tank 2: Anoxic tank 3: Aerobic tank 4: Membrane separation tank 6: Membrane separation device 8: First circulation path (first circulation path)
9, 12: Second circuit (second circuit)
10, 11: Third circuit 20: First measurement device 21: First control device 22: Second measurement device 23: Second control device

Claims (8)

散気装置を備え微生物により被処理水を好気性処理する好気槽と、前記好気槽の後段に配置され被処理水を固液分離する膜分離装置が設置される膜分離槽と、前記膜分離槽内の被処理水を前記好気槽へ循環させる第一の循環路を備えている汚水処理装置であって、
前記膜分離槽内の好気性処理の指標を測定する第一の測定装置と、前記第一の測定装置による測定値に基づいて、前記第一の循環路を介した被処理水の循環量を調節する第一の制御装置を備えることを特徴とする汚水処理装置。
An aerobic tank equipped with an air diffuser and aerobically treating the treated water with microorganisms; a membrane separation tank disposed at a subsequent stage of the aerobic tank and provided with a membrane separation device for separating the treated water into solid and liquid; and A sewage treatment apparatus comprising a first circulation path for circulating the treated water in the membrane separation tank to the aerobic tank,
Based on the first measurement device that measures the aerobic treatment index in the membrane separation tank, and the measurement value by the first measurement device, the circulation amount of the water to be treated through the first circulation path A sewage treatment apparatus comprising a first control device for adjustment.
前記第一の測定装置により少なくとも溶存酸素濃度、酸化還元電位、硝酸性窒素濃度の何れか1つの指標が測定され、測定値が予め設定された基準値より大きくなると、前記第一の制御装置は被処理水の循環量を増加するように調整することを特徴とする請求項1に記載の汚水処理装置。   When at least one of the indicators of dissolved oxygen concentration, redox potential, and nitrate nitrogen concentration is measured by the first measuring device and the measured value becomes larger than a preset reference value, the first control device It adjusts so that the circulation amount of to-be-processed water may be increased, The sewage treatment apparatus of Claim 1 characterized by the above-mentioned. 前記第一の測定装置により少なくともpH、アンモニア性窒素濃度の何れか1つの指標が測定され、測定値が予め設定された基準値より小さくなると、前記第一の制御装置は被処理水の循環量を増加するように調整することを特徴とする請求項1に記載の汚水処理装置。   When at least one index of pH and ammonia nitrogen concentration is measured by the first measuring device and the measured value is smaller than a preset reference value, the first control device is configured to circulate the amount of water to be treated. The sewage treatment apparatus according to claim 1, wherein the sewage treatment apparatus is adjusted so as to increase. 前記好気槽内の好気性処理の指標を測定する第二の測定装置と、前記第二の測定装置による測定値に基づいて、溶存酸素濃度を調節する第二の制御装置を備えることを特徴とする請求項1から3の何れかに記載の汚水処理装置。   A second measuring device that measures an aerobic treatment index in the aerobic tank, and a second control device that adjusts the dissolved oxygen concentration based on a measurement value obtained by the second measuring device. The sewage treatment apparatus according to any one of claims 1 to 3. 前記好気槽の前段に、微生物からりんを放出させる嫌気槽と、微生物により脱窒処理する無酸素槽を備え、前記膜分離槽内の被処理水を前記無酸素槽へ循環させる第二の循環路と、前記無酸素槽内の被処理水を前記嫌気槽へ移送する流路を備えることを特徴とする請求項1から4の何れかに記載の汚水処理装置。   An anaerobic tank for releasing phosphorus from microorganisms and an anaerobic tank for denitrification treatment with microorganisms are provided in the front stage of the aerobic tank, and a second water for circulating the treated water in the membrane separation tank to the anoxic tank. The sewage treatment apparatus according to any one of claims 1 to 4, further comprising a circulation path and a flow path for transferring the water to be treated in the anaerobic tank to the anaerobic tank. 前記好気槽の前段に、微生物からりんを放出する嫌気槽と、微生物により脱窒処理する無酸素槽とをこの順に備え、前記膜分離槽内の被処理水を前記無酸素槽へ循環させる第二の循環路と、前記無酸素槽内の被処理水を前記嫌気槽へ循環させる第三の循環路を備えていることを特徴とする請求項1から4の何れかに記載の汚水処理装置。   An anaerobic tank for releasing phosphorus from microorganisms and an anaerobic tank for denitrification treatment by microorganisms are provided in this order in front of the aerobic tank, and the water to be treated in the membrane separation tank is circulated to the anoxic tank. The sewage treatment according to any one of claims 1 to 4, further comprising a second circulation path and a third circulation path for circulating the water to be treated in the oxygen-free tank to the anaerobic tank. apparatus. 前記好気槽の前段に、微生物からりんを放出する嫌気槽と、微生物により脱窒処理する無酸素槽とをこの順に備え、前記膜分離槽内の被処理水を前記無酸素槽へ循環させる第二の循環路と、前記膜分離槽内の被処理水を前記嫌気槽へ循環させる第三の循環路を備えていることを特徴とする請求項1から4の何れかに記載の汚水処理装置。   An anaerobic tank for releasing phosphorus from microorganisms and an anaerobic tank for denitrification treatment by microorganisms are provided in this order in front of the aerobic tank, and the water to be treated in the membrane separation tank is circulated to the anoxic tank. The sewage treatment according to any one of claims 1 to 4, further comprising a second circulation path and a third circulation path for circulating the water to be treated in the membrane separation tank to the anaerobic tank. apparatus. 散気装置を備え微生物により被処理水を好気性処理する好気槽と、前記好気槽の後段に配置され被処理水を固液分離する膜分離装置が設置される膜分離槽と、前記膜分離槽内の被処理水を前記好気槽へ循環させる循環路を備えている汚水処理装置の運転方法であって、
前記膜分離槽内の好気性処理の指標を測定し、測定値に基づいて前記循環路の循環量を調節することを特徴とする汚水処理装置の運転方法。
An aerobic tank equipped with an air diffuser and aerobically treating the treated water with microorganisms; a membrane separation tank disposed at a subsequent stage of the aerobic tank and provided with a membrane separation device for separating the treated water into solid and liquid; and A method for operating a sewage treatment apparatus comprising a circulation path for circulating water to be treated in a membrane separation tank to the aerobic tank,
A method for operating a sewage treatment apparatus, comprising measuring an aerobic treatment index in the membrane separation tank and adjusting a circulation amount of the circulation path based on a measured value.
JP2009044165A 2009-02-26 2009-02-26 Sewage treatment apparatus and operation method of sewage treatment apparatus Pending JP2010194481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044165A JP2010194481A (en) 2009-02-26 2009-02-26 Sewage treatment apparatus and operation method of sewage treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044165A JP2010194481A (en) 2009-02-26 2009-02-26 Sewage treatment apparatus and operation method of sewage treatment apparatus

Publications (1)

Publication Number Publication Date
JP2010194481A true JP2010194481A (en) 2010-09-09

Family

ID=42819777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044165A Pending JP2010194481A (en) 2009-02-26 2009-02-26 Sewage treatment apparatus and operation method of sewage treatment apparatus

Country Status (1)

Country Link
JP (1) JP2010194481A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same
JP2012000585A (en) * 2010-06-18 2012-01-05 Kubota Corp Wastewater treatment facility, wastewater treatment method and method of reconstructing wastewater treatment facility
KR101128863B1 (en) 2011-08-04 2012-03-26 삼성엔지니어링 주식회사 Sewage and wastewater treatment apparatus for removal of nitrogen and phosphorus
JP2012166142A (en) * 2011-02-14 2012-09-06 Hitachi Plant Technologies Ltd System for membrane separation activated sludge and method for membrane separation activated sludge
CN102910735A (en) * 2012-11-07 2013-02-06 上海交通大学 Water purification device and operation method thereof
JP2013236996A (en) * 2012-05-14 2013-11-28 Hitachi Ltd Water treatment process
JP2015009203A (en) * 2013-06-28 2015-01-19 株式会社明電舎 Wastewater treatment method and apparatus
JP2016002514A (en) * 2014-06-16 2016-01-12 株式会社日立製作所 Membrane separation activated sludge treatment apparatus and method of operating the same
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
KR20180032204A (en) * 2017-09-21 2018-03-29 성균관대학교산학협력단 A membrane bioreactor system which is adapted of a backward gravity flow system
WO2019039008A1 (en) * 2017-08-24 2019-02-28 三菱電機株式会社 Water treatment control system
US20210253460A1 (en) * 2018-06-27 2021-08-19 Bl Technologies, Inc. Wastewater treatment with suspended growth and membrane aerated biofilm

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same
JP2012000585A (en) * 2010-06-18 2012-01-05 Kubota Corp Wastewater treatment facility, wastewater treatment method and method of reconstructing wastewater treatment facility
JP2012166142A (en) * 2011-02-14 2012-09-06 Hitachi Plant Technologies Ltd System for membrane separation activated sludge and method for membrane separation activated sludge
KR101128863B1 (en) 2011-08-04 2012-03-26 삼성엔지니어링 주식회사 Sewage and wastewater treatment apparatus for removal of nitrogen and phosphorus
JP2013236996A (en) * 2012-05-14 2013-11-28 Hitachi Ltd Water treatment process
CN102910735A (en) * 2012-11-07 2013-02-06 上海交通大学 Water purification device and operation method thereof
JP2015009203A (en) * 2013-06-28 2015-01-19 株式会社明電舎 Wastewater treatment method and apparatus
JP2016002514A (en) * 2014-06-16 2016-01-12 株式会社日立製作所 Membrane separation activated sludge treatment apparatus and method of operating the same
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
WO2019039008A1 (en) * 2017-08-24 2019-02-28 三菱電機株式会社 Water treatment control system
JPWO2019039008A1 (en) * 2017-08-24 2019-12-19 三菱電機株式会社 Water treatment control system
US11485655B2 (en) 2017-08-24 2022-11-01 Mitsubishi Electric Corporation Water treatment control system
KR20180032204A (en) * 2017-09-21 2018-03-29 성균관대학교산학협력단 A membrane bioreactor system which is adapted of a backward gravity flow system
KR102023630B1 (en) * 2017-09-21 2019-11-25 농업회사법인 인워터솔루션 주식회사 Method for water treatment using a membrane bioreactor system which is adapted of a backward gravity flow system
US20210253460A1 (en) * 2018-06-27 2021-08-19 Bl Technologies, Inc. Wastewater treatment with suspended growth and membrane aerated biofilm
US11673820B2 (en) * 2018-06-27 2023-06-13 Bl Technologies, Inc. Wastewater treatment with suspended growth and membrane aerated biofilm

Similar Documents

Publication Publication Date Title
JP2010194481A (en) Sewage treatment apparatus and operation method of sewage treatment apparatus
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
KR101494398B1 (en) Apparatus for wastewater treatment with submerged membrane
KR101312966B1 (en) Two-stage anoxic membrane bio-reactor system for treating wastewater in combination with an anaerobic bath and return lines
JP6720100B2 (en) Water treatment method and water treatment device
WO2011148949A1 (en) Method for biological denitrification using anaerobic ammonia oxidation reaction
JP6666165B2 (en) Nitrification and denitrification treatment method for ammoniacal nitrogen-containing liquid to be treated
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
JP5105243B2 (en) Membrane separation activated sludge treatment apparatus and method
JP6522966B2 (en) Method and apparatus for treating organic wastewater
JP6532723B2 (en) Method and system for treating organic wastewater
JP2012076081A (en) Membrane separation type activated sludge treatment apparatus and method thereof
KR20150144682A (en) Apparatus for wastewater treatment with submerged membrane
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP2008036517A (en) Wastewater treatment apparatus and method
WO2015072207A1 (en) Organic waste water treatment apparatus, organic waste water treatment method, and control program for organic waste water treatment apparatus
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP2012143696A (en) Wastewater treatment apparatus, and method for driving the same
JP2017013014A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system
JP4307275B2 (en) Wastewater treatment method
JP6243804B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP4988325B2 (en) Waste water treatment equipment
JP7332501B2 (en) Ammonia nitrogen-containing wastewater treatment method and treatment apparatus