JP2011000555A - Wastewater treatment facility and method of rebuilding the same - Google Patents

Wastewater treatment facility and method of rebuilding the same Download PDF

Info

Publication number
JP2011000555A
JP2011000555A JP2009147047A JP2009147047A JP2011000555A JP 2011000555 A JP2011000555 A JP 2011000555A JP 2009147047 A JP2009147047 A JP 2009147047A JP 2009147047 A JP2009147047 A JP 2009147047A JP 2011000555 A JP2011000555 A JP 2011000555A
Authority
JP
Japan
Prior art keywords
tank
water
treated
sewage treatment
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009147047A
Other languages
Japanese (ja)
Other versions
JP5260417B2 (en
Inventor
Soichiro Yatsugi
壮一郎 矢次
Yasuhiro Okawa
泰弘 大川
Hideki Akiyoshi
秀樹 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2009147047A priority Critical patent/JP5260417B2/en
Publication of JP2011000555A publication Critical patent/JP2011000555A/en
Application granted granted Critical
Publication of JP5260417B2 publication Critical patent/JP5260417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment facility which can reduce power of a pump mechanism necessary for returning water to be treated from an aerobic tank to an anoxic tank to perform efficient treatment.SOLUTION: A separation wall 34 which separates the aerobic tank 30 into a first area 31 receiving the water to be treated flowing in from the anoxic tank 20 and a second area 32 introducing the water to be treated flowing in from the first area 31 to a partition wall along the inflow direction of the water to be treated is provided in the aerobic tank 30. An air diffuser 35 for diffusing air into the water to be treated is installed in at least either one of the first area 31 and the second area 32, and the pump mechanism 40 is provided downstream of the second area 32. The pump mechanism 40 comprises a lifting pipe 41 disposed in the vicinity of the partition wall 21, an air diffuser 42 for supplying air bubbles into the lifting pipe 41, and an air lift pump 44 provided with a water passage 43 for transferring the water to be treated, lifted by the air bubbles, from the upper part of the lifting pipe 41 to the upstream side of the anoxic tank 20.

Description

本発明は、嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽と、好気槽で硝化された被処理水の一部を無酸素槽に返送するポンプ機構を備えている汚水処理設備及び汚水処理設備の改築方法に関する。   The present invention is an anaerobic tank for denitrifying treated water by anaerobic microorganisms, and ammonia contained in the treated water flowing from the oxygen-free tank is nitrified with an aerobic microorganism. The present invention relates to a sewage treatment facility equipped with an aerobic tank, a sewage treatment facility equipped with a pump mechanism for returning a part of water to be treated nitrified in the aerobic tub to an anoxic tank, and a method for remodeling the sewage treatment facility.

従来、被処理水である汚水中に含まれる有機性物質を除去する方法として、最初沈殿池でゴミや砂等が除去された上澄み水を反応槽に流入させ、反応槽に設置した散気装置によって被処理水の混合撹拌と酸素の供給を行ないながら活性汚泥よって有機性物質を分解処理し、有機性物質が分解処理された被処理水を最終沈殿池に流入させ、活性汚泥を沈殿させて被処理水を浄化する標準活性汚泥法が広く普及している。   Conventionally, as a method of removing organic substances contained in the sewage water to be treated, a diffuser installed in the reaction tank by flowing the supernatant water from which dust and sand were removed in the first sedimentation basin into the reaction tank While mixing and agitating the water to be treated and supplying oxygen, the organic sludge is decomposed with activated sludge, and the water to be treated with the organic substance decomposed is allowed to flow into the final sedimentation basin to precipitate the activated sludge. The standard activated sludge method for purifying treated water is widely used.

このような標準活性汚泥法は、負荷変動に弱く、窒素やリンの除去率が比較的低い等の問題があるため、近年、脱窒性能の向上を目的として標準活性汚泥法に生物学的脱窒処理を組み込んだ硝化液循環活性汚泥法や、標準活性汚泥法のBOD成分除去、糸状性バルキング対策、脱リン性能の向上を目的として標準活性汚泥法に嫌気槽と生物学的脱窒処理を組み込んだ生物循環式嫌気好気法(AO法)が採用される例が増えてきている。 Such a standard activated sludge method is vulnerable to load fluctuations and has problems such as a relatively low removal rate of nitrogen and phosphorus. In recent years, the standard activated sludge method has been biologically desorbed to improve the denitrification performance. An anaerobic tank and biological denitrification treatment for the standard activated sludge method for the purpose of removing the BOD component of the nitrification solution circulation method incorporating the nitrogen treatment, the BOD component removal of the standard activated sludge method, filamentous bulking measures, and the dephosphorization performance An example in which an incorporated biological circulation type anaerobic aerobic method (A 2 O method) is employed is increasing.

例えば、図12に示すように、特許文献1には、無酸素槽70と微生物固定化担体71を内在する好気槽72とを備え、好気槽72で処理された被処理水の一部を無酸素槽70に循環する循環経路73を備えて構成される硝化液循環活性汚泥法を採用した汚水処理設備が提案されている。   For example, as shown in FIG. 12, Patent Document 1 includes an anaerobic tank 70 and an aerobic tank 72 containing a microorganism-immobilized carrier 71, and a part of the water to be treated which is treated in the aerobic tank 72. A sewage treatment facility that employs a nitrification liquid circulation activated sludge method that includes a circulation path 73 that circulates the gas to the anoxic tank 70 has been proposed.

また、図13に示すように、特許文献2には、流入する被処理水中の懸濁物質を固液分離するろ過装置80と、ろ過装置80からろ過水を導入する無酸素槽81と、この無酸素槽81から混合液を導入する好気槽82と、この好気槽82の混合液の一部を無酸素槽81に循環させる循環手段83と、好気槽82から混合液を導入して処理水と汚泥とに固液分離する固液分離装置84と、ろ過装置80から汚泥を導入して調質する汚泥調質槽85と、この汚泥調質槽85から分離液を導入し、且つ、固液分離装置84から分離汚泥の一部を導入する嫌気槽86を備え、嫌気槽86の流出水が無酸素槽81に導入される生物循環式嫌気好気法を採用した汚水処理設備が提案されている。   Further, as shown in FIG. 13, Patent Document 2 discloses a filtration device 80 that solid-liquid separates suspended substances in inflowing water, an anaerobic tank 81 that introduces filtered water from the filtration device 80, and An aerobic tank 82 for introducing the mixed liquid from the anaerobic tank 81, a circulation means 83 for circulating a part of the mixed liquid in the aerobic tank 82 to the anaerobic tank 81, and a mixed liquid from the aerobic tank 82. A solid-liquid separation device 84 for solid-liquid separation into treated water and sludge, a sludge refining tank 85 for introducing sludge from the filtration device 80 for refining, and a separation liquid from the sludge refining tank 85 for introducing the separation liquid, In addition, a sewage treatment facility that employs a biocirculation anaerobic aerobic method that includes an anaerobic tank 86 that introduces part of the separated sludge from the solid-liquid separator 84, and the effluent of the anaerobic tank 86 is introduced into the anoxic tank 81. Has been proposed.

また、標準活性汚泥法、硝化液循環活性汚泥法、生物循環式嫌気好気法を採用した汚水処理設備では、好気槽から排出された被処理水と活性汚泥を分離するために最終沈殿池が備えられているが、最終沈殿池での分離効率が、活性汚泥の性状に大きく左右されるため、汚泥の沈降性を常に良好な状態に維持することに多くの労力が割かれるという問題があるため、好気槽の下流側に膜分離装置を設置した膜分離槽を設けた汚水処理設備も提案されている。   In addition, in a sewage treatment facility that adopts the standard activated sludge method, the nitrification solution circulating activated sludge method, and the biological circulation type anaerobic aerobic method, the final sedimentation basin is used to separate the treated sludge discharged from the aerobic tank and the activated sludge. However, since the separation efficiency in the final sedimentation basin is greatly influenced by the properties of the activated sludge, there is a problem that much labor is spent on maintaining the sludge sedimentation in a good state at all times. Therefore, a sewage treatment facility provided with a membrane separation tank in which a membrane separation device is installed on the downstream side of the aerobic tank has also been proposed.

特開2002−263687号公報JP 2002-263687 A 特開2000−93992号公報JP 2000-93992 A

上述の硝化液循環活性汚泥法を採用する汚水処理設備では、無酸素槽での脱窒効率を向上させるために、好気槽72で硝化反応が十分に行われた被処理水を無酸素槽70に返送するべく、槽外に設置された機械式の陸上ポンプ75または槽内に設置された水中ポンプにより、好気槽72の最下流側に設置された吸込み管74から被処理水を吸込み、長い循環経路73を介して無酸素槽70の上流側に返送するポンプ機構を備えていた。   In the sewage treatment facility that employs the above-described nitrification liquid circulation activated sludge method, in order to improve the denitrification efficiency in the anaerobic tank, the water to be treated in which the nitrification reaction is sufficiently performed in the aerobic tank 72 In order to return to 70, water to be treated is sucked from a suction pipe 74 installed on the most downstream side of the aerobic tank 72 by a mechanical land pump 75 installed outside the tank or a submersible pump installed inside the tank. In addition, a pump mechanism for returning to the upstream side of the anaerobic tank 70 via the long circulation path 73 was provided.

同様に、生物循環式嫌気好気法を採用する汚水処理設備でも、無酸素槽81での脱窒効率を向上させるため、好気槽82で硝化反応が十分に行われた被処理水を無酸素槽81に返送するべく、好気槽82の最下流側から被処理水を吸込み、長い循環手段83を介して無酸素槽81の上流側に返送するポンプ機構を備えていた。   Similarly, even in a sewage treatment facility that employs a biological circulation type anaerobic aerobic method, in order to improve the denitrification efficiency in the anaerobic tank 81, there is no treated water that has undergone sufficient nitrification reaction in the aerobic tank 82. In order to return to the oxygen tank 81, a pump mechanism was provided for sucking in water to be treated from the most downstream side of the aerobic tank 82 and returning it to the upstream side of the anaerobic tank 81 via the long circulation means 83.

しかし、好気槽から無酸素槽に被処理水を返送するために必要となる揚程は比較的低く、そのような低揚程に対応する機械式のポンプが存在しないため、実際にはオーバースペックとなるポンプを使用せざるを得ず、好気槽の最下流側から長い循環経路を介して無酸素槽の上流側に被処理水を返送する場合には、配管抵抗の増大等により全揚程が上昇することも相俟って必要以上の動力を消費するという問題や、送水量を調整するためのバルブを返送管に設置する等、部品点数が増加するという問題もあった。   However, the head required to return the treated water from the aerobic tank to the oxygen-free tank is relatively low, and there is no mechanical pump that can handle such a low head. When the water to be treated is returned from the most downstream side of the aerobic tank to the upstream side of the anaerobic tank through a long circulation path, the total head is increased due to an increase in piping resistance, etc. In combination with the rise, there was a problem of consuming more power than necessary, and there was a problem that the number of parts increased, such as installing a valve for adjusting the amount of water supply in the return pipe.

また、何れの汚水処理設備でも、無酸素槽と好気槽を備えた被処理水の処理経路が複数並列して配置されている場合には、配管の設置スペースが限られることから、槽外に設置された一台の陸上ポンプにより各好気槽の最下流側から分岐管を介して夫々被処理水を吸込み、一本の合流管で無酸素槽の上流側に送水した後に、分岐管を介して各無酸素槽に返送するポンプ機構が設けられていたが、処理経路毎に好気処理の程度が異なる被処理水を合流管で混合した後に各無酸素槽に返送される結果、各処理経路で浄化処理にばらつきが発生し、浄化処理効率が低下する虞があるという問題もあった。   In addition, in any sewage treatment facility, when multiple treatment paths for treated water with anaerobic tank and aerobic tank are arranged in parallel, the installation space for the piping is limited. The water to be treated is sucked through the branch pipe from the most downstream side of each aerobic tank by a single on-site pump installed in the aerobic tank, and then sent to the upstream side of the anaerobic tank with one merging pipe. As a result of being returned to each anaerobic tank after mixing the water to be treated with a different degree of aerobic treatment for each treatment path in the merging pipe, There is also a problem that the purification process varies in each processing path, and the purification process efficiency may be reduced.

そこで、ポンプ動力の低減や配管スペースの低減等の目的のために、機械式のポンプに替えてエアリフトポンプを用いたポンプ機構が設置される場合もある。   Therefore, a pump mechanism using an air lift pump may be installed in place of the mechanical pump for the purpose of reducing pump power and piping space.

しかし、エアリフトポンプを用いて、好気槽の最下流側から長い循環経路を介して無酸素槽の上流側に被処理水を返送する場合には、配管抵抗の増大等により全揚程が上昇し、所定量の被処理水を返送するために必要となる散気量が増大し、その結果、溶存酸素濃度が高い被処理水が無酸素槽に返送され、無酸素槽での脱窒効率が低減する虞があるという問題があった。   However, when returning the treated water from the most downstream side of the aerobic tank to the upstream side of the anaerobic tank using an air lift pump via the long circulation path, the total head rises due to an increase in piping resistance, etc. The amount of aeration required to return a predetermined amount of treated water increases, and as a result, the treated water having a high dissolved oxygen concentration is returned to the anoxic tank, and the denitrification efficiency in the anoxic tank is improved. There was a problem that there was a risk of reduction.

また、上述した膜分離槽を設けた汚水処理設備であっても、膜分離槽の最下流側から長い循環経路を介して無酸素槽の上流側に被処理水を返送する必要があり、同様の問題があった。   Further, even in the sewage treatment facility provided with the above-described membrane separation tank, it is necessary to return the treated water from the most downstream side of the membrane separation tank to the upstream side of the anoxic tank through a long circulation path. There was a problem.

本発明の目的は、上述した問題点に鑑み、好気槽から無酸素槽への返送に必要なポンプ機構の動力を低減でき、効率の良い処理を行える汚水処理設備を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a sewage treatment facility capable of reducing the power of a pump mechanism necessary for returning from an aerobic tank to an anoxic tank and performing an efficient treatment.

上述の目的を達成するため、本発明による汚水処理設備の第一特徴構成は、特許請求の範囲の請求項1に記載した通り、微生物により被処理水を浄化処理する複数の処理槽が隔壁を介して連接され、下流側の処理槽に被処理水の一部を上流側の処理槽に返送するポンプ機構を備えている汚水処理設備であって、下流側の処理槽に、上流側の処理槽から流入する被処理水を受け入れる第一領域と、第一領域から流入した被処理水を上流側の処理槽との隔壁に導く第二領域とに、下流側の処理槽を分離する分離壁を設けて、少なくとも第二領域の隔壁近傍にポンプ機構を備え、当該ポンプ機構が、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から上流側に配置された処理槽に移送する送水路を備えたエアリフトポンプで構成されている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the sewage treatment facility according to the present invention is that, as described in claim 1 of the claims, a plurality of treatment tanks for purifying treated water by microorganisms have partition walls. A sewage treatment facility having a pump mechanism for returning a part of the water to be treated to the downstream treatment tank to the upstream treatment tank, the upstream treatment tank being connected to the downstream treatment tank. Separation wall that separates the downstream treatment tank into a first region that receives the treated water flowing from the tank and a second region that guides the treated water flowing from the first region to the partition wall of the upstream treatment tank. Provided with a pump mechanism at least near the partition wall of the second region, the pump mechanism being pumped by the bubbles, a pumping pipe disposed near the partition wall, an air diffuser for supplying bubbles to the pumping pipe, and Treatment where treated water is arranged upstream from the upper part of the pumping pipe In that it is constituted by an air lift pump having a feed water channel to transfer to.

上述の構成によれば、上流側の処理槽から下流側の処理槽に流入する被処理水が、第一領域に流入し、上流側の処理槽との隔壁と接する第二領域の最下流側に設置されたポンプ機構により無酸素槽に返送されるようになる。このように被処理水は第二領域の最下流側に設置されたポンプ機構により無酸素槽に返送されるので被処理水の返送経路となる配管を短く、且つ、構造を簡素化することができるので、被処理水の返送に必要なポンプ機構の動力を低減することができる。   According to the above-described configuration, the water to be treated flowing from the upstream treatment tank to the downstream treatment tank flows into the first region, and the most downstream side of the second region in contact with the partition wall with the upstream treatment tank. It is returned to the anoxic tank by the pump mechanism installed in the. In this way, the water to be treated is returned to the anoxic tank by the pump mechanism installed on the most downstream side of the second region, so that the piping that becomes the return path of the water to be treated can be shortened and the structure can be simplified. Therefore, the power of the pump mechanism necessary for returning the treated water can be reduced.

さらに、ポンプ機構がエアリフトポンプで構成されているため、機械式のポンプを用いたポンプ機構よりも被処理水の送水に必要な動力を大幅に低減することができ、エアリフトポンプは機械式のポンプより安価に製造することができるため、イニシャルコストを低減することもできる。特に、揚水のための動力源(散気装置)を水面下に設けることができ、水面上のスペースが限られている設備に採用する場合に有効である。   Furthermore, since the pump mechanism is composed of an air lift pump, the power required to feed the water to be treated can be greatly reduced as compared with a pump mechanism using a mechanical pump. The air lift pump is a mechanical pump. Since it can be manufactured at a lower cost, the initial cost can be reduced. In particular, a power source (aeration device) for pumping water can be provided below the surface of the water, which is effective when employed in facilities where space on the surface of the water is limited.

同第二の特徴構成は、同請求項2に記載した通り、嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽と、好気槽で硝化された被処理水の一部を無酸素槽に返送するポンプ機構を備えている汚水処理設備であって、好気槽に、無酸素槽から流入する被処理水を受け入れる第一領域と、第一領域から流入した被処理水を隔壁に導く第二領域とに、好気槽を分離する分離壁を設けて、少なくとも第一領域または第二領域の何れかに被処理水に散気する散気装置を設置するとともに、第二領域の下流側にポンプ機構を備え、当該ポンプ機構が、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から無酸素槽に移送する送水路を備えたエアリフトポンプで構成されている点にある。   As described in claim 2, the second characteristic configuration is arranged through an anaerobic tank for denitrifying treated water by anaerobic microorganisms, an anoxic tank and a partition wall, and flows from the anoxic tank. This is a sewage treatment facility equipped with an aerobic tank that nitrifies ammonia contained in the water to be treated with aerobic microorganisms and a pump mechanism that returns a portion of the water to be treated nitrified in the aerobic tank to the anoxic tank. The separation wall that separates the aerobic tank into the aerobic tank into the first region that receives the water to be treated flowing from the oxygen-free tank and the second region that guides the water to be treated flowing from the first region to the partition wall And an air diffuser that diffuses the water to be treated in at least one of the first region and the second region, and a pump mechanism is provided on the downstream side of the second region. A pumping pipe arranged in the vicinity, a diffuser for supplying bubbles to the pumping pipe, Ri is a pumping been treated water from the top of the riser pipe in that they are constituted by the air lift pump equipped with feed water channel to transfer to the anoxic tank.

上述の構成によれば、無酸素槽から好気槽に流入する被処理水が、第一領域に流入し、少なくとも第一領域または第二領域の何れかに備えられた散気装置による散気によって硝化処理され、硝化処理された被処理水の一部が、無酸素槽との隔壁と接する第二領域の最下流側に設置されたポンプ機構により無酸素槽に返送されるようになる。このように被処理水は第二領域の最下流側に設置されたポンプ機構により無酸素槽に返送されるので被処理水の返送経路となる配管を短く、且つ、構造を簡素化することができるので、被処理水の返送に必要なポンプ機構の動力を低減することができる。   According to the above-described configuration, the water to be treated flowing from the anaerobic tank to the aerobic tank flows into the first region, and is diffused by the diffuser provided at least in either the first region or the second region. Thus, a part of the water to be treated is returned to the anoxic tank by a pump mechanism installed on the most downstream side of the second region in contact with the partition wall with the anoxic tank. In this way, the water to be treated is returned to the anoxic tank by the pump mechanism installed on the most downstream side of the second region, so that the piping that becomes the return path of the water to be treated can be shortened and the structure can be simplified. Therefore, the power of the pump mechanism necessary for returning the treated water can be reduced.

また、例えば、無酸素槽、好気槽の処理経路が複数並列して配置されている場合であっても、夫々の好気槽の被処理水を夫々のポンプ機構、つまり夫々の好気槽に設置された安価、且つ、水面上に設置スペースが必要とならないエアリフトポンプ機構によって、夫々の無酸素槽に返送して、夫々の無酸素槽、好気槽の処理経路で独立して浄化処理が行なわれるので、複数の無酸素槽からの返送水が混合された後に各無酸素槽で分離して返送されるような大動力の陸上ポンプ機構を用いる場合と比較して、各処理槽での浄化処理効率を低下させることなく、しかも動力コストを大幅に低下させることもできるようになる。   In addition, for example, even when a plurality of treatment paths for anaerobic tanks and aerobic tanks are arranged in parallel, water to be treated in each aerobic tank is supplied to each pump mechanism, that is, each aerobic tank. The air lift pump mechanism is installed at a low cost and does not require installation space on the surface of the water, and is returned to each anaerobic tank and purified independently through the treatment path of each anaerobic tank and aerobic tank. Compared with the case of using a large-powered onshore pumping mechanism in which return water from a plurality of oxygen-free tanks is mixed and then separated and returned in each oxygen-free tank, In addition, the power cost can be significantly reduced without lowering the purification efficiency.

さらに、ポンプ機構がエアリフトポンプで構成されているため、機械式のポンプを用いたポンプ機構よりも被処理水の送水に必要な動力を大幅に低減することができ、エアリフトポンプは機械式のポンプより安価に製造することができるため、イニシャルコストを低減することもできる。特に、揚水のための動力源(散気装置)を水面下に設けることができ、水面上のスペースが限られている設備に採用する場合に有効である。   Furthermore, since the pump mechanism is composed of an air lift pump, the power required to feed the water to be treated can be greatly reduced as compared with a pump mechanism using a mechanical pump. The air lift pump is a mechanical pump. Since it can be manufactured at a lower cost, the initial cost can be reduced. In particular, a power source (aeration device) for pumping water can be provided below the surface of the water, which is effective when employed in facilities where space on the surface of the water is limited.

また、好気槽で硝化された被処理水の一部を無酸素槽に返送する経路を短く構成できるため、被処理水の返送量に対応するエアリフトポンプへの散気量が低減できるので、返送された被処理水に含まれる酸素によって、無酸素槽の溶存酸素濃度が高くなり脱窒反応を低下させるような不都合な事態の発生を極力回避することができる。   In addition, since the path for returning a part of the treated water nitrified in the aerobic tank to the anaerobic tank can be configured short, the amount of air diffused to the air lift pump corresponding to the return amount of the treated water can be reduced. Oxygen contained in the treated water that has been returned can avoid as much as possible the occurrence of an unfavorable situation in which the concentration of dissolved oxygen in the anoxic tank is increased and the denitrification reaction is lowered.

同第三の特徴構成は、同請求項3に記載した通り、上述の第二特徴構成に加えて、第一領域に被処理水を散気する散気装置を設置するとともに、第二領域に被処理水を固液分離する膜分離装置が設置されている点にある。   In addition to the second feature configuration described above, the third feature configuration is installed in the first region with an air diffuser that diffuses the water to be treated. A membrane separator for solid-liquid separation of water to be treated is installed.

上述の構成によれば、第一領域に備えられた被処理水を散気する散気装置により被処理水が硝化処理され、さらに、第二領域に膜分離装置を備えることにより、汚泥の管理が容易、好気槽内の汚泥を高濃度に維持でき、最終沈殿池が不要になるので施設がコンパクトになる等の利点がある。   According to the above configuration, the water to be treated is nitrified by the air diffuser that diffuses the water to be treated provided in the first region, and further, the membrane separation device is provided in the second region, thereby managing sludge. However, the sludge in the aerobic tank can be maintained at a high concentration, and since there is no need for a final sedimentation tank, there are advantages such as a compact facility.

同第四の特徴構成は、同請求項4に記載した通り、上述の第三特徴構成に加えて、分離壁で分離された第一領域の容積が第二領域の容積より大きくなるように設定されている点にある。   The fourth feature configuration is set so that, in addition to the third feature configuration described above, the volume of the first region separated by the separation wall is larger than the volume of the second region, as described in claim 4. It is in the point.

上述の構成によれば、第一領域の容積が第二領域の容積より大きく設定することで、好気槽の容積が限られた容積である場合でも、第一領域で十分な好気処理を行うことができる。   According to the above-described configuration, by setting the volume of the first area larger than the volume of the second area, sufficient aerobic treatment can be performed in the first area even when the volume of the aerobic tank is limited. It can be carried out.

同第五の特徴構成は、同請求項5に記載した通り、上述の第三または第四特徴構成に加えて、被処理水の流入方向に沿って好気槽を分離する分離壁が二枚設けられ、第二領域が一対の第一領域の間に形成されている点にある。   In the fifth feature configuration, as described in claim 5, in addition to the third or fourth feature configuration described above, two separation walls for separating the aerobic tank along the inflow direction of the water to be treated are provided. The second region is provided between the pair of first regions.

上述の構成によると、第二領域を挟む第一領域の夫々に、無酸素槽から被処理水が流入し、第一領域で硝化処理された被処理水が膜分離装置が設置された第二領域で合流し、無酸素槽との隔壁と接する第二領域の最下流側に設置されたエアリフトポンプにより被処理水の一部が無酸素槽に返送されるようになる。   According to the above configuration, the water to be treated flows from the anoxic tank into each of the first regions sandwiching the second region, and the water to be treated that has been nitrified in the first region is installed in the second region. A part of the water to be treated is returned to the anaerobic tank by the air lift pump installed at the most downstream side of the second area in contact with the partition wall with the oxygen-free tank.

第二領域に設置される膜分離装置に備えたろ過膜は、清掃等のメンテナンスの際に、槽内から上方の槽外に引き上げる必要がある。しかし、既存の標準活性汚泥法、硝化液循環活性汚泥法、生物循環式嫌気好気法を採用した汚水処理設備では、例えば、作業員の通路や、散気装置への給気配管等の設置スペースのために、各処理槽の側壁上部から各槽上部空間の中央部に向けて、天面が延出形成されている場合が多い。そのような場合に、側壁に接して第二領域を配置すると、ろ過膜を上方に引き上げる際に、延出形成された天面と干渉する虞がある。   The filtration membrane provided in the membrane separation device installed in the second region needs to be pulled out of the upper tank from the tank during maintenance such as cleaning. However, in the existing sewage treatment facilities that adopt the standard activated sludge method, the nitrification liquid circulation activated sludge method, and the biological circulation type anaerobic aerobic method, for example, installation of worker passages, air supply pipes to the diffuser, etc. Because of the space, the top surface often extends from the upper side wall of each processing tank toward the center of each tank upper space. In such a case, when the second region is disposed in contact with the side wall, when the filtration membrane is pulled upward, there is a possibility of interfering with the extended top surface.

このような場合でも、一対の第一領域の間に形成された第二領域に膜分離装置を設置すれば、天面と干渉することなくろ過膜を上方に引き上げてメンテナンスすることができるようになる。   Even in such a case, if a membrane separation device is installed in the second region formed between the pair of first regions, the filtration membrane can be pulled upward and maintained without interfering with the top surface. Become.

同第六の特徴構成は、同請求項6に記載した通り、上述の第二から第五の何れかの特徴構成に加えて、無酸素槽の上流側に被処理水に含まれるBOD成分を除去する嫌気槽が隔壁を介して連設され、好気槽の被処理水がエアリフトポンプを介して無酸素槽に返送されるとともに、一部が嫌気槽に返送されるように構成されている点にある。   In the sixth feature configuration, in addition to any of the second to fifth feature configurations described above, the BOD component contained in the water to be treated is added upstream of the oxygen-free tank. The anaerobic tank to be removed is continuously connected via the partition wall, and the water to be treated in the aerobic tank is returned to the anaerobic tank via the air lift pump, and a part is returned to the anaerobic tank. In the point.

上述の構成によれば、無酸素槽で脱窒処理され硝酸性窒素、亜硝酸性窒素を含まず、酸素が消費された被処理水が嫌気槽に返送されるので、嫌気槽でのリンの放出条件である無NOx及び無酸素状態が保たれる。その結果、嫌気槽ではリン化合物が正リン酸として効率的に放出され、放出された正リン酸が後段の好気槽において嫌気槽で放出した以上に活性汚泥に取り込まれることにより、被処理水からリンを高度に除去することが可能となる。   According to the above-described configuration, the water to be treated that is denitrified in the anaerobic tank and does not contain nitrate nitrogen and nitrite nitrogen and consumes oxygen is returned to the anaerobic tank. Release conditions of NOx and oxygen-free are maintained. As a result, the phosphorus compound is efficiently released as normal phosphoric acid in the anaerobic tank, and the released normal phosphoric acid is taken into the activated sludge more than that released in the anaerobic tank in the subsequent aerobic tank. It is possible to remove phosphorus from the soil.

同第七の特徴構成は、同請求項7に記載した通り、嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽と、好気槽と隔壁を介して配置され、好気槽で硝化された被処理水を固液分離する膜分離装置が設置された膜分離槽と、膜分離槽の被処理水の一部を無酸素槽に返送するポンプ機構を備えている汚水処理設備であって、膜分離槽に、好気槽から流入する被処理水を受け入れる第一領域と、第一領域から流入した被処理水を好気槽との隔壁に導く第二領域とに、膜分離槽を分離する分離壁を設けて、第二領域の隔壁近傍にポンプ機構を備え、当該ポンプ機構が、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から無酸素槽に移送する送水路を備えたエアリフトポンプで構成されている点にある。   The seventh characteristic configuration is arranged through an anaerobic tank for denitrifying treated water by anaerobic microorganisms, an anaerobic tank and a partition, and flows from the anoxic tank as described in claim 7 An aerobic tank that nitrifies the ammonia contained in the water to be treated with aerobic microorganisms, and a membrane separation device that is placed through the aerobic tank and the partition wall to separate the treated water that has been nitrified in the aerobic tank. A sewage treatment facility equipped with a membrane separation tank and a pump mechanism for returning a part of the water to be treated in the membrane separation tank to the anoxic tank, to be treated to flow into the membrane separation tank from the aerobic tank In the vicinity of the partition in the second region, a separation wall for separating the membrane separation tank is provided in the first region for receiving water and the second region for guiding the treated water flowing from the first region to the partition in the aerobic tank. The pump mechanism is equipped with a pumping pipe disposed near the partition wall and air bubbles are supplied to the pumping pipe. That the air diffuser, in that it is constituted by an air lift pump having a feed water channel is transferred to the anoxic tank water to be treated is pumped from the top of the riser pipe by the bubble.

上述した構成によれば、膜分離槽から無酸素槽へ処理水の一部を返送する場合であっても、膜分離槽の第二領域の最下流側、つまり好気槽との隔壁近傍に設置されたポンプ機構により無酸素槽に返送されるので被処理水の返送経路となる配管を短く、且つ、構造を簡素化することができるので、被処理水の返送に必要なポンプ機構の動力を低減することができる。   According to the configuration described above, even when part of the treated water is returned from the membrane separation tank to the anoxic tank, it is located on the most downstream side of the second region of the membrane separation tank, that is, in the vicinity of the partition wall with the aerobic tank. Since it is returned to the oxygen-free tank by the installed pump mechanism, the piping that serves as the return path of the water to be treated can be shortened and the structure can be simplified. Can be reduced.

本発明による汚水処理設備の改築方法の特徴構成は、同請求項8に記載した通り、上部空間の中央部に向けて上部が延出形成された側壁で区画される処理槽により被処理水を処理する汚水処理設備の改築方法であって、少なくとも嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽を含む汚水処理経路が配置され、好気槽に、無酸素槽から流入する被処理水を受け入れる一対の第一領域と、一対の第一領域の間に、第一領域から流入した被処理水を隔壁に導く第二領域が形成されるように、好気槽を分離する分離壁を設ける工程と、第一領域に被処理水に散気する散気装置を設置する工程と、第二領域に被処理水を固液分離する膜分離装置のろ過膜を、槽内と槽外の間で昇降自在に設置する工程と、第二領域のうち膜分離装置の下流側に、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から無酸素槽に移送する送水路を備えたエアリフトポンプを設置する工程を含む点にある。   The characteristic configuration of the method for renovating a sewage treatment facility according to the present invention is that, as described in claim 8, the water to be treated is treated by a treatment tank partitioned by a side wall with an upper portion extending toward the central portion of the upper space. A method for renovating a sewage treatment facility to be treated, which is disposed through an anaerobic tank for denitrifying treated water by at least anaerobic microorganisms, an anaerobic tank and a partition wall, and to the treated water flowing from the anoxic tank A sewage treatment path including an aerobic tank for nitrifying the contained ammonia with an aerobic microorganism is disposed, and a pair of first areas for receiving treated water flowing from the anaerobic tank into the aerobic tank, and a pair of first areas A step of providing a separation wall for separating the aerobic tank so as to form a second region for guiding the treated water flowing from the first region to the partition wall, and aeration of the treated water in the first region The process of installing the diffuser and the second area to be treated The step of installing the filtration membrane of the membrane separator to be separated between the inside of the tank and the outside of the tank, and the pumping pipe disposed in the vicinity of the partition wall on the downstream side of the membrane separator in the second region, It includes a step of installing an air diffuser that supplies air bubbles to the pumping pipe and an air lift pump that includes a water supply path for transferring the water to be treated pumped by the bubbles from the upper part of the water pumping pipe to the oxygen-free tank.

上述の構成によれば、膜分離式活性汚泥法を採用していない既存の標準活性汚泥法、硝化液循環活性汚泥法、生物循環式嫌気好気法を採用した汚水処理設備に対して、膜分離装置が設置された膜分離式活性汚泥法を採用する汚水処理設備に改築する場合に、例えば、作業員の通路や、散気装置への給気配管等の設置スペースのために、処理槽の上部空間の中央部に向けて上部が延出形成された側壁によって区画されるような側壁構造であっても、一対の第一領域で挟まれる第二領域、つまり側壁から離隔した中央領域にろ過膜を設置することにより、ろ過膜のメンテナンス等のために、ろ過膜を槽内と槽外の間で昇降させる場合に、側壁上部の延出部と干渉するようなことがない。そのため、既存の側壁上部の延出部を削り取るような大掛かりな工事が不要となる。   According to the above-described configuration, the membrane is compared with the existing standard activated sludge method that does not employ the membrane-separated activated sludge method, the nitrification liquid circulation activated sludge method, and the sewage treatment facility that employs the biological circulation type anaerobic aerobic method. When renovating to a sewage treatment facility that employs a membrane separation activated sludge method with a separation device installed, for example, for the installation space such as a worker's passage and an air supply pipe to the diffuser Even in a side wall structure in which the upper part is partitioned by a side wall extending toward the center of the upper space, the second region sandwiched between the pair of first regions, that is, the central region separated from the side wall By installing the filtration membrane, when the filtration membrane is moved up and down between the inside of the tank and the outside of the tank for the maintenance of the filtration membrane, it does not interfere with the extending part at the upper part of the side wall. This eliminates the need for a large-scale construction that scrapes off the existing extended portion of the side wall.

また、第二領域のうち膜分離装置の下流側にエアリフトポンプを設置することで、被処理水の移送経路を短くすることができるので、エアリフトポンプの動力を低減でき、効率の良い処理を行える汚水処理設備に改築することができる。   Also, by installing an air lift pump on the downstream side of the membrane separation device in the second region, the transfer path of the water to be treated can be shortened, so the power of the air lift pump can be reduced and efficient processing can be performed. It can be renovated to a sewage treatment facility.

汚水処理設備の改築方法の第二の特徴構成は、同請求項9に記載した通り、汚水処理経路が複数並列に配置され、処理槽の上部空間の中央部に向けて上部が延出形成された断面Y字形状の側壁によって各汚水処理経路に隣接する処理槽が区画される汚水処理設備に対して、各工程が適用される点にある。   The second characteristic configuration of the sewage treatment facility renovation method is that, as described in claim 9, a plurality of sewage treatment paths are arranged in parallel, and the upper part extends toward the central part of the upper space of the treatment tank. Each process is applied to a sewage treatment facility in which a treatment tank adjacent to each sewage treatment path is defined by a side wall having a Y-shaped cross section.

複数の汚水処理経路が並列に配置される既存の汚水処理設備で、各汚水処理経路に隣接する処理槽が断面Y字形状の側壁によって区画されているような場合に、本発明による改築方法が好適に使用できるのである。   In an existing sewage treatment facility in which a plurality of sewage treatment paths are arranged in parallel, when the treatment tank adjacent to each sewage treatment path is partitioned by a Y-shaped side wall, the remodeling method according to the present invention is performed. It can be suitably used.

以上説明した通り、本発明によれば、好気槽から無酸素槽への返送に必要なポンプ機構の動力を低減でき、効率の良い処理を行える汚水処理設備を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a sewage treatment facility capable of reducing the power of the pump mechanism necessary for returning from the aerobic tank to the anoxic tank and performing an efficient treatment. It was.

本発明による汚水処理設備の平面視による説明図Explanatory drawing by the planar view of the sewage treatment facility by this invention 本発明による汚水処理設備の第一領域側の断面視による説明図Explanatory drawing by the sectional view by the side of the 1st field of the sewage treatment equipment by the present invention 本発明による汚水処理設備の第二領域側の断面視による説明図Explanatory drawing by sectional view by the side of the 2nd field of sewage treatment equipment by the present invention 本発明による汚水処理設備に用いられるエアリフトポンプの説明図Explanatory drawing of the air lift pump used for the sewage treatment facility by this invention 別実施形態を示し、本発明による汚水処理設備の平面視による説明図Explanatory drawing by plane view which shows another embodiment and the sewage treatment equipment by this invention 別実施形態を示し、本発明による汚水処理設備の切欠き斜視図Cutaway perspective view of a sewage treatment facility according to the present invention showing another embodiment 別実施形態を示し、本発明による汚水処理設備の好気槽の断面図Sectional drawing of the aerobic tank of the wastewater treatment facility by this invention which shows another embodiment (a)は別実施形態を示し、本発明による汚水処理設備の平面視による説明図、(b)は別実施形態を示し、本発明による汚水処理設備の平面視による説明図(A) shows another embodiment and is explanatory drawing by planar view of the sewage treatment facility by this invention, (b) shows another embodiment and explanatory drawing by planar view of the sewage treatment facility by this invention (a)は別実施形態を示し、本発明による汚水処理設備の平面視による説明図、(b)は別実施形態を示し、本発明による汚水処理設備の平面視による説明図(A) shows another embodiment and is explanatory drawing by planar view of the sewage treatment facility by this invention, (b) shows another embodiment and explanatory drawing by planar view of the sewage treatment facility by this invention (a)は別実施形態を示し、本発明による汚水処理設備の平面視による説明図、(b)は別実施形態を示し、本発明による汚水処理設備の断面視による説明図、(c)は別実施形態を示し、本発明による汚水処理設備の側面視による説明図(A) shows another embodiment, explanatory drawing by planar view of the sewage treatment facility by this invention, (b) shows another embodiment, explanatory drawing by sectional view of the sewage treatment facility by this invention, (c) is Explanatory drawing by the side view of the sewage treatment equipment by this invention which shows another embodiment (a)は別実施形態を示し、本発明による汚水処理設備の平面視による説明図、(b)は別実施形態を示し、本発明による汚水処理設備の断面視による説明図、(A) shows another embodiment, explanatory drawing by planar view of the sewage treatment facility by this invention, (b) shows another embodiment, explanatory drawing by sectional view of the sewage treatment facility by this invention, 硝化液循環活性汚泥法を採用した従来の汚水処理設備の説明図Explanatory drawing of conventional sewage treatment equipment adopting nitrification liquid circulation activated sludge method 生物循環式嫌気好気法を採用した従来の汚水処理設備の説明図Explanatory drawing of conventional sewage treatment equipment that uses the biocirculating anaerobic aerobic method

以下、本発明による汚水処理設備を説明する。
図1,図2,図3に示すように、汚水処理設備1は、未処理の被処理水である原水を流入させる嫌気槽10と、嫌気槽10の下流側に隔壁11を介して連接され、嫌気性微生物により被処理水を脱窒する無酸素槽と20と、無酸素槽20の下流側に隔壁21を介して配置され、無酸素槽20から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽30と、好気槽30で硝化された被処理水の一部を無酸素槽20に返送するポンプ機構40を備えている。
Hereinafter, the sewage treatment facility according to the present invention will be described.
As shown in FIGS. 1, 2, and 3, the sewage treatment facility 1 is connected to an anaerobic tank 10 into which raw water that is untreated water flows, and a downstream side of the anaerobic tank 10 via a partition wall 11. The oxygen-free tank 20 for denitrifying the water to be treated by anaerobic microorganisms, and the ammonia contained in the water to be treated flowing from the oxygen-free tank 20 are arranged on the downstream side of the oxygen-free tank 20 via the partition wall 21. An aerobic tank 30 that nitrifies with aerobic microorganisms and a pump mechanism 40 that returns a portion of the water to be treated nitrified in the aerobic tank 30 to the anoxic tank 20 are provided.

嫌気槽10では、嫌気条件下で微生物により嫌気処理され、原水に含まれるBOD成分が微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてリンが液中に放出される。嫌気槽10で嫌気処理された被処理水は、隔壁11の下部に形成された連通口12を介して無酸素槽20へ移送される。   In the anaerobic tank 10, anaerobic treatment is performed by microorganisms under anaerobic conditions, and BOD components contained in the raw water are taken into the microorganisms, and phosphorus compounds are hydrolyzed to release phosphorus as normal phosphoric acid into the liquid. The water to be treated that has been anaerobically treated in the anaerobic tank 10 is transferred to the anoxic tank 20 through the communication port 12 formed in the lower part of the partition wall 11.

無酸素槽20では、嫌気条件下で微生物により嫌気処理され、脱窒処理つまり硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処理が行われる。無酸素槽20で嫌気処理された被処理水は、隔壁21の下部に形成された連通口22を介して好気槽30へ移送される。   In the anaerobic tank 20, anaerobic treatment is performed by microorganisms under anaerobic conditions, and denitrification treatment, that is, reduction treatment of nitrate ions and nitrite ions to nitrogen gas is performed. The water to be treated that has been anaerobically treated in the anaerobic tank 20 is transferred to the aerobic tank 30 through the communication port 22 formed in the lower part of the partition wall 21.

好気槽30に、無酸素槽20から流入する被処理水を受け入れる第一領域31と、第一領域31から流入した被処理水を隔壁22に導く第二領域32とに、被処理水の流入方向に沿って好気槽30を分離する分離壁34を設けて、第一領域31に被処理水に散気する複数の散気装置35を設置するとともに、第二領域32に被処理水を固液分離する複数の膜分離装置36を設置し、第二領域32の下流側にポンプ機構40が設置されている。尚、分離壁34は、その上縁が水面より上方に突出する略垂直壁で構成され、基端側が隔壁21と接合され、他端側が好気槽30内で開放されている。   In the aerobic tank 30, the first region 31 that receives the water to be treated flowing from the oxygen-free tank 20 and the second region 32 that guides the water to be treated flowing from the first region 31 to the partition wall 22 A separation wall 34 that separates the aerobic tank 30 along the inflow direction is provided, and a plurality of air diffusers 35 that diffuse the treated water in the first region 31 are installed, and the treated water in the second region 32. A plurality of membrane separation devices 36 for solid-liquid separation are installed, and a pump mechanism 40 is installed downstream of the second region 32. The separation wall 34 is constituted by a substantially vertical wall whose upper edge protrudes above the water surface, the base end side is joined to the partition wall 21, and the other end side is opened in the aerobic tank 30.

第一領域31では、散気装置35による散気による好気条件下で、被処理水に含まれるし尿等由来のアンモニウムイオンが微生物により酸化され、亜硝酸や硝酸に変換される硝化処理が行われ、さらに、被処理水中の正リン酸が汚泥に取り込まれ、ポリリン酸として蓄積される好気性処理が行われる。   In the first region 31, nitrification treatment is performed in which ammonium ions derived from human urine and the like contained in the water to be treated are oxidized by microorganisms and converted into nitrous acid and nitric acid under aerobic conditions by aeration by the aeration device 35. Furthermore, aerobic treatment is performed in which normal phosphoric acid in the water to be treated is taken into sludge and accumulated as polyphosphoric acid.

第二領域32では、膜分離装置36により被処理水から活性汚泥等の固形物が分離され、分離された被処理水が、送水管37によって後段の被処理水槽(図示せず)に排出される。尚、膜分離装置36に用いられる分離膜として、限外ろ過膜、精密ろ過膜等が好ましく採用される。膜の形態は、平膜、中空糸膜、チューブラー膜などが好ましく採用される。   In the second region 32, solid matter such as activated sludge is separated from the water to be treated by the membrane separation device 36, and the separated water to be treated is discharged to the water tank (not shown) in the subsequent stage through the water supply pipe 37. The As the separation membrane used in the membrane separation device 36, an ultrafiltration membrane, a microfiltration membrane or the like is preferably employed. As the form of the membrane, a flat membrane, a hollow fiber membrane, a tubular membrane or the like is preferably employed.

尚、分離壁34で分離された第一領域31の容積は、第二領域32の容積より大きくなるように設定されている。特に、第一領域31の容積が第二領域32の容積の2倍程度大きくなるように分離壁34を形成することが好ましい。このように構成することで、第一領域31で好気処理が良好に行われる。   Note that the volume of the first region 31 separated by the separation wall 34 is set to be larger than the volume of the second region 32. In particular, it is preferable to form the separation wall 34 so that the volume of the first region 31 is about twice as large as the volume of the second region 32. By comprising in this way, an aerobic process is favorably performed in the 1st area | region 31. FIG.

複数の膜分離装置36の下部には、夫々の膜分離装置36の膜表面に付着する汚泥を除去洗浄する曝気装置38が配設されている。第二領域32では、曝気装置38から供給される空気により、好気条件下で活性汚泥により硝化処理が行われる。第二領域32の活性汚泥は、引抜管39により余剰汚泥として排出される。   An aeration device 38 for removing and cleaning sludge adhering to the membrane surface of each membrane separation device 36 is disposed below the plurality of membrane separation devices 36. In the second region 32, nitrification is performed by activated sludge under aerobic conditions with air supplied from the aeration device 38. The activated sludge in the second region 32 is discharged as excess sludge through the extraction pipe 39.

第一領域31で好気性処理が行われた被処理水が、分離壁34の他端側の開放部から第二領域32に向けてU字状に流下するように構成されているため、散気装置35からの散気の流れ、曝気装置38からの散気の流れが相互に干渉することによる被処理水の流れの乱れが発生することが無い。   Since the water to be treated that has been subjected to the aerobic treatment in the first region 31 is configured to flow in a U shape from the open portion on the other end side of the separation wall 34 toward the second region 32, The turbulent flow of the water to be treated due to the interference between the flow of the air diffuser from the air device 35 and the flow of the air diffuser from the aeration device 38 does not occur.

図3,4に示すようにポンプ機構40は、隔壁21の近傍に配置された揚水管41と、ブロワにより揚水管41に気泡を供給する散気装置42と、気泡により揚水された被処理水を揚水管41の上部から無酸素槽20の上流側に移送する送水路43を備えたエアリフトポンプ44で構成されている。   As shown in FIGS. 3 and 4, the pump mechanism 40 includes a pumping pipe 41 disposed in the vicinity of the partition wall 21, an air diffuser 42 for supplying bubbles to the pumping pipe 41 by a blower, and water to be treated pumped by the bubbles. Is formed of an air lift pump 44 provided with a water supply passage 43 for transferring the water from the upper part of the pumping pipe 41 to the upstream side of the oxygen-free tank 20.

散気装置42は、無数の微孔が形成された複数本の短管が、揚水管41の下部開口に対応配置され、送気管を介してフロワと接続されている。   In the air diffuser 42, a plurality of short pipes having innumerable micro holes are arranged corresponding to the lower opening of the water pumping pipe 41, and are connected to the flower through the air feeding pipe.

好気槽30で硝化処理された被処理水はエアリフトポンプ44で無酸素槽20の上流側に返送される。これにより、好気槽30の硝化処理により被処理水に含まれる硝酸イオン及び亜硝酸イオンが、無酸素槽20へ循環されて、脱窒処理が行われる。   The water to be treated that has been nitrified in the aerobic tank 30 is returned to the upstream side of the anoxic tank 20 by the air lift pump 44. As a result, nitrate ions and nitrite ions contained in the water to be treated are circulated to the anaerobic tank 20 by the nitrification treatment of the aerobic tank 30 to perform the denitrification treatment.

尚、エアリフトポンプ44は、架台45によって隔壁21の近傍の適当な位置に設置される。   The air lift pump 44 is installed at an appropriate position near the partition wall 21 by the mount 45.

エアリフトポンプ44を、隔壁21の近傍に配置して送水路43を短く、つまり全揚程を短くすることで、被処理水の送水に必要な散気量、つまりブロワの動力を低減することができ、また、散気量を減らすことで溶存酸素濃度が高い被処理水が無酸素槽20に流れ込むことを防止できるので、無酸素槽20の脱窒効率を低減させる虞を低減することができる。   By disposing the air lift pump 44 in the vicinity of the partition wall 21 and shortening the water supply passage 43, that is, shortening the total head, it is possible to reduce the amount of aeration necessary for water supply of the water to be treated, that is, the power of the blower. Moreover, since the water to be treated having a high dissolved oxygen concentration can be prevented from flowing into the oxygen-free tank 20 by reducing the amount of air diffused, the possibility of reducing the denitrification efficiency of the oxygen-free tank 20 can be reduced.

さらに、エアリフトポンプ44を介して無酸素槽20に返送された被処理水の一部は送水路23を介して嫌気槽10に返送される。リンを取り込んだ好気槽30内の微生物が送水路23を介して嫌気槽10へ循環されて、正リン酸としてリンが液中に放出される。   Further, part of the water to be treated returned to the anaerobic tank 20 via the air lift pump 44 is returned to the anaerobic tank 10 via the water supply path 23. Microorganisms in the aerobic tank 30 taking up phosphorus are circulated to the anaerobic tank 10 through the water supply channel 23, and phosphorus is released into the liquid as normal phosphoric acid.

好気槽30から活性汚泥を含む被処理水が無酸素槽20に返送され、無酸素槽20から被処理水が嫌気槽10に返送されるように構成されているため、無酸素槽20で脱窒処理され硝酸性窒素、亜硝酸性窒素を含まず、酸素が消費された被処理水が嫌気槽10に返送され、嫌気槽10でのリンの放出条件である無NOx及び無酸素状態を維持することができる。   Since the water to be treated containing activated sludge is returned from the aerobic tank 30 to the anaerobic tank 20 and the water to be treated is returned from the anoxic tank 20 to the anaerobic tank 10, The water to be treated which is denitrified and does not contain nitrate nitrogen and nitrite nitrogen and consumes oxygen is returned to the anaerobic tank 10, and the NOx and oxygen-free conditions that are the conditions for releasing phosphorus in the anaerobic tank 10 Can be maintained.

よって、嫌気槽10ではリン化合物が正リン酸として効率的に放出され、放出された正リン酸が後段の好気槽30において嫌気槽10で放出した量以上に活性汚泥に取り込まれることにより、被処理水からリンを高度に除去することが可能となる。   Therefore, in the anaerobic tank 10, the phosphorus compound is efficiently released as normal phosphoric acid, and the released normal phosphoric acid is taken into the activated sludge more than the amount released in the anaerobic tank 10 in the subsequent aerobic tank 30, It becomes possible to remove phosphorus from treated water to a high degree.

以上の構成により、好気槽30から無酸素槽20への返送にかかるポンプ機構40の動力を低減でき、効率の良い処理が行えるのである。   With the above configuration, the power of the pump mechanism 40 for returning from the aerobic tank 30 to the anoxic tank 20 can be reduced, and efficient processing can be performed.

尚、上述した実施形態では、詳述していないが、嫌気槽10及び無酸素槽20には、夫々の処理が均一に行われるように、被処理水を撹拌する撹拌機構を備えている。   Although not described in detail in the above-described embodiment, the anaerobic tank 10 and the oxygen-free tank 20 are provided with a stirring mechanism that stirs the water to be treated so that each process is performed uniformly.

次に、本発明による別実施形態を説明する。   Next, another embodiment according to the present invention will be described.

上述した実施形態では、上流側の処理槽の被処理水が、隔壁の下部に形成された連通口を介して下流側の処理槽に流入する例を説明したが、上流側の処理槽の被処理水が、隔壁をオーバーフローして下流側の処理槽に流入するように構成してもよい。この場合、第二領域と上流側の無酸素槽との間の隔壁は、水面より上方に突出形成され、無酸素槽から第二領域に流入することがないように構成すればよい。   In the above-described embodiment, the example in which the water to be treated in the upstream treatment tank flows into the downstream treatment tank through the communication port formed in the lower part of the partition wall has been described. You may comprise so that treated water may overflow a partition and may flow in into a downstream processing tank. In this case, the partition between the second region and the upstream oxygen-free tank may be formed so as to protrude above the water surface and not flow into the second region from the oxygen-free tank.

上述した実施形態では、好気槽30に一枚の分離壁34を備えた構成について説明したが、図5,図6に示すように、好気槽30を分離する分離壁34a,34bが被処理水の流入方向に沿って二枚設けられ、第二領域32を一対の第一領域31a,31bの間に形成してもよい。尚、図5,図6では、膜分離装置36で分離された被処理水の送水管37及び第二領域32の活性汚泥の引抜管39の記載は省略する。   In the above-described embodiment, the configuration in which the aerobic tank 30 includes the single separation wall 34 has been described. However, as illustrated in FIGS. 5 and 6, the separation walls 34 a and 34 b that separate the aerobic tank 30 are covered. Two sheets may be provided along the inflow direction of the treated water, and the second region 32 may be formed between the pair of first regions 31a and 31b. 5 and 6, the description of the water supply pipe 37 of the water to be treated separated by the membrane separator 36 and the activated sludge extraction pipe 39 of the second region 32 is omitted.

膜分離装置36のろ過膜は、メンテナンスの際に槽内から槽外に引き上げることができるように設置されること好ましいが、図7に示すように、既存の標準活性汚泥法、硝化液循環活性汚泥法、生物循環式嫌気好気法を採用した汚水処理設備の好気槽30に、膜分離装置36を設置する場合、各処理槽の形状によっては、例えば、作業員の通路や、散気装置への給気配管等の設置スペースのために好気槽の側壁上部から、好気槽上部空間の中央部に向けて天面51が延出形成され、開口52が中央部のみしかない場合がある。   The filtration membrane of the membrane separator 36 is preferably installed so that it can be pulled out of the tank during maintenance, but as shown in FIG. 7, the existing standard activated sludge method, nitrification liquid circulation activity When the membrane separation device 36 is installed in the aerobic tank 30 of the sewage treatment facility that adopts the sludge method or the biological circulation type anaerobic aerobic method, depending on the shape of each treatment tank, for example, a passage for an operator or an aeration When the top surface 51 extends from the upper part of the side wall of the aerobic tank toward the central part of the upper space of the aerobic tank due to the installation space such as the air supply pipe to the apparatus, and the opening 52 has only the central part There is.

このような場合でも、一対の第一領域の間に形成された第二領域に膜分離装置を設置すれば、天面と干渉することなく、開口52から膜分離装置36のろ過膜を引き上げてメンテナンスすることが可能となる。   Even in such a case, if the membrane separation device is installed in the second region formed between the pair of first regions, the membrane of the membrane separation device 36 is lifted from the opening 52 without interfering with the top surface. Maintenance is possible.

特に、膜分離式活性汚泥法を採用していない既存の標準活性汚泥法、硝化液循環活性汚泥法、生物循環式嫌気好気法を採用した汚水処理設備に対して膜分離装置が設置された膜分離式活性汚泥法を採用する汚水処理設備に改築する場合等に好適である。   In particular, a membrane separation device was installed for the existing standard activated sludge method that does not use the membrane separation activated sludge method, the nitrification liquid circulation activated sludge method, and the sewage treatment facility that adopted the biological circulation type anaerobic aerobic method. It is suitable when renovating to a sewage treatment facility that employs a membrane separation type activated sludge method.

このような既存の汚水処理設備では、作業員の通路や、散気装置への給気配管等の設置スペースのために、上部が槽上部空間の中央部に向けて天面が延出形成された断面Y字形状の側壁によって区画されるような側壁構造が採用される場合が多いためである。   In such an existing sewage treatment facility, the top surface extends toward the center of the upper space of the tank for the installation space such as the worker's passage and the air supply pipe to the diffuser. This is because a side wall structure that is partitioned by a Y-shaped side wall is often employed.

上部空間の中央部に向けて上部が延出形成された側壁で区画される処理槽により被処理水を処理する汚水処理設備を改築する場合には、少なくとも嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽を含む汚水処理経路が配置され、好気槽に、無酸素槽から流入する被処理水を受け入れる一対の第一領域と、一対の第一領域の間に、第一領域から流入した被処理水を隔壁に導く第二領域が形成されるように、被処理水の流入方向に沿って好気槽を分離する分離壁を設ける工程と、第一領域に被処理水に散気する散気装置を設置する工程と、第二領域に被処理水を固液分離する膜分離装置のろ過膜を、槽内と槽外の間で昇降自在に設置する工程と、第二領域のうち膜分離装置の下流側に、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から無酸素槽に移送する送水路を備えたエアリフトポンプを設置する工程により好適に改築できる。   When renovating a sewage treatment facility that treats treated water with a treatment tank that is partitioned by a sidewall that extends upward toward the center of the upper space, the treated water is denitrified at least by anaerobic microorganisms. An anaerobic tank, an anaerobic tank and a partition wall, and a sewage treatment path including an aerobic tank for nitrifying ammonia contained in the water to be treated flowing in from the anaerobic tank with an aerobic microorganism are disposed. A pair of first regions for receiving the water to be treated flowing from the oxygen-free tank and a second region for guiding the water to be treated flowing from the first region to the partition are formed in the air tank. As described above, the step of providing a separation wall for separating the aerobic tank along the inflow direction of the water to be treated, the step of installing a diffuser for aeration of the water to be treated in the first region, and the second region The membrane of the membrane separator that separates the water to be treated from the inside of the tank to the outside of the tank A step of installing freely, a pumping pipe disposed in the vicinity of the partition wall in the second region downstream of the membrane separation device, an air diffuser for supplying bubbles to the pumping pipe, and a target pumped by the bubbles. It can be suitably remodeled by a process of installing an air lift pump provided with a water supply path for transferring treated water from the upper part of the pumping pipe to the oxygen-free tank.

一対の第一領域で挟まれる第二領域、つまり側壁から離隔した中央領域にろ過膜を設置することにより、ろ過膜のメンテナンス等のために、ろ過膜を槽内と槽外の間で昇降させる場合に、側壁上部の延出部と干渉するようなことがないため、既存の側壁上部の延出部を削り取るような大掛かりな工事が不要となるためである。   By installing the filtration membrane in the second region sandwiched between the pair of first regions, that is, the central region separated from the side wall, the filtration membrane is moved up and down between the inside and outside of the tank for the maintenance of the filtration membrane. In such a case, since there is no interference with the extension part at the upper part of the side wall, a large-scale construction for scraping off the extension part at the upper part of the side wall becomes unnecessary.

汚水処理経路が複数並列に配置され、処理槽の上部空間の中央部に向けて上部が延出形成された断面Y字形状の側壁によって各汚水処理経路に隣接する処理槽が区画される汚水処理設備に対して、各工程が適用されることが特に好ましい。   A sewage treatment system in which a plurality of sewage treatment paths are arranged in parallel, and a treatment tank adjacent to each sewage treatment path is defined by a Y-shaped side wall having an upper portion extending toward the center of the upper space of the treatment tank. It is particularly preferable that each process is applied to the equipment.

上述した実施形態では、第二領域32内の被処理水を無酸素槽20へ返送するポンプ機構40と、無酸素槽20内の被処理水を嫌気槽10へ返送する送水路23を備えた構成について説明したが、当該返送路23を備えずに、ポンプ機構で送水した第二領域32の被処理水を、無酸素槽20と嫌気槽10の夫々に所定量返送するように構成してもよい。   In embodiment mentioned above, the pump mechanism 40 which returns the to-be-processed water in the 2nd area | region 32 to the anaerobic tank 20, and the water supply path 23 which returns the to-be-processed water in the anoxic tank 20 to the anaerobic tank 10 were provided. Although the configuration has been described, the water to be treated in the second region 32 fed by the pump mechanism is not provided with the return path 23 and is configured to return a predetermined amount to each of the anaerobic tank 20 and the anaerobic tank 10. Also good.

上述のエアリフトポンプ44は、散気装置42を揚水管41の下部に設置する構成について説明したが、散気装置42は必ずしも揚水管41の下部にする必要はなく、揚水管41の管壁側面に形成した開口から管内に気泡を供給するように構成してもよい。   Although the above-described air lift pump 44 has been described with respect to the configuration in which the air diffuser 42 is installed below the pumping pipe 41, the air diffuser 42 does not necessarily need to be below the water pumping pipe 41, and the side wall surface of the water pumping pipe 41. You may comprise so that a bubble may be supplied in a pipe | tube from the opening formed in this.

また、ポンプ機構としてのエアリフトポンプは、微生物を担持する担体を循環供給する場合に、機械式のポンプのようにインペラで担体を破損する虞が無い点で好ましいが、微生物を担持する担体を用いずに活性汚泥を循環供給する場合は、機械式の水中ポンプを第二領域に設置して被処理水の一部を返送するように構成してもよい。   In addition, the air lift pump as the pump mechanism is preferable in that there is no possibility of damaging the carrier with the impeller unlike the mechanical pump when the carrier carrying the microorganism is circulated and supplied, but the carrier carrying the microorganism is used. In the case where the activated sludge is circulated and supplied, a mechanical submersible pump may be installed in the second region to return a part of the treated water.

上述した実施形態では、本発明が膜分離装置を備えた膜分離式活性汚泥法に適用される構成について説明したが、図8(a)に示す循環式消化脱窒法や、図8(b)に示すように、膜分離装置を設けない生物循環式嫌気好気法に適用することも可能である。   In the above-described embodiment, the configuration in which the present invention is applied to a membrane separation activated sludge method provided with a membrane separation apparatus has been described. However, the circulation digestion denitrification method shown in FIG. 8A or FIG. As shown in Fig. 4, it can be applied to a biocirculation anaerobic aerobic method without a membrane separation device.

上述した実施形態では、図9(a),(b)に示すように、第一領域31内に第一領域31をさらに区画する区画壁50を備え、区画壁50で区画された領域の夫々に散気装置35を設置し、区画された領域を被処理水が蛇行するように構成してもよい。このように構成することで、被処理水が第一領域31を通過時間がのび、散気装置によって確実に散気され、好気処理の効率があがる。   In the embodiment described above, as shown in FIGS. 9A and 9B, the partition wall 50 that further partitions the first region 31 in the first region 31 is provided, and each of the regions partitioned by the partition wall 50 is provided. Alternatively, the diffuser 35 may be installed so that the water to be treated meanders in the partitioned area. By comprising in this way, to-be-processed water passes through the 1st area | region 31, the aeration apparatus reliably diffuses, and the efficiency of an aerobic process increases.

尚、区画壁50は、無酸素槽20から第一領域31に流入する被処理水の流入方向に沿って備える場合に限らず、被処理水の流入方向に対して、例えば、直角方向に備えてもよい。   The partition wall 50 is not limited to the case in which the partition wall 50 is provided along the inflow direction of the water to be treated flowing into the first region 31 from the anoxic tank 20, and is provided in a direction perpendicular to the inflow direction of the water to be treated. May be.

また、第二領域32も同様に被処理水を蛇行させるように区画壁を備えて、区画壁で区画された領域の夫々に膜分離装置を備えて、区画された第二領域の最下流側にエアリフトポンプを設置するように構成してもよい。   Similarly, the second region 32 is provided with a partition wall so as to meander the water to be treated, a membrane separation device is provided in each of the regions partitioned by the partition wall, and the most downstream side of the partitioned second region. You may comprise so that an air lift pump may be installed.

上述した実施形態では、分離壁34は、無酸素槽20から流入する被処理水を受け入れる第一領域31と、第一領域31から流入した被処理水を隔壁22に導く第二領域32とに、被処理水の流入方向に沿って好気槽30を分離し、その上縁が水面より上方に突出する一枚または二枚の略垂直壁で構成され、基端側が隔壁21と接合され、他端側が好気槽30内で開放されている構成について説明したが、図10(a),(b),(c)に示すように、分離壁34を、無酸素槽20と好気槽30の隔壁21の中央下部に形成された開口22から好気槽30内に延出形成し、被処理水の通水路となるような形状、つまり、槽内を上下に仕切る分離壁に構成してもよい。この場合、好気槽30の分離壁34に囲まれた被処理水の通水路内部が第一領域31となり、その周囲が第二領域32となり、隔壁21の近傍にポンプ機構40が設置される。   In the embodiment described above, the separation wall 34 includes the first region 31 that receives the water to be treated flowing from the anoxic tank 20 and the second region 32 that guides the water to be treated flowing from the first region 31 to the partition wall 22. The aerobic tank 30 is separated along the inflow direction of the water to be treated, and its upper edge is composed of one or two substantially vertical walls projecting upward from the water surface, and the base end side is joined to the partition wall 21; Although the configuration in which the other end side is opened in the aerobic tank 30 has been described, as shown in FIGS. 10A, 10 </ b> B, and 10 </ b> C, the separation wall 34 is connected to the anaerobic tank 20 and the aerobic tank. 30 is formed to extend into the aerobic tank 30 from the opening 22 formed in the center lower part of the partition wall 21 and to form a water passage for the water to be treated, that is, a separation wall that divides the tank vertically. May be. In this case, the inside of the water passage of the water to be treated surrounded by the separation wall 34 of the aerobic tank 30 becomes the first region 31, the periphery thereof becomes the second region 32, and the pump mechanism 40 is installed in the vicinity of the partition wall 21. .

そして、第二領域32であって、分離壁34で囲まれる通水路の周囲であって、通水路と平行に被処理水を散気する散気装置35を設置するとともに、分離壁34で囲まれる通水路の上部に被処理水を固液分離する膜分離装置36が設置されるように構成されていてもよい。尚、散気装置35は必ずしも第二領域32に設置する必要はなく、分離壁34で囲まれる通水路内部の第一領域31に設置してもよい。   And it is the 2nd area | region 32, it is the circumference | surroundings of the water flow path enclosed by the separation wall 34, Comprising: While installing the diffuser 35 which diffuses to-be-processed water in parallel with a water flow path, it surrounds with the separation wall 34 The membrane separation device 36 for solid-liquid separation of the water to be treated may be installed at the upper part of the water passage. The air diffuser 35 is not necessarily installed in the second region 32, and may be installed in the first region 31 inside the water passage surrounded by the separation wall 34.

さらに、図11(a),(b)に示すように、嫌気性微生物により被処理水を脱窒する無酸素槽20と、無酸素槽20と隔壁21を介して配置され、無酸素槽20から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽30と、好気槽30と隔壁34を介して配置され、好気槽30で硝化された被処理水を固液分離する膜分離装置36が設置された膜分離槽55と、膜分離槽55の被処理水の一部を無酸素槽20に返送するポンプ機構を備えている汚水処理設備では、膜分離槽55に、好気槽30から流入する被処理水を受け入れる第一領域と、第一領域31から流入した被処理水を好気槽30との隔壁56に導く第二領域32とに、被処理水の流入方向に沿って膜分離槽55を分離する分離壁34を設けて、第二領域32の隔壁56近傍に上述のエアリフトポンプ44を備え、エアリフトポンプ44により被処理水の一部を無酸素槽20に返送するように構成することもできる。   Further, as shown in FIGS. 11A and 11B, the anoxic tank 20 for denitrifying the water to be treated by anaerobic microorganisms, an anoxic tank 20 and a partition wall 21 are disposed. The aerobic tank 30 nitrifies ammonia contained in the water to be treated flowing in from the aerobic microorganisms, and the aerobic tank 30 and the partition wall 34, and the treated water nitrified in the aerobic tank 30 is solid-liquid. In a sewage treatment facility having a membrane separation tank 55 in which a membrane separation device 36 for separation and a pump mechanism for returning a part of water to be treated in the membrane separation tank 55 to the anoxic tank 20 are provided, the membrane separation tank 55 In addition, the first region that receives the treated water flowing from the aerobic tank 30 and the second region 32 that guides the treated water flowing from the first region 31 to the partition wall 56 between the aerobic tank 30 and the treated water. A separation wall 34 for separating the membrane separation tank 55 along the inflow direction of Near the second partition 56 comprises an air lift pump 44 described above, it can also be configured to return a portion of the water to be treated anoxic tank 20 by the air lift pump 44.

この場合、第二領域32に膜分離装置36が設置される。第一領域31は単に流路として機能するように構成してもよいし、散気装置35を設置してもよい。   In this case, a membrane separation device 36 is installed in the second region 32. The first region 31 may simply be configured to function as a flow path, or an air diffuser 35 may be installed.

このような構成を採用する場合にも、被処理水の返送経路となる配管を短く、且つ、構造を簡素化することができるので、被処理水の返送に必要なポンプ機構の動力を低減することができる。   Even when such a configuration is adopted, the piping serving as the return path of the water to be treated can be shortened and the structure can be simplified, so that the power of the pump mechanism necessary for returning the water to be treated is reduced. be able to.

尚、分離壁34は、図1で説明したような垂直壁や、図10で説明したような槽内を上下に仕切る分離壁34の何れを採用してもよい。   The separation wall 34 may be either a vertical wall as described with reference to FIG. 1 or a separation wall 34 that partitions the inside of the tank up and down as described with reference to FIG.

つまり、本発明による汚水処理設備は、微生物により被処理水を浄化処理する複数の処理槽が隔壁を介して連接され、下流側の処理槽に被処理水の一部を上流側の処理槽に返送するポンプ機構を備えている汚水処理設備に適用でき、下流側の処理槽に、上流側の処理槽から流入する被処理水を受け入れる第一領域と、第一領域から流入した被処理水を上流側の処理槽との隔壁に導く第二領域とに、被処理水の流入方向に沿って下流側の処理槽を分離する分離壁を設けて、少なくとも第二領域の隔壁近傍にポンプ機構を備え、当該ポンプ機構が、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から上流側に配置された何れかの処理槽に移送する送水路を備えたエアリフトポンプで構成されていればよい。   That is, in the sewage treatment facility according to the present invention, a plurality of treatment tanks that purify the treated water by microorganisms are connected via the partition walls, and a part of the treated water is transferred to the downstream treatment tank. Applicable to sewage treatment facilities equipped with a pump mechanism for returning, a first region for receiving the treated water flowing from the upstream treatment tank into the downstream treatment tank, and the treated water flowing from the first region A separation wall that separates the downstream treatment tank along the inflow direction of the water to be treated is provided in the second region leading to the partition wall with the upstream treatment tank, and a pump mechanism is provided at least near the partition wall in the second region. The pump mechanism is disposed upstream of the pumping pipe from the upper part of the pumping pipe, the pumping pipe disposed in the vicinity of the partition wall, the air diffuser for supplying bubbles to the pumping pipe, and the treated water pumped by the bubbles Air lift with a water supply channel to transfer to any processing tank It may be composed in amplifier.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

10:嫌気槽
20:無酸素槽
30:好気槽
31:第一領域
32:第二領域
36:膜分離装置
40:ポンプ機構
44:エアリフトポンプ
10: Anaerobic tank 20: Anoxic tank 30: Aerobic tank 31: First region 32: Second region 36: Membrane separation device 40: Pump mechanism 44: Air lift pump

Claims (9)

微生物により被処理水を浄化処理する複数の処理槽が隔壁を介して連接され、下流側の処理槽に被処理水の一部を上流側の処理槽に返送するポンプ機構を備えている汚水処理設備であって、
下流側の処理槽に、上流側の処理槽から流入する被処理水を受け入れる第一領域と、第一領域から流入した被処理水を上流側の処理槽との隔壁に導く第二領域とに、下流側の処理槽を分離する分離壁を設けて、少なくとも第二領域の隔壁近傍にポンプ機構を備え、当該ポンプ機構が、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から上流側に配置された処理槽に移送する送水路を備えたエアリフトポンプで構成されている汚水処理設備。
A plurality of treatment tanks that purify treated water by microorganisms are connected via a partition wall, and are equipped with a pump mechanism that returns a part of the treated water to the upstream treatment tank to the downstream treatment tank. Equipment,
A first area that receives the water to be treated flowing from the upstream treatment tank into the downstream treatment tank, and a second area that guides the water to be treated flowing from the first area to the partition wall with the upstream treatment tank. A separation wall for separating the downstream processing tank is provided, and a pump mechanism is provided at least in the vicinity of the partition wall in the second region, and the pump mechanism supplies a bubble to the pumping pipe disposed in the vicinity of the partition wall. A sewage treatment facility comprising an air diffusing device and an air lift pump provided with a water supply path for transferring the water to be treated pumped up by air bubbles from the upper part of the pumping pipe to a treatment tank disposed upstream.
嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽と、好気槽で硝化された被処理水の一部を無酸素槽に返送するポンプ機構を備えている汚水処理設備であって、
好気槽に、無酸素槽から流入する被処理水を受け入れる第一領域と、第一領域から流入した被処理水を隔壁に導く第二領域とに、好気槽を分離する分離壁を設けて、少なくとも第一領域または第二領域の何れかに被処理水に散気する散気装置を設置するとともに、第二領域の下流側にポンプ機構を備え、当該ポンプ機構が、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から無酸素槽に移送する送水路を備えたエアリフトポンプで構成されている汚水処理設備。
An anaerobic tank that denitrifies the water to be treated by anaerobic microorganisms, and an aerobic tank that is disposed through the anoxic tank and the partition wall and nitrifies ammonia contained in the water to be treated flowing from the anaerobic tank with the aerobic microorganisms. And a sewage treatment facility equipped with a pump mechanism for returning part of the treated water nitrified in the aerobic tank to the anoxic tank,
In the aerobic tank, a separation wall for separating the aerobic tank is provided in the first area for receiving the water to be treated flowing from the anoxic tank and the second area for guiding the water to be treated flowing from the first area to the partition wall. In addition, an air diffuser that diffuses the water to be treated is installed at least in either the first region or the second region, and a pump mechanism is provided on the downstream side of the second region, and the pump mechanism is located near the partition wall. It is composed of an arranged pumping pipe, an air diffuser for supplying bubbles to the pumping pipe, and an air lift pump having a water supply path for transferring the water to be treated pumped by the bubbles from the upper part of the pumping pipe to the oxygen-free tank Sewage treatment equipment.
第一領域に被処理水を散気する散気装置を設置するとともに、第二領域に被処理水を固液分離する膜分離装置が設置されている請求項2記載の汚水処理設備。   The sewage treatment facility according to claim 2, wherein an air diffuser that diffuses the water to be treated is installed in the first area, and a membrane separation device that separates the water to be treated is solid-liquid separated in the second area. 分離壁で分離された第一領域の容積が第二領域の容積より大きくなるように設定されている請求項3記載の汚水処理設備。   The sewage treatment facility according to claim 3, wherein the volume of the first region separated by the separation wall is set to be larger than the volume of the second region. 被処理水の流入方向に沿って好気槽を分離する分離壁が二枚設けられ、第二領域が一対の第一領域の間に形成されている請求項3または4記載の汚水処理設備。   The sewage treatment facility according to claim 3 or 4, wherein two separation walls for separating the aerobic tank are provided along the inflow direction of the water to be treated, and the second region is formed between the pair of first regions. 無酸素槽の上流側に被処理水に含まれるBOD成分を除去する嫌気槽が隔壁を介して連設され、好気槽の被処理水がエアリフトポンプを介して無酸素槽に返送されるとともに、一部が嫌気槽に返送されるように構成されている請求項2から5の何れかに記載の汚水処理設備。   An anaerobic tank for removing the BOD component contained in the treated water is connected to the upstream side of the anaerobic tank via a partition wall, and the treated water in the aerobic tank is returned to the anoxic tank via an air lift pump. The sewage treatment facility according to claim 2, wherein a part of the sewage treatment facility is returned to the anaerobic tank. 嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽と、好気槽と隔壁を介して配置され、好気槽で硝化された被処理水を固液分離する膜分離装置が設置された膜分離槽と、膜分離槽の被処理水の一部を無酸素槽に返送するポンプ機構を備えている汚水処理設備であって、
膜分離槽に、好気槽から流入する被処理水を受け入れる第一領域と、第一領域から流入した被処理水を好気槽との隔壁に導く第二領域とに、膜分離槽を分離する分離壁を設けて、第二領域の隔壁近傍にポンプ機構を備え、当該ポンプ機構が、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から無酸素槽に移送する送水路を備えたエアリフトポンプで構成されている汚水処理設備。
An anaerobic tank that denitrifies the water to be treated by anaerobic microorganisms, and an aerobic tank that is disposed through the anoxic tank and the partition wall and nitrifies ammonia contained in the water to be treated flowing from the anaerobic tank with the aerobic microorganisms. And a membrane separation tank in which a membrane separation device for solid-liquid separation of the treated water nitrified in the aerobic tank is installed, and a part of the treated water in the membrane separation tank A sewage treatment facility equipped with a pump mechanism for returning the water to the anoxic tank,
The membrane separation tank is separated into a membrane separation tank into a first area for receiving the treated water flowing from the aerobic tank and a second area for guiding the treated water flowing from the first area to the partition wall with the aerobic tank. A separation mechanism is provided, and a pump mechanism is provided in the vicinity of the partition wall in the second region. The pump mechanism includes a pumping pipe disposed in the vicinity of the partition wall, an air diffuser for supplying bubbles to the pumping pipe, and pumping by the bubbles. A sewage treatment facility comprising an air lift pump provided with a water supply path for transferring the treated water to be treated from the upper part of the pumping pipe to the oxygen-free tank.
上部空間の中央部に向けて上部が延出形成された側壁で区画される処理槽により被処理水を処理する汚水処理設備の改築方法であって、
少なくとも嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽と隔壁を介して配置され、無酸素槽から流入する被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽を含む汚水処理経路が配置され、
好気槽に、無酸素槽から流入する被処理水を受け入れる一対の第一領域と、一対の第一領域の間に、第一領域から流入した被処理水を隔壁に導く第二領域が形成されるように、好気槽を分離する分離壁を設ける工程と、
第一領域に被処理水に散気する散気装置を設置する工程と、
第二領域に被処理水を固液分離する膜分離装置のろ過膜を、槽内と槽外の間で昇降自在に設置する工程と、
第二領域のうち膜分離装置の下流側に、隔壁の近傍に配置された揚水管と、揚水管に気泡を供給する散気装置と、気泡により揚水された被処理水を揚水管の上部から無酸素槽に移送する送水路を備えたエアリフトポンプを設置する工程を含む汚水処理設備の改築方法。
A method for renovating a sewage treatment facility that treats water to be treated by a treatment tank partitioned by a side wall with an upper portion extending toward a central portion of an upper space,
An anaerobic tank that denitrifies the water to be treated by at least anaerobic microorganisms, and an aerobic microorganism that nitrifies ammonia contained in the water to be treated flowing from the anoxic tank through the anoxic tank and the partition wall. A sewage treatment path including the tank is arranged,
In the aerobic tank, a pair of first areas for receiving the water to be treated flowing from the oxygen-free tank and a second area for guiding the water to be treated flowing from the first area to the partition are formed between the pair of first areas. Providing a separation wall for separating the aerobic tank,
A step of installing an air diffuser that diffuses the treated water in the first area;
A step of installing a filtration membrane of a membrane separation device for solid-liquid separation of water to be treated in the second region so as to be movable up and down between the inside of the tank and the outside of the tank;
In the second region, on the downstream side of the membrane separation device, a pumping pipe arranged in the vicinity of the partition wall, an air diffuser for supplying bubbles to the pumping tube, and treated water pumped up by the bubbles from above the pumping pipe A method for renovating a sewage treatment facility including a step of installing an air lift pump provided with a water supply channel for transfer to an anoxic tank.
汚水処理経路が複数並列に配置され、処理槽の上部空間の中央部に向けて上部が延出形成された断面Y字形状の側壁によって各汚水処理経路に隣接する処理槽が区画される汚水処理設備に対して、各工程が適用される請求項8記載の汚水処理設備の改築方法。   A sewage treatment system in which a plurality of sewage treatment paths are arranged in parallel, and a treatment tank adjacent to each sewage treatment path is defined by a Y-shaped side wall having an upper portion extending toward the center of the upper space of the treatment tank. The method for renovating a sewage treatment facility according to claim 8, wherein each step is applied to the facility.
JP2009147047A 2009-06-19 2009-06-19 Sewage treatment facilities and methods for renovating sewage treatment facilities Active JP5260417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147047A JP5260417B2 (en) 2009-06-19 2009-06-19 Sewage treatment facilities and methods for renovating sewage treatment facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147047A JP5260417B2 (en) 2009-06-19 2009-06-19 Sewage treatment facilities and methods for renovating sewage treatment facilities

Publications (2)

Publication Number Publication Date
JP2011000555A true JP2011000555A (en) 2011-01-06
JP5260417B2 JP5260417B2 (en) 2013-08-14

Family

ID=43558977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147047A Active JP5260417B2 (en) 2009-06-19 2009-06-19 Sewage treatment facilities and methods for renovating sewage treatment facilities

Country Status (1)

Country Link
JP (1) JP5260417B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236996A (en) * 2012-05-14 2013-11-28 Hitachi Ltd Water treatment process
WO2014041762A1 (en) * 2012-09-14 2014-03-20 川崎重工業株式会社 Filtration and air-lift combination device and water treatment system
CN104609568A (en) * 2014-12-03 2015-05-13 罗福仲 Microbial deodorization device for dried sweet potato processing wastewater
WO2017110491A1 (en) * 2015-12-25 2017-06-29 株式会社クボタ Organic waste water treatment device and organic waste water treatment method
CN107244785A (en) * 2017-07-26 2017-10-13 广州市卓冠环保科技有限公司 A kind of microkinetic septic tank
WO2020054687A1 (en) * 2018-09-13 2020-03-19 株式会社クボタ Method for treating organic wastewater, and device for treating organic wastewater
CN112777742A (en) * 2019-11-11 2021-05-11 四川轻化工大学 Integrated backflow-free A2O equipment based on fluidized bed

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262600A (en) * 1990-03-13 1991-11-22 Kubota Corp Treating equipment of discharged water containing nitrogen
JPH04104895A (en) * 1990-08-27 1992-04-07 Ebara Infilco Co Ltd Biological treating device for organic sewage
WO1992009533A1 (en) * 1990-11-21 1992-06-11 Isamu Iwai Sewage purifying device of filter material circulation type
JPH0647258A (en) * 1990-12-17 1994-02-22 Kubota Corp Filter
JPH0768294A (en) * 1993-09-06 1995-03-14 Kubota Corp Wastewater treatment method
JPH07136678A (en) * 1993-11-15 1995-05-30 Ebara Res Co Ltd Wastewater treatment method and tank
JPH07275886A (en) * 1994-04-12 1995-10-24 Kubota Corp Biological denitration apparatus
JPH1015574A (en) * 1996-07-09 1998-01-20 Kubota Corp Sewage treatment apparatus
JPH1043794A (en) * 1996-08-08 1998-02-17 Kubota Corp Nitrogen removing device
JPH10165984A (en) * 1996-12-06 1998-06-23 Kubota Corp Nitrogen removing apparatus
JPH11114594A (en) * 1997-10-14 1999-04-27 Sumitomo Heavy Ind Ltd Treatment of waste water
JPH11151497A (en) * 1997-11-20 1999-06-08 Sumitomo Heavy Ind Ltd Waste water treating device
JPH11179386A (en) * 1997-12-24 1999-07-06 Hitachi Plant Eng & Constr Co Ltd Detour flow type waste water treating apparatus
JPH11314088A (en) * 1998-05-07 1999-11-16 Pub Works Res Inst Ministry Of Constr Membrane separation type drainage treating apparatus
JP2000051889A (en) * 1998-08-10 2000-02-22 Hitachi Kiden Kogyo Ltd Sewage treatment equipment
JP2000325988A (en) * 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment system having sludge concentrating means
JP2003024973A (en) * 2001-07-16 2003-01-28 Kubota Corp Membrane separation type oxidation ditch
JP2003039087A (en) * 2001-07-27 2003-02-12 Hitachi Kiden Kogyo Ltd Membrane separation type oxidation ditch
JP2004160402A (en) * 2002-11-14 2004-06-10 Nishihara Environment Technology Inc High-efficiency membrane filtration apparatus
JP2004202380A (en) * 2002-12-25 2004-07-22 Tsukishima Kikai Co Ltd Filter apparatus
JP2004223417A (en) * 2003-01-23 2004-08-12 Kubota Corp Sewage treatment apparatus
JP2005246308A (en) * 2004-03-05 2005-09-15 Ngk Insulators Ltd Method for bio-treating wastewater
JP2006035138A (en) * 2004-07-28 2006-02-09 Kobelco Eco-Solutions Co Ltd Activated sludge processing equipment
JP2008086864A (en) * 2006-09-29 2008-04-17 Ngk Insulators Ltd Method for recovering phosphorus by using membrane separation activated sludge process
JP2008155080A (en) * 2006-12-21 2008-07-10 Hitachi Ltd Sewage treatment apparatus and its method
WO2008139618A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Rayon Engineering Co., Ltd. Method of water disposal
JP2009050764A (en) * 2007-08-24 2009-03-12 Kurita Water Ind Ltd Membrane separation type wastewater treatment method and apparatus
JP2010194481A (en) * 2009-02-26 2010-09-09 Kubota Corp Sewage treatment apparatus and operation method of sewage treatment apparatus

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262600A (en) * 1990-03-13 1991-11-22 Kubota Corp Treating equipment of discharged water containing nitrogen
JPH04104895A (en) * 1990-08-27 1992-04-07 Ebara Infilco Co Ltd Biological treating device for organic sewage
WO1992009533A1 (en) * 1990-11-21 1992-06-11 Isamu Iwai Sewage purifying device of filter material circulation type
JPH0647258A (en) * 1990-12-17 1994-02-22 Kubota Corp Filter
JPH0768294A (en) * 1993-09-06 1995-03-14 Kubota Corp Wastewater treatment method
JPH07136678A (en) * 1993-11-15 1995-05-30 Ebara Res Co Ltd Wastewater treatment method and tank
JPH07275886A (en) * 1994-04-12 1995-10-24 Kubota Corp Biological denitration apparatus
JPH1015574A (en) * 1996-07-09 1998-01-20 Kubota Corp Sewage treatment apparatus
JPH1043794A (en) * 1996-08-08 1998-02-17 Kubota Corp Nitrogen removing device
JPH10165984A (en) * 1996-12-06 1998-06-23 Kubota Corp Nitrogen removing apparatus
JPH11114594A (en) * 1997-10-14 1999-04-27 Sumitomo Heavy Ind Ltd Treatment of waste water
JPH11151497A (en) * 1997-11-20 1999-06-08 Sumitomo Heavy Ind Ltd Waste water treating device
JPH11179386A (en) * 1997-12-24 1999-07-06 Hitachi Plant Eng & Constr Co Ltd Detour flow type waste water treating apparatus
JPH11314088A (en) * 1998-05-07 1999-11-16 Pub Works Res Inst Ministry Of Constr Membrane separation type drainage treating apparatus
JP2000051889A (en) * 1998-08-10 2000-02-22 Hitachi Kiden Kogyo Ltd Sewage treatment equipment
JP2000325988A (en) * 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment system having sludge concentrating means
JP2003024973A (en) * 2001-07-16 2003-01-28 Kubota Corp Membrane separation type oxidation ditch
JP2003039087A (en) * 2001-07-27 2003-02-12 Hitachi Kiden Kogyo Ltd Membrane separation type oxidation ditch
JP2004160402A (en) * 2002-11-14 2004-06-10 Nishihara Environment Technology Inc High-efficiency membrane filtration apparatus
JP2004202380A (en) * 2002-12-25 2004-07-22 Tsukishima Kikai Co Ltd Filter apparatus
JP2004223417A (en) * 2003-01-23 2004-08-12 Kubota Corp Sewage treatment apparatus
JP2005246308A (en) * 2004-03-05 2005-09-15 Ngk Insulators Ltd Method for bio-treating wastewater
JP2006035138A (en) * 2004-07-28 2006-02-09 Kobelco Eco-Solutions Co Ltd Activated sludge processing equipment
JP2008086864A (en) * 2006-09-29 2008-04-17 Ngk Insulators Ltd Method for recovering phosphorus by using membrane separation activated sludge process
JP2008155080A (en) * 2006-12-21 2008-07-10 Hitachi Ltd Sewage treatment apparatus and its method
WO2008139618A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Rayon Engineering Co., Ltd. Method of water disposal
JP2009050764A (en) * 2007-08-24 2009-03-12 Kurita Water Ind Ltd Membrane separation type wastewater treatment method and apparatus
JP2010194481A (en) * 2009-02-26 2010-09-09 Kubota Corp Sewage treatment apparatus and operation method of sewage treatment apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236996A (en) * 2012-05-14 2013-11-28 Hitachi Ltd Water treatment process
WO2014041762A1 (en) * 2012-09-14 2014-03-20 川崎重工業株式会社 Filtration and air-lift combination device and water treatment system
JP2014057906A (en) * 2012-09-14 2014-04-03 Kawasaki Heavy Ind Ltd Apparatus for both of filtration and air lift, and water treatment system
CN104379511A (en) * 2012-09-14 2015-02-25 川崎重工业株式会社 Filtration and air-lift combination device and water treatment system
CN104379511B (en) * 2012-09-14 2017-06-09 川崎重工业株式会社 Filtering and gas lift compatible device and water treatment system
CN104609568A (en) * 2014-12-03 2015-05-13 罗福仲 Microbial deodorization device for dried sweet potato processing wastewater
WO2017110491A1 (en) * 2015-12-25 2017-06-29 株式会社クボタ Organic waste water treatment device and organic waste water treatment method
JP2017113711A (en) * 2015-12-25 2017-06-29 株式会社クボタ Organic wastewater treatment apparatus and organic wastewater treatment method
CN107244785A (en) * 2017-07-26 2017-10-13 广州市卓冠环保科技有限公司 A kind of microkinetic septic tank
CN107244785B (en) * 2017-07-26 2023-04-18 广州市卓冠环保科技有限公司 Micro-power septic tank
WO2020054687A1 (en) * 2018-09-13 2020-03-19 株式会社クボタ Method for treating organic wastewater, and device for treating organic wastewater
JP2020040048A (en) * 2018-09-13 2020-03-19 株式会社クボタ Organic wastewater treatment method and organic wastewater treatment device
JP7073236B2 (en) 2018-09-13 2022-05-23 株式会社クボタ Organic wastewater treatment method and organic wastewater treatment equipment
US11643345B2 (en) 2018-09-13 2023-05-09 Kubota Corporation Method for treating organic wastewater, and device for treating organic wastewater
CN112777742A (en) * 2019-11-11 2021-05-11 四川轻化工大学 Integrated backflow-free A2O equipment based on fluidized bed
CN112777742B (en) * 2019-11-11 2022-11-25 四川轻化工大学 Integrated backflow-free A2O equipment based on fluidized bed

Also Published As

Publication number Publication date
JP5260417B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JP5217159B2 (en) Sewage treatment apparatus and method
RU2181344C2 (en) Plant for and method of biological purification of impurities and sewage water
KR100785044B1 (en) Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities
CN106186313A (en) For improveing integrated sewage disposal pond and the sewage water treatment method of AO
CN109264859A (en) A2O2Sewage disposal system and its processing method
KR101157064B1 (en) Wastewater Treatment System Having Sequencing Batch Reactor Using Step Feed-Recycle And Wastewater Treatment Methodthereby
KR100913728B1 (en) Waste water treatment method maintaining do level by use of pure oxygen gas and system suitable for the same
KR101190472B1 (en) A none piping membrane bioreactor with circulation-agitater
JP6181003B2 (en) Membrane separation activated sludge treatment apparatus and operation method thereof
KR101366867B1 (en) Oxidation ditch retrofitting process for biological nutrient removal using hybrid separation function and compact type contact media
KR100760816B1 (en) Advanced wastewater treatment process using up &amp; down aerobic??anaerobic basin of channel type in a unit basin with recycle
JP5612765B2 (en) Sewage treatment equipment
KR100889377B1 (en) A wastewater transaction appratus
JP7015117B2 (en) Organic wastewater treatment method and organic wastewater treatment system
KR100992321B1 (en) Wastewater treatment apparatus with membrane module
JP5420985B2 (en) Air lift pump device
JP2005246308A (en) Method for bio-treating wastewater
KR101634292B1 (en) Wastewater treatment system using carrier based on modified a2o
JP4709792B2 (en) Wastewater treatment system
JP4307275B2 (en) Wastewater treatment method
JP3807945B2 (en) Method and apparatus for treating organic wastewater
JP5627757B2 (en) Air lift pump device
JP2019076887A (en) Waste water treatment apparatus and waste water treatment method
JPH1094796A (en) Treatment of waste water and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150