JPH1043794A - Nitrogen removing device - Google Patents

Nitrogen removing device

Info

Publication number
JPH1043794A
JPH1043794A JP20871396A JP20871396A JPH1043794A JP H1043794 A JPH1043794 A JP H1043794A JP 20871396 A JP20871396 A JP 20871396A JP 20871396 A JP20871396 A JP 20871396A JP H1043794 A JPH1043794 A JP H1043794A
Authority
JP
Japan
Prior art keywords
tank
flow
carrier
water
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20871396A
Other languages
Japanese (ja)
Inventor
Ichiro Nakano
一郎 中野
Kazuhiro Shinabe
和宏 品部
Hiroshi Kishino
宏 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP20871396A priority Critical patent/JPH1043794A/en
Publication of JPH1043794A publication Critical patent/JPH1043794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitrogen removing device capable of holding a microorganism immobilizing carrier used in a fluid state in a tank and also easy in maintenance and administration. SOLUTION: A nitrifying bacterium immobilizing carrier 12 is charged in an aerobic tank 11, and an air diffuser 13 generating a circulating flow 17 in the tank is provided, and a screen 16 surrounding an outlet 14 of a nitrified water 19 is provided. The screen 16 is provided in parallel with a diagonal stream formed between each stream at a place at which the circulating flow 17 in the tank is converted from a horizontal stream to a downward stream. In this way, the carrier 12 is surely held in the tank, and also an accumulation.holding of the carrier 12 on the screen 16 is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水や産業排水な
どの汚水を生物学的に処理してBOD等の有機物および
窒素を除去する窒素除去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen removing apparatus for biologically treating wastewater such as sewage and industrial wastewater to remove organic substances such as BOD and nitrogen.

【0002】[0002]

【従来の技術】従来、下水や産業排水などの汚水は、脱
窒を行う無酸素槽、続いて硝化を行う好気槽に導かれ、
好気槽から流出する硝化処理水の一部は無酸素槽に循環
返送され、残りの硝化処理水は最終沈殿池へ送られるフ
ローで処理されており、このとき、無酸素槽ではBOD
成分や硝酸ないし亜硝酸性窒素が脱窒反応により除去さ
れ、好気槽ではアンモニア性窒素を含むケルダール性窒
素が硝酸ないし亜硝酸にまで硝化される。このプロセス
は循環式硝化脱窒法と呼ばれており、浮遊活性汚泥を使
用するのが従来の一般的な技術である。
2. Description of the Related Art Conventionally, sewage such as sewage and industrial wastewater is led to an anoxic tank for denitrification and subsequently to an aerobic tank for nitrification.
A portion of the nitrification-treated water flowing out of the aerobic tank is circulated and returned to the anoxic tank, and the remaining nitrification-treated water is treated by the flow sent to the final sedimentation basin.
Components and nitric acid or nitrite nitrogen are removed by a denitrification reaction, and in an aerobic tank, Kjeldahl nitrogen including ammonia nitrogen is nitrified to nitric acid or nitrite. This process is called a circulating nitrification and denitrification method, and it is a conventional general technique to use suspended activated sludge.

【0003】この原理を利用した嫌気・無酸素・好気法
や、上記した循環式硝化脱窒法における無酸素槽と好気
槽との組み合わせを複数にして窒素除去率の向上を図っ
た多段式の循環式硝化脱窒法などもある。
[0003] A multi-stage type in which the nitrogen removal rate is improved by using a plurality of combinations of an anoxic tank and an aerobic tank in the anaerobic / anoxic / aerobic method utilizing the above-mentioned principle or the above-mentioned circulating nitrification / denitrification method. Circulating nitrification and denitrification method.

【0004】[0004]

【発明が解決しようとする課題】一般に、公共用水域の
富栄養化防止の一環として下水等の汚水から窒素を除去
する場合は、上記したような浮遊活性汚泥による循環式
硝化脱窒法が採用されている。しかしながら、この方法
での無酸素槽と好気槽とにおける合計の水理学的滞留時
間は、流入汚水量ベースで12〜16時間も要するた
め、標準活性汚泥法を採用し、曝気槽滞留時間を6〜8
時間として設計・運転している大中都市部の既設下水処
理場では、用地確保が困難であるなどの理由から、新た
に循環式硝化脱窒法を採用するのは現実には困難であ
る。同様に、嫌気・無酸素・好気法や、多段式の循環式
硝化脱窒法も採用しがたい。
Generally, when nitrogen is removed from sewage or other sewage as part of the eutrophication prevention of public water bodies, the above-mentioned circulating nitrification and denitrification method using floating activated sludge is used. ing. However, since the total hydraulic residence time in the anoxic tank and the aerobic tank in this method requires as much as 12 to 16 hours on the basis of the amount of inflowed sewage, the standard activated sludge method is adopted, and the residence time in the aeration tank is reduced. 6-8
At existing sewage treatment plants in large and middle urban areas that are designed and operated as time, it is actually difficult to adopt a new circulating nitrification denitrification method because it is difficult to secure land. Similarly, it is difficult to adopt the anaerobic / anoxic / aerobic method and the multi-stage circulating nitrification / denitrification method.

【0005】このため、低水温時に硝化活性の低下する
硝化菌を槽内に高濃度に維持して硝化速度を高めよう
と、硝化菌を担体へ固定化する固定化技術の適用が検討
され実用化されてきた。こうした方法では、担体は一般
に流動状態で使用されるため、担体が槽外へ流出しない
よう保持するために担体分離装置の設置が必要となり、
閉塞することなく安定的に機能を発揮する担体分離装置
が求められている。
For this reason, in order to increase the nitrification rate by maintaining a high concentration of nitrifying bacteria whose nitrification activity decreases at a low water temperature in a tank, the application of an immobilization technique for immobilizing the nitrifying bacteria on a carrier has been studied. Has been transformed. In such a method, since the carrier is generally used in a fluidized state, it is necessary to install a carrier separation device to keep the carrier from flowing out of the tank,
There is a need for a carrier separation device that exhibits a function stably without blocking.

【0006】その一手段として、本願の発明者らが先に
提案した生物学的窒素除去装置では、担体を分離するた
めの静置ゾーンを硝化槽の下部に連通して設けており、
硝化槽内の硝化処理水が下部より静置ゾーン内に流入
し、静置ゾーンの上部より流出していくようにしてい
る。この装置では、静置ゾーンでの硝化処理水の上昇速
度が担体の重力沈降速度の最小値よりも小さくなるよう
に静置ゾーンの横断面積を設計しており、これにより担
体を重力沈降によって下部より硝化槽内に戻し、硝化槽
の外部への流出を防止している。しかしながら、下水処
理場への流入汚水量は時間的に大きく変動し、また合流
式下水道の下水処理場では、晴天時と雨天時とで流入汚
水量が大きく変動するため、このような静置ゾーン方式
の担体分離手段では、流入量が急激に増加した場合に担
体が流出してしまう恐れがある。
As one of the means, in the biological nitrogen removing apparatus proposed by the inventors of the present application, a stationary zone for separating the carrier is provided in communication with the lower part of the nitrification tank,
The nitrification treatment water in the nitrification tank flows into the stationary zone from the lower part and flows out from the upper part of the stationary zone. In this apparatus, the cross-sectional area of the stationary zone is designed so that the rising speed of the nitrification treatment water in the stationary zone is smaller than the minimum value of the gravitational sedimentation speed of the carrier. It returns to the inside of the nitrification tank to prevent it from flowing out of the nitrification tank. However, the amount of sewage flowing into the sewage treatment plant fluctuates greatly over time. In the carrier separating means of the system, there is a possibility that the carrier may flow out when the inflow amount increases rapidly.

【0007】一方、硝化処理水を無酸素槽に循環するた
めには一般に機械式ポンプが用いられているが、機械式
ポンプは下水などの汚水中に含まれる繊維分やゴミなど
により閉塞を生じやすいため、またポンプ運転に伴う電
力コストを低減するためにも、維持管理が容易であっ
て、維持管理費の安価な循環手段が求められている。
[0007] On the other hand, a mechanical pump is generally used to circulate the nitrification-treated water to the oxygen-free tank. However, the mechanical pump is clogged with fibers or dust contained in sewage such as sewage. In order to facilitate the maintenance and to reduce the power cost associated with the operation of the pump, there is a demand for a circulating means that is easy to maintain and inexpensive to maintain.

【0008】本発明は上記問題を解決するもので、流動
状態で使用される微生物固定化担体を槽内に保持できる
とともに、維持管理の容易な窒素除去装置を提供するこ
とを目的とするものである。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a nitrogen removing apparatus which can hold a microorganism-immobilized carrier used in a fluidized state in a tank and which can be easily maintained. is there.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するため
に、本発明の請求項1記載の窒素除去装置は、好気槽の
内部に硝化菌固定化担体を投入し、空気ないし酸素含有
ガスを噴出することにより上向流と水平流と下向流とか
らなる槽内循環水流を生起する散気装置を設けた窒素除
去装置において、好気槽内の硝化処理水が流出する流出
部を囲んで担体分離手段を設置し、この担体分離手段
は、前記槽内循環水流が水平流から下向流に転じる水面
近傍の位置に、分離面が水平流と下向流との間に形成さ
れる斜向流とほぼ平行をなすように設けたものである。
In order to solve the above problems, a nitrogen removing apparatus according to claim 1 of the present invention is characterized in that a nitrifying bacteria-immobilized carrier is charged into an aerobic tank and air or an oxygen-containing gas is introduced. In the nitrogen removal device equipped with a diffuser that generates a circulating water flow in the tank consisting of an upward flow, a horizontal flow, and a downward flow by ejecting water, the outflow portion where the nitrification-treated water in the aerobic tank flows out Surrounding the carrier separation means, the carrier separation means, at a position near the water surface where the circulating water flow in the tank turns from a horizontal flow to a downward flow, a separation surface is formed between the horizontal flow and the downward flow It is provided so as to be substantially parallel to the oblique flow.

【0010】請求項2記載の窒素除去装置は、好気槽内
で処理した硝化処理水の一部を循環する無酸素槽を備
え、好気槽内の担体分離手段の透過側に連通する下向流
路を設け、下向流路に下端側が連通するとともに上端側
が無酸素槽に連通する上向流路を設け、上向流路の底部
に、上向流路内の硝化処理水をエアリフト作用により無
酸素槽に向けて送り出す散気装置を設けたものである。
[0010] The nitrogen removing apparatus according to claim 2 is provided with an oxygen-free tank for circulating a part of the nitrification-treated water treated in the aerobic tank, and is connected to a permeate side of the carrier separating means in the aerobic tank. A downward flow path is provided, and an upward flow path is provided in which the lower end communicates with the downward flow path and the upper end communicates with the anoxic tank.At the bottom of the upward flow path, the nitrification-treated water in the upward flow path is air-lifted. It is provided with an air diffusing device that sends it out to the anoxic tank by the action.

【0011】請求項1記載の構成によれば、担体は担体
分離手段によって槽内に確実に保持され、しかも担体は
担体分離手段の分離面に沿った方向に流動するため、担
体分離手段部分に多量の担体が蓄積・保持されることは
なく、また槽内の硝化処理水の担体分離手段部分の通過
は妨げられない。硝化処理水が槽外へ越流するように構
成した装置においては、越流部を囲んで担体分離手段を
設置すればよく、このような装置によれば、流入量の急
増にも対応できる。
According to the first aspect of the present invention, the carrier is securely held in the tank by the carrier separating means, and the carrier flows in the direction along the separation surface of the carrier separating means. A large amount of the carrier is not accumulated and retained, and the passage of the nitrification-treated water in the tank through the carrier separating means is not hindered. In an apparatus configured so that the nitrification-treated water overflows outside the tank, a carrier separating means may be provided around the overflow section, and such an apparatus can cope with a rapid increase in the inflow amount.

【0012】担体分離手段としては、担体寸法より小さ
い目幅ないし穴のあいたものであればスクリーン、パン
チングプレート等、何でもよいが、担体寸法の約1/2
程度の目幅を持つスクリーンをそのバーが上下方向に向
くように設置するのが望ましい。
As the carrier separating means, any screen or punching plate may be used as long as it has a mesh width or a hole smaller than the carrier size.
It is desirable to install a screen having a small eye width so that the bar faces up and down.

【0013】担体分離手段の分離面の傾斜角度について
は次のようにして設定する。図6において、担体の重力
沈降速度v(m/s)、担体分離手段の分離面(以下、
単に分離面という)の有効面積(水中に没している部
分)A(m2 )、分離面が鉛直方向となす角度θ
(度)、分離面を通過する水量Q(m3 /s)とする。
The inclination angle of the separating surface of the carrier separating means is set as follows. In FIG. 6, the gravitational sedimentation velocity v (m / s) of the carrier and the separation surface
The effective area of the separation surface (simply submerged) A (m 2 ), the angle θ between the separation surface and the vertical direction
(Degree), the amount of water passing through the separation surface Q (m 3 / s).

【0014】この場合、分離面の単位面積当たりの通過
水量、すなわち通過水の流速は水平方向にQ/A(m/
s)となり、分離面に垂直な方向への流速成分は(Q/
A)×cosθ(m/s)となる。また、分離面に垂直
な方向への担体の重力沈降速度成分はv×sinθ(m
/s)となる。
In this case, the amount of passing water per unit area of the separation surface, that is, the flow velocity of the passing water is Q / A (m /
s), and the flow velocity component in the direction perpendicular to the separation surface is (Q /
A) × cos θ (m / s). The gravitational sedimentation velocity component of the carrier in the direction perpendicular to the separation surface is v × sin θ (m
/ S).

【0015】ここで、担体が分離面に付着したり分離面
を閉塞させないための条件は、分離面に垂直な方向への
流速成分≦分離面に垂直な方向への担体の重力沈降速度
成分が成立することである。すなわち、Q/Aの最大値
に対しても下記の式(1)が成立することである。
Here, the condition for preventing the carrier from adhering to the separation surface or closing the separation surface is that the flow velocity component in the direction perpendicular to the separation surface ≦ the gravity sedimentation velocity component of the carrier in the direction perpendicular to the separation surface. It is true. That is, the following equation (1) holds true for the maximum value of Q / A.

【0016】 (Q/A)×cosθ≦v×sinθ ・・・(1) たとえば、Q/Aの最大値を0.0167(m/s)と
するとき、供試担体が3mm角のポリビニルフォルマー
ル担体の場合、v=0.029(m/s)となるから、
式(1)よりθの最小値は30度であると求められる。
実際にθ=30度として試験したところ、分離面に担体
が付着して閉塞が生じることはなく、担体が付着した場
合も、分離面に平行な流れによってはがされた。これら
のことから、上記したように担体分離手段を設ければ十
分であることがわかる。
(Q / A) × cos θ ≦ v × sin θ (1) For example, when the maximum value of Q / A is 0.0167 (m / s), the sample carrier is a 3 mm square polyvinyl folder. In the case of Marle carrier, since v = 0.029 (m / s),
From Expression (1), the minimum value of θ is determined to be 30 degrees.
When the test was actually performed at θ = 30 degrees, the carrier did not adhere to the separation surface and no clogging occurred. Even when the carrier was attached, the carrier was peeled off by the flow parallel to the separation surface. From these facts, it is understood that it is sufficient to provide the carrier separating means as described above.

【0017】また、請求項2記載の構成によれば、散気
装置から噴出される空気の気泡のエアリフト作用により
硝化処理水が循環されるので、循環に機械式ポンプを用
いる時のような閉塞がなく維持管理が容易であり、循環
流量も容易にコントロールできる。
According to the second aspect of the present invention, since the nitrified water is circulated by the air-lifting action of the air bubbles ejected from the air diffuser, the blockage occurs when a mechanical pump is used for circulation. The maintenance and management is easy, and the circulation flow rate can be easily controlled.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照しながら説明する。図1において、硝化処理を行う
好気槽11は、無酸素槽混合液などの被処理水が紙面手
前側で流入して紙面を貫通する方向に流れるように構成
しており、上部と下部に、互いに対向する斜面を流れ方
向に沿って形成している。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, an aerobic tank 11 for performing nitrification treatment is configured such that water to be treated such as an oxygen-free tank mixed liquid flows in the front side of the drawing and flows in a direction penetrating the drawing. The slopes facing each other are formed along the flow direction.

【0019】槽内には、水より比重が大きい硝化菌固定
化担体12を投入し、底面全面にわたって散気装置13
を配置し、流れ方向下流側の壁寄りの位置に流出口14
を設けており、この流出口14を囲んで、被処理水の流
れ方向に沿って、好気槽混合液15の水面上方から水面
下方の適当位置にわたってスクリーン16を設けてい
る。
A nitrifying bacteria-immobilized carrier 12 having a specific gravity greater than that of water is charged into the tank, and a diffuser 13 is provided over the entire bottom surface.
And the outlet 14 is located at a position near the wall on the downstream side in the flow direction.
A screen 16 is provided so as to surround the outflow port 14 and to extend from above the water surface of the aerobic tank mixed liquid 15 to an appropriate position below the water surface along the flow direction of the water to be treated.

【0020】スクリーン16は、複数本のバーが担体寸
法の約1/2の目幅で並んだものであり、散気装置13
から噴出する空気により形成される図示したような槽内
循環水流17が水平流から下向流に転じる位置よりやや
壁寄りの位置に、分離面が水平流と下向流との間に形成
される斜向流とほぼ平行をなすように、かつ各バーが上
下方向に向くように設けている。
The screen 16 is composed of a plurality of bars arranged at an interval of about 1/2 of the carrier size.
A separation surface is formed between the horizontal flow and the downward flow at a position slightly closer to the wall than the position where the in-tank circulating water flow 17 formed by the air ejected from the horizontal direction changes from the horizontal flow to the downward flow. The bar is provided so as to be substantially parallel to the oblique flow, and each bar is oriented vertically.

【0021】上記した構成によれば、硝化菌固定化担体
12は槽内循環水流17により流動し、担体に固定化さ
れた硝化菌は被処理物質や散気装置13により供給され
る空気と効率よく接触して被処理物質を硝化する。
According to the above-mentioned structure, the nitrifying bacteria-immobilized carrier 12 flows by the circulating water flow 17 in the tank, and the nitrifying bacteria immobilized on the carrier are efficiently mixed with the substance to be treated and the air supplied by the air diffuser 13. The substance to be treated is nitrified by good contact.

【0022】このとき、硝化菌固定化担体12の大部分
はスクリーン16の近傍ではスクリーン16と平行な斜
向流に伴われて流動するため、多量の硝化菌固定化担体
12がスクリーン16に蓄積・保持されることはなく、
スクリーン16に付着したときも斜向流によってはがさ
れる。
At this time, most of the nitrifying bacteria-immobilized carrier 12 flows near the screen 16 with the oblique flow parallel to the screen 16, so that a large amount of the nitrifying bacteria-immobilized carrier 12 accumulates on the screen 16.・ It will not be retained,
When it adheres to the screen 16, it is also peeled off by the oblique flow.

【0023】このため、硝化菌固定化担体12が槽内に
確実に保持されて効率よく硝化が行われるだけでなく、
硝化処理水19は、硝化菌固定化担体12によって妨げ
られることなくスクリーン16を通過し、流出口14を
通じて槽外へ流出していく。
For this reason, the nitrifying bacteria-immobilized carrier 12 is securely held in the tank, so that nitrification is efficiently performed.
The nitrification-treated water 19 passes through the screen 16 without being hindered by the nitrifying bacteria-immobilized carrier 12, and flows out of the tank through the outlet 14.

【0024】図2に示した好気槽11は、図1に示した
好気槽とほぼ同様に構成しており、槽内の底面全面にわ
たって散気装置13を配置している。ただし、両壁寄り
の位置にそれぞれ流出口14を設けており、流出口14
を囲んでそれぞれスクリーン16を被処理水の流れ方向
に沿って設置している。各スクリーン16の傾斜角度お
よびバーの方向は図1に示したものと同様である。
The aerobic tank 11 shown in FIG. 2 has substantially the same configuration as the aerobic tank shown in FIG. 1, and a diffuser 13 is disposed over the entire bottom surface in the tank. However, the outlets 14 are provided at positions closer to both walls, respectively.
The screen 16 is installed along the flow direction of the water to be treated. The angle of inclination of each screen 16 and the direction of the bar are the same as those shown in FIG.

【0025】この構成によれば、図1に示した好気槽と
同様に硝化菌固定化担体12がスクリーン16に蓄積・
保持されることなく槽内に確実に保持され、かつ、被処
理水の流入量が急増したときも両スクリーン16と両流
出口14とで対応できる。
According to this configuration, similarly to the aerobic tank shown in FIG.
The two screens 16 and the two outlets 14 can surely hold the inside of the tank without being held, and can cope with a sudden increase in the inflow of the water to be treated.

【0026】図3に示した好気槽11は、図1に示した
好気槽とほぼ同様に構成しているが、流出口14から離
れた壁寄りの位置に散気装置13を流れ方向に沿って配
置しており、そのため、図示したような槽内循環水流1
7が形成される。スクリーン16の傾斜角度およびバー
の方向は図1に示したものと同様である。この構成によ
っても、図1に示した好気槽と同様の効果が得られる。
The aerobic tank 11 shown in FIG. 3 has substantially the same structure as that of the aerobic tank shown in FIG. , So that the circulating water flow 1 in the tank as shown in the figure.
7 is formed. The inclination angle of the screen 16 and the direction of the bar are the same as those shown in FIG. According to this configuration, the same effect as in the aerobic tank shown in FIG. 1 can be obtained.

【0027】図4に示した好気槽11は、図1に示した
好気槽とほぼ同様に構成しているが、槽の幅方向中央部
に流出口14を設け、流出口14を囲んで2個のスクリ
ーン16を被処理水の流れ方向に沿って設置している。
また、両壁寄りの位置にそれぞれ散気装置13を被処理
水の流れ方向に沿って配置しており、図示したような槽
内循環水流17が形成される。各スクリーン16の傾斜
角度およびバーの方向は図1に示したものと同様であ
る。この構成によっても、図1に示した好気槽と同様の
効果が得られる。
The aerobic tank 11 shown in FIG. 4 has substantially the same configuration as the aerobic tank shown in FIG. 1, but has an outlet 14 at the center in the width direction of the tank and surrounds the outlet 14. And two screens 16 are installed along the flow direction of the water to be treated.
Further, the air diffusers 13 are respectively arranged at positions near the two walls along the flow direction of the water to be treated, and the circulating water flow 17 in the tank as shown in the figure is formed. The angle of inclination of each screen 16 and the direction of the bar are the same as those shown in FIG. According to this configuration, the same effect as in the aerobic tank shown in FIG. 1 can be obtained.

【0028】図5は、好気槽内で処理した硝化処理水の
一部を循環する無酸素槽を備えて、循環式硝化脱窒法を
行う窒素除去装置を示す。無酸素槽21と好気槽22と
を隔壁23により分離して設けており、無酸素槽21
は、原水24を導入して槽内の脱窒菌を主体とする活性
汚泥を含んだ無酸素槽混合液25と混合し、好気槽22
は、無酸素槽21から無酸素槽混合液25を導入して槽
内の硝化菌を主体とする浮遊活性汚泥ならびに硝化菌固
定化担体26を含んだ好気槽混合液27と混合する。
FIG. 5 shows a nitrogen removing apparatus for performing a circulating nitrification denitrification method provided with an oxygen-free tank for circulating a part of the nitrification treatment water treated in the aerobic tank. An anoxic tank 21 and an aerobic tank 22 are provided separately from each other by a partition wall 23.
Is mixed with an oxygen-free tank mixture 25 containing activated sludge mainly containing denitrifying bacteria in a tank by introducing raw water 24,
Is introduced from the anoxic tank 21 to mix the anoxic tank mixed liquid 25 with the floating activated sludge mainly composed of nitrifying bacteria in the tank and the aerobic tank mixed liquid 27 containing the nitrifying bacteria immobilizing carrier 26.

【0029】隔壁23の上縁には越流部23aと越流部
23bとを形成しており、越流部23aを囲んで、無酸
素槽21内の無酸素槽混合液25を好気槽22内の底部
に送る管状の混合液流入路28を設け、越流部23bを
囲んで、好気槽22内で処理した硝化処理水29を無酸
素槽21内に循環する硝化処理水循環路30を設けてい
る。
An overflow section 23a and an overflow section 23b are formed at the upper edge of the partition wall 23, and the oxygen-free tank mixed liquid 25 in the oxygen-free tank 21 is surrounded by the overflow section 23a. A tubular mixed solution inflow passage 28 is provided to the bottom of the inside 22, and a nitrification treatment water circulation passage 30 which circulates the nitrification treatment water 29 treated in the aerobic tank 22 into the anoxic tank 21, surrounding the overflow 23 b. Is provided.

【0030】無酸素槽21には、無酸素槽混合液25を
攪拌する攪拌機31を底部に設けている。好気槽22に
は、底面のほぼ中央部に散気装置32を設け、混合液流
入路28に対向する縁部に上流端から下流端にわたって
スクリーン33を設けている。スクリーン33は、散気
装置32により形成される槽内循環水流34が水平流か
ら下向流に転じる位置より壁寄りの位置に、水平流と下
向流との間に形成される斜向流とほぼ平行をなすよう
に、水面上方から水面下方の適当位置にわたって設けて
いる。
The anoxic tank 21 is provided at its bottom with a stirrer 31 for stirring the anoxic tank mixture 25. The aerobic tank 22 is provided with an air diffuser 32 substantially at the center of the bottom surface, and a screen 33 at the edge facing the mixed liquid inflow passage 28 from the upstream end to the downstream end. The screen 33 has a diagonal flow formed between the horizontal flow and the downward flow at a position closer to the wall than the position where the in-tank circulating water flow 34 formed by the air diffuser 32 turns from the horizontal flow to the downward flow. It is provided from an upper part of the water surface to an appropriate position below the water surface so as to be substantially parallel to.

【0031】そして、スクリーン33の透過側に連通し
て、スクリーン33を透過した硝化処理水29の一部を
無酸素槽21に循環させるための下向流路35と、残り
の硝化処理水29を装置の外部に流出させる処理水流路
36とを設けている。そして、下向流路35に下端側が
連通し、上端側が上記した越流部23bに接続した上向
流路37を設け、この上向流路37の底部に、流路内の
硝化処理水29をエアリフト作用によって硝化処理水循
環路30に向けて送り出す散気装置38を設けている。
A downward flow path 35 communicating with the permeation side of the screen 33 to circulate a part of the nitrified water 29 permeated through the screen 33 to the anoxic tank 21, and the remaining nitrified water 29 And a treated water flow path 36 through which the water flows out of the apparatus. An upward flow path 37 having a lower end communicating with the downward flow path 35 and an upper end connected to the overflow section 23b is provided. The nitrification treatment water 29 in the flow path is provided at the bottom of the upward flow path 37. Is provided to the nitrification-treated water circulation path 30 by an air lift function.

【0032】以下、上記構成における作用を説明する。
原水24は無酸素槽21に流入して槽内の無酸素槽混合
液25と混合され、無酸素槽混合液25は攪拌機31に
より攪拌される状態において浮遊活性汚泥中の脱窒菌な
どにより生物学的に処理される。無酸素槽混合液25
は、混合液流入路28により好気槽22に流入して好気
槽混合液27と混合され、好気槽混合液27は散気装置
32より空気供給される状態において槽内循環水流34
を形成し、浮遊活性汚泥中または担体26に固定化され
た硝化菌などにより生物学的に処理される。
The operation of the above configuration will be described below.
The raw water 24 flows into the anoxic tank 21 and is mixed with the anoxic tank mixture 25 in the tank. The anoxic tank mixed liquid 25 is biologically agitated by the agitator 31 by denitrifying bacteria and the like in the floating activated sludge. Is processed. Anoxic tank mixture 25
Flows into the aerobic tank 22 through the mixed liquid inflow path 28 and is mixed with the aerobic tank mixed liquid 27.
And biologically treated with nitrifying bacteria immobilized in the floating activated sludge or on the carrier 26.

【0033】このとき、上記したように槽内循環水流3
4が水平流から下向流に転じる位置より壁寄りの位置に
スクリーン33を、水平流と下向流との間に形成される
斜向流とほぼ平行をなすように、水面上方から水面下方
の適当位置にわたって設けているので、硝化菌固定化担
体26はスクリーン33に蓄積・保持されることなく槽
内に確実に保持される。このため、槽内の硝化菌濃度が
高く維持され、効果的に硝化が行なわれる。
At this time, as described above, the circulating water flow
The screen 33 is placed at a position closer to the wall than the position at which the horizontal flow changes from the horizontal flow to the downward flow, so that the screen 33 is substantially parallel to the oblique flow formed between the horizontal flow and the downward flow. The nitrifying bacteria-immobilized carrier 26 is surely held in the tank without being accumulated and held on the screen 33. Therefore, the nitrifying bacteria concentration in the tank is kept high, and nitrification is performed effectively.

【0034】そして、硝化菌固定化担体26に妨げられ
ることなくスクリーン33を透過した硝化処理水29の
一部は下向流路35内に流入し、残りの硝化処理水29
は処理水流路36より処理水39として装置外部の最終
沈殿池などへ流出する。
A portion of the nitrified water 29 that has passed through the screen 33 without being hindered by the nitrifying bacteria-immobilized carrier 26 flows into the downward flow path 35, and the remaining nitrified water 29
Flows out from the treated water flow path 36 as treated water 39 to a final sedimentation basin or the like outside the apparatus.

【0035】下向流路35内に流入した硝化処理水29
は下部より上向流路37の内部に流入するが、上向流路
37内の硝化処理水29の一部画流路内底部に設けられ
た散気装置38から噴出する空気のエアリフト作用によ
り上昇して硝化処理水循環路30内に流入し、そのとき
のポンプ機能により、下向流路35内の硝化処理水29
が下降する。
The nitrified water 29 flowing into the downward flow passage 35
Flows from the lower part into the upward flow path 37, but due to the air lift effect of the air ejected from the air diffuser 38 provided at the bottom of the partial flow path of the nitrification water 29 in the upward flow path 37. Ascending and flowing into the nitrification-treated water circulation path 30, the nitrification-treated water 29 in the downward flow path 35 is operated by the pump function at that time.
Descends.

【0036】このようにして、硝化処理水29の循環量
は散気装置38により独立してコントロールされ、ま
た、狭い流路がないので、循環ポンプを用いて硝化処理
水循環を行うときのような閉塞は生じず、維持管理が容
易である。
In this way, the amount of circulating nitrified water 29 is independently controlled by the air diffuser 38, and since there is no narrow flow path, the circulating pump is used to circulate the nitrified water. There is no blockage and maintenance is easy.

【0037】なお、上記したような無酸素槽と好気槽と
を備えた窒素除去装置の他、無酸素槽と好気槽との組み
合わせを多段に設けて循環式硝化脱窒を行う窒素除去装
置装置や、無酸素と槽好気槽との前段にリン除去のため
の嫌気槽を備えた窒素除去装置などにおいても、上記と
同様にしてスクリーンを設置することにより、上記と同
様の効果が得られる。その際は、図1〜図4を用いて説
明したように、硝化菌固定化担体の比重、流出部の位
置、散気装置の位置などに応じて適当な位置にスクリー
ンを設置すればよい。
In addition, in addition to the above-described nitrogen removing device having an oxygen-free tank and an aerobic tank, a combination of an oxygen-free tank and an aerobic tank is provided in multiple stages to perform a circulating nitrification denitrification. The same effect as described above can be obtained by installing a screen in the same manner as described above in an apparatus or a nitrogen removing apparatus having an anaerobic tank for removing phosphorus in a stage preceding the oxygen-free and aerobic tank. can get. In this case, as described with reference to FIGS. 1 to 4, the screen may be installed at an appropriate position according to the specific gravity of the nitrifying bacteria-immobilized carrier, the position of the outflow portion, the position of the air diffuser, and the like.

【0038】[0038]

【発明の効果】以上のように本発明によれば、好気槽内
の適当な位置に槽内循環水流とほぼ平行をなすように担
体分離手段を設けることにより、硝化菌固定化担体を槽
内に確実に保持できるだけでなく、担体分離手段の分離
面に硝化菌固定化担体が蓄積・保持されるのを防止する
ことができ、硝化処理水の担体分離手段部の通過がスム
ーズになる。
As described above, according to the present invention, the carrier for immobilizing nitrifying bacteria is placed in the tank by providing a carrier separating means at an appropriate position in the aerobic tank so as to be substantially parallel to the circulating water flow in the tank. In addition to being able to securely hold the nitrifying bacteria-immobilized carrier on the separation surface of the carrier separating means, the nitrifying bacteria-immobilized carrier can be prevented from being accumulated and retained, and the nitrification-treated water can pass through the carrier separating means smoothly.

【0039】硝化処理水の循環を散気装置の持つポンプ
機能により行うことにより、機械式ポンプを用いて硝化
処理水循環を行うときのようなポンプの閉塞がなくなっ
て維持管理が容易になり、また硝化処理水の循環流量を
容易にコントロールできる。
By performing the circulation of the nitrification water by the pump function of the air diffuser, the blockage of the pump as in the case of performing the circulation of the nitrification water using a mechanical pump is eliminated, and the maintenance and management is facilitated. The circulation flow rate of the nitrification water can be easily controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における好気槽の概略全
体構成を示した断面図である。
FIG. 1 is a sectional view showing a schematic overall configuration of an aerobic tank according to a first embodiment of the present invention.

【図2】本発明の第2実施形態における好気槽の概略全
体構成を示した断面図である。
FIG. 2 is a sectional view showing a schematic overall configuration of an aerobic tank according to a second embodiment of the present invention.

【図3】本発明の第3実施形態における好気槽の概略全
体構成を示した断面図である。
FIG. 3 is a sectional view showing a schematic overall configuration of an aerobic tank according to a third embodiment of the present invention.

【図4】本発明の第4実施形態における好気槽の概略全
体構成を示した断面図である。
FIG. 4 is a sectional view showing a schematic overall configuration of an aerobic tank according to a fourth embodiment of the present invention.

【図5】本発明の第5実施形態における無酸素槽と好気
槽とを備えた窒素除去装置の全体構成を示した斜視図で
ある。
FIG. 5 is a perspective view showing an overall configuration of a nitrogen removing device including an anoxic tank and an aerobic tank according to a fifth embodiment of the present invention.

【図6】好気槽内に設ける担体分離手段の傾斜角度の設
定を説明する断面図である。
FIG. 6 is a cross-sectional view illustrating setting of an inclination angle of a carrier separating means provided in an aerobic tank.

【符号の説明】[Explanation of symbols]

11 好気槽 12 硝化菌固定化担体 13 散気装置 14 流出口 16 スクリーン 17 槽内循環水流 21 無酸素槽 22 好気槽 26 硝化菌固定化担体 29 硝化処理水 32 散気装置 33 スクリーン 34 槽内循環水流 35 下向流路 37 上向流路 38 散気装置 11 Aerobic tank 12 Carrier for immobilizing nitrifying bacteria 13 Air diffuser 14 Outlet 16 Screen 17 Circulating water flow in tank 21 Oxygen tank 22 Aerobic tank 26 Carrier for immobilizing nitrifying bacteria 29 Nitrified water 32 Air diffuser 33 Screen 34 tank Internal circulating water flow 35 Downflow channel 37 Upflow channel 38 Air diffuser

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 好気槽の内部に硝化菌固定化担体を投入
し、空気ないし酸素含有ガスを噴出することにより上向
流と水平流と下向流とからなる槽内循環水流を生起する
散気装置を設けた窒素除去装置において、好気槽内の硝
化処理水が流出する流出部を囲んで担体分離手段を設置
し、この担体分離手段は、前記槽内循環水流が水平流か
ら下向流に転じる水面近傍の位置に、分離面が水平流と
下向流との間に形成される斜向流とほぼ平行をなすよう
に設けたことを特徴とする窒素除去装置。
1. A nitrifying bacteria-immobilized carrier is charged into an aerobic tank, and air or oxygen-containing gas is ejected to generate a circulating water flow in the tank consisting of an upward flow, a horizontal flow, and a downward flow. In the nitrogen removing device provided with an aeration device, a carrier separating means is provided around the outflow portion of the aerobic tank through which the nitrification-treated water flows out, and the carrier separating means reduces the circulating water flow in the tank from a horizontal flow. A nitrogen removal device, wherein a separation surface is provided at a position near a water surface that turns into a countercurrent so as to be substantially parallel to an oblique flow formed between a horizontal flow and a downward flow.
【請求項2】 好気槽内で処理した硝化処理水の一部を
循環する無酸素槽を備え、好気槽内の担体分離手段の透
過側に連通する下向流路を設け、下向流路に下端側が連
通するとともに上端側が無酸素槽に連通する上向流路を
設け、上向流路の底部に、上向流路内の硝化処理水をエ
アリフト作用により無酸素槽に向けて送り出す散気装置
を設けたことを特徴とする請求項1記載の窒素除去装
置。
2. An oxygen-free tank for circulating a part of the nitrification treatment water treated in the aerobic tank, and a downward flow path communicating with the permeate side of the carrier separating means in the aerobic tank is provided. An upward flow path is provided in which the lower end side communicates with the flow path and the upper end side communicates with the oxygen-free tank. At the bottom of the upward flow path, the nitrification treatment water in the upward flow path is directed toward the oxygen-free tank by an air lift action. The nitrogen removing device according to claim 1, further comprising an air diffuser for sending out.
JP20871396A 1996-08-08 1996-08-08 Nitrogen removing device Pending JPH1043794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20871396A JPH1043794A (en) 1996-08-08 1996-08-08 Nitrogen removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20871396A JPH1043794A (en) 1996-08-08 1996-08-08 Nitrogen removing device

Publications (1)

Publication Number Publication Date
JPH1043794A true JPH1043794A (en) 1998-02-17

Family

ID=16560859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20871396A Pending JPH1043794A (en) 1996-08-08 1996-08-08 Nitrogen removing device

Country Status (1)

Country Link
JP (1) JPH1043794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113480A (en) * 2000-10-04 2002-04-16 Shinko Pantec Co Ltd Water treatment method and its device
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113480A (en) * 2000-10-04 2002-04-16 Shinko Pantec Co Ltd Water treatment method and its device
JP2011000555A (en) * 2009-06-19 2011-01-06 Kubota Corp Wastewater treatment facility and method of rebuilding the same

Similar Documents

Publication Publication Date Title
US6413427B2 (en) Nitrogen reduction wastewater treatment system
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
US20030111412A1 (en) Batch style wastewater treatment apparatus using biological filtering process and wastewater treatment method using the same
KR19990021838A (en) Aerobic treatment method and treatment tank of sewage
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
US4421648A (en) Apparatus and a method for biological treatment of waste waters
JPH02214597A (en) Device for nitrifying sewage
EP2049443B1 (en) A method and apparatus for simultaneous clarification and endogenous post denitrification
WO1998018728A1 (en) Support separation screen apparatus, method of aeration of support separation screen, aeration apparatus for the method, waste liquid processing method and apparatus using the screen apparatus and aeration apparatus
JP3150530B2 (en) Biological nitrogen removal equipment
JP4349679B2 (en) Nitrogen removal equipment
JP3468732B2 (en) Carrier stirring separation device
JPH1043794A (en) Nitrogen removing device
JPH11290882A (en) Nitrogen removing apparatus
JP2579122B2 (en) Wastewater treatment equipment
JPH04310298A (en) Biological nitrogen removing unit
JPS649074B2 (en)
JPH10165984A (en) Nitrogen removing apparatus
JP3169117B2 (en) Biological wastewater treatment equipment
JPH05269489A (en) Sewage treatment apparatus
JP2818081B2 (en) Sewage treatment equipment
JP3049701B2 (en) Nitrification / denitrification equipment
JP3155457B2 (en) Wastewater treatment equipment
JP3652473B2 (en) Wastewater treatment system
JPH07163994A (en) Biological treating device of sewage