JP4349679B2 - Nitrogen removal equipment - Google Patents

Nitrogen removal equipment Download PDF

Info

Publication number
JP4349679B2
JP4349679B2 JP10731799A JP10731799A JP4349679B2 JP 4349679 B2 JP4349679 B2 JP 4349679B2 JP 10731799 A JP10731799 A JP 10731799A JP 10731799 A JP10731799 A JP 10731799A JP 4349679 B2 JP4349679 B2 JP 4349679B2
Authority
JP
Japan
Prior art keywords
partition wall
carrier
separation screen
tank
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10731799A
Other languages
Japanese (ja)
Other versions
JP2000301184A (en
Inventor
秀樹 岩部
一郎 中野
宏 岸野
智 桶谷
裕司 丸山
仁志 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10731799A priority Critical patent/JP4349679B2/en
Publication of JP2000301184A publication Critical patent/JP2000301184A/en
Application granted granted Critical
Publication of JP4349679B2 publication Critical patent/JP4349679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水や産業排水などの処理に用いる窒素除去装置に関する。
【0002】
【従来の技術】
従来、循環式硝化脱窒法では、汚水は始めに脱窒を行う無酸素槽、続いて硝化を行う好気槽へと流入し、好気槽から流出する処理水は、硝化循環液として無酸素槽へ循環・返送する一部を除いて最終沈殿池へ流出していく。無酸素槽ではBOD成分や窒素が脱窒反応により除去され、好気槽ではアンモニア性窒素を含むケルダール性窒素が硝酸ないし亜硝酸まで硝化される。このプロセスにおいては、浮遊活性汚泥により硝化および脱窒を行って窒素を除去することが一般的である。
【0003】
また、循環式硝化脱窒法とは構成が異なるものの類似の原理を用いて窒素を除去する方式として、嫌気・無酸素・好気法、硝化−内生脱窒法、無酸素槽と好気槽とを複数段に設けた多段式循環法、ステップ流入式多段硝化脱窒法といったようなものがある。
【0004】
【発明が解決しようとする課題】
上述したような、循環式硝化脱窒法、嫌気・無酸素・好気法、硝化−内生脱窒法、多段式循環法、あるいはステップ流入式多段硝化脱窒法の何れかによって構成する生物学的処理系では、生物反応槽全体の水理学的滞留時間に、流入汚水量ベースで12〜16時間も必要とする。そのため、一般に標準活性汚泥法により生物反応槽全体の滞留時間を6〜8時間として設計・運転している大中都市部の既設下水処理場では、新たな用地確保が困難であることから、上述の構成を採用することが困難であった。
【0005】
こうした問題の解決のために、低水温時においても硝化脱窒速度を大幅に高めることを目的として、低水温時において硝化活性の低下する硝化菌を固定化担体に高濃度に固定化する固定化技術の適用が検討されている。しかし、上述した方式において、微生物を固定化した担体は一般に流動状態で使用するため、好気槽から系外へ流出しないように保持する必要がある。また、好気槽内での硝化菌固定化担体は、曝気により形成される流れに沿って流動する一方で、流入汚水が流入端から流出端に向かって流れていくため、流入端側よりむしろ流出端側において高濃度に存在し易いが、高い硝化反応効率を得るためには硝化菌固定化担体を好気槽内に均一に存在させる必要がある。
【0006】
このため、本発明者らは先に、流出部の上流側に担体分離スクリーンを設け、担体分離スクリーンの分離面近傍位置に、下端に開口を有する仕切壁を設けて、仕切壁より上流側の区画を散気装置を備えた処理領域となし、この処理領域に上部で連通する仕切壁と担体分離スクリーンとの間の区画を担体分離スクリーンに沿った下向流路となすことにより、担体を槽内に保持するだけでなく、担体分離スクリーンの手前側に担体を堆積させることなく処理領域に戻すことを提案した。
【0007】
その際に、分離面に付着しがちな担体を剥離して下降させる下向流の洗浄効果を発揮させるためには、下降流速が大きいことが望ましいが、下向流路内でも槽内液の流れは必ずしもすべて下向流になっているわけではなく、水平方向の流速成分も存在しており、このため、水平方向の流速成分をも極力、下向流として、下降流速を大きくすることが課題となっている。
【0008】
本発明は上記課題を解決するもので、担体分離スクリーンに沿って形成した下向流路内の水平方向流速成分を効果的に下向流に変えられる窒素除去装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記問題を解決するために、本発明の請求項1記載の窒素除去装置は、硝化菌固定化担体を流動状態に保持する好気槽の内部に、槽内液が好気槽から流出する流出部を上流側の領域と隔てる担体分離スクリーンを設け、担体分離スクリーンの上流側で分離面近傍位置に上下方向の第1仕切壁を水没して設け、第1仕切壁より上流側の区画を散気装置が備えられた曝気処理領域となし、第1仕切壁と担体分離スクリーンとの間の区画を担体分離スクリーンに沿った下向流路となし、第1仕切壁の下端に前記下向流路と前記曝気処理領域とを連通する開口を形成した窒素除去装置において、前記下向流路内に整流板を設置し、整流板が下向流路をその幅方向に沿って所定間隔に分割して流れを下方に案内することを特徴とする。
【0010】
請求項2記載の窒素除去装置は、請求項1記載の構成において、第1仕切壁の下流側に、槽内液が好気槽から流出する流出部を上流側の領域と隔てる第2仕切壁を上下方向に設け、第2仕切壁に開口する水面下の流出口を覆って前記担体分離スクリーンを設けたことを特徴とする。
請求項3記載の窒素除去装置は、請求項1記載の構成において、担体分離スクリーンの上方と第1仕切壁の上部の少なくとも一方に、第1仕切壁を越えた流れを徐々に下方に案内する斜め方向のハンチを設けたことを特徴とする。
【0011】
上記した請求項1記載の構成によれば、被処理水は好気槽内に流入して槽内の活性汚泥混合液に混合され、好気槽内の活性汚泥混合液と硝化菌固定化担体とは、処理領域内で散気装置により空気などの酸素含有気体が供給される状態においてともに流動し、その間に、被処理水が硝化処理される。
【0012】
このとき、第1仕切壁と担体分離スクリーンとの間の区画では曝気は行われないのに対して、曝気処理領域では酸素含有気体の曝気が行われるため、曝気に伴うエアリフト作用によって、曝気処理領域内の水位が第1仕切壁と担体分離スクリーンとの間の区画の水位より高まり、その結果、曝気処理領域内に上部で連通する第1仕切壁と担体分離スクリーンとの間の区画である下向流路内に下向流が生じる。
【0013】
このため、曝気処理領域内の活性汚泥混合液と硝化菌固定化担体とは、第1仕切壁の上端を越えて下向流路内に流入し、担体分離スクリーンの分離面に沿って下降し、その間に活性汚泥混合液の一部は担体分離スクリーンを透過して流出部から好気槽の外部へ流出し、下向流路内の下部に達した活性汚泥混合液と硝化菌固定化担体とは、第1仕切壁の下部開口を経て曝気処理領域内に戻る。
【0014】
なおこのとき、活性汚泥混合液の流れはVx,Vy,Vzの3速度成分(ここで、xは流入端から流出端に向かう流れ方向、yは流れ方向と直交する水平方向、zは流れ方向と直交する下向き方向、に相応する直交座標系のxyz軸方向を意味する)で表わされるが、下向流路内では、整流板によってVyからVzへの変換が効果的になされVzの極大化が図られるため、下降流速が大きくなり、担体掃流としての効果が大きくなる。
【0015】
その結果、硝化菌固定化担体は、従来のように担体分離スクリーンの上部に堆積したり分離面に付着することはほとんどなく曝気処理領域内に戻され、槽内に確実にかつ均一に保持されるため、硝化効率が高まる。また硝化菌固定化担体による分離面の閉塞は防止され、活性汚泥混合液はスムーズにスクリーンを透過する。
【0016】
請求項2記載の構成によれば、下向流路への流入部で、仕切壁によって、流れ方向に沿った水平方向への流れが抑制され、かつ整流板によって、流れ方向と直交する水平方向への流れが抑制されることで、上述した水平方向速度成分Vx,Vyから下向方向速度成分Vzへの変換がより効果的になされるため、分離面に沿った下降流速はより大きくなる。
【0017】
請求項3記載の構成によれば、下向流路への流入部でさらに、ハンチによって、流れ方向に沿った水平方向への流れが抑制されることで、上述した水平方向速度成分Vxから下向方向速度成分Vzへの変換が効果的になされるため、下降流速が大きくなる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しながら説明する。
図1〜図3に示した第1実施形態における窒素除去装置には、無酸素槽1と好気槽2とが、上端が越流堰をなす仕切壁3と下部が開口した仕切壁4とを介して配されている。仕切壁3,4から離れた無酸素槽1の一端は被処理水5の流入部6をなしており、流入部6に対向する好気槽2の一端には処理水7の流出部8が形成されている。
【0019】
無酸素槽1の内部には、浮遊活性汚泥を含んだ槽内液9を均一に攪拌混合する機械式攪拌機10が設けられ、好気槽2の内部には、硝化菌固定化担体11が投入されるとともに、空気などの酸素含有気体を噴出して、硝化菌固定化担体11と槽内液12とを均一に攪拌混合するディフューザタイプの散気装置13が設けられている。
【0020】
また好気槽2の内部には、担体分離スクリーン14を上部に配した仕切壁15が流出部8を囲んで水面より上方から底部まで上下方向に設けられ、この仕切壁15の上流側に、下端に開口16を有する上下方向の仕切壁17が、担体分離スクリーン14を囲んでコの字形にかつ水没して設けられていて、それにより、仕切壁17より上流側の区画が曝気処理領域18とされるとともに、仕切壁15,17間の区画が担体分離スクリーンに沿った下向流路19とされている。
【0021】
担体分離スクリーン14に対応する下向流路19内の上部には、複数枚の上下方向の整流板20が、流れ方向(流入部6から流出部8に向かう方向)に沿ってその流路奥行幅Dだけ、かつ下向流路19をその幅方向(流れ方向と直交する水平方向)に沿ってほぼ均等に分割する間隔Wで設置されている。
21は、担体分離スクリーン14を透過した好気槽処理水7の一部を無酸素槽1内の流入部6近傍位置に向けて循環返送する循環水路であり、22は、好気槽2の後段の最終沈殿池(図示せず)で好気槽処理水7より分離された汚泥を無酸素槽1に返送する汚泥返送路である。
【0022】
上記した構成によれば、被処理水5は流入部6より無酸素槽1内に流入し、攪拌機10により槽内液9と均一に攪拌混合されて脱窒菌の作用で脱窒処理され、仕切壁3の近傍の槽内液9が仕切壁3,4の上方および下方を順次通って好気槽2の内部に流入する。
この槽内液9は曝気処理領域18で槽内液12と混合されるとともに、散気装置13からの空気などの酸素含有気体で曝気されることにより、硝化菌固定化担体11とともに流動して均一に攪拌混合され、硝化菌固定化担体5に担持された硝化菌あるいは曝気処理領域18の槽内液12中の硝化菌の作用で硝化処理される。
【0023】
このとき、曝気に伴うエアリフト作用によって、曝気処理領域18内の水位が仕切壁15,17間の水位より高まり、その結果、曝気処理領域18内に上部および下部で連通する仕切壁15,17間の区画である下向流路19内に下向流が生じる。
このため、曝気処理領域18内の槽内液12と硝化菌固定化担体11とは、仕切壁17の上端を越えて下向流路19内に流入し、担体分離スクリーン14の分離面に沿って下降し、その間に槽内液12の一部が担体分離スクリーン14を透過し、下向流路19内の下部に達した槽内液12と硝化菌固定化担体11とは、仕切壁17の下部の開口16を経て曝気処理領域18内に戻る。担体分離スクリーン14を透過した槽内液12の一部は循環水路21を通じて無酸素槽1に循環返送され、残りは処理水7として流出部8より槽外へ流出して最終沈殿池へ送られる。
【0024】
なおこのとき、被処理水8の流入量が時間帯や天候(降雨時と晴天時)によって大きく変動し、水位が大きく変動することがあっても、担体分離スクリーン14が水面上から水面下にわたって設置されているので、水位の変動とともに担体分離スクリーン14の水没面積が変動し、スクリーン単位面積当たりの透過処理水量が概ね一定になるため、偏流が生じることはなく、硝化菌固定化担体11の堆積や付着による閉塞は生じにくい。
【0025】
しかも、仕切壁17の上端を越えて下向流路19内に流入した槽内液12は、整流板20によって、流れ方向と直交する水平方向への流れが抑制され、下向きに案内されることで、水平方向速度成分から下向方向速度成分への変換が効果的になされるため、下降流速が大きくなり、担体掃流としての効果が大きくなる。
その結果、硝化菌固定化担体11は、担体分離スクリーン14の上部に堆積したり分離面に付着することはほとんどなく曝気処理領域18内に戻されるため、好気槽2内に硝化菌固定化担体11が確実にかつ均一に保持されることになり、硝化効率が高まる。また硝化菌固定化担体11の堆積や付着がないために、槽内液12が一様にスムーズにスクリーンを透過することになり、処理量が増大する。
【0026】
なお、整流板20を、W/Dが0.5〜10程度、望ましくは1〜3程度になるように設置すれば、下向流路19ないしその流入口付近での水平方向流速成分が効果的に下向流速成分に変換されるように整流されるので、下向流の担体分離スクリーンの洗浄効果の極大化を図ることができる。
また、下向流路19の流入口付近の水平方向流速成分をより効果的に下向方向流速成分に変換するためには、整流板20を、上述したように上端が水面より上方に位置するように設置するのが望ましい。整流板20の下端の位置には特に限定はないが、担体分離スクリーン14の下端ないしそれより下方まで設置するのが望ましい。
【0027】
ここで、仕切壁15の下部を図示したように仕切壁17寄りに傾斜させれば、硝化菌固定化担体11がスムーズに曝気処理領域18内に戻るので望ましい。なお上部に担体分離スクリーン14を配した仕切壁15に代えて、水面より上方から底部にわたって全体に担体分離スクリーンを設けてもよい。
また、仕切壁15(または担体分離スクリーン)と流出部8との間の槽内底部に別途の散気装置を設置することで、浮遊活性汚泥の堆積を防止するようにしてもよい。
【0028】
図4は第2実施形態における窒素除去装置の好気槽流出部を示し、この好気槽流出部は上記した第1実施形態のものとほぼ同様の構成を有している。
ただし、流出部8を囲んで水面より上方から底部まで上下方向に設けられた仕切壁15には、水面下に相応する位置に流出口23が開口していて、この流出口23を覆って担体分離スクリーン14が設けられている。そして、仕切壁15の上端から担体分離スクリーン14の下端に相応する下向流路19内の上部に、上記したのと同様の複数枚の整流板20が設置されている。
【0029】
このような構成によれば、水位の変動によってスクリーン単位面積当たりの処理水量が増減し、それがスクリーン閉塞を招く因子となる恐れがあるが、一方で槽内液12が下向流路19への流入部において、仕切壁15によって、流れ方向に沿った水平方向への流れが抑制され、かつ整流板20によって、流れ方向と直交する水平方向への流れが抑制されることで、水平方向速度成分から下向方向速度成分への変換が効果的になされ、下降流速が大きくなって、担体掃流としての効果が大きくなるため、硝化菌固定化担体が水面近傍に堆積したり分離面に付着することはほとんどない。
【0030】
図5は第3実施形態における窒素除去装置の好気槽流出部を示し、この好気槽流出部は上記した第2実施形態のものとほぼ同様の構成を有していて、仕切壁15の途中に形成した流出口23を覆って担体分離スクリーン14が設けられている。
ただし、仕切壁15に、担体分離スクリーン14より上方位置から水面上にわたる斜め方向の平板状ハンチ24が取り付けられている。そして、ハンチ24の下端から担体分離スクリーン14の下端に相応する下向流路19内の上部に、上記したのと同様の複数枚の整流板20が設置されている。
【0031】
このような構成によれば、槽内液12は、下向流路19への流入部において、整流板20によって、流れ方向と直交する水平方向への流れが抑制され、かつハンチ24によって、流れ方向に沿った水平方向への流れが抑制されるとともに下方へ案内されることで、水平方向速度成分から下向方向速度成分への変換が効果的になされ、下降流速が大きくなる。平板状ハンチに代えて、上向きに湾曲した円弧状断面を持つハンチを斜め方向に設けても同様の効果が得られる。
【0032】
図6は第4実施形態における窒素除去装置の好気槽流出部を示し、この好気槽流出部は上記した第3実施形態のものとほぼ同様の構成を有しているが、仕切壁17の上部にさらに、上流側に傾斜したハンチ26が設けられている。
このような構成によれば、ハンチ24による下向流路への流入口の面積の縮小を解消できるだけでなく、その流入口部分で、槽内液12をハンチ26に沿って斜め下向きに案内することができ、水平方向速度成分から下向方向速度成分への変換をより効果的に行えるため、下降流速が大きくなる。
【0033】
なお、上述した第3実施形態および第4実施形態の窒素除去装置では、ハンチ24の下端から担体分離スクリーン14の下端まで矩形の整流板20を設置したが、整流板20の位置や形状は変更可能であり、たとえばハンチ24の下面に沿った斜め向きの端面を持った整流板も設置可能である。
図7は第5実施形態における窒素除去装置の好気槽流出部を示し、この好気槽流出部は上記した第1実施形態のものとほぼ同様の構成を有しているが、担体分離スクリーン14を洗浄する洗浄手段27を備えている。洗浄手段27は給水配管28と複数のノズル29とを有していて、ノズル口が担体分離スクリーン14の透過側に対向するように設けられている。
【0034】
このような構成によれば、万が一、担体分離スクリーン14に硝化菌固定化担体11が付着した場合も、ノズル口より担体分離スクリーン14に向けて水を噴出することによって剥離できる。洗浄手段27はノズル口が担体分離スクリーン14の分離面側に対向するように設けてもよい。
図8に示した第6実施形態の窒素除去装置は、上述した第1実施形態のものと同様の構成を有しているが、好気槽2内に、ディフューザタイプの散気装置に代えて、水中攪拌式曝気装置30が設けられている。硝化菌固定化担体11は、硝化菌固定化能力に優れ、かつ耐久性、流動性に優れるものなら何れの素材の担体でもよいが、望ましくはPVF(ポリビニルフォルマール)を素材とする担体とする。(他の実施形態でもPVF担体の使用が望ましい。)
このような窒素除去装置によれば、第1実施形態のものと同様の作用効果が得られるだけでなく、水中攪拌式曝気装置30によって硝化菌固定化担体11をより効率よく流動させることができ、しかも、硝化菌固定化担体11は水中攪拌式曝気装置30によっても摩耗することなく硝化菌を高濃度に担持するため、槽内に高濃度の硝化菌を保持でき、硝化効率は高い。
【0035】
図9に示した第7実施形態の窒素除去装置は、上述した第6実施形態のものと同様の構成を有しているが、無酸素槽1および好気槽2は水深5〜10m程度ないしそれ以上の深層反応槽として構成されている。そして、無酸素槽1内および好気槽2内の水深5m程度の位置にそれぞれ、機械式攪拌機10および水中攪拌式曝気装置30が設置されている。機械式攪拌機10および水中攪拌式曝気装置30の下部には、吸込口(図示せず)を囲むドラフトチューブ31が設けられている。
【0036】
このような構成によれば、ドラフトチューブ31の存在によって、機械式攪拌機10および水中攪拌式曝気装置30によってそれぞれ、攪拌または曝気攪拌することができ、同様の作用効果が得られる。このとき水中攪拌式曝気装置30に給気するブロワなどの給気手段としては、通常水深の反応槽に使用される散気水深5m程度の水中攪拌式曝気装置用のものを使用できる。
【0037】
【発明の効果】
以上のように、本発明の請求項1記載の窒素除去装置によれば、硝化菌固定化担体を流動状態に保持する好気槽の内部に、好気槽処理水流出部を囲んで担体分離スクリーンを設け、担体分離スクリーンの上流側に下向流路を形成し、下向流路内の少なくとも上部に上下方向の整流板を設置したことにより、下向流路への流入部で、整流板によって水平方向速度成分を下向方向速度成分へ変換することができ、それによる下降流速の増大によって、担体掃流としての効果を高めることができる。その結果、好気槽内部の処理領域に硝化菌固定化担体を確実にかつ均一に保持することができ、硝化効率を高められるとともに、槽内処理水のスムーズなスクリーン透過を図ることができ、処理水量を増大できる。
【0038】
請求項2記載の窒素除去装置によれば、担体分離スクリーンを仕切壁の途中に水没して設けたことにより、下向流路への流入部で仕切壁上部によっても水平方向速度成分を下向方向速度成分へ変換することができ、それによる下降流速の増大によって、担体掃流としての効果をより大きくできる。
請求項3記載の窒素除去装置によれば、第1仕切壁を越えた流れを斜め下方に案内するハンチを設けたことにより、下向流路への流入部でハンチによっても水平方向速度成分を下向方向速度成分へ変換することができ、それによる下降流速の増大によって、担体掃流としての効果をより大きくできる。
【0039】
請求項4記載の窒素除去装置によれば、担体分離スクリーンにノズル口が対向する水洗浄手段を設けたことにより、万が一、分離面に硝化菌固定化担体が付着した場合も剥離できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における窒素除去装置の全体構成を示した縦断面図である。
【図2】図1に示した窒素除去装置の好気槽流出部であって、担体分離スクリーンを上部に設けた状態を示した平面図である。
【図3】同好気槽流出部を示した縦断面図である。
【図4】本発明の第2実施形態における窒素除去装置の好気槽流出部であって、担体分離スクリーンを水没して設けた状態を示した縦断面図である。
【図5】本発明の第3実施形態における窒素除去装置の好気槽流出部であって、担体分離スクリーンの上方にハンチを設けた状態を示した縦断面図である。
【図6】本発明の第4実施形態における窒素除去装置の好気槽流出部であって、担体分離スクリーンに対向する仕切壁の上部にハンチを設けた状態を示した縦断面図である。
【図7】本発明の第5実施形態における窒素除去装置の好気槽流出部であって、担体分離スクリーンの近傍に洗浄手段を設けた状態を示した縦断面図である。
【図8】本発明の第6実施形態における窒素除去装置の全体構成を示した縦断面図である。
【図9】本発明の第7実施形態における窒素除去装置の全体構成を示した縦断面図である。
【符号の説明】
2 好気槽
8 流出部
11 硝化菌固定化担体
13 散気装置
14 担体分離スクリーン
15 仕切壁
16 開口
17 仕切壁
18 曝気処理領域
19 下向流路
20 整流板
23 流出口
24,26 ハンチ
27 洗浄手段
29 ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrogen removing apparatus used for treating sewage, industrial waste water, and the like.
[0002]
[Prior art]
Conventionally, in the circulatory nitrification denitrification method, sewage first flows into the anaerobic tank where denitrification is performed, and then into the aerobic tank where nitrification is performed. It flows out to the final sedimentation basin except for some parts that are circulated and returned to the tank. In the anaerobic tank, BOD components and nitrogen are removed by denitrification reaction, and in the aerobic tank, Kjeldahl nitrogen containing ammonia nitrogen is nitrified to nitric acid or nitrous acid. In this process, it is common to remove nitrogen by nitrification and denitrification using suspended activated sludge.
[0003]
In addition, as a method of removing nitrogen using a similar principle, although the configuration is different from the circulation type nitrification denitrification method, anaerobic / anoxic / aerobic method, nitrification-endogenous denitrification method, anaerobic tank and aerobic tank There are a multistage circulation method in which a plurality of stages are provided and a step inflow multistage nitrification denitrification method.
[0004]
[Problems to be solved by the invention]
Biological treatment constituted by any one of the above-described circulation type nitrification denitrification method, anaerobic / anoxic / aerobic method, nitrification-endogenous denitrification method, multistage circulation method, or step inflow type multistage nitrification denitrification method In the system, the hydraulic residence time of the entire biological reaction tank requires 12 to 16 hours on an inflow sewage basis. Therefore, it is difficult to secure a new site in existing sewage treatment plants in large and middle cities, which are generally designed and operated by the standard activated sludge method with a residence time of the entire biological reaction tank of 6 to 8 hours. It was difficult to adopt this configuration.
[0005]
In order to solve these problems, immobilization of nitrifying bacteria whose nitrification activity decreases at low water temperatures at a high concentration is immobilized on an immobilization carrier with the aim of greatly increasing the nitrification denitrification rate even at low water temperatures. Application of technology is under consideration. However, in the above-described method, since the carrier on which the microorganisms are immobilized is generally used in a fluidized state, it must be held so as not to flow out of the system from the aerobic tank. In addition, the nitrifying bacteria-immobilized carrier in the aerobic tank flows along the flow formed by aeration, while the inflowing sewage flows from the inflow end toward the outflow end. Although it tends to exist at a high concentration on the outflow end side, in order to obtain high nitrification reaction efficiency, the nitrifying bacteria-immobilized carrier must be uniformly present in the aerobic tank.
[0006]
For this reason, the present inventors first provided a carrier separation screen upstream of the outflow part, provided a partition wall having an opening at the lower end at a position near the separation surface of the carrier separation screen, and placed upstream of the partition wall. By forming a partition as a processing region with a diffuser and forming a partition between the partition wall communicating with the processing region at the top and the carrier separation screen as a downward flow path along the carrier separation screen, In addition to being held in the tank, it was proposed to return to the processing area without depositing the carrier on the front side of the carrier separation screen.
[0007]
At that time, in order to exert the effect of cleaning the downward flow that separates and descends the carrier that tends to adhere to the separation surface, it is desirable that the flow rate of the downward flow is large. The flow is not necessarily downward, and there is also a horizontal flow velocity component. Therefore, the downward flow velocity can be increased by using the horizontal flow velocity component as much as possible. It has become a challenge.
[0008]
SUMMARY OF THE INVENTION The present invention solves the above-described problem, and an object thereof is to provide a nitrogen removing device that can effectively convert a horizontal flow velocity component in a downward flow path formed along a carrier separation screen into a downward flow. Is.
[0009]
[Means for Solving the Problems]
In order to solve the above problem, the nitrogen removing apparatus according to claim 1 of the present invention is an outflow in which the liquid in the tank flows out of the aerobic tank inside the aerobic tank holding the nitrifying bacteria-immobilized carrier in a fluid state. A carrier separation screen is provided to separate the section from the upstream region, and the first partition wall in the vertical direction is submerged at a position near the separation surface on the upstream side of the carrier separation screen, and the partition upstream of the first partition wall is scattered. An aeration treatment area provided with a gas device, a partition between the first partition wall and the carrier separation screen is formed as a downward flow path along the carrier separation screen, and the downward flow at the lower end of the first partition wall In the nitrogen removing apparatus in which an opening that communicates the passage and the aeration treatment region is formed, a rectifying plate is installed in the downward flow path, and the rectifying plate divides the downward flow path at predetermined intervals along the width direction thereof. Then, the flow is guided downward .
[0010]
According to a second aspect of the present invention, in the configuration of the first aspect , the second partition wall that separates the outflow part from which the liquid in the tank flows out of the aerobic tank from the upstream area on the downstream side of the first partition wall. Is provided in the vertical direction, and the carrier separation screen is provided so as to cover the outflow port below the water surface that opens in the second partition wall.
According to a third aspect of the present invention, there is provided the nitrogen removing apparatus according to the first aspect, wherein the flow beyond the first partition wall is gradually guided downward to at least one of the upper part of the carrier separation screen and the upper part of the first partition wall. An oblique haunch is provided.
[0011]
According to the first aspect, wherein the above-treated water is mixed in the activated sludge mixture in the tank to flow into the aerobic tank, activated sludge mixture in the aerobic tank and the nitrifying bacteria immobilized carrier In the treatment area in a state where an oxygen-containing gas such as air is supplied by an air diffuser, during which the water to be treated is nitrified.
[0012]
At this time, aeration is not performed in the section between the first partition wall and the carrier separation screen, but the oxygen-containing gas is aerated in the aeration processing region. The water level in the region is higher than the water level of the partition between the first partition wall and the carrier separation screen, and as a result, the partition between the first partition wall and the carrier separation screen communicating at the upper part in the aeration treatment region. A downward flow is generated in the downward flow path.
[0013]
For this reason, the activated sludge mixed solution and the nitrifying bacteria-immobilized carrier in the aeration treatment region flow into the downward flow path beyond the upper end of the first partition wall, and descend along the separation surface of the carrier separation screen. In the meantime, a part of the activated sludge mixed liquid permeates the carrier separation screen and flows out of the aerobic tank from the outflow part, and reaches the lower part of the downward flow path and the immobilized nitrifying bacteria carrier. Is returned to the aeration treatment region through the lower opening of the first partition wall.
[0014]
At this time, the flow of the activated sludge mixed liquid is a three-speed component of Vx, Vy, and Vz (where x is a flow direction from the inflow end to the outflow end, y is a horizontal direction orthogonal to the flow direction, and z is a flow direction. In the downward flow path, the conversion from Vy to Vz is effectively performed by the rectifying plate in the downward flow path to maximize the Vz. Therefore, the descending flow rate is increased, and the effect as the carrier scavenging is increased.
[0015]
As a result, the nitrifying bacteria-immobilized carrier is hardly deposited on the upper part of the carrier separation screen or attached to the separation surface as in the conventional case, and is returned to the aeration treatment region, and is securely and uniformly held in the tank. Therefore, the nitrification efficiency is increased. Further, the clogging of the separation surface by the nitrifying bacteria immobilization carrier is prevented, and the activated sludge mixed solution smoothly passes through the screen.
[0016]
According to the configuration of claim 2, in the inflow portion to the downward flow path, the flow in the horizontal direction along the flow direction is suppressed by the partition wall, and the horizontal direction orthogonal to the flow direction by the rectifying plate Since the conversion from the horizontal velocity components Vx and Vy described above to the downward velocity component Vz is more effectively performed, the descending flow velocity along the separation surface becomes larger.
[0017]
According to the configuration of the third aspect, the flow in the horizontal direction along the flow direction is further suppressed by the haunch at the inflow portion to the downward flow path, so that the horizontal velocity component Vx is reduced below. Since the conversion to the direction velocity component Vz is effectively performed, the descending flow velocity becomes large.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In the nitrogen removing apparatus according to the first embodiment shown in FIGS. 1 to 3, the anoxic tank 1 and the aerobic tank 2 include a partition wall 3 whose upper end forms an overflow weir, and a partition wall 4 whose lower portion is open. It is arranged through. One end of the oxygen-free tank 1 away from the partition walls 3 and 4 forms an inflow portion 6 for the water to be treated 5, and an outflow portion 8 for the treated water 7 is disposed at one end of the aerobic tank 2 facing the inflow portion 6. Is formed.
[0019]
Inside the anaerobic tank 1, a mechanical stirrer 10 for uniformly stirring and mixing the liquid 9 in the tank containing the suspended activated sludge is provided. Inside the aerobic tank 2, a nitrifying bacteria immobilization carrier 11 is charged. In addition, there is provided a diffuser type air diffuser 13 that jets out oxygen-containing gas such as air and uniformly agitates and mixes the nitrifying bacteria-immobilized carrier 11 and the liquid 12 in the tank.
[0020]
Inside the aerobic tank 2, a partition wall 15 having a carrier separation screen 14 disposed at the top is provided in the vertical direction from the water surface to the bottom portion surrounding the outflow portion 8, and on the upstream side of the partition wall 15, A vertical partition wall 17 having an opening 16 at the lower end is provided in a U-shape and submerged around the carrier separation screen 14, so that a section upstream of the partition wall 17 is located in the aeration treatment region 18. The partition between the partition walls 15 and 17 is a downward flow path 19 along the carrier separation screen.
[0021]
On the upper part in the downward flow path 19 corresponding to the carrier separation screen 14, a plurality of vertical flow straightening plates 20 are provided along the flow direction (the direction from the inflow part 6 toward the outflow part 8). Only the width D is provided, and the downward flow path 19 is installed at an interval W that divides the downward flow path 19 substantially evenly along the width direction (horizontal direction orthogonal to the flow direction).
21 is a circulation channel for circulating and returning part of the aerobic tank treated water 7 that has passed through the carrier separation screen 14 toward the position near the inflow portion 6 in the anoxic tank 1, and 22 is the aerobic tank 2. This is a sludge return path for returning the sludge separated from the aerobic tank treated water 7 in the last final sedimentation basin (not shown) to the anoxic tank 1.
[0022]
According to the configuration described above, the water 5 to be treated flows into the oxygen-free tank 1 from the inflow portion 6, is uniformly stirred and mixed with the liquid 9 in the tank by the stirrer 10, and is denitrified by the action of denitrifying bacteria. The in-tank liquid 9 in the vicinity of the wall 3 flows into the aerobic tank 2 through the upper and lower portions of the partition walls 3 and 4 sequentially.
The in-tank liquid 9 is mixed with the in-tank liquid 12 in the aeration treatment region 18 and is aerated with an oxygen-containing gas such as air from the air diffuser 13 to flow together with the nitrifying bacteria immobilization carrier 11. The mixture is uniformly stirred and mixed, and nitrified by the action of nitrifying bacteria carried on the nitrifying bacteria immobilization carrier 5 or nitrifying bacteria in the liquid 12 in the aeration treatment region 18.
[0023]
At this time, the water level in the aeration treatment region 18 is higher than the water level between the partition walls 15 and 17 due to the air lift action accompanying aeration, and as a result, between the partition walls 15 and 17 communicating with the upper and lower portions in the aeration treatment region 18. A downward flow is generated in the downward flow path 19 which is a section of the above.
For this reason, the in-tank liquid 12 and the nitrifying bacteria-immobilized carrier 11 in the aeration treatment region 18 flow into the downward flow path 19 beyond the upper end of the partition wall 17 and follow the separation surface of the carrier separation screen 14. In the meantime, a part of the in-tank liquid 12 permeates the carrier separation screen 14, and the in-tank liquid 12 and the nitrifying bacteria-immobilized support 11 that reach the lower part in the downward flow path 19 are separated from the partition wall 17. It returns to the inside of the aeration processing region 18 through the lower opening 16. Part of the in-tank liquid 12 that has passed through the carrier separation screen 14 is circulated and returned to the anoxic tank 1 through the circulation channel 21, and the rest flows out of the tank from the outflow part 8 as treated water 7 and is sent to the final sedimentation tank. .
[0024]
At this time, even if the inflow amount of the water 8 to be treated fluctuates greatly depending on the time of day and the weather (rainfall and fine weather) and the water level fluctuates greatly, the carrier separation screen 14 extends from above the water surface to below the water surface. Since it is installed, the submerged area of the carrier separation screen 14 fluctuates with the fluctuation of the water level, and the amount of permeate treated water per unit area of the screen becomes substantially constant, so that no drift occurs and the nitrifying bacteria-immobilized carrier 11 Blockage due to deposition or adhesion is unlikely to occur.
[0025]
In addition, the in-tank liquid 12 that has flowed into the downward flow path 19 beyond the upper end of the partition wall 17 is suppressed by the flow straightening plate 20 in the horizontal direction perpendicular to the flow direction, and is guided downward. Thus, since the conversion from the horizontal velocity component to the downward velocity component is effectively performed, the descending flow velocity is increased, and the effect as the carrier sweep is increased.
As a result, the nitrifying bacteria-immobilized carrier 11 is hardly deposited on the upper part of the carrier separation screen 14 or attached to the separation surface, and is returned to the aeration treatment region 18, so that the nitrifying bacteria are immobilized in the aerobic tank 2. The carrier 11 is reliably and uniformly held, and the nitrification efficiency is increased. Further, since there is no deposition or adhesion of the nitrifying bacteria immobilization carrier 11, the in-tank liquid 12 is transmitted smoothly and uniformly through the screen, and the processing amount increases.
[0026]
If the rectifying plate 20 is installed so that the W / D is about 0.5 to 10, preferably about 1 to 3, the horizontal flow velocity component in the vicinity of the downward flow path 19 or its inlet is effective. Therefore, the flow is rectified so as to be converted into a downward flow velocity component, so that the cleaning effect of the downward flow carrier separation screen can be maximized.
Further, in order to more effectively convert the horizontal flow velocity component in the vicinity of the inlet of the downward flow path 19 into the downward flow velocity component, the upper end of the rectifying plate 20 is positioned above the water surface as described above. It is desirable to install as follows. The position of the lower end of the rectifying plate 20 is not particularly limited, but it is desirable to install the lower end of the carrier separation screen 14 or below it.
[0027]
Here, if the lower part of the partition wall 15 is inclined toward the partition wall 17 as shown in the figure, the nitrifying bacteria-immobilized carrier 11 smoothly returns into the aeration treatment region 18, which is desirable. Instead of the partition wall 15 having the carrier separation screen 14 disposed on the top, a carrier separation screen may be provided over the entire surface from above the water surface to the bottom.
Further, an additional aeration device may be installed at the bottom of the tank between the partition wall 15 (or the carrier separation screen) and the outflow part 8 to prevent the accumulation of suspended activated sludge.
[0028]
FIG. 4 shows an aerobic tank outflow part of the nitrogen removing apparatus in the second embodiment, and the aerobic tank outflow part has substantially the same configuration as that of the above-described first embodiment.
However, in the partition wall 15 that surrounds the outflow portion 8 and is provided in the vertical direction from the upper surface to the bottom, an outlet 23 is opened at a position corresponding to the lower surface of the water. A separation screen 14 is provided. A plurality of rectifying plates 20 similar to those described above are installed in the upper part of the downward flow path 19 corresponding to the lower end of the carrier separation screen 14 from the upper end of the partition wall 15.
[0029]
According to such a configuration, the amount of treated water per unit area of the screen increases or decreases due to fluctuations in the water level, which may cause a clogging of the screen. On the other hand, the in-tank liquid 12 moves to the downward flow path 19. In the inflow portion, the flow in the horizontal direction along the flow direction is suppressed by the partition wall 15, and the flow in the horizontal direction orthogonal to the flow direction is suppressed by the rectifying plate 20. The conversion from the component to the downward velocity component is made effective, the descending flow velocity is increased, and the effect as the carrier scavenging is increased, so that the nitrifying bacteria-immobilized carrier is deposited near the water surface or adheres to the separation surface. There is little to do.
[0030]
FIG. 5 shows an aerobic tank outflow part of the nitrogen removing apparatus according to the third embodiment, and the aerobic tank outflow part has substantially the same configuration as that of the above-described second embodiment, and A carrier separation screen 14 is provided so as to cover the outlet 23 formed in the middle.
However, a slanted flat plate haunch 24 extending from a position above the carrier separation screen 14 to the water surface is attached to the partition wall 15. A plurality of rectifying plates 20 similar to those described above are installed in the upper part of the downward flow path 19 corresponding to the lower end of the carrier separation screen 14 from the lower end of the haunch 24.
[0031]
According to such a configuration, the in-tank liquid 12 is prevented from flowing in the horizontal direction perpendicular to the flow direction by the rectifying plate 20 in the inflow portion to the downward flow path 19, and flows by the haunch 24. By suppressing the flow in the horizontal direction along the direction and guiding it downward, the horizontal velocity component is effectively converted into the downward velocity component, and the descending flow velocity is increased. In place of the flat plate-shaped haunch, a similar effect can be obtained by providing a haunch having an arcuate cross section curved upward.
[0032]
FIG. 6 shows an aerobic tank outflow part of the nitrogen removing apparatus according to the fourth embodiment, and this aerobic tank outflow part has substantially the same configuration as that of the third embodiment described above, but the partition wall 17. Further, a haunch 26 inclined to the upstream side is provided on the upper portion of the head.
According to such a configuration, not only can the reduction of the area of the inlet to the downward flow path by the haunch 24 be eliminated, but the liquid 12 in the tank is guided obliquely downward along the haunch 26 at the inlet. Since the conversion from the horizontal velocity component to the downward velocity component can be performed more effectively, the descending flow velocity becomes large.
[0033]
In the nitrogen removing devices of the third embodiment and the fourth embodiment described above, the rectangular rectifying plate 20 is installed from the lower end of the haunch 24 to the lower end of the carrier separation screen 14, but the position and shape of the rectifying plate 20 are changed. For example, a rectifying plate having an oblique end surface along the lower surface of the haunch 24 can be installed.
FIG. 7 shows the aerobic tank outflow part of the nitrogen removing apparatus in the fifth embodiment, and this aerobic tank outflow part has substantially the same configuration as that of the first embodiment described above, but the carrier separation screen. Cleaning means 27 for cleaning 14 is provided. The cleaning means 27 has a water supply pipe 28 and a plurality of nozzles 29, and the nozzle ports are provided so as to face the transmission side of the carrier separation screen 14.
[0034]
According to such a configuration, even if the nitrifying bacteria-immobilized carrier 11 adheres to the carrier separation screen 14, it can be peeled off by ejecting water from the nozzle port toward the carrier separation screen 14. The cleaning means 27 may be provided so that the nozzle opening faces the separation surface side of the carrier separation screen 14.
The nitrogen removing apparatus of the sixth embodiment shown in FIG. 8 has the same configuration as that of the first embodiment described above, but instead of the diffuser type diffuser in the aerobic tank 2. An underwater stirring type aeration apparatus 30 is provided. The nitrifying bacteria-immobilized carrier 11 may be any material as long as it has an excellent ability to immobilize nitrifying bacteria and is excellent in durability and fluidity, but is preferably a carrier made of PVF (polyvinyl formal). . (In other embodiments, it is desirable to use a PVF carrier.)
According to such a nitrogen removing device, not only the same effects as those of the first embodiment can be obtained, but also the nitrifying bacteria-immobilized carrier 11 can be flowed more efficiently by the underwater stirring type aeration device 30. Moreover, since the nitrifying bacteria-immobilized carrier 11 carries nitrifying bacteria at a high concentration without being worn by the underwater agitating aeration apparatus 30, it can hold the nitrifying bacteria at a high concentration in the tank, and has high nitrification efficiency.
[0035]
The nitrogen removing apparatus of the seventh embodiment shown in FIG. 9 has the same configuration as that of the sixth embodiment described above, but the oxygen-free tank 1 and the aerobic tank 2 have a water depth of about 5 to 10 m. It is configured as a deeper reaction tank. And the mechanical stirrer 10 and the underwater stirring type aeration apparatus 30 are each installed in the oxygen-free tank 1 and the aerobic tank 2 in the position of the water depth of about 5 m. A draft tube 31 surrounding a suction port (not shown) is provided below the mechanical stirrer 10 and the underwater agitating aeration apparatus 30.
[0036]
According to such a configuration, the presence of the draft tube 31 enables stirring or aeration stirring by the mechanical stirrer 10 and the underwater stirring aeration device 30, respectively, and the same effect can be obtained. At this time, as an air supply means such as a blower for supplying air to the underwater agitating aeration apparatus 30, an underwater agitating aeration apparatus having an aeration water depth of about 5 m used for a reaction tank having a normal water depth can be used.
[0037]
【The invention's effect】
As described above, according to the nitrogen removing device of the first aspect of the present invention, the carrier separation is performed by surrounding the outflow portion of the aerobic tank treated water inside the aerobic tank holding the nitrifying bacteria-immobilized support in a fluid state. A screen is provided, a downward flow path is formed on the upstream side of the carrier separation screen, and a vertical flow straightening plate is installed at least at the top of the downward flow path. The horizontal velocity component can be converted into the downward velocity component by the plate, and the effect as the carrier scavenging can be enhanced by increasing the descending flow velocity. As a result, the nitrifying bacteria-immobilized carrier can be reliably and uniformly held in the treatment area inside the aerobic tank, the nitrification efficiency can be increased, and smooth screen permeation of the treated water in the tank can be achieved. The amount of treated water can be increased.
[0038]
According to the nitrogen removing device according to claim 2, by providing the carrier separation screen in the middle of the partition wall, the horizontal velocity component is also lowered by the upper part of the partition wall at the inflow portion to the downward flow path. It can be converted into a directional velocity component, and the effect as a carrier scavenging can be further increased by increasing the descending flow velocity.
According to the nitrogen removing device of the third aspect, by providing the haunch for guiding the flow beyond the first partition wall obliquely downward, the horizontal velocity component is also generated by the haunch at the inflow portion to the downward flow path. It can be converted into a downward velocity component, and the effect as a carrier scavenging can be further increased by increasing the descending flow velocity.
[0039]
According to the nitrogen removing apparatus of the fourth aspect, by providing the water separating means with the nozzle opening facing the carrier separation screen, it can be peeled off even if the nitrifying bacteria-immobilized carrier adheres to the separation surface.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an overall configuration of a nitrogen removing apparatus according to a first embodiment of the present invention.
2 is a plan view showing an aerobic tank outflow part of the nitrogen removing apparatus shown in FIG. 1 with a carrier separation screen provided on the upper part thereof. FIG.
FIG. 3 is a longitudinal sectional view showing the aerobic tank outflow part.
FIG. 4 is a longitudinal sectional view showing a state where an aerobic tank outflow part of a nitrogen removing apparatus according to a second embodiment of the present invention is provided with a carrier separation screen submerged.
FIG. 5 is a longitudinal sectional view showing a state in which a haunch is provided above a carrier separation screen, which is an aerobic tank outflow portion of a nitrogen removing apparatus according to a third embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing a state in which a haunch is provided on an upper part of a partition wall facing a carrier separation screen, which is an aerobic tank outflow part of a nitrogen removing apparatus according to a fourth embodiment of the present invention.
FIG. 7 is a longitudinal sectional view showing a state in which an aerobic tank outflow part of a nitrogen removing apparatus according to a fifth embodiment of the present invention is provided with a cleaning means in the vicinity of a carrier separation screen.
FIG. 8 is a longitudinal sectional view showing an overall configuration of a nitrogen removing apparatus according to a sixth embodiment of the present invention.
FIG. 9 is a longitudinal sectional view showing an overall configuration of a nitrogen removing apparatus according to a seventh embodiment of the present invention.
[Explanation of symbols]
2 Aerobic tank 8 Outflow part
11 Nitrifying carrier immobilization carrier
13 Air diffuser
14 Carrier separation screen
15 Partition wall
16 opening
17 Partition wall
18 Aeration treatment area
19 Downward flow path
20 Rectifier plate
23 Outlet
24,26 haunch
27 Cleaning means
29 nozzles

Claims (3)

硝化菌固定化担体を流動状態に保持する好気槽の内部に、槽内液が好気槽から流出する流出部を上流側の領域と隔てる担体分離スクリーンを設け、担体分離スクリーンの上流側で分離面近傍位置に上下方向の第1仕切壁を水没して設け、第1仕切壁より上流側の区画を散気装置が備えられた曝気処理領域となし、第1仕切壁と担体分離スクリーンとの間の区画を担体分離スクリーンに沿った下向流路となし、第1仕切壁の下端に前記下向流路と前記曝気処理領域とを連通する開口を形成した窒素除去装置において、前記下向流路内に整流板を設置し、整流板が下向流路をその幅方向に沿って所定間隔に分割して流れを下方に案内することを特徴とする窒素除去装置。Inside the aerobic tank that holds the nitrifying bacteria-immobilized carrier in a fluidized state, a carrier separation screen is provided that separates the outflow part from which the liquid in the tank flows out of the aerobic tank from the upstream region, on the upstream side of the carrier separation screen. A first partition wall in the vertical direction is submerged in the vicinity of the separation surface, and a partition upstream of the first partition wall is formed as an aeration treatment region provided with a diffuser, and the first partition wall, the carrier separation screen, in nitrogen removal device to form an opening for communicating the carrier downward flow path and without along the separation screen, the aeration region and the downward flow path at the lower end of the first partition wall section between the lower A nitrogen removing device, characterized in that a rectifying plate is installed in a counter flow path, and the rectifying plate divides the downward flow path at predetermined intervals along the width direction and guides the flow downward . 第1仕切壁の下流側に、槽内液が好気槽から流出する流出部を上流側の領域と隔てる第2仕切壁を上下方向に設け、第2仕切壁に開口する水面下の流出口を覆って前記担体分離スクリーンを設けたことを特徴とする請求項1記載の窒素除去装置。  A second partition wall is provided on the downstream side of the first partition wall in the vertical direction to separate the outflow part from which the liquid in the tank flows out of the aerobic tank from the upstream region, and the outlet below the water surface opens to the second partition wall. The nitrogen removing apparatus according to claim 1, wherein the carrier separating screen is provided so as to cover the surface. 担体分離スクリーンの上方と第1仕切壁の上部の少なくとも一方に、第1仕切壁を越えた流れを斜め下方に案内するハンチを設けたことを特徴とする請求項1記載の窒素除去装置。  2. The nitrogen removing apparatus according to claim 1, wherein a haunch for guiding the flow beyond the first partition wall obliquely downward is provided at least one of the upper part of the carrier separation screen and the upper part of the first partition wall.
JP10731799A 1999-04-15 1999-04-15 Nitrogen removal equipment Expired - Fee Related JP4349679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10731799A JP4349679B2 (en) 1999-04-15 1999-04-15 Nitrogen removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10731799A JP4349679B2 (en) 1999-04-15 1999-04-15 Nitrogen removal equipment

Publications (2)

Publication Number Publication Date
JP2000301184A JP2000301184A (en) 2000-10-31
JP4349679B2 true JP4349679B2 (en) 2009-10-21

Family

ID=14456014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10731799A Expired - Fee Related JP4349679B2 (en) 1999-04-15 1999-04-15 Nitrogen removal equipment

Country Status (1)

Country Link
JP (1) JP4349679B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113480A (en) * 2000-10-04 2002-04-16 Shinko Pantec Co Ltd Water treatment method and its device
JP5053911B2 (en) * 2008-04-07 2012-10-24 大栄産業株式会社 Septic tank
JP5490491B2 (en) * 2009-10-30 2014-05-14 株式会社西原環境 Sewage treatment equipment
JP2013236996A (en) * 2012-05-14 2013-11-28 Hitachi Ltd Water treatment process
CN110526401A (en) * 2019-09-30 2019-12-03 江南大学 A kind of landfill leachate short-cut nitrification and denitrification biological denitrification method
CN114667270A (en) * 2019-11-21 2022-06-24 奥加诺株式会社 Biological treatment apparatus, carrier capturing apparatus for biological treatment apparatus, water treatment method, and modification method for biological treatment apparatus
CN114477615A (en) * 2021-11-30 2022-05-13 中化学朗正环保科技有限公司 Low-energy-consumption sewage treatment system

Also Published As

Publication number Publication date
JP2000301184A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
JP5217159B2 (en) Sewage treatment apparatus and method
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
CA1236598A (en) Integral clarifier
KR19990021838A (en) Aerobic treatment method and treatment tank of sewage
KR101963370B1 (en) SBR with improved MLSS precipitation efficiency
JP4349679B2 (en) Nitrogen removal equipment
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
JP3150530B2 (en) Biological nitrogen removal equipment
KR20080089799A (en) A wastewater transaction system
JPH11290882A (en) Nitrogen removing apparatus
JP2006007033A (en) Biological treatment tank for waste water and biologically treating method
JP3468732B2 (en) Carrier stirring separation device
JP3223945B2 (en) Nitrification / denitrification equipment
JP3169117B2 (en) Biological wastewater treatment equipment
JPH07328675A (en) Aerobic organism treating device
JP2579122B2 (en) Wastewater treatment equipment
CN207313243U (en) A kind of micro- oxygen-short-cut denitrification oxidation ditch
JPH05269489A (en) Sewage treatment apparatus
JPH09117785A (en) Waste water treating device
JPH11290880A (en) Nitrogen removing apparatus
JPH10165984A (en) Nitrogen removing apparatus
JPH1147786A (en) Device for removing nitrogen
JPS5857239B2 (en) Sewage treatment equipment
JP3155457B2 (en) Wastewater treatment equipment
JPH1043794A (en) Nitrogen removing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140731

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees