KR100992321B1 - Wastewater treatment apparatus with membrane module - Google Patents

Wastewater treatment apparatus with membrane module Download PDF

Info

Publication number
KR100992321B1
KR100992321B1 KR20090092487A KR20090092487A KR100992321B1 KR 100992321 B1 KR100992321 B1 KR 100992321B1 KR 20090092487 A KR20090092487 A KR 20090092487A KR 20090092487 A KR20090092487 A KR 20090092487A KR 100992321 B1 KR100992321 B1 KR 100992321B1
Authority
KR
South Korea
Prior art keywords
tank
dissolved oxygen
tub
fluid
treated
Prior art date
Application number
KR20090092487A
Other languages
Korean (ko)
Inventor
김성기
Original Assignee
김성기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김성기 filed Critical 김성기
Priority to KR20090092487A priority Critical patent/KR100992321B1/en
Application granted granted Critical
Publication of KR100992321B1 publication Critical patent/KR100992321B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/007Modular design
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE: A device for sewage disposal using a separating film module is provided to enable the treatment target fluid which reduced the dissolved oxygen through dissolved oxygen reducing tub to lower the dissolved oxygen of the treatment target fluid which is initially flown in from the external and enhance the removal process efficiency within the anoxic chamber, thereby enhancing the whole process efficiency of the treatment target fluid. CONSTITUTION: A device for sewage disposal includes an anoxic chamber(100), aversion tub(200), aerobic membrane separation tub(300), oxygen dissolving reduction tub(400), transfer unit(500). The anoxic chamber processes the denitrification of process target fluid. The aversion tub processes the treatment target fluid which is supplied from the anaerobic tub by microorganism. The aerobic membrane separation tub has a separation structure of inhaled filtering method which is design transparent flux 0.33m^3/m^2·day while having the opening size of average 0.4μm and acid organism supplying the oxygen inside and has a separation film which is prepared into one with an acid organism. The aerobic membrane separation tub discharges the treatment target fluid supplied from the aversion tub by oxidizing the nitrifying the fluid. The dissolved oxygen reduction tub discharges the treatment target fluid supplied form one part of the aerobic membrane separation tub after reducing the dissolved oxygen. The transfer unit enables the treatment target fluid from one part within the aerobic membrane separation tub to flow into the dissolved oxygen reduction tub. The transfer unit includes a transfer line(510) connecting the aerobic membrane separation tub and the dissolved reduction tub and a transfer pump which suctions and transfers the treatment target fluid to the dissolved oxygen reduction tub through transfer line.

Description

분리막 모듈을 이용한 오수처리장치{Wastewater treatment apparatus with membrane module}Wastewater treatment apparatus with membrane module {Wastewater treatment apparatus with membrane module}

본 발명은 분리막 모듈을 이용한 오수처리장치 및 이를 이용한 고도오수처리방법에 관한 것으로서, 보다 상세하게는 오폐수 내에 포함된 유기물과 질소 및 인을 생물학적으로 제거함과 동시에 고액분리시키는 분리막 모듈을 이용한 오수처리장치 및 이를 이용한 고도오수처리방법에 관한 것이다.The present invention relates to a sewage treatment apparatus using a membrane module and an advanced sewage treatment method using the same, and more specifically, a sewage treatment apparatus using a membrane module for biologically removing organic matter, nitrogen, and phosphorus contained in waste water and separating solid-liquid at the same time. And an advanced sewage treatment method using the same.

일반적인 하폐수의 생물학적 처리방법은 대부분이 활성슬러지법에 의존하고 있다. 그러나 활성슬러지법은 유기물의 제거에는 매우 효과적이지만 질소와 인의 처리효율이 현저히 낮으므로 자연수계에 부영양화를 유발하고 있다.Most biological treatment methods for wastewater rely on activated sludge method. However, activated sludge method is very effective for the removal of organic matter, but the processing efficiency of nitrogen and phosphorus is very low, causing eutrophication in natural water system.

하수 중의 질소는 대부분 TKN(Total Kjeldahl Nitrogen) 형태로 존재하며, 일반적으로 질산화 및 탈질의 2단계 과정으로 이루어진 생물학적방법에 의하여 처리된다. 질산화 단계에서는 호기성인 질산화균에 의해 암모니아성질소 및 유기질소가 아질산성질소를 거쳐 질산성 질소로 전환된다. 무산소 조건에서 이루어지는 탈질 단계에서는 유리산소 대신 질산성 질소를 전자수용체로 사용하는 탈질 미생물이 유기물을 산화시키고 질산성 질소는 질소(N2)가스로 환원시키며, 결과적으로 질소는 대기 중으로 방출됨으로써 제거된다. 탈질 반응은 유기물이 없이 진행될 수 있는데, 유기물이 없는 경우를 내생 탈질반응(Endogeneous Denitrification)이라 하고, 상기 내생 탈질반응은 탈질 속도가 느려 피처리수가 장시간 체류하여야 하는 단점이 있다. 즉, 탈질반응은 유기물의 농도 및 종류에 의존한다.Nitrogen in sewage is mostly present in the form of TKN (Total Kjeldahl Nitrogen), and is generally treated by a biological method consisting of two steps of nitrification and denitrification. In the nitrification step, ammonia nitrogen and organic nitrogen are converted to nitrate nitrogen through nitrite nitrogen by aerobic nitrification bacteria. In the denitrification step under anoxic conditions, denitrification microorganisms, which use nitrate nitrogen as an electron acceptor instead of free oxygen, oxidize organic matter, reduce nitrate nitrogen to nitrogen (N 2 ) gas, and as a result nitrogen is released into the atmosphere. . The denitrification reaction can be carried out without organic matter, and the case where there is no organic matter is called endogeneous denitrification, and the endogenous denitrification reaction has a disadvantage in that the treated water has to stay for a long time due to a slow denitrification rate. That is, the denitrification reaction depends on the concentration and type of organic matter.

인 성분은 혐기성 상태에서 미생물이 유기물을 이용하여 인산염의 형태로 인을 방출 한 후, 호기상태에서 미생물이 상기 인을 과잉 섭취하고 세포내에 인의 함량이 높아진 상기 미생물을 잉여슬러지로 배출시킴으로써 제거된다. 한편, 혐기성 상태에서 미생물에 의한 인 방출을 위해서는 질산성질소의 농도가 낮아야 한다. 질산성질소가 다량 존재하게 되면 질산성질소의 결합 산소로 인하여 인의 방출이 억제되기 때문이다.Phosphorus component is removed by the microorganism in the anaerobic state to release the phosphorus in the form of phosphate using organic matter, and then, in aerobic state, the microorganism ingested the phosphorus excessively and discharged the microorganism with high phosphorus content in the cell to the excess sludge. On the other hand, in order to release phosphorus by the microorganism in the anaerobic state, the concentration of nitrogen nitrate should be low. This is because the presence of a large amount of nitrate nitrogen inhibits the release of phosphorus due to the bound oxygen of the nitrate nitrogen.

상기 생물학적으로 하폐수 중의 오염물질을 제거하는 방법에 있어, 최종적으로 활성슬러지를 침전조에서 침전하고 처리된 상징수를 배출하게 된다. 그러나 슬러지의 부상이나 사상균에 의한 벌킹 현상으로 상징수가 부유물질을 상당수 함유하게 되고 이로 인해 처리수의 수질 악화로 이어지는 문제점이 있다.In the method of biologically removing contaminants in the sewage water, the activated sludge is finally precipitated in the sedimentation tank and the treated supernatant is discharged. However, there is a problem that the symbol water contains a large amount of suspended solids due to sludge injuries or bulking due to filamentous fungi, resulting in deterioration of the water quality of the treated water.

최근에는 이러한 문제의 해결을 위하여 최종 침전지 대신 생물학적 처리장치의 호기조에 분리막을 설치한 MBR (Membrane Bio Reactor) 공법이 각광을 받고 있으며, 특히 방류수를 통해 배출되는 고형물질이 전혀 없어 잉여슬러지 배출에 의한 슬러지 배출 외에 슬러지의 유실이 없이 미생물 농도를 고농도(5,000∼15,000mg/L) 로 유지할 수 있는 장점이 있다.Recently, the MBR (Membrane Bio Reactor) method, which installs a membrane in an aerobic tank of a biological treatment device instead of the final sedimentation basin, has been in the spotlight. In particular, since there is no solid substance discharged through the effluent, the discharge of excess sludge In addition to the sludge discharge, there is an advantage that the microbial concentration can be maintained at a high concentration (5,000 to 15,000 mg / L) without any sludge loss.

그러나, 종래의 MBR 공법은 기공크기가 0.1∼0.4㎛인 멤브레인(분리막)을 이용하여 피처리수중의 고형물을 완벽하게 배제하여 처리수를 생산하는 한편 운전이 지속될 수록 분리막의 오염이 진행되어 처리수의 생산량이 감소하는 단점이 있다. 상기 단점을 해소하기 위하여 분리막의 오염을 저감하기 위한 세정공기가 필요한데, 분리막의 세정을 위한 공기량은 질산화와 유기물 제거에 필요한 공기량보다 훨씬 많기 때문에 조내에서의 과산화 현상이 나타날 수 있다. 또한 질산성 질소의 탈질을 위해 내부반송되는 피처리수 중의 용존산소 농도가 높게되어 전체공정에 용존산소 농도가 높게되고 따라서 탈질반응을 저해할 수 있다. 또한 분리막의 운영 MLSS(Mixed Liquor Suspended Solid)농도가 높아 운전압력 및 막저항의 증가로 처리수의 생산량이 감소하여 분리막의 세정주기가 짧아지는 경향이 있으며, MBR공정의 장점인 긴 SRT(Solids Retention Time) 및 높은 슬러지 농도로 인해 발생되는 막오염물질 중 SMP(Soluble microbial products)나 EPS(Extracellular polymeric substances) 등의 증가는 막의 수명을 저하시키고 세정주기를 짧게하는 단점이 있다. 또한 잉여슬러지의 폐기에 있어서 농축슬러지보다 상대적으로 낮은 농도의 폭기조슬러지를 폐기시키게 되므로 필요제거량에 비해 많은 부피의 슬러지를 폐기해야 하는 문제점 등이 있다.However, the conventional MBR method completely removes the solids in the water to be treated using a membrane (separation membrane) having a pore size of 0.1 to 0.4 µm, while producing continuous treated water, while the contamination of the membrane proceeds as the operation continues. There is a disadvantage in that the production of. In order to solve the above disadvantages, cleaning air is required to reduce the contamination of the separation membrane. Since the air amount for cleaning the separation membrane is much larger than the amount of air required for nitrification and organic matter removal, peroxidation may occur in the tank. In addition, the dissolved oxygen concentration in the treated water returned internally for the denitrification of nitrate nitrogen is high, so that the dissolved oxygen concentration is high in the whole process and thus can inhibit the denitrification reaction. In addition, the membrane's operating MLSS (Mixed Liquor Suspended Solid) concentration is high, which increases the operating pressure and membrane resistance, which reduces the yield of treated water, which shortens the cleaning cycle of the membrane, and the long SRT (Solids Retention), an advantage of the MBR process. The increase of SMP (Soluble microbial products) or EPS (Extracellular polymeric substances) among the membrane pollutants generated by the time and high sludge concentration has the disadvantage of reducing the life of the membrane and shortening the cleaning cycle. In addition, in the disposal of excess sludge, the aeration tank sludge having a relatively lower concentration than the concentrated sludge is disposed, and thus there is a problem in that a large volume of sludge should be disposed in comparison with the required removal amount.

본 발명은, 오폐수 내 질소 및 인이 보다 효율적으로 제거되게 함과 동시에 분리막의 효율을 극대화시키는 분리막 모듈을 이용한 오수처리장치 및 이를 이용한 고도오수처리방법을 제공하는데 목적이 있다.An object of the present invention is to provide a sewage treatment apparatus using a membrane module and a high sewage treatment method using the same, which allow nitrogen and phosphorus in wastewater to be more efficiently removed and maximize the efficiency of the membrane.

본 발명의 일측면에 따르면, 외부로부터 처리대상유체가 유입되며, 유입된 상기 처리대상유체를 탈질 처리하는 무산소조와, 상기 무산소조와 연결되며, 상기 무산소조로부터 공급되는 상기 처리대상유체를 미생물에 의해 탈인 처리하는 혐기조와, 상기 혐기조와 연결되며, 내부에는 산소를 공급하는 산기관 및 분리막이 마련되어, 상기 혐기조로부터 공급되는 상기 처리대상유체가 질산화반응 및 유기물 산화 반응되게 함과 동시에 슬러지를 제거한 상태로 배출시키는 호기막분리조와, 상기 무산소조와 연결되며, 상기 호기막분리조로부터 일부의 상기 처리대상유체를 공급받은 후, 상기 처리대상유체에서 용존산소를 저감한 후 상기 무산소조를 배출시키는 용존산소저감조 및, 상기 호기막분리조와 상기 용존산소저감조를 연결하여, 상기 호기막분리조 내 일부 상기 처리대상유체가 상기 용존산소저감조로 유입되게 하는 반송부를 포함하는 분리막 모듈을 이용한 오수처리장치를 제공한다.According to an aspect of the present invention, the treatment fluid is introduced from the outside, the oxygen-free tank for denitrifying the introduced fluid to be treated, and the oxygen-free tank is connected to, and the treated fluid supplied from the oxygen-free tank dephosphorized by a microorganism The anaerobic tank to be treated is connected to the anaerobic tank, and an acid pipe and a separator are provided therein to supply oxygen, and the treated fluid supplied from the anaerobic tank is subjected to nitrification and organic oxidation reaction and discharged with sludge removed. And a dissolved oxygen lowering tank connected to the aerobic membrane separation tank and the anoxic tank and receiving a portion of the fluid to be treated from the aerobic membrane separation tank, and then reducing the dissolved oxygen in the fluid to be treated. , Connecting the expiratory membrane separation tank and the dissolved oxygen reduction tank, the expiratory membrane The separation tank in part of the processed fluid provides a sewage treatment apparatus using a separation membrane module including a transport to be introduced twos the dissolved oxygen reduction.

또한, 상기 분리막은 흡입여과방식의 분리막 구조를 가지며, 산기관을 일체로 마련할 수 있다.In addition, the separator has a separator structure of the suction filtration method, it can be provided with an diffuser integrally.

또한, 상기 분리막은 공극크기가 0.4㎛일 수 있다.In addition, the separator may have a pore size of 0.4 μm.

또한, 상기 무산소조 내 용존산소는 0.2mg/ℓ이하, 상기 용존산소저감조 내 용존산소는 0.1mg/ℓ이하로 유지할 수 있다.In addition, the dissolved oxygen in the oxygen-free tank is 0.2mg / L or less, the dissolved oxygen in the dissolved oxygen reduction tank can be maintained to 0.1mg / l or less.

또한, 상기 반송부는, 상기 호기막분리조와 상기 용존산소저감조를 연결하는 반송라인과, 상기 반송라인에 연결 설치되어, 상기 호기막분리조 내 상기 처리대상유체가 상기 반송라인을 통해 상기 용존산소저감조로 흡입 이송되게 하는 반송펌프를 포함할 수 있다.The conveying unit may include a conveying line connecting the aerobic membrane separation tank and the dissolved oxygen reducing tank and a connection line to the conveying line so that the fluid to be treated in the aerobic membrane separation tank passes through the conveying line. It may include a conveying pump for suction transport to the abatement tank.

또한, 상기 호기막분리조 내 MLSS농도는 4,000 ~ 15,000mg/ℓ일 수 있다.In addition, the MLSS concentration in the aerobic membrane separation tank may be 4,000 ~ 15,000mg / ℓ.

그리고, 본 발명의 다른 측면에 따르면, 처리대상유체를 무산소조에 유입시켜, 상기 처리대상유체를 탈질 처리하는 단계와, 상기 무산소조에서 처리된 상기 처리대상유체를 혐기조에 유입시켜, 상기 처리대상유체를 탈인 처리하는 단계와, 상기 혐기조에서 처리된 상기 처리대상유체를 호기막분리조에 유입시켜 산소가 공급되는 상태에서 질산화반응 및 유기물을 산화반응 시킴과 동시에 분리막을 통해 슬러지를 걸러내는 단계와, 상기 호기막분리조에서 처리된 일부의 상기 처리대상유체가 반송라인을 통해 용존산소저감조로 유입된 후, 용존산소가 감소되는 단계와, 상기 용존산소저감조에서 용존산소가 감소된 상기 처리대상유체를 상기 무산소조를 유입시키는 단계를 포함하는 고도오수처리방법을 제공한다.And, according to another aspect of the invention, the step of flowing the fluid to be treated in the anaerobic tank, the denitrification treatment of the fluid to be treated, the fluid to be treated in the anaerobic tank is introduced into the anaerobic tank, the fluid to be treated Dephosphorizing, filtering the sludge through the separation membrane while nitrifying and organic matters are oxidized while oxygen is supplied to the object to be treated in the anaerobic tank into an aerobic membrane separation tank; After the part of the treated fluid in the membrane separation tank flows into the dissolved oxygen reduction tank through a conveying line, the dissolved oxygen is reduced, and the dissolved fluid in the dissolved oxygen low tank is reduced to the treated fluid. It provides an advanced sewage treatment method comprising introducing an anaerobic tank.

또한, 상기 호기막분리조 내 MLSS농도는 4,000 ~ 15,000mg/ℓ, 산기시간은 8 ~ 24시간, F/M비는 0.2 ~ 0.3kg·BOD/kg·MLSS 이하, BOD용적부하는 0.05 ~ 2.64kg·BOD/m3·day이하, 상기 분리막은 공극크기가 0.4㎛이면서 설계투과수량이 0.33m3/m2·day일 수 있다.In addition, the MLSS concentration in the aerobic membrane separation tank is 4,000 ~ 15,000mg / ℓ, acid time is 8 ~ 24 hours, F / M ratio is 0.2 ~ 0.3kgBOD / kgMLSS or less, BOD volume load 0.05 ~ 2.64 kg · BOD / m 3 · day or less, the separator may have a pore size of 0.4 μm and a design permeability of 0.33 m 3 / m 2 · day.

본 발명에 따른 분리막 모듈을 이용한 오수처리장치 및 이를 이용한 고도오수처리방법은, 외부에서 공급되는 처리대상유체가 무산소조, 혐기조, 호기막분리조를 순차 이동하며 탈질, 탈인, 질산화 및 유기물 산화 반응을 통해 유기물이 제거되며, 호기막분리조 내 일부 처리대상유체는 용존산소저감조를 통해 용존산소가 저감된 상태로 무산소조에 재유입된다. 따라서, 용존산소저감조를 통해 용존산소가 저감된 처리대상유체가 외부의 최초 유입되는 처리대상유체의 용존산소를 낮추어 무산소조 내에서의 탈질 처리효율을 높아지게 함으로써, 처리대상유체의 전체 처리효율이 높아지게 된다.The sewage treatment apparatus using the membrane module according to the present invention and the advanced sewage treatment method using the same, the treatment target fluid supplied from the outside of the anaerobic tank, anaerobic tank, aerobic membrane separation tank and the denitrification, dephosphorization, nitrification and organic oxidation reaction Organic matter is removed through the process, and some of the fluids to be treated in the aerobic membrane separation tank are re-introduced into the anoxic tank with the dissolved oxygen reduced through the dissolved oxygen reduction tank. Therefore, the treatment fluid in which dissolved oxygen is reduced through the reduction of dissolved oxygen lowers the dissolved oxygen of the treatment fluid flowing into the outside for the first time to increase the denitrification treatment efficiency in the oxygen-free tank, thereby increasing the overall treatment efficiency of the treatment fluid. do.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

도 1은 본 발명의 일실시예에 따른 분리막 모듈을 이용한 오수처리장치의 구성도이다. 도 1을 참조하면, 상기 오수처리장치는, 무산소조(100), 혐기조(200), 호기막분리조(300), 용존산소저감조(400), 반송부(500)를 구비하고 있다.1 is a block diagram of a sewage treatment apparatus using a membrane module according to an embodiment of the present invention. Referring to FIG. 1, the wastewater treatment apparatus includes an oxygen-free tank 100, an anaerobic tank 200, an aerobic membrane separation tank 300, a dissolved oxygen reduction tank 400, and a conveying unit 500.

상기 무산소조(100)는 외부에서 침사 및 스크린에 의해 입자상태가 큰 부유물질을 제거한 처리대상유체가 유입된다. 이때, 상기 무산소조(100)에 유입되는 상기 처리대상유체는 처리용량에 맞는 유량이 유입된다. 이러한, 상기 무산소조(100) 는 유입되는 상기 처리대상유체를 탈질 처리한다. 즉, 상기 무산소조(100)에서는 탈질반응을 통하여 상기 처리대상유체 내 질산성질소를 질소가스로 변환시켜 대기중으로 방출하여 제거한다. 여기서, 상기 무산소조(100) 내부의 용존산소는 0.2mg/ℓ이하가 되도록 유지한다.The oxygen-free tank 100 is a fluid to be treated to remove the suspended solids having a large particle state by the settling and screen from the outside. At this time, the fluid to be treated is introduced into the oxygen-free tank 100 flows in accordance with the processing capacity. The anoxic tank 100 denitrates the fluid to be treated. That is, in the anoxic tank 100, the nitric acid in the fluid to be treated is converted to nitrogen gas through a denitrification reaction and released to the atmosphere to be removed. Here, the dissolved oxygen in the oxygen-free tank 100 is maintained to be 0.2 mg / L or less.

상기 혐기조(200)는 상기 무산소조(100)로부터 처리된 후 공급되는 상기 처리대상유체를 탈인 처리한다. 이러한, 상기 혐기조(200)는 상기 무산소조(100)와 연결 설치되며, 내부에는 미생물이 투입되어 상기 처리대상유체의 유기물을 이용하여 인을 유입농도의 3 ~ 4배까지 방출하게 된다. 이때, 상기 혐기조(200)에서는 용존산소가 검출되지 않아야 한다.The anaerobic tank 200 dephosphorizes the treatment target fluid supplied after being processed from the anaerobic tank 100. The anaerobic tank 200 is connected to the anaerobic tank 100, and microorganisms are introduced therein to release phosphorus up to 3 to 4 times the inflow concentration using the organic material of the processing target fluid. At this time, dissolved oxygen should not be detected in the anaerobic tank 200.

여기서, 상기 무산소조(100) 및 상기 혐기조(200) 내부에는 미생물의 부패방지와 더불어 완전 혼합작용을 위해 교반기(110)(210)를 설치할 수 있다.Here, agitators 110 and 210 may be installed inside the anaerobic tank 100 and the anaerobic tank 200 to prevent the microorganisms from rot and to completely mix the microorganisms.

상기 호기막분리조(300)는 상기 혐기조(200)로부터 처리된 후 공급되는 상기 처리대상유체를 질산화반응 및 유기물 산화반응되게 함과 더불어 슬러지를 제거한 후 배출시킨다. 이러한, 상기 호기막분리조(300)는 상기 혐기조(200)와 연결 설치되며, 내부에는 산소를 공급하는 산기관(310) 및 상기 처리대상유체 내 슬러지를 걸러내는 분리막(320)이 구비된다. 여기서, 산기관(310)은 외부에 설치된 블로워(311)를 통해 외부에서 산소를 공급받아 상기 호기막분리조(300) 내부에 포기하게 된다. 이러한, 상기 산기관(310)에서 공급되는 산소에 의해 상기 호기막분리조(300) 내 미생물의 성장과 자기산화 등과 같은 생물학적 반응을 통해 유기물이 처리됨과 더불어 유기질소 및 암모니아성질소를 질산성질소로 산화되게 한다. 즉, 상기 호기막분리조(300) 내부에서 상기 산기관(310)이 마련됨에 따라, 상기 호기막분리조(300) 내부에서는 상기 혐기조(200)에서 처리된 상기 처리대상유체를 산소가 공급되는 상태에서 질산화 반응 및 유기물 산화 반응이 진행된다.The aerobic membrane separation tank 300 removes sludge as well as allowing nitrification and organic matter oxidation of the treatment target fluid supplied after being treated from the anaerobic tank 200. The aerobic membrane separation tank 300 is installed in connection with the anaerobic tank 200, and has an diffuser 310 for supplying oxygen and a separator 320 for filtering sludge in the fluid to be treated. Here, the diffuser 310 is supplied with oxygen from the outside through the blower 311 installed in the outside to give up in the aerobic membrane separation tank (300). The organic material is processed through biological reactions such as growth of microorganisms in the aerobic membrane separation tank 300 and self oxidation by oxygen supplied from the diffuser 310, and organic nitrogen and ammonia nitrogen are converted into nitrate nitrogen. To be oxidized. That is, as the diffuser 310 is provided in the aerobic membrane separation tank 300, oxygen is supplied to the treated fluid treated in the anaerobic tank 200 in the aerobic membrane separation tank 300. In the state, nitrification and organic matter oxidation proceed.

상기 분리막(320)은 미생물 및 슬러지를 고액분리한 후, 처리된 상기 처리대상유체를 배출시킨다. 이러한, 상기 분리막(320)은 흡입여과방식의 분리막 구조를 가진다. 그리고, 상기 분리막(320)은 앞서 설명한 블로워(311)로부터 외부에서 산소를 공급받으면서 상기 분리막(320)의 오염이 억제되게 하는 산기관(321)을 설치할 수 있다. 여기서, 상기 분리막(320)의 평균공극은 0.2 ~ 0.5㎛이며, 보다 바람직하게는 공극은 0.4㎛이다.The separator 320 solid-separates microorganisms and sludge, and then discharges the treated fluid. The separator 320 has a separator structure of suction filtration. In addition, the separation membrane 320 may be provided with an diffuser 321 that allows contamination of the separation membrane 320 to be suppressed while receiving oxygen from the outside of the blower 311 described above. Here, the average pore of the separation membrane 320 is 0.2 ~ 0.5㎛, more preferably the void is 0.4㎛.

상기 용존산소저감조(400)는 상기 호기막분리조(300)로부터 일부의 상기 처리대상유체를 공급받은 후, 높은 용존산소를 가지는 상기 처리대상유체를 일정시간 체류시켜 용존산소를 저감시킨상태로 상기 무산소조(100)로 배출시킨다. 이러한, 상기 용존산소저감조(400)는 상기 무산소조(100)와 연결되어, 용존산소가 저감된 상기 처리대상유체를 상기 무산소조(100)로 공급함으로써, 외부에서 상기 무산소조(100)로 공급되는 높은 용존산소를 가지는 상기 처리대상유체의 용존산소를 제거함으로써, 앞서 설명한 상기 무산소조(100)에서 탈질반응이 효율적으로 진행될 수 있게 된다. 여기서, 상기 용존산소저감조(400) 내부의 용존산소는 0.1mg/ℓ이하가 되도록 유지한다. 그리고, 상기 용존산소저감조(400) 내부에는 미생물의 부패방지와 더불어 완전 혼합작용을 위해 교반기(410)를 설치할 수 있다.The dissolved oxygen reduction tank 400 receives a portion of the fluid to be treated from the aerobic membrane separation tank 300, and then maintains the fluid to be treated with high dissolved oxygen for a predetermined time to reduce dissolved oxygen. It is discharged to the oxygen-free tank (100). The dissolved oxygen reduction tank 400 is connected to the anoxic tank 100 to supply the treated fluid with reduced dissolved oxygen to the anoxic tank 100 so that the dissolved oxygen tank 100 is supplied to the anoxic tank 100 from the outside. By removing the dissolved oxygen of the fluid to be treated having dissolved oxygen, the denitrification reaction can be efficiently performed in the anoxic tank 100 described above. Here, the dissolved oxygen inside the dissolved oxygen reduction tank 400 is maintained to be 0.1 mg / L or less. In addition, an agitator 410 may be installed inside the dissolved oxygen reduction tank 400 to prevent the microorganisms from rot and to completely mix the microorganisms.

상기 반송부(500)는 상기 호기막분리조(300) 내 일부의 상기 처리대상유체가 상기 용존산소저감조(400)로 반송 유입되게 한다. 이러한, 상기 반송부(500)는 상기 호기막분리조(300)와 상기 용존산소저감조(400)를 연결시킨다. 여기서, 상기 반송부(500)는 반송라인(510), 반송펌프(520)를 포함한다.The conveyer 500 allows a portion of the fluid to be treated to flow into the dissolved oxygen reduction tank 400 in the aerobic membrane separation tank 300. The conveying unit 500 connects the aerobic membrane separation tank 300 and the dissolved oxygen reduction tank 400. Here, the conveying unit 500 includes a conveying line 510, a conveying pump 520.

상기 반송라인(510)은 상기 호기막분리조(300)와 상기 용존산소저감조(400)를 연결하는 관 형상 부재이다. 이러한, 상기 반송라인(510)을 통해 상기 호기막분리조(300) 내 일부의 상기 처리대상유체가 상기 용존산소저감조(400)로 이송 가이드된다. 상기 반송펌프(520)는 상기 반송라인(510)의 일측부에 연결 설치되어, 상기 반송라인(510)을 통해 상기 호기막분리조(300) 내 상기 처리대상유체가 상기 용존산소저감조(400)로 흡입 이송되게 한다.The conveying line 510 is a tubular member for connecting the aerobic membrane separation tank 300 and the dissolved oxygen reduction tank 400. Through this conveying line 510, a portion of the fluid to be treated in the aerobic membrane separation tank 300 is guided to the dissolved oxygen reduction tank 400. The conveying pump 520 is connected to one side of the conveying line 510, the fluid to be treated in the aerobic membrane separation tank 300 through the conveying line 510 the dissolved oxygen reduction tank 400 To be transported by suction.

이같이, 상기 반송라인(510)은 상기 호기막분리조(300) 내 상기 처리대상유체를 상기 용존산소저감조(400)로 1회만 반송되게 함으로써, 상기 처리대상유체 내 미생물의 스트레스가 저감되어, 상기 미생물에 의한 상기 처리대상유체의 처리효율이 높아질 수 있게 된다. 또한, 일실시예에 따른 오수처리장치는, 상기 반송라인(510)에서 하나의 펌프를 사용함과 더불어 그에 따라 설치되는 유량계(도면미도시) 수가 저감되면서 설치비용 및 유지비용이 적게소요된다.In this way, the conveying line 510 is to convey the fluid to be treated only once in the aerobic membrane separation tank 300 to the dissolved oxygen reduction tank 400, thereby reducing the stress of the microorganisms in the fluid to be treated, The treatment efficiency of the fluid to be treated by the microorganism may be increased. In addition, the sewage treatment apparatus according to an embodiment requires the use of a single pump in the conveying line 510 and reduces the installation cost and maintenance cost while reducing the number of flow meters (not shown) installed accordingly.

도 2는 본 발명의 일실시예에 따른 오수처리과정을 나타낸 도면이다. 도 2를 참조하여 고도오수처리방법을 설명하면 다음과 같다.2 is a view showing a sewage treatment process according to an embodiment of the present invention. Referring to Figure 2 describes the advanced sewage treatment method as follows.

먼저, 상기 처리대상유체를 상기 무산소조(100)에 유입시켜, 상기 처리대상유체를 탈질 처리하는 단계를 수행한다. 이때, 상기 무산소조(100) 내 상기 처리대상유체의 용존산소는 0.1mg/ℓ 이하로 유지시킨 상태로, 상기 교반기(110)로 외부 에서 유입되는 상기 처리대상유체 및 이후 상기 용존산소저감조(400)를 통해 유입되는 상기 처리대상유체를 혼합시킨다. 이렇게 혼합된 상기 처리대상유체는 상기 무산소조(100)에서 질산성질소를 전자수용체로 하여 질소가 스스로 환원하는 탈질처리가 이루어지게 된다. 그리고, 상기 무산소조(100)에서 SDNR은 0.03 ~ 0.11mgNO3-N/mgMLSS·day이며, HRT는 1.5hr 이상이 되게한다.First, the fluid to be treated is introduced into the anaerobic tank 100 to perform a denitrification treatment of the fluid to be treated. At this time, the dissolved oxygen of the fluid to be treated in the oxygen-free tank 100 is maintained at 0.1mg / L or less, the fluid to be treated from the outside flowing into the stirrer 110, and then the dissolved oxygen reduction tank 400 Mix the fluid to be treated through the mixture. The mixed fluid to be treated is subjected to a denitrification treatment in which nitrogen is reduced by using nitrogen nitrate as an electron acceptor in the oxygen-free tank 100. And, in the oxygen-free tank 100, SDNR is 0.03 ~ 0.11mgNO 3 -N / mgMLSS · day, HRT is to be 1.5hr or more.

이렇게, 상기 무산소조(100)에서 탈질 처리된 상기 처리대상유체는 상기 혐기조(200)로 유입된 후, 탈인 처리하는 단계를 수행한다. 이때, 상기 혐기조(300) 내부에는 용존산소가 검출되지 않도록 유지시키며, 내부에 미생물을 투입하여 상기 미생물이 상기 처리대상유체의 유기물을 이용하여 인을 유입농도의 3 ~ 4배까지 방출되게 한다. 여기서, 상기 혐기조(200) 내 상기 교반기(210)가 작동하면서 상기 미생물의 부패방지와 더불어 유입된 상기 처리대상유체를 혼합시키게 된다.As such, the treated fluid denitrified in the anaerobic tank 100 is introduced into the anaerobic tank 200 and then dephosphorized. At this time, the dissolved oxygen is maintained inside the anaerobic tank 300 so as not to be detected, and microorganisms are introduced into the inside of the anaerobic tank so that the microorganisms are discharged to 3 to 4 times the inflow concentration using the organic material of the fluid to be treated. Here, the stirrer 210 in the anaerobic tank 200 is operated to mix the fluid to be treated with the microorganisms.

그리고, 상기 혐기조(300)에서 탈인 처리된 상기 처리대상유체는 상기 호기막분리조(300)로 유입된 후, 상기 산기관(310)을 통해 포기되는 산소로 인해 상기 미생물의 성장 및 자기산화 등과 같은 생물학적 반응이 발생하면서 상기 처리대상유체 내 유기물을 처리하게 된다. 즉, 상기 호기막분리조(300)에서는 상기 처리대상유체에서 유기물을 제거함과 동시에 유기질소 및 암모니아성질소를 질산성질소로 산화하는 과정이 이루어지게 된다. 이때, 상기 산기관(310)은 상기 호기막분리조(300) 내 상기 처리대상유체를 균등하게 교반함과 동시에 용존산소가 2ppm이상 유지되게 한다.Then, the treated fluid dephosphorized in the anaerobic tank 300 is introduced into the aerobic membrane separation tank 300, the growth and self-oxidation of the microorganisms due to the oxygen abandoned through the acid pipe 310 The same biological reaction occurs to treat organic matter in the fluid to be treated. That is, in the aerobic membrane separation tank 300, a process of oxidizing organic nitrogen and ammonia nitrogen to nitrate nitrogen while removing organic substances from the fluid to be treated is performed. At this time, the diffuser 310 uniformly stirs the fluid to be treated in the aerobic membrane separation tank 300 and maintains dissolved oxygen at least 2 ppm.

더불어, 상기 호기막분리조(300)로 유입된 상기 처리대상유체는 상기 분리막(320)에 의해 미생물 및 슬러지를 고액분리한 후, 처리된 상기 처리대상유체를 배출시키게 된다. 이때, 상기 호기막분리조(300) 내 MLSS농도는 4,000 ~ 15,000mg/ℓ, 산기시간은 8 ~ 24시간, F/M비는 0.2 ~ 0.3kg·BOD/kg·MLSS 이하, BOD용적부하는 0.05 ~ 2.64kg·BOD/m3·day이하, 상기 분리막은 공극크기가 0.4㎛이면서 설계투과수량이 0.33m3/m2·day가 되게 한다. 더불어, 상기 호기막분리조(300)의 HRT는 4 ~ 6.0hr가 되게 한다.In addition, the fluid to be treated introduced into the aerobic membrane separation tank 300 solid-separates microorganisms and sludge by the separation membrane 320 and then discharges the treated fluid. At this time, the MLSS concentration in the aerobic membrane separation tank 300 is 4,000 ~ 15,000mg / ℓ, acid time is 8 ~ 24 hours, F / M ratio is 0.2 ~ 0.3kgBOD / kgMLSS or less, BOD volume load 0.05 to 2.64 kg · BOD / m 3 · day or less, the separation membrane has a pore size of 0.4 μm and a design permeability of 0.33 m 3 / m 2 · day. In addition, the HRT of the aerobic membrane separation tank 300 is to be 4 ~ 6.0hr.

이후, 상기 반송부(500)의 반송라인(510)을 거쳐 상기 호기막분리조(300) 내 일부 상기 처리대상유체가 상기 용존산소저감조(400)로 유입된 후, 용존 산소를 감소시키게 된다. 즉, 상기 용존산소저감조(400)에는 상기 호기막분리조(300)로부터 높은 용존산소를 가지는 상기 처리대상유체가 일정시간 체류되면서 용존산소의 저감상태가 이루어지게 된다. 이러한, 상기 용존산소저감조(400)에 유입된 상기 처리대상유체는 용존산소를 0.1mg/ℓ로 유지하며, HRT는 0.5hr 이상을 유지하게 된다.Thereafter, some of the fluid to be treated in the aerobic membrane separation tank 300 flows into the dissolved oxygen reduction tank 400 through the transport line 510 of the transport unit 500 to reduce dissolved oxygen. . That is, in the dissolved oxygen reduction tank 400, the dissolved oxygen is reduced while the fluid to be treated having high dissolved oxygen stays for a predetermined time from the aerobic membrane separation tank 300. The fluid to be treated introduced into the dissolved oxygen reduction tank 400 maintains dissolved oxygen at 0.1 mg / l, and HRT is maintained at 0.5 hr or more.

상기 용존산소저감조(400)를 통해 낮은 용존산소를 포함하는 상기 처리대상유체는 앞서 설명한 상기 무산소조(100)로 공급되면서, 상기 무산소조(100)로 유입되는 외부의 최초 상기 처리대상유체의 탈질효율을 높이게 된다. 즉, 상기 용존산소저감조(400)에서 용존산소가 저감된 상기 처리대상유체가 상기 무산소조(100)로 유입되면, 외부에서 유입되는 최초 상기 처리대상유체 내 질산성 질소를 전자수용체로 하여 질소가 환원되는 탈질반응이 효율적으로 진행된다.The treatment fluid containing low dissolved oxygen through the dissolved oxygen reduction tank 400 is supplied to the anoxic tank 100 as described above, and the denitrification efficiency of the first external fluid to be treated flowing into the oxygen-free tank 100 is reduced. Will increase. That is, when the fluid to be treated in which the dissolved oxygen is reduced in the dissolved oxygen reduction tank 400 flows into the oxygen-free tank 100, nitrogen is added using the nitrate nitrogen in the fluid to be treated first as an electron acceptor. Reduced denitrification proceeds efficiently.

이와 같이, 일실시예의 분리막 모듈을 이용한 오수처리장치 및 이를 이용한 오수처리방법은, 외부에서 공급되는 처리대상유체가 상기 무산소조(100), 상기 혐기조(200), 호기막분리조(300)를 순차 이동하며 탈질, 탈인, 질산화 및 유기물 산화 반응을 통해 유기물이 제거되며, 상기 호기막분리조 내 일부 처리대상유체는 상기 용존산소저감조(400)를 통해 용존산소가 저감된 상태로 상기 무산소조(100)에 재유입된다. 따라서, 상기 용존산소저감조(100)를 통해 용존산소가 저감된 상기 처리대상유체가 외부의 최초 유입되는 상기 처리대상유체의 용존산소를 낮추어 상기 무산소조(100) 내에서의 탈질 처리효율을 높아지게 함으로써, 상기 처리대상유체의 전체 처리효율이 높아지게 된다.As such, in the sewage treatment apparatus using the membrane module and the sewage treatment method using the same, the treatment target fluid supplied from the outside sequentially the anaerobic tank 100, the anaerobic tank 200, the aerobic membrane separation tank 300 The organic matter is removed through denitrification, dephosphorization, nitrification and organic oxidation reaction, and some of the fluids to be treated in the aerobic membrane separation tank have the dissolved oxygen reduced through the dissolved oxygen reduction tank 400. Is reintroduced to Therefore, by lowering the dissolved oxygen of the treatment target fluid in which the dissolved oxygen is reduced through the dissolved oxygen reduction tank 100 is first introduced to the outside by increasing the denitrification treatment efficiency in the anoxic tank 100. In addition, the overall treatment efficiency of the fluid to be treated is increased.

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

도 1은 본 발명의 일실시예에 따른 분리막 모듈을 이용한 오수처리장치의 구성도이다.1 is a block diagram of a sewage treatment apparatus using a membrane module according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 따른 오수처리과정을 나타낸 도면이다.2 is a view showing a sewage treatment process according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 간단한 설명>BRIEF DESCRIPTION OF THE DRAWINGS FIG.

100: 무산소조 200: 혐기조100: anaerobic tank 200: anaerobic tank

300: 호기막분리조 310,321: 산기관300: aerobic membrane separation tank 310, 321: diffuser

320: 분리막 400: 용존산소저감조320: separator 400: dissolved oxygen reduction

500: 반송부 510: 반송라인500: conveying unit 510: conveying line

520: 반송펌프520: return pump

Claims (8)

외부로부터 처리대상유체가 유입되며, 유입된 상기 처리대상유체를 탈질 처리하는 무산소조와;An anoxic tank into which the fluid to be treated is introduced from the outside, and denitrifying the fluid to be treated; 상기 무산소조와 연결되며, 상기 무산소조로부터 공급되는 상기 처리대상유체를 미생물에 의해 탈인 처리하는 혐기조와;An anaerobic tank connected to the anoxic tank and dephosphorizing the fluid to be treated supplied from the anoxic tank by a microorganism; 상기 혐기조와 연결되며, 내부에는 산소를 공급하는 산기관 및 평균 0.4㎛의 공극크기를 가지면서 설계투과수량이 0.33m3/m2·day인 흡입여과방식의 분리막 구조를 가지면서 산기관이 일체로 마련된 분리막이 마련되어, 상기 혐기조로부터 공급되는 상기 처리대상유체가 질산화반응 및 유기물 산화 반응되게 함과 동시에 슬러지를 제거한 상태로 배출시키는 호기막분리조와;It is connected to the anaerobic tank, and has an acid pipe that supplies oxygen and has an air permeation size of 0.4 μm on average, and has a permeate membrane structure of 0.33m 3 / m 2 · day with a permeation filter and a diffuser structure. An aerobic membrane separation tank provided with a separation membrane configured to allow the treatment fluid supplied from the anaerobic tank to undergo nitrification and organic oxidation reaction and to discharge the sludge from the sludge; 상기 무산소조와 연결되며, 상기 호기막분리조로부터 일부의 상기 처리대상유체를 공급받은 후, 상기 처리대상유체에서 용존산소를 저감한 후 상기 무산소조를 배출시키는 용존산소저감조; 및,A dissolved oxygen lowering tank connected to the anoxic tank and receiving a part of the fluid to be treated from the aerobic membrane separation tank and then reducing the dissolved oxygen in the fluid to be treated; And, 상기 호기막분리조와 상기 용존산소저감조를 연결하여, 상기 호기막분리조 내 일부 상기 처리대상유체가 상기 용존산소저감조로 유입되게 하는 반송부를 포함하며,And a conveying unit connecting the aerobic membrane separation tank and the dissolved oxygen reduction tank so that a part of the fluid to be treated in the aerobic membrane separation tank flows into the dissolved oxygen reduction tank, 상기 무산소조 내 용존산소는 0.2mg/ℓ이하를 유지하면서 SDNR은 0.03 ~ 0.11mgNO3-N/mgMLSS·day이며, HRT는 1.5hr 이상이 되게 하며, 상기 용존산소저감조 내 용존산소는 0.1mg/ℓ이하로 유지됨과 동시에 HRT는 0.5hr이며, 상기 호기막분리조 내 MLSS농도는 4,000 ~ 15,000mg/ℓ, 산기시간은 8 ~ 24시간, F/M비는 0.2 ~ 0.3kg·BOD/kg·MLSS 이하, BOD용적부하는 0.05 ~ 2.64kg·BOD/m3·day이하, HRT는 4 ~ 6hr이고,Dissolved oxygen in the oxygen-free tank is less than 0.2mg / ℓ while SDNR is 0.03 ~ 0.11mgNO 3 -N / mgMLSS · day, HRT is more than 1.5hr, dissolved oxygen in the dissolved oxygen low reduction tank is 0.1mg / At the same time, the HRT is 0.5hr and the MLSS concentration in the aerobic membrane separation tank is 4,000-15,000mg / l, the acid time is 8-24 hours, and the F / M ratio is 0.2-0.3kgBOD / kg MLSS or less, BOD volume load is 0.05 ~ 2.64kgBOD / m 3 · day or less, HRT is 4 ~ 6hr, 상기 반송부는, 상기 호기막분리조와 상기 용존산소저감조를 연결하는 반송라인과,The conveying unit, and a conveying line for connecting the aerobic membrane separation tank and the dissolved oxygen reduction tank, 상기 반송라인에 연결 설치되어, 상기 호기막분리조 내 상기 처리대상유체가 상기 반송라인을 통해 상기 용존산소저감조로 흡입 이송되게 하는 반송펌프를 포함하는 분리막 모듈을 이용한 오수처리장치.The sewage treatment apparatus using a separation membrane module is connected to the conveying line, including a conveying pump for suctioning the fluid to be treated in the aerobic membrane separation tank to the dissolved oxygen reduction tank through the conveying line. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR20090092487A 2009-09-29 2009-09-29 Wastewater treatment apparatus with membrane module KR100992321B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090092487A KR100992321B1 (en) 2009-09-29 2009-09-29 Wastewater treatment apparatus with membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090092487A KR100992321B1 (en) 2009-09-29 2009-09-29 Wastewater treatment apparatus with membrane module

Publications (1)

Publication Number Publication Date
KR100992321B1 true KR100992321B1 (en) 2010-11-05

Family

ID=43409374

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090092487A KR100992321B1 (en) 2009-09-29 2009-09-29 Wastewater treatment apparatus with membrane module

Country Status (1)

Country Link
KR (1) KR100992321B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304100A (en) * 2013-06-26 2013-09-18 中国水电顾问集团中南勘测设计研究院 High-activity bio-bed sewage treatment intensification system and sewage treatment method
WO2016159689A1 (en) * 2015-03-31 2016-10-06 충북대학교 산학협력단 Hybrid biological nutrient salts treatment system
CN106116034A (en) * 2016-07-28 2016-11-16 北京桑德环境工程有限公司 A kind of sewage treatment process of autotrophic denitrification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422211B1 (en) * 2000-12-06 2004-03-12 대한통운 주식회사 Management Unit and Method of Foul and Waste Water
KR100566321B1 (en) 2004-09-03 2006-03-30 한국수자원공사 Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
KR100649261B1 (en) 2005-07-21 2006-11-24 코오롱건설주식회사 External-submersed membrane bioreactor with minimized air scrubbing of membrane module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422211B1 (en) * 2000-12-06 2004-03-12 대한통운 주식회사 Management Unit and Method of Foul and Waste Water
KR100566321B1 (en) 2004-09-03 2006-03-30 한국수자원공사 Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
KR100649261B1 (en) 2005-07-21 2006-11-24 코오롱건설주식회사 External-submersed membrane bioreactor with minimized air scrubbing of membrane module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304100A (en) * 2013-06-26 2013-09-18 中国水电顾问集团中南勘测设计研究院 High-activity bio-bed sewage treatment intensification system and sewage treatment method
CN103304100B (en) * 2013-06-26 2014-04-30 中国水电顾问集团中南勘测设计研究院 High-activity bio-bed sewage treatment intensification system and sewage treatment method
WO2016159689A1 (en) * 2015-03-31 2016-10-06 충북대학교 산학협력단 Hybrid biological nutrient salts treatment system
CN106116034A (en) * 2016-07-28 2016-11-16 北京桑德环境工程有限公司 A kind of sewage treatment process of autotrophic denitrification

Similar Documents

Publication Publication Date Title
AU2001280766B2 (en) Method and apparatus for treating wastewater using membrane filters
CA2537384A1 (en) Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
KR101368295B1 (en) Integrated waste water treatment apparatus
KR101463987B1 (en) Method of treating organic waste water
KR100926268B1 (en) Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water
KR101068579B1 (en) Apparatus and method for alternative aeration-effluent wastewater treatment using ceramic membrane
CN109264859A (en) A2O2Sewage disposal system and its processing method
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
KR100992321B1 (en) Wastewater treatment apparatus with membrane module
WO2003043941A1 (en) Apparatus and method for treating organic waste water
JP2006239627A (en) System for treatment of organic waste water containing nitrogen
KR100624768B1 (en) System and method for advanced sewage treatment using microorganism and separation membrane
KR100709456B1 (en) Waste water disposal plant and waste water disposal method
JP5743448B2 (en) Sewage treatment equipment
JP7015117B2 (en) Organic wastewater treatment method and organic wastewater treatment system
KR20130001066A (en) Advanced wastewater treatment for biologically removing nitrogen and phosphorus using membrane atteched biofilms
KR100655471B1 (en) Apparatus for wastewater treatment using up-flow bio reactor and membrane filter
KR20040020325A (en) A method for treating the graywater by membrane
CN114409204A (en) Automatic wastewater treatment system and treatment method thereof
KR19990083645A (en) Organic material and nitrogen, phosphate removal method using intermitted aeration process and plate type microfiltration membrane
CN207108603U (en) A2O2Sewage disposal system
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
KR100542676B1 (en) Apparatus and method for treating wastewater using membrane
KR200283062Y1 (en) Advanced Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130917

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140819

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160923

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171012

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181128

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190813

Year of fee payment: 10