KR100649261B1 - External-submersed membrane bioreactor with minimized air scrubbing of membrane module - Google Patents

External-submersed membrane bioreactor with minimized air scrubbing of membrane module Download PDF

Info

Publication number
KR100649261B1
KR100649261B1 KR1020050066471A KR20050066471A KR100649261B1 KR 100649261 B1 KR100649261 B1 KR 100649261B1 KR 1020050066471 A KR1020050066471 A KR 1020050066471A KR 20050066471 A KR20050066471 A KR 20050066471A KR 100649261 B1 KR100649261 B1 KR 100649261B1
Authority
KR
South Korea
Prior art keywords
tank
membrane
air
reactor
external
Prior art date
Application number
KR1020050066471A
Other languages
Korean (ko)
Inventor
강문선
김건태
송종화
안창효
임성균
채규정
Original Assignee
코오롱건설주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱건설주식회사 filed Critical 코오롱건설주식회사
Priority to KR1020050066471A priority Critical patent/KR100649261B1/en
Application granted granted Critical
Publication of KR100649261B1 publication Critical patent/KR100649261B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure

Abstract

An external-submerged membrane bioreactor is provided to maximize a nitrogen removal rate while minimizing the time required, increase denitrification efficiency by reducing an amount of air required for cleaning a membrane, and prevent cavitation in case of absorption. An external-submerged membrane bioreactor is formed of a stabilizer(10), an anoxic reactor(20), an anaerobic reactor(30), an oxic reactor(40), and an external-submerged membrane reactor(50) additionally installed at the outside of the oxic reactor and connected through a pipe line(L1). The stabilizer is connected with the external-submerged membrane reactor by a return line(L3). A DO(Dissolved Oxygen) reduction device(60) is installed at the return line. A pulse aeration device formed of an air receiver(72) and an automatic pressure valve(74) is installed at an air cleaning line(L4) supplying compressed air of a compressor(70) to a membrane(52) to reduce an amount of air required for cleaning the membrane installed in the external-submerged membrane reactor. The DO reduction device includes a vacuum decompression device(62) removing dissolved oxygen by generating vacuum and a sodium sulfite and cobalt ion injector(64) additionally removing dissolved oxygen remaining in case of emergency.

Description

분리막 세정용 폭기량이 최소화된 외부 침지식 생물학적 분리막 반응조{EXTERNAL-SUBMERSED MEMBRANE BIOREACTOR WITH MINIMIZED AIR SCRUBBING OF MEMBRANE MODULE}EXTERNAL-SUBMERSED MEMBRANE BIOREACTOR WITH MINIMIZED AIR SCRUBBING OF MEMBRANE MODULE}
도 1은 본 발명에 따른 외부 침지식 생물학적 분리막 반응조를 설명하기 위한 구성도.1 is a block diagram illustrating an external immersion biological membrane reaction tank according to the present invention.
* 도면의 주요 부호에 대한 설명 *Description of the main symbols in the drawings
10: 안정화조 20: 무산소조10: stabilization tank 20: anoxic tank
30: 혐기조 40: 호기조30: anaerobic tank 40: aerobic tank
42: 블로워 44: 약품주입펌프42: blower 44: chemical injection pump
50: 외부 침지식 분리막조 52: 분리막50: external immersion membrane tank 52: separator
60: 용존산소 저감장치 62: 진공 감압장치60: dissolved oxygen reduction device 62: vacuum decompression device
64: 아황산나트륨/코발트이온 주입장치64: sodium sulfite / cobalt ion injector
70: 컴프레서 72: 에어리시버70: compressor 72: air receiver
74: 자동압력밸브 80: 흡인펌프74: automatic pressure valve 80: suction pump
82: 공기제거장치 83: 점검창82: air removal unit 83: inspection window
84: 액주계 85: 레벨스위치84: liquid meter 85: level switch
86: 자동밸브 87: 진공펌프86: automatic valve 87: vacuum pump
90: 내부반송펌프90: internal return pump
L1: 관로 L2: 유입관로L1: pipeline L2: inlet pipeline
L3: 반송라인 L4: 공기세정라인L3: Return Line L4: Air Cleaning Line
L5: 배출관로 L6: 산기관L5: discharge line L6: diffuser
L7: 바이패스라인 L8: 공기배출관로L7: Bypass Line L8: Air Vent Line
본 발명은 분리막 세정용 폭기량이 최소화된 외부 침지식 분리막 반응조 (External-Submersed Membrane Bioreactor)에 관한 것으로, 더욱 상세하게는 유입수내 유기물을 최대한 탈질에 활용하기 위한 반응조 구성방법, 기존 활성슬러지공정의 용이한 고도개선을 위한 외부침지식(External-Submersed) 분리막조, 분리막 세정용 폭기량 감소를 위한 펄스에어레이션(Pulse Aeration), 내부 반송라인의 용존산소 저감을 위한 진공 감압장치와 약품주입장치, 흡입펌프의 공동현상을 최소화하기 위한 공기제거장치(Air Separator)가 제공된 외부 침지식 분리막 반응조에 관한 것이다.The present invention relates to an externally-submerged membrane reactor (minimally immersed membrane bioreactor) in which the aeration amount for membrane cleaning is minimized, and more specifically, a method for constructing a reactor for maximizing denitrification of organic matter in the influent, and conventional activated sludge process. External-Submersed Membrane Tank for Easy Altitude Improvement, Pulse Aeration for Reducing Aeration Amount for Membrane Cleaning, Vacuum Decompression Device, Chemical Injection Device, Suction for Reducing Dissolved Oxygen in Internal Transfer Line An external submerged membrane reactor provided with an air separator to minimize the cavitation of a pump.
일반적으로 하수 및 폐수의 고도처리를 위해 생물반응조를 이용한 하, 폐수 고도처리기술이 많이 적용되고 있다.In general, advanced wastewater and wastewater treatment technology using a bioreactor for the advanced treatment of sewage and wastewater has been applied.
이와 같은 기존의 하수고도처리를 위한 기존 분리막 반응조는 다음과 같은 문제가 있다.Existing membrane reactor for the conventional sewage treatment has the following problems.
1. 통상적인 국내 침지형 분리막 반응조(MBR: Membrane Bioreactor)는, 분리막을 기존 호기조에 침지함으로써 활성슬러지공정을 분리막 반응조 공정으로 개보수 하는데, 그러나 이때 조를 비우고 공사를 해야하기 때문에 공사기간이 길어지고, 개보수 작업이 현장에서 진행되어야하는 등 개보수시 많은 제약사항이 있다.1. Conventional domestic immersion membrane reactor (MBR: Membrane Bioreactor) remodels the activated sludge process to the membrane reactor by immersing the membrane in the existing aerobic tank, but at this time, the construction period is longer because the tank is empty and construction is required. There are many limitations in renovation, such as renovation work that must be carried out on site.
2. 국내 하수는 유입수의 유기물/질소 비(C/N 비)가 낮아 탈질에 필요한 충분한 유기원 확보가 어려워 분리막 반응조를 통한 질소 제거율이 낮다.2. Domestic sewage has low organic matter / nitrogen ratio (C / N ratio) of influent and it is difficult to secure sufficient organic source for denitrification, so the nitrogen removal rate through membrane reactor is low.
3. 질소와 인의 동시제거를 위해 일반적으로 반응조 구성이 탈인을 위한 혐기조가 전단에 위치하고, 그 후단에 탈질용 무산소조가 위치하게 된다. 그러나 이와 같은 조 구성은 탈질과 탈인 과정에서는 발생하는 기질경쟁으로 인해 후단 무산소조에서는 충분한 유기원 확보가 불가하여 질소 제거율이 저조한 문제가 발생한다.3. For simultaneous removal of nitrogen and phosphorus, the anaerobic tank for dephosphorization is generally located at the front, and the anoxic tank for denitrification is located at the rear. However, such a crude composition has a problem of low nitrogen removal rate due to the inability to secure sufficient organic sources in the rear anoxic tank due to substrate competition generated during denitrification and dephosphorization.
4. 분리막조에서는 분리막 세정을 위한 공기량의 과다공급으로 에너지 비용이 매우 높고 분리막조에서 혐기조와 무산소조로 반송되는 내부반송라인에 용존산소(DO: Dissolved Oxygen)농도가 높아 탈인과 탈질 미생물이 저해를 받게 된다.4. Membrane tanks have a high energy cost due to the excessive supply of air to clean the membranes, and high dissolved dissolved oxygen (DO) concentrations in the inner conveying lines from the membrane tanks to the anaerobic and anaerobic tanks. Will receive.
5. 생물학적 인 제거는 인을 과다섭취한 미생물을 빠르게 인발함으로써(즉 짧은 미생물체류시간(SRT: Solids Retention Time)이 필요한데, 분리막 반응조는 기본특성상 긴 미생물체류시간 유지가 불가피 하여 인 제거율이 저조하다.5. Biological phosphorus removal requires the rapid extraction of over-phosphorus-induced microorganisms (ie, short solids retention time (SRT), and membrane reactors are inherently incapable of maintaining long microbial retention times, resulting in low phosphorus removal rates). .
6. 분리막 반응조 공정의 흡인펌프는 설치위치가 비교적 높거나 또는 장기운전에 따른 멤브레인의 오염에 의해 흡인시 기포유입에 따른 공동현상(Cavitation)이 자주 발생하여 처리수 생산량이 줄어드는 문제가 있다.6. The suction pump of the membrane reaction tank process has a problem in that the amount of treated water is reduced due to the frequent occurrence of cavitation due to the inflow of bubbles during suction due to the high installation position or contamination of the membrane due to long-term operation.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 하수의 저 유기물/질소 비에 대응하여 탈질과 탈인을 극대화할 수 있는 조 구성 방안을 제시하고, 분리막 세정을 위한 과폭방지 방안, 분리막 반응조로부터 혐기조와 무산소조로 반송되는 슬러지의 용존산소 농도 저감 방안, 흡인시 공동현상 방지방안이 제공된 외부 침지식 생물학적 분리막 반응조를 제공하는데 있다.The present invention has been made to solve the conventional problems as described above, the object of the present invention is to propose a bath configuration to maximize the denitrification and dephosphorization in response to the low organic matter / nitrogen ratio of sewage, washing the membrane The present invention provides an externally immersed biological membrane reaction tank provided with a method for preventing excessive flooding, a method for reducing the dissolved oxygen concentration of sludge conveyed from a membrane reactor to an anaerobic tank and an anoxic tank, and a method for preventing cavitation upon suction.
본 발명이 제안하는 분리막 세정용 폭기량이 최소화된 외부 침지식 생물학적 분리막 반응조는, 분리막이 침지되는 외부 분리막조를 포함한 구성으로 안정화조, 무산소조, 혐기조, 호기조 순서로 이루어져 있으며, 분리막 세정용 과폭기를 방지하기 위한 펄스에어레이션 장치, 반송슬러지내 용존산소 저감장치, 흡인라인의 공기제거장치가 결합된다.Externally immersed biological membrane reaction tank minimizing the amount of aeration for cleaning the membrane proposed by the present invention is composed of a stabilization tank, anoxic tank, anaerobic tank, aerobic tank in the configuration including the external membrane tank in which the membrane is immersed, the aeration membrane cleaning membrane To prevent the pulse aeration device, dissolved oxygen reduction device in the conveying sludge, air removal device of the suction line is combined.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in more detail.
도 1은 본 발명에 따른 외부 침지식 생물학적 분리막 반응조를 설명하기 위한 도면으로서, 본 발명의 외부 침지식 분리막 반응조는, 분리막이 별도의 조에 침지되도록 구성된 외부침지식 분리막반응조로서, 그 설치순서는 안정화조(10), 무산소조(20), 혐기조(30), 호기조(40) 및 이 호기조(40)의 외부에 별도로 설치되어 관로(L1)를 통하여 연결되는 외부침지식 분리막조(50)를 포함한다.1 is a view for explaining the external immersion biological membrane reaction tank according to the present invention, the external immersion membrane reaction tank of the present invention is an external immersion membrane reaction tank configured to be immersed in a separate tank, the installation order is stabilized The tank 10, the anaerobic tank 20, anaerobic tank 30, the aerobic tank 40 and the external immersion type separation membrane tank 50 is installed separately to the outside of the aerobic tank 40 is connected via a pipeline (L1). .
그리고 유입관로(L2)를 통하여 유입되는 처리수는 안정화조(10), 무산소조(20) 및 혐기조(30)로 유입수 조건에 따라 분배되어 공급될 수 있도록 구성된다.And the treated water flowing through the inlet pipe (L2) is configured to be distributed and supplied according to the inlet water conditions to the stabilization tank 10, the anaerobic tank 20 and the anaerobic tank (30).
즉, 유입수의 유기물/질소 비가 낮은 경우에는 무산소조(20)로 유입량을 늘리고, 탈인에 필요한 유기물이 부족한 경우에는 혐기조(30)로 유입수량을 높여줄 수 있는데, 유입수의 유기물/질소 비 조건 및 반응조의 탈질, 탈인 효율에 따라 유입수 분배 주입율은 달라질 수 있다. 통상 안정화조(10)로 0~10%, 무산소조(20)로 70~90%, 혐기조(30)로 0~30% 범위에서 분배 유입된다.In other words, when the inflow of organic matter / nitrogen ratio is low, the inflow can be increased to the anaerobic tank 20, and when the organic matter necessary for dephosphorization is insufficient, the inflow rate can be increased to the anaerobic tank 30. Depending on the denitrification and dephosphorization efficiency of the influent distribution, the injection rate may vary. Usually distributed in the range of 0 to 10% to the stabilization tank 10, 70 to 90% to the anaerobic tank 20, 0 to 30% into the anaerobic tank 30.
상기 안정화조(10)와 외부침지식 분리막조(50)는 반송라인(L3)으로 연결되고, 이 반송라인(L3)에는 용존산소(DO: Dissolved Oxygen) 저감장치(60)가 설치되고, 상기 외부침지식 분리막조(50) 내부에 설치된 분리막(52)의 세정에 소요되는 공기량 저감을 위해 컴프레서(70)의 압축공기를 분리막(52)으로 공급하는 공기세정라인(L4)에는 에어리시버(Air Receiver)(72) 및 자동압력밸브(74)로 이루어진 펄스에어레이션(Pulse Aeration)장치가 설치되어 컴프레서(70)에 의해 압축된 공기를 분리막(52)으로 간헐적으로 공급하도록 구성된다.The stabilization tank 10 and the external immersion membrane tank 50 is connected to the conveying line (L3), the dissolved oxygen (DO: Dissolved Oxygen (DO) reduction device 60) is installed in the conveying line (L3), In order to reduce the amount of air required for cleaning the separation membrane 52 installed in the external immersion membrane tank 50, the air receiver (L4) to supply the compressed air of the compressor 70 to the separation membrane 52 A pulse aeration device composed of a receiver 72 and an automatic pressure valve 74 is installed to intermittently supply air compressed by the compressor 70 to the separator 52.
상기 용존산소 저감장치(60)는 진공발생으로 용존산소를 탈기 제거하는 진공 감압장치(62)와, 비상시 잔류하는 용존산소의 추가 제거를 위한 아황산나트륨/코발트이온 주입장치(64)로 구성된다.The dissolved oxygen reducing device 60 is composed of a vacuum decompression device 62 for degassing and removing dissolved oxygen by vacuum generation, and a sodium sulfite / cobalt ion injection device 64 for further removal of dissolved oxygen remaining in an emergency.
상기 배출관로(L5)에 설치된 흡인펌프(80) 전단에는 공기제거장치(Air Separator)(82)가 설치되어 일정수준의 증기공동 발생시 공기를 배출시켜 공동현상을 방지하도록 되어있다.An air separator 82 is installed at the front of the suction pump 80 installed in the discharge line L5 to prevent the phenomenon by discharging air when a certain level of steam cavities are generated.
그리고 상기 호기조(40)는 블로워(42)에 의해 산기관(L6)을 통하여 산소를 공급받도록 구성되며, 약품투입에 의한 인제거를 병행할 수 있도록 Alum(명반:明礬)을 첨가하는 약품주입펌프(44)가 더욱 설치된다. 상기 약품주입펌프(44)는 공급펌프의 작동으로 소정량의 Alun을 호기조(40) 내부로 주입하도록 이루어진 통상적인 정량약품공급펌프가 사용될 수 있으므로 상세한 설명은 생략한다.And the aerobic tank 40 is configured to receive oxygen through the diffuser (L6) by the blower 42, the chemical injection pump to add Alum (alum: 明礬) so that the phosphorus removal by the chemical injection in parallel 44 is further installed. The drug injection pump 44 is a conventional fixed-quantity drug supply pump configured to inject a predetermined amount of Alun into the aerobic tank 40 by the operation of the supply pump can be used, so a detailed description thereof will be omitted.
상기에서 무산소조(20)는 유기물을 이용하여 질산성 질소를 질소가스로 전환하는 공정을 수행하고, 혐기조(30)는 유기물을 이용하며 수중의 인을 방출시키는 공정을 수행하고, 호기조(40)는 공기(산소)를 이용하여 미생물이 성장 활동하는 구간으로 유기물 산화와 질산화를 수행하며, 외부침지식 분리막조(50)는 피처리액을 여과 처리하는 공정을 수행한다.The anoxic tank 20 performs a process of converting nitrate nitrogen to nitrogen gas using an organic material, the anaerobic tank 30 performs a process of releasing phosphorus in water using an organic material, the aerobic tank 40 is Oxygen is used to oxidize and nitrify the organic matter to the growth zone using the air (oxygen), and the external immersion membrane tank 50 performs a process of filtering the liquid to be treated.
상기와 같은 본 발명의 외부 침지식 분리막 반응조를 이용하여 오폐수처리단계를 각각의 구성별로 기술하면 다음과 같다.When the wastewater treatment step is described for each configuration by using the external immersion membrane reactor of the present invention as described above.
1. 외부침지식 분리막 반응조(External-Submersed Membrane Bioreactor)1. External-Submersed Membrane Bioreactor
기존 침지형 분리막 반응조(MBR: Membrane Bioreactor)는 분리막을 호기조에 침지하는 내부침지식(Internal-Submersed)이기 때문에 개보수시 조를 비워야 하는 단점이 있고 모든 작업이 현장에서 이루어져야 한다. 그러나 본 발명에서는 모듈 형태로 이루어진 분리막(52)이 호기조(40) 외부의 별도의 분리막조(50)에 침지되는 방식, 즉 외부침지식 (External-Submersed) 방식으로 개보수시 조 전체를 비움으로써 발생하는 처리장의 가동중단이 발생하지 않고, 별도의 공장에서 완제품을 제작하여 현장에 단순 설치만 함으로써 기존처리장의 용이한 개보수가 가능하다. 뿐만 아니라 외부침지식 분리막조(50)의 분리막(52)모듈만 들어갈 수 있도록 집약화 되어있어, 분리막의 약품세정이 동일한 반응조에서 가능하고, 분리막(52) 세정시 폭기조 전체를 사용하지 않기 때문에 세정시에도 외부침지식 분리막조(50)를 제외한 나머지 반응조에서 안정적인 처리가 가능하기 때문에 공정 중단이 발생하지 않는다. 분리막(52)의 세정시에는 외부침지식 분리막조(50)로 유입되는 대신에 바이패스라인(By-pass Line)(L7)을 통해 호기조(40)의 슬러지가 무산소조(20)로 반송됨으로써 질산화, 탈질과정이 문제없이 수행되도록 구성되고 외부침지식 분리막조(50)에서는 세정이 진행된다.Existing submerged membrane bioreactors (MBRs) are internally-submersed, so the membranes are immersed in an aerobic tank. However, in the present invention, the separation membrane 52 formed in a modular form is immersed in a separate separation tank 50 outside the aerobic tank 40, that is, generated by emptying the entire tank during retrofitting in an external-submersed manner. It is possible to easily renovate an existing treatment plant by simply manufacturing the finished product in a separate factory and simply installing it on site without causing any downtime of the treatment plant. In addition, it is concentrated so that only the membrane module of the external immersion membrane tank 50 can enter, so that the chemical cleaning of the membrane is possible in the same reaction tank, and when cleaning the membrane 52, the entire aeration tank is not used. Even in the reaction tank except for the external immersion membrane tank 50 can be processed in a stable process does not occur. When the membrane 52 is cleaned, the sludge of the aerobic tank 40 is returned to the anaerobic tank 20 through the bypass line L7 instead of flowing into the external immersion membrane tank 50. , The denitrification process is configured to be performed without a problem, and the cleaning is performed in the external immersion type separation membrane tank 50.
외부침지식 분리막조(50)로는 관로(L1)에 설치된 내부반송펌프(90)에 의해 유입되고, 외부침지식 분리막조(50)에서 안정화조(10)로의 내부반송은 반송라인(L3)을 따라서 자연유하에 의해 가능하도록 구성된다. 자연유하에 의한 흐름을 만들기 위해 외부침지식 분리막조(50)는 안정화조(10) 보다 높은 위치에 설치된다.The outer immersion membrane tank 50 is introduced by the inner conveying pump 90 installed in the conduit L1, and the inner conveyance from the outer immersion membrane tank 50 to the stabilization tank 10 is transferred to the conveying line L3. Therefore, it is configured to be possible by natural discharge. External immersion membrane tank 50 is installed at a position higher than the stabilization tank 10 in order to make the flow by natural flow.
2. 공정구성2. Process composition
본 발명의 공정구성의 특징은 맨 처음에 안정화조(10)가 위치하고, 이후 무산소조(20), 혐기조(30), 호기조(40), 외부침지식 분리막조(50)로 이루어진다. 유입수는 안정화조(10), 무산소조(20) 및 혐기조(30)로 분배되어 공급될 수 있도록 구성되어, 무산소조(20) 탈질 후 유기물 부족에 따른 탈인효율 저하 시 혐기조(30)로 분배주입(0~30%) 된다. 분리막(52) 세정을 위한 외부침지식 분리막조(50) 과폭기로 반송라인(L3)내 용존산소 농도가 높아 탈질균의 활동이 저해를 받는데, 본 발명에서는 안정화조(10)의 설치에 의해 내부반송라인(L3)의 용존산소를 절감함으로 써 이와 같은 문제를 해결한다. 조구성의 순서는 안정적인 질소, 인 동시제거를 위해 매우 중요한데 본 발명에서는 위에서 언급한 바와 같이 안정화조(10), 무산소조(20), 혐기조(30), 호기조(40), 외부침지식 분리막조(50)로 구성된다. 무산소조(20)를 혐기조(30)보다 우선 배치하여 유기물을 우선적으로 질소제거에 활용할 수 있도록 하였고, 동시에 혐기조(30)에서 탈인 시 질산성질소의 영향을 배제할 수 있도록 하였다. 내부반송은 무산소조(20)가 아닌 안정화조(10)로 반송하여 잔류 용존산소를 사전에 제거함으로써 무산소조(20)에서 용존산소 영향을 최소화하였다. 안정화조(10)는 반송수내 용존산소 저감이 주 목적이나 사상균 억제를 위한 선택조(Selector)의 기능을 수행하도록 고안되었다.Characteristic of the process configuration of the present invention is the stabilization tank 10 is located first, and then consists of an anaerobic tank 20, anaerobic tank 30, aerobic tank 40, external immersion separation membrane tank (50). The influent is configured to be distributed and supplied to the stabilization tank (10), anoxic tank (20) and anaerobic tank (30), distribution injection into the anaerobic tank (30) when dephosphorization efficiency decreases due to lack of organic matter after deoxygenation tank (20) (0) 30%). Due to the high concentration of dissolved oxygen in the conveying line (L3) due to the aeration of the externally immersed separation tank (50) for cleaning the separation membrane (52), the activity of the denitrification bacteria is inhibited, in the present invention by the installation of the stabilization tank (10) This problem is solved by reducing dissolved oxygen in the internal transport line (L3). The order of the composition is very important for the simultaneous removal of nitrogen, phosphorus stabilization tank 10, anoxic tank 20, anaerobic tank 30, aerobic tank 40, external immersion separation membrane tank (as mentioned above) 50). The anaerobic tank 20 was placed prior to the anaerobic tank 30 so that the organic material could be utilized for nitrogen removal preferentially, and at the same time, it was possible to exclude the influence of nitrate nitrogen when dephosphorization in the anaerobic tank 30. The internal transport was returned to the stabilization tank 10 rather than the anaerobic tank 20 to remove residual dissolved oxygen in advance to minimize the dissolved oxygen effect in the oxygen-free tank 20. Stabilization tank 10 is designed to reduce the dissolved oxygen in the return water serves as a selector for the main purpose or to suppress the fungal bacteria.
3. 분리막 세정용 공기량 절감방안: 에어리시버(Air Receiver) + 펄스에어레이션(Pulse Aeration)3. Reduction of air volume for membrane cleaning: Air Receiver + Pulse Aeration
분리막(52) 세정에 소요되는 공기량 저감을 위해 공기세정라인(L4)에 에어리시버(Air Receiver)(72)를 설치하여 컴프레서(70)에 의해 압축된 공기를 분리막(52)으로 간헐적으로 공급하는 펄스에어레이션(Pulse Aeration) 방법이 적용된다. 즉 압력이 1.5~2kg/cm2까지 상승 시 압력에 의하여 자동으로 개폐되는 자동압력밸브(74)가 열려 압축된 공기가 일시적으로 분출됨으로써 연속공기주입방식에 비해 전체적인 공기소요량이 절감되어 에너지 비용이 줄어들고, 펄스에어레이션 방식에 의해 큰 공기방울이 분리막(52) 표면을 세정함으로써 기존의 미세한 기포에 의한 방식보다 세정효과 또한 우수하다. 이때 펄스에어레이션 주기는 압력값과 시간의 2가 지 제어인자에 의해 제어되도록 구성된다. 또한 생물학적 처리에 소요되는 공기는 별도의 블로워(42)를 통해 분리하여 공급됨으로써, 기존 세정용과 생물학적처리에 공급되는 공기량을 한꺼번에 공급하는 경우와 비교하여 블로워 용량을 획기적으로 줄일 수 있다.In order to reduce the amount of air required to clean the separation membrane 52, an air receiver 72 is installed in the air cleaning line L4 to intermittently supply the air compressed by the compressor 70 to the separation membrane 52. Pulse Aeration method is applied. In other words, when the pressure rises to 1.5 ~ 2kg / cm 2 , the automatic pressure valve 74 is opened and opened automatically by the pressure, and the compressed air is ejected temporarily, thereby reducing the overall air consumption as compared to the continuous air injection method. In addition, since a large air bubble cleans the surface of the separator 52 by the pulse air method, the cleaning effect is also superior to the conventional fine bubble method. In this case, the pulse aeration period is configured to be controlled by two control factors, a pressure value and a time. In addition, the air required for biological treatment is separately supplied through a separate blower 42, so that the blower capacity can be drastically reduced as compared with the case of supplying the amount of air supplied to the conventional cleaning and biological treatment at once.
4. 내부반송라인의 용존산소 저감방안4. Measures to reduce dissolved oxygen in internal conveying line
내부반송라인(L3)의 높은 용존산소에 의해 발생하는 무산소조(20) 탈질율 저하를 방지하기 위해 반송라인(L3)에는 용존산소 저감장치(60)가 창작된다. 이 용존산소 저감장치(60)는 -1~-5 기압의 진공을 발생시켜 용존산소를 탈기 제거하는 진공 감압장치(62)와, 비상시 잔류하는 용존산소의 추가 제거를 위한 아황산나트륨/코발트이온 주입장치(64)로 구성된다. 이때 코발트이온은 0.01~0.1mg/L로 주입되어 촉매역할을 수행함으로써 급속한 용존산소 제거반응이 가능하다. 상기 아황산나트륨/코발트이온 주입장치(64)는 공급펌프의 작동으로 약품주입을 하도록 이루어진 통상적인 공급펌프가 사용될 수 있으므로 상세한 설명은 생략한다.In order to prevent the denitrification rate of the oxygen-free tank 20 generated by the high dissolved oxygen of the inner conveying line L3, the dissolved oxygen reducing device 60 is created in the conveying line L3. The dissolved oxygen reducing device 60 includes a vacuum decompression device 62 which degass and removes dissolved oxygen by generating a vacuum of -1 to -5 atmospheres, and sodium sulfite / cobalt ion injection for further removal of dissolved oxygen remaining in an emergency. Device 64. At this time, cobalt ions are injected at 0.01 ~ 0.1mg / L to perform a catalytic role to enable rapid dissolved oxygen removal reaction. The sodium sulfite / cobalt ion injector 64 may be used because a conventional feed pump configured to perform chemical injection by operation of the feed pump may be omitted.
5. 생물학적 인 제거와 화학적 인 제거 병행5. Biological and Chemical Removal
본 발명에서는 호기조(40)에 비상시 대비 약품투입 시설이 설치되어 생물학적 인 제거와 화학적 인 제거의 동시작용에 의해 인이 제거된다. 즉 분리막 반응조 특성상 긴 미생물체류시간 유지가 불가피 하여 인 제거율이 저조하고, 국내 하수의 유기물 부족(저 유기물/질소 비)으로 탈인 및 탈질에 필요한 충분한 량의 유기원 확보가 어려워 탈인 보다는 탈질에 유기물 활용을 우선하도록 공정을 구성하였기 때문에 부족한 인 제거율은 Alum[(Al2SO4)3·18H2O]을 정량 첨가하는 약품주입펌프(44)로 보완한다. 탈질용 외부탄소원 공급보다 인 제거를 위한 Alum 투입이 비용, 시공성, 유지관리 편의성 면에서 유리하기 때문에 유기물 활용은 탈인보다는 탈질에 우선순위를 두도록 한다. 그러나 인 제거율을 높이기 위해 약품투입에 의한 인 제거를 병행한다.In the present invention, the aerobic tank 40 is installed in the emergency injection medicine preparation facility is removed phosphorus by the simultaneous action of biological and chemical removal. In other words, it is inevitable to maintain long microbial retention time due to the characteristics of the membrane reaction tank, and the phosphorus removal rate is low, and it is difficult to secure sufficient organic sources for dephosphorization and denitrification due to the lack of organic matter in the domestic sewage (low organic matter / nitrogen ratio). Since the process is configured to prioritize, the insufficient phosphorus removal rate is compensated by the chemical injection pump 44 which quantitatively adds Alum [(Al 2 SO 4 ) 3 .18H 2 O]. The use of organic materials should give priority to denitrification rather than dephosphorization, as the input of Alum for phosphorus removal is advantageous in terms of cost, constructability and ease of maintenance rather than supplying external carbon sources for denitrification. However, in order to increase phosphorus removal rate, phosphorus removal by chemical injection is combined.
6. 흡인시 펌프의 공동현상 방지6. Prevention of cavitation of pump during suction
분리막 반응조 공정의 배출관로(L5)에 설치된 흡인펌프(80)는 현장여건에 의해 설치위치가 일반적으로 높아 흡인시 기포유입에 따른 공동현상(Cavitation)이 자주 발생하거나, 분리막의 오염이 가중됨에 따라 흡인시 공기유입에 따른 공동현상 발생으로 처리수 생산량이 줄어드는 문제가 있다. 이와 같은 문제를 해결하기 위해 본 발명에서는 배출관로(L5)에 설치된 흡인펌프(80) 전단에는 공기제거장치(Air Separator)(82)가 설치되어 일정수준의 증기공동 발생시 공기를 배출시켜 공동현상을 방지한다.The suction pump 80 installed in the discharge line L5 of the membrane reaction tank process has a high installation location due to site conditions, and thus cavitation frequently occurs due to bubble inflow during suction, or the contamination of the membrane increases. There is a problem in that the amount of treated water produced is reduced due to the occurrence of cavitation due to air inflow during suction. In order to solve such a problem, in the present invention, an air separator 82 is installed in the front of the suction pump 80 installed in the discharge line L5 to discharge the air when a certain level of steam cavities are generated. prevent.
공기제거장치(82)는 내부 상태를 점검하기 위한 점검창(83)과 액주계(84)가 부착되고, 레벨스위치(85)와 연동된 자동밸브(86)와 진공펌프(87)가 설치된다. 상기 진공펌프(87)는 레벨스위치(85)와 흡인펌프(80)에 의하여 연동되도록 설치되는데, 레벨스위치(85)가 저수위와 고수위 사이에서만 진공펌프(87)가 가동되고, 이때는 흡인펌프(80)가 항상 가동 상태가 되도록 구성한다. 공기제거장치(82)의 레벨 수위차, 즉 고수위와 저수위의 차이는 20~40cm가 되도록 하고 공기제거장치(82)내 부의 유속은 0.2~0.5m/s로 유지한다. 공동현상에 의해 발생된 공기가 발생하면서 공기제거장치(82)의 수위는 내려가게 되는데, 설정된 저수위 값까지 떨어지면 자동밸브(86)가 열리면서 진공펌프(87)가 가동되어 공기를 공기배출관로(L8)를 통하여 외부로 강제 배출시키고, 고수위값에 도달하면 자동으로 멈추게 된다. 이때 진공펌프(87)는 분리막(52)과 흡인펌프(80) 사이에서 가장 높은 배관위치에 설치되도록 하고, 흡인펌프(80)는 반드시 공기제거장치(82)보다 아래에 설치하도록 하여 공동현상 발생을 방지한다. 공기제거장치(82)의 유출위치는 유입지점보다 낮도록 구성한다.The air removing device 82 is provided with a check window 83 and a liquid column 84 for checking an internal state, and an automatic valve 86 and a vacuum pump 87 interlocked with the level switch 85 are installed. . The vacuum pump 87 is installed to be interlocked by the level switch 85 and the suction pump 80, the vacuum pump 87 is operated only between the low and high water level switch 85, in this case the suction pump (80) ) Is always in operation. The level difference between the level of the air removing device 82, that is, the difference between the high level and the low level is 20 to 40 cm, and the flow rate inside the air removing device 82 is maintained at 0.2 to 0.5 m / s. As the air generated by the cavitation occurs, the water level of the air removing device 82 is lowered. When the water level drops to the set low water level, the automatic valve 86 is opened and the vacuum pump 87 is operated to draw air into the air discharge pipe L8. Forced discharge to the outside through) and stops automatically when the high water level is reached. At this time, the vacuum pump 87 is to be installed in the highest pipe position between the separation membrane 52 and the suction pump 80, the suction pump (80) must be installed below the air removal device 82 to generate a common phenomenon To prevent. The outlet position of the air removal device 82 is configured to be lower than the inlet point.
이상 설명한 바와 같이 본 발명에 의한 외부 침지식 생물학적 분리막 반응조는, 기존 활성슬러지 공정을 고도처리로 개선하는데 소요되는 시간은 최소화하면서 질소 제거율은 극대화되고, 분리막 세정용 공기소요량을 효과적으로 줄임으로써 동력비절감과 내부반송라인의 용존산소 농도 저감을 통해 탈질효율을 높일수 있다. 또한 흡인시 공동현상 방지를 통해 안정적인 처리수량 확보가 가능하다.As described above, the externally immersed biological membrane reaction tank according to the present invention minimizes the time required for improving the existing activated sludge process while maximizing the nitrogen removal rate and effectively reducing the air consumption for the membrane cleaning, thereby reducing power costs. The denitrification efficiency can be increased by reducing the dissolved oxygen concentration of the internal conveying line. In addition, it is possible to secure a stable amount of processing through the prevention of cavitation during suction.

Claims (5)

  1. 분리막이 별도의 조에 침지되도록 구성된 외부침지식 분리막 반응조로서, 그 설치순서는 안정화조, 무산소조, 혐기조, 호기조 및 이 호기조의 외부에 별도로 설치되어 관로를 통하여 연결되는 외부침지식 분리막조로 순차적으로 설치된 외부 침지식 분리막 반응조.Externally immersed membrane reaction tank configured to immerse the membrane in a separate tank, and the installation order is a stabilization tank, anoxic tank, anaerobic tank, aerobic tank, and an external immersion membrane tank that is installed outside of the aerobic tank and connected to a pipe through a pipeline. Immersion membrane reactor.
  2. 청구항 1에 있어서, 상기 반응조로 유입되는 처리수는 안정화조, 무산소조 및 혐기조로 공급될 수 있도록 구성된 외부 침지식 분리막 반응조.The externally immersed membrane reactor of claim 1, wherein the treated water flowing into the reactor is configured to be supplied to a stabilization tank, an anaerobic tank, and an anaerobic tank.
  3. 청구항 1에 있어서, 상기 안정화조와 분리막조는 반송라인으로 연결되고, 이 반송라인에는 용존산소 저감장치가 설치되며, 상기 용존산소 저감장치는 진공발생으로 용존산소를 탈기 제거하는 진공 감압장치와, 비상시 잔류하는 용존산소의 추가 제거를 위한 아황산나트륨/코발트이온 주입장치로 구성된 외부 침지식 분리막 반응조.The method according to claim 1, wherein the stabilization tank and the separation membrane tank is connected to the conveying line, the dissolved oxygen reducing device is installed in the conveying line, the dissolved oxygen reducing device is a vacuum decompression device for degassing and removing the dissolved oxygen by vacuum generation, and residual in emergency External immersion membrane reactor consisting of sodium sulfite / cobalt ion injector for the further removal of dissolved oxygen.
  4. 청구항 1에 있어서, 상기 분리막조 내부에 설치된 분리막의 세정에 소요되는 공기량 저감을 위하여 컴프레서의 압축공기를 분리막으로 공급하는 공기세정라인에는 에어리시버 및 자동압력밸브로 이루어진 펄스에어레이션장치가 설치되어 컴프레서에 의해 압축된 공기를 분리막으로 간헐적으로 공급하도록 구성된 외부 침지식 분리막 반응조.According to claim 1, The air cleaning line for supplying the compressed air of the compressor to the separation membrane in order to reduce the amount of air required for cleaning the separation membrane installed in the separation membrane tank is installed in the compressor comprising a pulse air device consisting of an air receiver and an automatic pressure valve And an external submerged membrane reactor configured to intermittently supply compressed air to the separator.
  5. 청구항 1에 있어서, 상기 분리막조에는 처리수를 외부로 배출하는 흡인펌프가 제공된 배출관로가 설치되고, 흡인펌프의 흡인시 기포유입에 따른 공동현상을 방지할 수 있도록 흡인펌프 전단에는 공기제거장치가 설치되어 일정수준 이상의 증기공동 발생시 공기를 강제 배출시켜 공동현상을 방지하도록 구성된 외부 침지식 분리막 반응조.The method of claim 1, wherein the separation membrane tank is provided with a discharge pipe provided with a suction pump for discharging the treated water to the outside, the air removal device is provided in front of the suction pump to prevent the cavitation caused by the inflow of bubbles when the suction pump is suctioned Externally immersed membrane reactor installed to prevent the phenomenon of cavitation by forcibly discharging the air when a certain level of steam cavities occur.
KR1020050066471A 2005-07-21 2005-07-21 External-submersed membrane bioreactor with minimized air scrubbing of membrane module KR100649261B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050066471A KR100649261B1 (en) 2005-07-21 2005-07-21 External-submersed membrane bioreactor with minimized air scrubbing of membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050066471A KR100649261B1 (en) 2005-07-21 2005-07-21 External-submersed membrane bioreactor with minimized air scrubbing of membrane module

Publications (1)

Publication Number Publication Date
KR100649261B1 true KR100649261B1 (en) 2006-11-24

Family

ID=37713390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050066471A KR100649261B1 (en) 2005-07-21 2005-07-21 External-submersed membrane bioreactor with minimized air scrubbing of membrane module

Country Status (1)

Country Link
KR (1) KR100649261B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872863B1 (en) 2008-08-05 2008-12-10 주식회사 한미엔텍 Treatment apparatus of sewage water for removing stench and improving efficiency of filtration
KR100935022B1 (en) * 2009-03-04 2010-01-06 성일섭 Apparatus for purifying waste water
KR100992321B1 (en) 2009-09-29 2010-11-05 김성기 Wastewater treatment apparatus with membrane module
KR100999945B1 (en) 2010-10-28 2010-12-09 (주)대우건설 Air relif device for membrane filter pipe
KR20110001684A (en) * 2009-06-30 2011-01-06 코오롱건설주식회사 External-submersed membrane separating film device
KR101086677B1 (en) 2011-09-26 2011-11-24 주식회사 제이엠스텍 Reactor for purifying waste water using multistage bioreactor
CN103214082A (en) * 2013-04-12 2013-07-24 河北工业大学 Low-energy-consumption eddy-current membrane bioreactor
CN103274525A (en) * 2013-06-14 2013-09-04 哈尔滨工业大学 Anaerobic membrane bioreactor for treatment of domestic sewage
KR101670359B1 (en) * 2016-01-15 2016-10-31 (주)두레환경건설 Method and apparatus for processing wastewater
KR200484293Y1 (en) 2016-05-31 2017-08-23 (주)엠비티 External-Submersed Membrane Bioreactor and Water Treatment Apparatus Using the Same
KR20170109322A (en) * 2016-03-21 2017-09-29 현대건설주식회사 Phosphorus adsorption advanced wastewater treatment system
WO2019031726A1 (en) * 2017-08-10 2019-02-14 정우이엔티㈜ Upflow-type mbr wastewater treatment system using stacked structure and cleaning ball
KR20190105711A (en) * 2018-03-06 2019-09-18 주식회사 프로솔 an advanced wastewater treatment system with the membrane filtration process of membrane filter without relocating the filter duringcleaning

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872863B1 (en) 2008-08-05 2008-12-10 주식회사 한미엔텍 Treatment apparatus of sewage water for removing stench and improving efficiency of filtration
KR100935022B1 (en) * 2009-03-04 2010-01-06 성일섭 Apparatus for purifying waste water
KR101579310B1 (en) 2009-06-30 2015-12-22 코오롱글로벌 주식회사 External-submersed membrane separating film device
KR20110001684A (en) * 2009-06-30 2011-01-06 코오롱건설주식회사 External-submersed membrane separating film device
KR100992321B1 (en) 2009-09-29 2010-11-05 김성기 Wastewater treatment apparatus with membrane module
KR100999945B1 (en) 2010-10-28 2010-12-09 (주)대우건설 Air relif device for membrane filter pipe
KR101086677B1 (en) 2011-09-26 2011-11-24 주식회사 제이엠스텍 Reactor for purifying waste water using multistage bioreactor
CN103214082A (en) * 2013-04-12 2013-07-24 河北工业大学 Low-energy-consumption eddy-current membrane bioreactor
CN103274525A (en) * 2013-06-14 2013-09-04 哈尔滨工业大学 Anaerobic membrane bioreactor for treatment of domestic sewage
KR101670359B1 (en) * 2016-01-15 2016-10-31 (주)두레환경건설 Method and apparatus for processing wastewater
KR20170109322A (en) * 2016-03-21 2017-09-29 현대건설주식회사 Phosphorus adsorption advanced wastewater treatment system
KR200484293Y1 (en) 2016-05-31 2017-08-23 (주)엠비티 External-Submersed Membrane Bioreactor and Water Treatment Apparatus Using the Same
WO2019031726A1 (en) * 2017-08-10 2019-02-14 정우이엔티㈜ Upflow-type mbr wastewater treatment system using stacked structure and cleaning ball
KR20190105711A (en) * 2018-03-06 2019-09-18 주식회사 프로솔 an advanced wastewater treatment system with the membrane filtration process of membrane filter without relocating the filter duringcleaning
KR102132068B1 (en) * 2018-03-06 2020-07-08 주식회사 프로솔 an advanced wastewater treatment system with the membrane filtration process of membrane filter without relocating the filter duringcleaning

Similar Documents

Publication Publication Date Title
US6878282B2 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP5596949B2 (en) Sludge treatment method
KR100639824B1 (en) System and method for advanced treatment of nitrogen and phosphorus using microorganism and separation membrane
KR100441208B1 (en) Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
JP4361432B2 (en) Water treatment equipment
US7691268B2 (en) Waste gas/wastewater treatment equipment and method of treating waste gas/wastewater
WO2001064590A1 (en) Method and system for sustainable treatment of municipal and industrial wastewater
US7910001B2 (en) Arrangement of denitrification reactors in a recirculating aquaculture system
CN103112991B (en) Coking wastewater treatment system and coking wastewater treatment method
RU2501744C2 (en) Method of sewage purification and device for method realisation
CN101215045B (en) Three-compartment immersion type anaerobic film bioreactor
US20090065412A1 (en) Apparatus for waste water treatment
CN101024534A (en) Biological electrochemical combined system for treating dye waste water and method thereof
KR20100115412A (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
US9975796B2 (en) Process, apparatus and membrane bioreactor for wastewater treatment
CN101219842A (en) Technique and equipment for recycling leachate of garbage
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
CN1533992A (en) High concentration oxganic effluent treatment composite process and its equipment
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
JP4568528B2 (en) Water treatment equipment
CN201240972Y (en) Waste water advanced treatment apparatus combining ozone oxidation and downflow type aerating biological filter pool
KR20100078401A (en) A apparatus and treatment method for wastewater including excrementitious matter of domestic animals, and a production method of liquid fertilizer using the apparatus
KR101294489B1 (en) Apparatus for treating a drainage containing organic sulfur compounds
CN103466878A (en) Disposing and recycling equipment for high concentration organic wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120831

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130906

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150826

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160826

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 13